CINXE.COM

Search results for: resource recovery from water

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: resource recovery from water</title> <meta name="description" content="Search results for: resource recovery from water"> <meta name="keywords" content="resource recovery from water"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="resource recovery from water" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="resource recovery from water"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12078</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: resource recovery from water</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12048</span> Water Injection in One of the Southern Iranian Oil Field, a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hooman%20Fallah">Hooman Fallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seawater injection and produced water re-injection are presently the most commonly used approach to enhanced recovery. The dominant factors for total oil recovery are the reservoir temperature, reservoir pressure, crude oil and water composition. In this study, the production under water injection in Soroosh, one of the southern Iranian heavy oil field has been simulated (the fluid properties are focused). In order to reveal the dominant factors in this production process, the sensitivity analysis has been done for the following effective factors, fluid viscosity, initial water saturation, gravity force and injection well strategy. It is crystal clear that the study of the dominant factors in production processes will help the engineers to design the best production mechanisms in our numerous hydrocarbon reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20injection" title="water injection">water injection</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20water%20saturation" title=" initial water saturation"> initial water saturation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20viscosity" title=" oil viscosity"> oil viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=gravity%20force" title=" gravity force"> gravity force</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20well%20strategy" title=" injection well strategy"> injection well strategy</a> </p> <a href="https://publications.waset.org/abstracts/27169/water-injection-in-one-of-the-southern-iranian-oil-field-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12047</span> Urban Agriculture for Sustainable Cities: Using Wastewater and Urban Wetlands as Resource</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussnain%20Mukhtar">Hussnain Mukhtar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Pin%20Lin"> Yu-Pin Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the concept of ecologically engineered system for sustainable agriculture production with the view of sustainable cities development. Sustainable cities offer numerous eco-services to its inhabitants, and where, among other issues, wastewater nutrients can be considered to be a valuable resource to be used for a sustainable enhancement of urban agriculture in wetlands. Existing cities can be transferred from being only consumer of food and other agriculture product into important resource conserving and sustainable generators of these products. The review provides the food production capacity through introduction of wastewater into urban wetlands, potential for nutrient recovery and ecological engineering intervention to reduce the risk of food contamination by pathogens. Finally, we discuss the potential nutrients accumulating in our cities, as an important aspect of sustainable urban development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ecological%20engineering" title="ecological engineering">ecological engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20recovery" title=" nutrient recovery"> nutrient recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogens" title=" pathogens"> pathogens</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20agriculture" title=" urban agriculture"> urban agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=wetlands" title=" wetlands"> wetlands</a> </p> <a href="https://publications.waset.org/abstracts/78529/urban-agriculture-for-sustainable-cities-using-wastewater-and-urban-wetlands-as-resource" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12046</span> The Impact of Level and Consequence of Service Co-Recovery on Post-Recovery Satisfaction and Repurchase Intent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Tsai">Chia-Ching Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In service delivery, interpersonal interaction is the key to customer satisfaction, and apparently, the factor of human is critical in service delivery. Besides, customers quite care about the consequences of co-recovery. Thus, this research focuses on service failure caused by other customers and uses a 2x2 factorial design to investigate the impact of consequence and level of service co-recovery on post-recovery satisfaction and repurchase intent. 150 undergraduates were recruited as participants, and assigned to one of the four cells randomly. Every participant was requested to read the scenario and then rated the post-recovery satisfaction and repurchase intent. The results show that under the condition of failed co-recovery, level of co-recovery has no effect on post-recovery satisfaction, while under the condition of successful co-recovery, high-level co-recovery causes significantly higher post-recovery satisfaction than low-level co-recovery. Moreover, post-recovery satisfaction has significantly positive impact on repurchase intent. In the system of service delivery, customers interact with other customers frequently. Therefore, comparing with the literature, this research focuses on the service failure caused by other customers. This research also supplies a better understanding of customers’ view on consequences of different levels of co-recovery, which is helpful for the practitioners to make use of co-recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=service%20failure" title="service failure">service failure</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20co-recovery" title=" service co-recovery"> service co-recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=consequence%20of%20co-recovery" title=" consequence of co-recovery"> consequence of co-recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20of%20co-recovery" title=" level of co-recovery"> level of co-recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=post-recovery%20satisfaction" title=" post-recovery satisfaction"> post-recovery satisfaction</a>, <a href="https://publications.waset.org/abstracts/search?q=repurchase%20intent" title=" repurchase intent"> repurchase intent</a> </p> <a href="https://publications.waset.org/abstracts/78948/the-impact-of-level-and-consequence-of-service-co-recovery-on-post-recovery-satisfaction-and-repurchase-intent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12045</span> An Overview of Food Waste Management Technologies; The Advantages of Using New Management Methods over the Older Methods to Reduce the Environmental Impacts of Food Waste, Conserve Resources, and Energy Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Asefi">Bahareh Asefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fereidoun%20Farzaneh"> Fereidoun Farzaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghazaleh%20Asefi"> Ghazaleh Asefi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continuous increasing food waste produced on a global as well as national scale may lead to burgeoning environmental and economic problems. Simultaneously, decreasing the use efficiencies of natural resources such as land, water, and energy is occurring. On the other hand, food waste has a high-energy content, which seems ideal to achieve dual benefits in terms of energy recovery and the improvement of resource use efficiencies. Therefore, to decrease the environmental impacts of food waste and resource conservation, the researcher has focused on traditional methods of using food waste as a resource through different approaches such as anaerobic digestion, composting, incineration, and landfill. The adverse environmental effects of growing food waste make it difficult for traditional food waste treatment and management methods to balance social, economic, and environmental benefits. The old technology does not need to develop, but several new technologies such as microbial fuel cells, food waste disposal, and bio-converting food waste technology still need to establish or appropriately considered. It is pointed out that some new technologies can take into account various benefits. Since the information about food waste and its management method is critical for executable policy, a review of the latest information regarding the source of food waste and its management technology in some counties is provided in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title="food waste">food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20technology" title=" management technology"> management technology</a>, <a href="https://publications.waset.org/abstracts/search?q=innovative%20method" title=" innovative method"> innovative method</a>, <a href="https://publications.waset.org/abstracts/search?q=bio%20converting%20food%20waste" title=" bio converting food waste"> bio converting food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/155828/an-overview-of-food-waste-management-technologies-the-advantages-of-using-new-management-methods-over-the-older-methods-to-reduce-the-environmental-impacts-of-food-waste-conserve-resources-and-energy-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12044</span> Numerical Modelling of Immiscible Fluids Flow in Oil Reservoir Rocks during Enhanced Oil Recovery Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahreddine%20Hafsi">Zahreddine Hafsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoranjan%20Mishra"> Manoranjan Mishra </a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Elaoud">Sami Elaoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ensuring the maximum recovery rate of oil from reservoir rocks is a challenging task that requires preliminary numerical analysis of different techniques used to enhance the recovery process. After conventional oil recovery processes and in order to retrieve oil left behind after the primary recovery phase, water flooding in one of several techniques used for enhanced oil recovery (EOR). In this research work, EOR via water flooding is numerically modeled, and hydrodynamic instabilities resulted from immiscible oil-water flow in reservoir rocks are investigated. An oil reservoir is a porous medium consisted of many fractures of tiny dimensions. For modeling purposes, the oil reservoir is considered as a collection of capillary tubes which provides useful insights into how fluids behave in the reservoir pore spaces. Equations governing oil-water flow in oil reservoir rocks are developed and numerically solved following a finite element scheme. Numerical results are obtained using Comsol Multiphysics software. The two phase Darcy module of COMSOL Multiphysics allows modelling the imbibition process by the injection of water (as wetting phase) into an oil reservoir. Van Genuchten, Brooks Corey and Levrett models were considered as retention models and obtained flow configurations are compared, and the governing parameters are discussed. For the considered retention models it was found that onset of instabilities viz. fingering phenomenon is highly dependent on the capillary pressure as well as the boundary conditions, i.e., the inlet pressure and the injection velocity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20pressure" title="capillary pressure">capillary pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=EOR%20process" title=" EOR process"> EOR process</a>, <a href="https://publications.waset.org/abstracts/search?q=immiscible%20flow" title=" immiscible flow"> immiscible flow</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a> </p> <a href="https://publications.waset.org/abstracts/102040/numerical-modelling-of-immiscible-fluids-flow-in-oil-reservoir-rocks-during-enhanced-oil-recovery-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12043</span> Assessing the Impact of Human Behaviour on Water Resource Systems Performance: A Conceptual Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20J.%20Shanono">N. J. Shanono</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20G.%20Ndiritu"> J. G. Ndiritu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The poor performance of water resource systems (WRS) has been reportedly linked to not only climate variability and the water demand dynamics but also human behaviour-driven unlawful activities. Some of these unlawful activities that have been adversely affecting water sector include unauthorized water abstractions, water wastage behaviour, refusal of water re‐use measures, excessive operational losses, discharging untreated or improperly treated wastewater, over‐application of chemicals by agricultural users and fraudulent WRS operation. Despite advances in WRS planning, operation, and analysis incorporating such undesirable human activities to quantitatively assess their impact on WRS performance remain elusive. This study was then inspired by the need to develop a methodological framework for WRS performance assessment that integrates the impact of human behaviour with WRS performance assessment analysis. We, therefore, proposed a conceptual framework for assessing the impact of human behaviour on WRS performance using the concept of socio-hydrology. The framework identifies and couples four major sources of WRS-related values (water values, water systems, water managers, and water users) using three missing links between human and water in the management of WRS (interactions, outcomes, and feedbacks). The framework is to serve as a database for choosing relevant social and hydrological variables and to understand the intrinsic relations between the selected variables to study a specific human-water problem in the context of WRS management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conceptual%20framework" title="conceptual framework">conceptual framework</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20behaviour%3B%20socio-hydrology%3B%20water%20resource%20systems" title=" human behaviour; socio-hydrology; water resource systems"> human behaviour; socio-hydrology; water resource systems</a> </p> <a href="https://publications.waset.org/abstracts/115535/assessing-the-impact-of-human-behaviour-on-water-resource-systems-performance-a-conceptual-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12042</span> The Tariffs of Water Service for Productive Users: A Model for Defining Fare Classes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Macchiaroli">M. Macchiaroli</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Pellecchia"> V. Pellecchia</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Dolores"> L. Dolores</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The water supply for production users (craft, commercial, industrial), understood as the set of water supply and wastewater collection services becomes an increasingly felt problem in a water scarcity regime. In fact, disputes are triggered between the different social parties for the fair and efficient use of water resources. Within this aspect, the problem arises of the different pricing of services between civil users and production users. Of particular interest is the question of defining the tariff classes depending on consumption levels. If for civil users, this theme is strongly permeated by social profiles (a topic dealt with by the author in a forthcoming research contribution) connected with the inalienability of the right to have water and with the reconciliation of the needs of the weakest groups of the population, for consumers in the production sector the logic adopted by the manager may be inspired by criteria of greater corporate rationality. This work illustrates the Italian regulatory framework and shows an optimization model of tariff classes in the production sector that reconciles the public objective of sustainable use of the resource and the needs of a production system in search of recovery after the depressing effects caused by COVID-19 pandemic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title="decision making">decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20evaluation" title=" economic evaluation"> economic evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20water%20management" title=" urban water management"> urban water management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20tariff" title=" water tariff"> water tariff</a> </p> <a href="https://publications.waset.org/abstracts/129830/the-tariffs-of-water-service-for-productive-users-a-model-for-defining-fare-classes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12041</span> Precise Electrochemical Metal Recovery from Emerging Waste Streams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Jin">Wei Jin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Efficient and selective metal recovery from emerging solid waste, such as spent lithium batteries, electronic waste and SCR catalysts, is of great importance from both environmental and resource considerations. In order to overcome the bottlenecks of long flow-sheet and severe secondary pollution in conventional processes, the rational design of 2-electron oxygen reduction reaction (ORR) and capacitive deionization (CDI) nanomaterials were developed for the precise electrochemical metal recovery. It has been demonstrated that the modified carbon nanomaterials can be employed as 2e ORR to produce H2O2 in aqueous solution, in which the metal can be leached out from the solid waste as ions. Moreover, the multi-component metallic solution can be electrochemically extracted with good efficiency and selectivity with the nanoporous aerogel. Each system presents stable performance for long-term operation and can be used in industrial solid waste treatment. This study provides a materials-oriented, cleaner metal recovery approach for strategic metal resources sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title="electrochemistry">electrochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title=" metal recovery"> metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20steams" title=" waste steams"> waste steams</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a> </p> <a href="https://publications.waset.org/abstracts/193870/precise-electrochemical-metal-recovery-from-emerging-waste-streams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">9</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12040</span> Autonomic Recovery Plan with Server Virtualization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Hameed">S. Hameed</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Anwer"> S. Anwer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saad"> M. Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saady"> M. Saady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For autonomic recovery with server virtualization, a cogent plan that includes recovery techniques and backups with virtualized servers can be developed instead of assigning an idle server to backup operations. In addition to hardware cost reduction and data center trail, the disaster recovery plan can ensure system uptime and to meet objectives of high availability, recovery time, recovery point, server provisioning, and quality of services. This autonomic solution would also support disaster management, testing, and development of the recovery site. In this research, a workflow plan is proposed for supporting disaster recovery with virtualization providing virtual monitoring, requirements engineering, solution decision making, quality testing, and disaster management. This recovery model would make disaster recovery a lot easier, faster, and less error prone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20intelligence" title="autonomous intelligence">autonomous intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20recovery" title=" disaster recovery"> disaster recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20computing" title=" cloud computing"> cloud computing</a>, <a href="https://publications.waset.org/abstracts/search?q=server%20virtualization" title=" server virtualization"> server virtualization</a> </p> <a href="https://publications.waset.org/abstracts/129654/autonomic-recovery-plan-with-server-virtualization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12039</span> Application of a Submerged Anaerobic Osmotic Membrane Bioreactor Hybrid System for High-Strength Wastewater Treatment and Phosphorus Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Yeh%20Lu">Ming-Yeh Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiao-Shing%20Chen"> Shiao-Shing Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Saikat%20Sinha%20Ray"> Saikat Sinha Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Te%20Hsu"> Hung-Te Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, anaerobic membrane bioreactors (AnMBRs) has been widely utilized, which combines anaerobic biological treatment process and membrane filtration, that can be present an attractive option for wastewater treatment and water reuse. Conventional AnMBR is having several advantages, such as improving effluent quality, compact space usage, lower sludge yield, without aeration and production of energy. However, the removal of nitrogen and phosphorus in the AnMBR permeate was negligible which become the biggest disadvantage. In recent years, forward osmosis (FO) is an emerging technology that utilizes osmotic pressure as driving force to extract clean water without additional external pressure. The pore size of FO membrane is kindly mentioned the pore size, so nitrogen or phosphorus could effectively improve removal of nitrogen or phosphorus. Anaerobic bioreactor with FO membrane (AnOMBR) can retain the concentrate organic matters and nutrients. However, phosphorus is a non-renewable resource. Due to the high rejection property of FO membrane, the high amount of phosphorus could be recovered from the combination of AnMBR and FO. In this study, development of novel submerged anaerobic osmotic membrane bioreactor integrated with periodic microfiltration (MF) extraction for simultaneous phosphorus and clean water recovery from wastewater was evaluated. A laboratory-scale AnOMBR utilizes cellulose triacetate (CTA) membranes with effective membrane area of 130 cm² was fully submerged into a 5.5 L bioreactor at 30-35℃. Active layer-facing feed stream orientation was utilized, for minimizing fouling and scaling. Additionally, a peristaltic pump was used to circulate draw solution (DS) at a cross flow velocity of 0.7 cm/s. Magnesium sulphate (MgSO₄) solution was used as DS. Microfiltration membrane periodically extracted about 1 L solution when the TDS reaches to 5 g/L to recover phosphorus and simultaneous control the salt accumulation in the bioreactor. During experiment progressed, the average water flux was achieved around 1.6 LMH. The AnOMBR process show greater than 95% removal of soluble chemical oxygen demand (sCOD), nearly 100% of total phosphorous whereas only partial removal of ammonia, and finally average methane production of 0.22 L/g sCOD was obtained. Therefore, AnOMBR system periodically utilizes MF membrane extracted for phosphorus recovery with simultaneous pH adjustment. The overall performance demonstrates that a novel submerged AnOMBR system is having potential for simultaneous wastewater treatment and resource recovery from wastewater, and hence, the new concept of this system can be used to replace for conventional AnMBR in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20treatment" title="anaerobic treatment">anaerobic treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20osmosis" title=" forward osmosis"> forward osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20recovery" title=" phosphorus recovery"> phosphorus recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a> </p> <a href="https://publications.waset.org/abstracts/63011/application-of-a-submerged-anaerobic-osmotic-membrane-bioreactor-hybrid-system-for-high-strength-wastewater-treatment-and-phosphorus-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12038</span> Review of Suitable Advanced Oxidation Processes for Degradation of Organic Compounds in Produced Water during Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Smita%20Krishnan">Smita Krishnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Krittika%20Chandran"> Krittika Chandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Mohan%20Sinnathambi"> Chandra Mohan Sinnathambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Produced water and its treatment and management are growing challenges in all producing regions. This water is generally considered as a nonrevenue product, but it can have significant value in enhanced oil recovery techniques if it meets the required quality standards. There is also an interest in the beneficial uses of produced water for agricultural and industrial applications. Advanced Oxidation Process is a chemical technology that has been growing recently in the wastewater treatment industry, and it is highly recommended for non-easily removal of organic compounds. The efficiency of AOPs is compound specific, therefore, the optimization of each process should be done based on different aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20oxidation%20process" title="advanced oxidation process">advanced oxidation process</a>, <a href="https://publications.waset.org/abstracts/search?q=photochemical%20processes" title=" photochemical processes"> photochemical processes</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20contaminants" title=" organic contaminants"> organic contaminants</a> </p> <a href="https://publications.waset.org/abstracts/19348/review-of-suitable-advanced-oxidation-processes-for-degradation-of-organic-compounds-in-produced-water-during-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19348.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12037</span> Biochemical Evaluation of Air Conditioning West Water in Jeddah City: Concept of Sustainable Water Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Alromi">D. Alromi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alansari"> A. Alansari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alghamdi"> S. Alghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Jambi"> E. Jambi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As the need for water is increasing globally, and the available water resources are barely meeting the current quality of life and economy. Air conditioning (AC) condensate water could be explored as an alternative water source, which could be considered within the global calculations of the water supply. The objective of this study is to better understand the potential for recovery of condensate water from air conditioning systems. The results generated so far showed that the AC produces a high quantity of water, and data analysis revealed that the amount of water is positively and significantly correlated with the humidity (P <= 0.05). In the meantime, the amount of heavy metals has been measuring using ICP-OES. The results, in terms of quantity, clearly show that the AC can be used as an alternative source of water, especially in the regions characterized by high humidity. The results also showed that the amount of produced water depends on the type of AC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning%20systems" title="air conditioning systems">air conditioning systems</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quantity" title=" water quantity"> water quantity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%0D%0Aresources" title=" water resources"> water resources</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/114549/biochemical-evaluation-of-air-conditioning-west-water-in-jeddah-city-concept-of-sustainable-water-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12036</span> Post-Exercise Effects of Cold Water Immersion over a 48-Hour Recovery Period on the Physical and Haematological Parameters of Male University-Level Rugby Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adele%20Broodryk">Adele Broodryk</a>, <a href="https://publications.waset.org/abstracts/search?q=Cindy%20Pienaar"> Cindy Pienaar</a>, <a href="https://publications.waset.org/abstracts/search?q=Martinique%20Sparks"> Martinique Sparks</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Coetzee"> Ben Coetzee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cold water immersion (CWI) is a popular recovery modality utilised. However, discrepancies exist regarding the results over a 48 hour recovery period. Aim: To evaluate the effects of CWI and passive recovery (PAR) on a range of haematological and physical parameters over a 48-hour using a cross-sectional, pre-post-test design. Subjects and Methods: Both the and physical parameters were evaluated at baseline, after a 15-min fitness session, and at 0, 24 and 48 hours post-recovery in 23 male university rugby players. The CWI group sat in a cold water pool (8°C) for 20 min whereas the PAR group remained seated. Results: At 0 hours post-CWI, three (blood lactate (BLa-), Sodium (Na+) and haemoglobin) returned to baseline values, however Vertical Jump Test (VJT) height results decreased whereas after PAR it improved. From 0 to 24 and/or 48 h, four (Partial Oxygen (PO2) VJT-height, plasma glucose, and Na+) significantly increased (p ≤ 0.05) in either and/or both groups. Significant intergroup differences (p ≤ 0.05) were noticed in the physical tests. Conclusions: PAR is superior as an acute modality (0 hours) due to CWI cooling the body down. However, CWI demonstrates advantageous over a 24-hour period in a wide range of haematological variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryotherapy" title="cryotherapy">cryotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=recuperation" title=" recuperation"> recuperation</a>, <a href="https://publications.waset.org/abstracts/search?q=haematological" title=" haematological"> haematological</a>, <a href="https://publications.waset.org/abstracts/search?q=rugby" title=" rugby"> rugby</a> </p> <a href="https://publications.waset.org/abstracts/46687/post-exercise-effects-of-cold-water-immersion-over-a-48-hour-recovery-period-on-the-physical-and-haematological-parameters-of-male-university-level-rugby-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12035</span> Water Dumpflood into Multiple Low-Pressure Gas Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lertsakulpasuk">S. Lertsakulpasuk</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Athichanagorn"> S. Athichanagorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As depletion-drive gas reservoirs are abandoned when there is insufficient production rate due to pressure depletion, waterflooding has been proposed to increase the reservoir pressure in order to prolong gas production. Due to high cost, water injection may not be economically feasible. Water dumpflood into gas reservoirs is a new promising approach to increase gas recovery by maintaining reservoir pressure with much cheaper costs than conventional waterflooding. Thus, a simulation study of water dumpflood into multiple nearly abandoned or already abandoned thin-bedded gas reservoirs commonly found in the Gulf of Thailand was conducted to demonstrate the advantage of the proposed method and to determine the most suitable operational parameters for reservoirs having different system parameters. A reservoir simulation model consisting of several thin-layered depletion-drive gas reservoirs and an overlying aquifer was constructed in order to investigate the performance of the proposed method. Two producers were initially used to produce gas from the reservoirs. One of them was later converted to a dumpflood well after gas production rate started to decline due to continuous reduction in reservoir pressure. The dumpflood well was used to flow water from the aquifer to increase pressure of the gas reservoir in order to drive gas towards producer. Two main operational parameters which are wellhead pressure of producer and the time to start water dumpflood were investigated to optimize gas recovery for various systems having different gas reservoir dip angles, well spacings, aquifer sizes, and aquifer depths. This simulation study found that water dumpflood can increase gas recovery up to 12% of OGIP depending on operational conditions and system parameters. For the systems having a large aquifer and large distance between wells, it is best to start water dumpflood when the gas rate is still high since the long distance between the gas producer and dumpflood well helps delay water breakthrough at producer. As long as there is no early water breakthrough, the earlier the energy is supplied to the gas reservoirs, the better the gas recovery. On the other hand, for the systems having a small or moderate aquifer size and short distance between the two wells, performing water dumpflood when the rate is close to the economic rate is better because water is more likely to cause an early breakthrough when the distance is short. Water dumpflood into multiple nearly-depleted or depleted gas reservoirs is a novel study. The idea of using water dumpflood to increase gas recovery has been mentioned in the literature but has never been investigated. This detailed study will help a practicing engineer to understand the benefits of such method and can implement it with minimum cost and risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dumpflood" title="dumpflood">dumpflood</a>, <a href="https://publications.waset.org/abstracts/search?q=increase%20gas%20recovery" title=" increase gas recovery"> increase gas recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=low-pressure%20gas%20reservoir" title=" low-pressure gas reservoir"> low-pressure gas reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20gas%20reservoirs" title=" multiple gas reservoirs"> multiple gas reservoirs</a> </p> <a href="https://publications.waset.org/abstracts/30531/water-dumpflood-into-multiple-low-pressure-gas-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30531.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12034</span> Thermodynamic Cycle Using Cyclopentane for Waste Heat Recovery Power Generation from Clinker Cooler Exhaust Flue Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijayakumar%20Kunche">Vijayakumar Kunche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste heat recovery from Pre Heater exhaust gases and Clinker cooler vent gases is now common place in Cement Industry. Most common practice is to use Steam Rankine cycle for heat to power conversion. In this process, waste heat from the flue gas is recovered through a Heat Recovery steam generator where steam is generated and fed to a conventional Steam turbine generator. However steam Rankine cycle tends to have lesser efficiency for smaller power plants with less than 5MW capacity and where the steam temperature at the inlet of the turbine is less than 350 deg C. further a steam Rankine cycle needs treated water and maintenance intensive. These problems can be overcome by using Thermodynamic cycle using Cyclopentane vapour in place of steam. This innovative cycle is best suited for Heat recovery in cement plants and results in best possible heat to power conversion efficiency. This paper discusses about Heat Recovery Power generation using innovative thermal cycle which uses Cyclopentane vapour in place of water- steam. And how this technology has been adopted for a Clinker cooler hot gas from mid-tap. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinker%20cooler" title="clinker cooler">clinker cooler</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20rankine%20cycle" title=" organic rankine cycle"> organic rankine cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20heat%20recovery" title=" waste heat recovery"> waste heat recovery</a> </p> <a href="https://publications.waset.org/abstracts/86064/thermodynamic-cycle-using-cyclopentane-for-waste-heat-recovery-power-generation-from-clinker-cooler-exhaust-flue-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12033</span> The Role of Formal and Informal Institutions in Water Governance in the Central Rift Valley of Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endalew%20Jibat">Endalew Jibat</a>, <a href="https://publications.waset.org/abstracts/search?q=Feyera%20Senbeta"> Feyera Senbeta</a>, <a href="https://publications.waset.org/abstracts/search?q=Tesfaye%20Zeleke"> Tesfaye Zeleke</a>, <a href="https://publications.waset.org/abstracts/search?q=Fitsum%20Hagos"> Fitsum Hagos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Institutions can play a key role in coordinating how natural resources are effectively used without over-exploitation. Institutions are the laws, policies, and organizational arrangements that permit, forbid or regulate human action. The aim of this study was to look into the roles of formal and informal institutions, as well as their interactions, in water resource governance in Ethiopia's Central Rift Valley (CRV), where water scarcity is a concern. Key informant interviews, group discussions, in depth-interview, and secondary data sources were used to generate relevant data. The study revealed that formal and informal institutions were involved in water resource governance in the study area. However, the influence of informal institutions on formal institutions or vice versa is trivial to change the action of water users. Lack of clear roles and responsibilities of actors, weak capacity and lack of meaningful decentralization and participation of key actors in policy development, lack of synergy and incongruence between formal and informal institutions, and absence of enforcement mechanisms including incentives are attributed to inefficient use of water resources in the CRV. Enhancing the interplay of formal and informal institutions in the water resource policy development and meaningful decentralization and key stakeholders' engagement is recommended for sustainable water use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=institutions" title="institutions">institutions</a>, <a href="https://publications.waset.org/abstracts/search?q=governance" title=" governance"> governance</a>, <a href="https://publications.waset.org/abstracts/search?q=institutional%20interplay" title=" institutional interplay"> institutional interplay</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20users" title=" water users"> water users</a> </p> <a href="https://publications.waset.org/abstracts/155986/the-role-of-formal-and-informal-institutions-in-water-governance-in-the-central-rift-valley-of-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12032</span> Viability of Irrigation Water Conservation Practices in the Low Desert of California</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Montazar">Ali Montazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> California and the Colorado River Basin are facing increasing uncertainty concerning water supplies. The Colorado River is the main source of irrigation water in the low desert of California. Currently, due to an increasing water-use competition and long-term drought at the Colorado River Basin, efficient use of irrigation water is one of the highest conservation priorities in the region. This study aims to present some of current irrigation technologies and management approaches in the low desert and assess the viability and potential of these water management practices. The results of several field experiments are used to assess five water conservation practices of sub-surface drip irrigation, automated surface irrigation, sprinkler irrigation, tail-water recovery system, and deficit irrigation strategy. The preliminary results of several ongoing studies at commercial fields are presented, particularly researches in alfalfa, sugar beets, kliengrass, sunflower, and spinach fields. The findings indicate that all these practices have significant potential to conserve water (an average of 1 ac-ft/ac) and enhance the efficiency of water use (15-25%). Further work is needed to better understand the feasibility of each of these applications and to help maintain profitable and sustainable agricultural production system in the low desert as water and labor costs, and environmental issues increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20surface%20irrigation" title="automated surface irrigation">automated surface irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title=" deficit irrigation"> deficit irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20desert%20of%20California" title=" low desert of California"> low desert of California</a>, <a href="https://publications.waset.org/abstracts/search?q=sprinkler%20irrigation" title=" sprinkler irrigation"> sprinkler irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-surface%20drip%20irrigation" title=" sub-surface drip irrigation"> sub-surface drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=tail-water%20recovery%20system" title=" tail-water recovery system"> tail-water recovery system</a> </p> <a href="https://publications.waset.org/abstracts/98630/viability-of-irrigation-water-conservation-practices-in-the-low-desert-of-california" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12031</span> Surfactant Improved Heavy Oil Recovery in Sandstone Reservoirs by Wettability Alteration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Hunky">Rabia Hunky</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayat%20Kalifa"> Hayat Kalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bai"> Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wettability of carbonate reservoirs has been widely recognized as an important parameter in oil recovery by flooding technology. Many surfactants have been studied for this application. However, the importance of wettability alteration in sandstone reservoirs by surfactant has been poorly studied. In this paper, our recent study of the relationship between rock surface wettability and cumulative oil recovery for sandstone cores is reported. In our research, it has been found there is a good agreement between the wettability and oil recovery. Nonionic surfactants, Tomadol® 25-12 and Tomadol® 45-13, are very effective in wettability alteration of sandstone core surface from highly oil-wet conditions to water-wet conditions. By spontaneous imbibition test, Interfacial tension, and contact angle measurement these two surfactants exhibit the highest recovery of the synthetic oil made with heavy oil. Based on these experimental results, we can further conclude that the contact angle measurement and imbibition test can be used as rapid screening tools to identify better EOR surfactants to increase heavy oil recovery from sandstone reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EOR" title="EOR">EOR</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20gas" title=" oil gas"> oil gas</a>, <a href="https://publications.waset.org/abstracts/search?q=IOR" title=" IOR"> IOR</a>, <a href="https://publications.waset.org/abstracts/search?q=WC" title=" WC"> WC</a>, <a href="https://publications.waset.org/abstracts/search?q=IF" title=" IF"> IF</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas" title=" oil and gas"> oil and gas</a> </p> <a href="https://publications.waset.org/abstracts/151355/surfactant-improved-heavy-oil-recovery-in-sandstone-reservoirs-by-wettability-alteration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12030</span> An Alternative Institutional Design for Efficient Management of Nepalese Irrigation Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tirtha%20Raj%20Dhakal">Tirtha Raj Dhakal</a>, <a href="https://publications.waset.org/abstracts/search?q=Brian%20Davidson"> Brian Davidson</a>, <a href="https://publications.waset.org/abstracts/search?q=Bob%20Farquharson"> Bob Farquharson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Institutional design is important if water resources are to be managed efficiently. In Nepal, the supply of water in both farmer- and agency-managed irrigation systems is inefficient because of the weak institutional frameworks. This type of inefficiency is linked with collective problems such as non-excludability of irrigation water, inadequate recognition of property rights and externalities. Irrigation scheme surveys from Nepal as well as existing literature revealed that the Nepalese irrigation sector is facing many issues such as low cost recovery, inadequate maintenance of the schemes and inefficient allocation and utilization of irrigation water. The institutional practices currently in place also fail to create/force any incentives for farmers to use water efficiently and to pay for its use. This, thus, compels the need of refined institutional framework that can address the collective problems and improve irrigation efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agency-managed" title="agency-managed">agency-managed</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20recovery" title=" cost recovery"> cost recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=farmer-managed" title=" farmer-managed"> farmer-managed</a>, <a href="https://publications.waset.org/abstracts/search?q=institutional%20design" title=" institutional design"> institutional design</a> </p> <a href="https://publications.waset.org/abstracts/62687/an-alternative-institutional-design-for-efficient-management-of-nepalese-irrigation-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12029</span> Mapping the Intrinsic Vulnerability of the Quaternary Aquifer of the Eastern Mitidja (Northern Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abida%20Haddouche">Abida Haddouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Chrif%20Toubal"> Ahmed Chrif Toubal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Neogene basin of the Eastern Mitidja, object of the study area, represents potential water resources and especially groundwater reserves. This water is an important economic; this resource is highly sensitive which need protection and preservation. Unfortunately, these waters are exposed to various forms of pollution, whether from urban, agricultural, industrial or merely accidental. This pollution is a permanent risk of limiting resource. In this context, the work aims to evaluate the intrinsic vulnerability of the aquifer to protect and preserve the quality of this resource. It will focus on the disposal of water and land managers a cartographic document accessible to locate the areas where the water has a high vulnerability. Vulnerability mapping of the Easter Mitidja quaternary aquifer is performed by applying three methods (DRASTIC, DRIST, and GOD). Comparison and validation results show that the DRASTIC method is the most suitable method for aquifer vulnerability of the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aquifer%20of%20Mitidja" title="Aquifer of Mitidja">Aquifer of Mitidja</a>, <a href="https://publications.waset.org/abstracts/search?q=DRASTIC%20method" title=" DRASTIC method"> DRASTIC method</a>, <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system%20%28GIS%29" title=" geographic information system (GIS)"> geographic information system (GIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability%20mapping" title=" vulnerability mapping"> vulnerability mapping</a> </p> <a href="https://publications.waset.org/abstracts/65638/mapping-the-intrinsic-vulnerability-of-the-quaternary-aquifer-of-the-eastern-mitidja-northern-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12028</span> The Role of Social Capital in Community-Based Water Resources Management in Kenya&#039;s Polycentric Water Resource Governance System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brenda%20Margaret%20Behan">Brenda Margaret Behan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kenya is a water-stressed country with highly varied socio-ecological environments in its devolved county system, and is currently implementing a polycentric water governance system; this paper examines the importance of social capital in community-based natural resource management and its role in supporting good water governance systems in the Kenya context. Through a robust literature review of theory and case studies, specific aspects of social capital are examined to determine their importance in the implementation of local community-based water management arrangements which support and complement the more formal institutions outlined in the 2002 and 2016 Water Acts of Kenya. Water is an increasingly important and scarce resource not only for Kenya, but for many communities across the globe, and lessons learned in the Kenya context can be useful for other countries and communities faced with similar challenges. Changing climates, increasing populations, and increased per capita consumption of water is contributing to a situation in which the management of water resources will be vital to community resilience. Community-based natural resource management is widely recognized as a building block and component of wider water resource management systems, and when properly conducted can provide a way to enable sustainable use of resources and empower communities. Greater attention to the social and cultural norms and traditional institutions associated with a community’s social capital can lead to better results for Kenya’s polycentric governance of water. The key findings and recommendations from this research show that in Kenya, traditional institutions need to be understood and integrated into governance systems; social values and cultural norms have a significant impact on the implementation of community-based water management efforts; and social capital is a dynamic concept which influences and is influenced by policies and practices. The community-based water management approach will continue to be a key cornerstone for Kenya’s polycentric water governance structure, especially in the more remote arid and semi-arid lands; thus, the successful integration of social capital aspects into planning and implementation will contribute to a strengthened, sustainable, and more equitable national water governance system. Specific observations and recommendations from this study will help practitioners and policymakers to better craft community-based interventions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community-based%20natural%20resource%20management" title="community-based natural resource management">community-based natural resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20capital" title=" social capital"> social capital</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20institutions" title=" traditional institutions"> traditional institutions</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20governance" title=" water governance"> water governance</a> </p> <a href="https://publications.waset.org/abstracts/94782/the-role-of-social-capital-in-community-based-water-resources-management-in-kenyas-polycentric-water-resource-governance-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12027</span> Risk Assessment on New Bio-Composite Materials Made from Water Resource Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arianna%20Nativio">Arianna Nativio</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Kapelan"> Zoran Kapelan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Peter%20van%20der%20Hoek"> Jan Peter van der Hoek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bio-composite materials are becoming increasingly popular in various applications, such as the automotive industry. Usually, bio-composite materials are made from natural resources recovered from plants, now, a new type of bio-composite material has begun to be produced in the Netherlands. This material is made from resources recovered from drinking water treatments (calcite), wastewater treatment (cellulose), and material from surface water management (aquatic plants). Surface water, raw drinking water, and wastewater can be contaminated with pathogens and chemical compounds. Therefore, it would be valuable to develop a framework to assess, monitor, and control the potential risks. Indeed, the goal is to define the major risks in terms of human health, quality of materials, and environment associated with the production and application of these new materials. This study describes the general risk assessment framework, starting with a qualitative risk assessment. The qualitative risk analysis was carried out by using the HAZOP methodology for the hazard identification phase. The HAZOP methodology is logical and structured and able to identify the hazards in the first stage of the design when hazards and associated risks are not well known. The identified hazards were analyzed to define the potential associated risks, and then these were evaluated by using the qualitative Event Tree Analysis. ETA is a logical methodology used to define the consequences for a specific hazardous incidents, evaluating the failure modes of safety barriers and dangerous intermediate events that lead to the final scenario (risk). This paper shows the effectiveness of combining of HAZOP and qualitative ETA methodologies for hazard identification and risk mapping. Then, key risks were identified, and a quantitative framework was developed based on the type of risks identified, such as QMRA and QCRA. These two models were applied to assess human health risks due to the presence of pathogens and chemical compounds such as heavy metals into the bio-composite materials. Thus, due to these contaminations, the bio-composite product, during its application, might release toxic substances into the environment leading to a negative environmental impact. Therefore, leaching tests are going to be planned to simulate the application of these materials into the environment and evaluate the potential leaching of inorganic substances, assessing environmental risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-composite" title="bio-composite">bio-composite</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20recovery" title=" resource recovery"> resource recovery</a> </p> <a href="https://publications.waset.org/abstracts/153504/risk-assessment-on-new-bio-composite-materials-made-from-water-resource-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12026</span> Concerted Strategies for Sustainable Water Resource Management in Semi-Arid Rajasthan State of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Maanju">S. K. Maanju</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Saha"> K. Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonam%20Yadav"> Sonam Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urbanization growth and multi-faceted regional level industrialization is posing serious threat to natural groundwater resource in State of Rajasthan which constitute major semi-arid part of India. The groundwater resources of the State are limited and cannot withstand the present rate of exploitation for quite a long time. Recharging of groundwater particularly in the western part, where annual precipitation does not exceed a few centimeters, is extremely slow and cannot replenish the exploited quantum. Hence, groundwater in most of the parts of this region has become an exhausting resource. In major parts water table is lowering down rapidly and continuously. The human beings of this semi-arid region are used to suffering from extreme climatic conditions of arid to semi-arid nature and acute shortage of water. The quality of groundwater too in many areas of this region is not up to the standards prescribed by the health organizations like WHO and BIS. This semi-arid region is one of the highly fluoride contaminated area of India as well as have excess, nitrates, sulphates, chlorides and total dissolved solids at various locations. Therefore, concerted efforts are needed towards sustainable development of groundwater in this State of India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajasthan" title="Rajasthan">Rajasthan</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=exploitation" title=" exploitation"> exploitation</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20and%20resource" title=" development and resource"> development and resource</a> </p> <a href="https://publications.waset.org/abstracts/40407/concerted-strategies-for-sustainable-water-resource-management-in-semi-arid-rajasthan-state-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12025</span> Interdisciplinary Approach for Economic Production of Oil and Gas Reserves: Application of Geothermal Energy for Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharmit%20Viroja">Dharmit Viroja</a>, <a href="https://publications.waset.org/abstracts/search?q=Prerakkumar%20Shah"> Prerakkumar Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajanikant%20%20Gajera"> Rajanikant Gajera</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruchit%20Shah"> Ruchit Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With present scenario of aging oil and gas fields with high water cuts, volatile oil prices and increasing greenhouse gas emission, the need for alleviating such issues has necessitated for oil and gas industry to make the maximum out of available assets, infrastructure and reserves in mother Earth. Study undertaken emphasizes on utilizing Geothermal Energy under specific reservoir conditions for Enhanced oil Recovery (EOR) to boost up production. Allied benefits of this process include mitigation of electricity problem in remote fields and controlled CO-emission. Utilization of this energy for EOR and increasing economic life of field could surely be rewarding. A new way to value oil lands would be considered if geothermal co-production is integrated in the field development program. Temperature profile of co-produced fluid across its journey is a pivotal issue which has been studied. Geo pressured reservoirs resulting from trapped brine under an impermeable bed is also a frontier for exploitation. Hot geothermal fluid is a by-product of large number of oil and gas wells, historically this hot water has been seen as an inconvenience; however, it can be looked at as a useful resource. The production of hot fluids from abandoned and co-production of hot fluids from producing wells has potential to prolong life of oil and gas fields. The study encompasses various factors which are required for use of this technology and application of this process across various phases of oil and gas value chain. Interdisciplinary approach in oil and gas value chain has shown potential for economic production of estimated oil and gas reserves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title="enhanced oil recovery">enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=geo-pressured%20reservoirs" title=" geo-pressured reservoirs"> geo-pressured reservoirs</a>, <a href="https://publications.waset.org/abstracts/search?q=geothermal%20energy" title=" geothermal energy"> geothermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas%20value%20chain" title=" oil and gas value chain"> oil and gas value chain</a> </p> <a href="https://publications.waset.org/abstracts/55730/interdisciplinary-approach-for-economic-production-of-oil-and-gas-reserves-application-of-geothermal-energy-for-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12024</span> Effect of Solid Waste on the Sustainability of the Water Resource Quality in the Gbarain Catchment of the Niger Delta Region of Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davidson%20E.%20Egirani">Davidson E. Egirani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanfe%20R.%20Poyi"> Nanfe R. Poyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Napoleon%20Wessey"> Napoleon Wessey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper would report on the effect of solid waste on water resource quality in the Gbarain catchment of the Niger Delta Region of Nigeria. The Gbarain catchment presently hosts two waste-dump sites located along the flanks of a seasonal flow stream and perennially waterlogged terrain. The anthropogenic activity has significantly affected the quality of surface and groundwater in the Gbarain catchment. These wastes have made the water resource environment toxic leading to the poisoning of aquatic life. The contaminated water resources could lead to serious environmental and human health challenges such as low agricultural yields to loss of vital human organs. The contamination is via geological processes such as seepage and direct infiltration of contaminants into watercourses. The results obtained from field and experimental investigations followed by modeling, and graphical interpretation indicate heavy metal load and fecal pollution in some of the groundwater. The metal load, Escherichia coli, and total coliforms counts exceed the international and regional recommended limits. The contaminate values include Lead (> 0.01 mg/L), Mercury (> 0.006 mg/L), Manganese (> 0.4 mg/L and Escherichia coli (> 0 per 100ml) of the samples. Land use planning, enactment, and implementation of environmental laws are necessary for this region, for effective surface water and groundwater resource management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20life" title="aquatic life">aquatic life</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title=" solid waste"> solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20health" title=" environmental health"> environmental health</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20health" title=" human health"> human health</a>, <a href="https://publications.waset.org/abstracts/search?q=waste-dump%20site" title=" waste-dump site"> waste-dump site</a>, <a href="https://publications.waset.org/abstracts/search?q=water-resource%20environment" title=" water-resource environment"> water-resource environment</a> </p> <a href="https://publications.waset.org/abstracts/99355/effect-of-solid-waste-on-the-sustainability-of-the-water-resource-quality-in-the-gbarain-catchment-of-the-niger-delta-region-of-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12023</span> Multivariate Analysis on Water Quality Attributes Using Master-Slave Neural Network Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Clementking">A. Clementking</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Jothi%20Venkateswaran"> C. Jothi Venkateswaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical and computational functionalities such as descriptive mining, optimization, and predictions are espoused to resolve natural resource planning. The water quality prediction and its attributes influence determinations are adopted optimization techniques. The water properties are tainted while merging water resource one with another. This work aimed to predict influencing water resource distribution connectivity in accordance to water quality and sediment using an innovative proposed master-slave neural network back-propagation model. The experiment results are arrived through collecting water quality attributes, computation of water quality index, design and development of neural network model to determine water quality and sediment, master–slave back propagation neural network back-propagation model to determine variations on water quality and sediment attributes between the water resources and the recommendation for connectivity. The homogeneous and parallel biochemical reactions are influences water quality and sediment while distributing water from one location to another. Therefore, an innovative master-slave neural network model [M (9:9:2)::S(9:9:2)] designed and developed to predict the attribute variations. The result of training dataset given as an input to master model and its maximum weights are assigned as an input to the slave model to predict the water quality. The developed master-slave model is predicted physicochemical attributes weight variations for 85 % to 90% of water quality as a target values.The sediment level variations also predicated from 0.01 to 0.05% of each water quality percentage. The model produced the significant variations on physiochemical attribute weights. According to the predicated experimental weight variation on training data set, effective recommendations are made to connect different resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=master-slave%20back%20propagation%20neural%20network%20model%28MSBPNNM%29" title="master-slave back propagation neural network model(MSBPNNM)">master-slave back propagation neural network model(MSBPNNM)</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality%20analysis" title=" water quality analysis"> water quality analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20analysis" title=" multivariate analysis"> multivariate analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20mining" title=" environmental mining"> environmental mining</a> </p> <a href="https://publications.waset.org/abstracts/31405/multivariate-analysis-on-water-quality-attributes-using-master-slave-neural-network-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12022</span> Flotation Recovery of Gold-Loaded Fine Activated Carbon Using Emulsified Diesel and Kerosene as Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Jr.%20Ballad">Emmanuel Jr. Ballad</a>, <a href="https://publications.waset.org/abstracts/search?q=Herman%20Mendoza"> Herman Mendoza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recovery of fine activated carbon with adsorbed gold in the cyanidation tailings of a small-scale gold plant was investigated due to the high amount of gold present. In the study, collectors that were used are kerosene and diesel. Emulsification of the oils was done to improve its collecting property, thus also the recovery. It was found out that the best hydrophile lypophile balance (HLB) of emulsified diesel and kerosene oil is 13 and 12 respectively. The amount of surfactants (SPAN 20 and TWEEN 20) for the best stability of the emulsified oils was found to be 10% in both kerosene and diesel. Optical microscopy showed that the oil dispersion in the water forms spherical droplets like features. The higher the stability, the smaller the droplets and their number were increasing. The smaller droplets indicate better dispersion of oil in the water. Consequently, it will have a greater chance of oil and activated carbon particle interaction during flotation. Due to the interaction of dispersed oil phase with carbon, the hydrophobicity of the carbon will be improved and will be attached to the bubble. Thus, flotation recovery will be increased. Results showed that the recovery of the fine activated carbon using emulsified diesel or kerosene is three times more effective than using pure diesel or kerosene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsified%20oils" title="emulsified oils">emulsified oils</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophile%20lyophile%20balance" title=" hydrophile lyophile balance"> hydrophile lyophile balance</a>, <a href="https://publications.waset.org/abstracts/search?q=non-ionic%20surfactants" title=" non-ionic surfactants"> non-ionic surfactants</a> </p> <a href="https://publications.waset.org/abstracts/68257/flotation-recovery-of-gold-loaded-fine-activated-carbon-using-emulsified-diesel-and-kerosene-as-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12021</span> The Sustainable Governance of Aquifer Injection Using Treated Coal Seam Gas Water in Queensland, Australia: Lessons for Integrated Water Resource Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacqui%20Robertson">Jacqui Robertson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sustainable governance of groundwater is of the utmost importance in an arid country like Australia. Groundwater has been relied on by our agricultural and pastoral communities since the State was settled by European colonialists. Nevertheless, the rapid establishment of a coal seam gas (CSG) industry in Queensland, Australia, has had extensive impacts on the pre-existing groundwater users. Managed aquifer recharge of important aquifers in Queensland, Australia, using treated coal seam gas produced water has been used to reduce the impacts of CSG development in Queensland Australia. However, the process has not been widely adopted. Negative environmental outcomes are now acknowledged as not only engineering, scientific or technical problems to be solved but also the result of governance failures. An analysis of the regulatory context for aquifer injection using treated CSG water in Queensland, Australia, using Ostrom’s Common Pool Resource (CPR) theory and a ‘heat map’ designed by the author, highlights the importance of governance arrangements. The analysis reveals the costs and benefits for relevant stakeholders of artificial recharge of groundwater resources in this context. The research also reveals missed opportunities to further active management of the aquifer and resolve existing conflicts between users. The research illustrates the importance of strategically and holistically evaluating innovations in technology that impact water resources to reveal incentives that impact resource user behaviors. The paper presents a proactive step that can be adapted to support integrated water resource management and sustainable groundwater development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=managed%20aquifer%20recharge" title="managed aquifer recharge">managed aquifer recharge</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20regulation" title=" groundwater regulation"> groundwater regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=common-pool%20resources" title=" common-pool resources"> common-pool resources</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20water%20resource%20management" title=" integrated water resource management"> integrated water resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=Australia" title=" Australia"> Australia</a> </p> <a href="https://publications.waset.org/abstracts/142859/the-sustainable-governance-of-aquifer-injection-using-treated-coal-seam-gas-water-in-queensland-australia-lessons-for-integrated-water-resource-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12020</span> Measurements of Recovery Stress and Recovery Strain of Ni-Based Shape Memory Alloys </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20J.%20Kim">W. J. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The behaviors of the recovery stress and strain of an ultrafine-grained Ni-50.2 at.% Ti alloy prepared by high-ratio differential speed rolling (HRDSR) were examined by a specially designed tensile-testing set up, and the factors that influence the recovery stress and strain were studied. After HRDSR, both the recovery stress and strain were enhanced compared to the initial condition. The constitutive equation showing that the maximum recovery stress is a sole function of the recovery strain was developed based on the experimental data. The recovery strain increased as the yield stress increased. The maximum recovery stress increased with an increase in yield stress. The residual recovery stress was affected by the yield stress as well as the austenite-to-martensite transformation temperature. As the yield stress increased and as the martensitic transformation temperature decreased, the residual recovery stress increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-ratio%20differential%20speed%20rolling" title="high-ratio differential speed rolling">high-ratio differential speed rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20testing" title=" tensile testing"> tensile testing</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloys" title=" shape memory alloys"> shape memory alloys</a> </p> <a href="https://publications.waset.org/abstracts/69337/measurements-of-recovery-stress-and-recovery-strain-of-ni-based-shape-memory-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12019</span> Blogging Towards Recovery: The Benefits of Blogging about Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayme%20R.%20Swanke">Jayme R. Swanke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examined the benefits of maintaining public blogs about substance use disorder recovery. The data analyzed for this study included statements about the benefits derived by individuals who blogged about their recovery. The researcher developed classifications of statements that expressed what these individuals gained from blogging into common themes and developed an emerging theory based on these patterns. The findings indicate that these individuals in recovery benefit from blogging by developing connections, processing emotions, remaining accountable, as well as enjoying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=substance%20use%20disorder%20recovery" title="substance use disorder recovery">substance use disorder recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=connection" title=" connection"> connection</a>, <a href="https://publications.waset.org/abstracts/search?q=blogging" title=" blogging"> blogging</a>, <a href="https://publications.waset.org/abstracts/search?q=accountability" title=" accountability"> accountability</a>, <a href="https://publications.waset.org/abstracts/search?q=processing%20emotions" title=" processing emotions"> processing emotions</a> </p> <a href="https://publications.waset.org/abstracts/143240/blogging-towards-recovery-the-benefits-of-blogging-about-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=402">402</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=403">403</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=resource%20recovery%20from%20water&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10