CINXE.COM
Search results for: ¹⁵N natural abundance
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ¹⁵N natural abundance</title> <meta name="description" content="Search results for: ¹⁵N natural abundance"> <meta name="keywords" content="¹⁵N natural abundance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="¹⁵N natural abundance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="¹⁵N natural abundance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6183</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ¹⁵N natural abundance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6183</span> Diversity and Distribution of Benthic Invertebrates in the West Port, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Belin%20Tavakoly%20Sany">Seyedeh Belin Tavakoly Sany</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosli%20Hashim"> Rosli Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Rezayi"> Majid Rezayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aishah%20Salleh"> Aishah Salleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Safari"> Omid Safari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to describe the main characteristics of macroinvertebrate species in response to environmental forcing factors. Overall, 23 species of Mollusca, 4 species of Arthropods, 3 species of Echinodermata and 3 species of Annelida were identified at the 9 sampling stations during four sampling periods. Individual species of Mollusca constituted 36.4% of the total abundance, followed by Arthropods (27.01%), Annelida (34.3%) and Echinodermata (2.4%). The results of Kruskal-Wallis test indicated that a significant difference (p <0.05) in the abundance, richness and diversity of the macro-benthic community in different stations. The correlation analysis revealed that anthropogenic pollution and natural variability caused by these variations in spatial scales. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benthic%20invertebrates" title="benthic invertebrates">benthic invertebrates</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=abundance" title=" abundance"> abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=West%20Port" title=" West Port"> West Port</a> </p> <a href="https://publications.waset.org/abstracts/6112/diversity-and-distribution-of-benthic-invertebrates-in-the-west-port-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6182</span> Survey of Free-Range inhabitants of Federal University of Agriculture Abeokuta Zoological Park</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Olanrewaju%20Ibiyomi">Matthew Olanrewaju Ibiyomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the abundance of free-range natural inhabitants of the Federal University of Agriculture, Abeokuta (FUNAAB) Zoo Park. A baseline data of free-ranging inhabitants of the Park is essential to monitor trends and institute conservation plans through unsustainable natural resources exploitation and habitat destruction. Four transects were selected across the study area. Each transect was traversed for a period of four months and observations was carried out twice a day. The Four existing tracks explored during the study were the aviary, reptile, carnivore and primate tracks. Data were analyzed using descriptive statistics. The findings from this study revealed that 8 species of natural inhabitants were identified, which were the Vervet monkey (Chlorocebuspygerythrus), Maxwell duiker(Philantombamaxwellii), Mongoose (Herpestidaespp), Bushbuck(Tragelaphusscriptus), Cobra (Najanaja), Ground squirrel (Marmotinispp), Senegal coucal(Centropus senegalensis), Black kite (Milvus migrans). The result further showed that a total of 115 animals were encountered in the primate transect, 77 animals in the carnivores transect, 46 animals in the aviary transect and 34 animals in the ungulates transect by the representative of 43.3%, 28.3%, 15.8% and 12.5% respectively. Human activities and level of disturbance were observed to have affected the abundance and distribution of animals at Funaab Zoo Park. Continuous field inventory is recommended to ascertain the dynamics of animals observed as free-range inhabitants in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abundance" title="abundance">abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=extinction" title=" extinction"> extinction</a>, <a href="https://publications.waset.org/abstracts/search?q=free-range" title=" free-range"> free-range</a> </p> <a href="https://publications.waset.org/abstracts/164797/survey-of-free-range-inhabitants-of-federal-university-of-agriculture-abeokuta-zoological-park" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6181</span> The Abundance and Distribution of Locally Important Species Along Different Altitude: The Case of Mountain Damota, Wolaita South Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tamirat%20Solomon">Tamirat Solomon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadesse%20Faltamo"> Tadesse Faltamo</a>, <a href="https://publications.waset.org/abstracts/search?q=Belete%20Limani"> Belete Limani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted on the mountain Damota of Wolaita to assess the abundance and spatial distribution of two locally important indigenous medicinal plants on the mountain landscape. A total of 130 plots measuring 20x20m were established along eight systematically laid transect lines. In each plot, the abundance and distribution of Hagenia abyssinica (tree) and Pentas schiperiana Vatke (shrub) were evaluated. The abundance and distribution of H. abyssinica were evaluated by measuring height and DBH for mature trees and counting seedlings and saplings, whereas the P. schiperiana Vatke was assessed for its abundance and distribution by counting in each plot. In the entire study plots, a total of 485 H. abyssinica and 760 P. schiperiana vatake were recorded. It was observed that the distribution of the species increased while the altitude increased and the highest abundance of the species was recorded at an altitude range between 2332 and 2661m.a.s.l. However, at the altitudes below 2320 m.a.s.l., the species distributions and abundance was decreased, indicating either the ecological preference of the species or the extraction of the local community surrounding the mountain influenced the species. On average, only 28 seedlings/ha of H. abyssinica and 146/ha of P. schiperiana vatke were recorded in the study areas showing the tendency of decline in the abundance and distribution of both species. Finally, we recommend management intervention for the socially important species which are under threat on the mountain landscape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indigenous%20medicinal%20plants" title="indigenous medicinal plants">indigenous medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=H.abyssinic" title=" H.abyssinic"> H.abyssinic</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20schiperiana" title=" P. schiperiana"> P. schiperiana</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=abundance" title=" abundance"> abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic%20importance" title=" socio-economic importance"> socio-economic importance</a> </p> <a href="https://publications.waset.org/abstracts/148075/the-abundance-and-distribution-of-locally-important-species-along-different-altitude-the-case-of-mountain-damota-wolaita-south-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6180</span> Major Sucking Pests of Rose and Their Seasonal Abundance in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md%20Ruhul%20Amin">Md Ruhul Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted in the experimental field of the Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh during November 2017 to May 2018 with a view to understanding the seasonal abundance of the major sucking pests namely thrips, aphid and red spider mite on rose. The findings showed that the thrips started to build up their population from the middle of January with abundance 1.0 leaf⁻¹, increased continuously, reached to the peak level (2.6 leaf⁻¹) in the middle of February and then declined. Aphid started to build up their population from the second week of November with abundance 6.0 leaf⁻¹, increased continuously, reached to the peak level (8.4 leaf⁻¹) in the last week of December and then declined. Mite started to build up their population from the first week of December with abundance 0.8 leaf⁻¹, increased continuously, reached to the peak level (8.2 leaf⁻¹) in the second week of March and then declined. Thrips and mite prevailed until the last week of April, and aphid showed their abundance till last week of May. The daily mean temperature, relative humidity, and rainfall had an insignificant negative correlation with thrips and significant negative correlation with aphid abundance. The daily mean temperature had significant positive, relative humidity had an insignificant positive, and rainfall had an insignificant negative correlation with mite abundance. The multiple linear regression analysis showed that the weather parameters together contributed 38.1, 41.0 and 8.9% abundance on thrips, aphid and mite on rose, respectively and the equations were insignificant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aphid" title="aphid">aphid</a>, <a href="https://publications.waset.org/abstracts/search?q=mite" title=" mite"> mite</a>, <a href="https://publications.waset.org/abstracts/search?q=thrips" title=" thrips"> thrips</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20factors" title=" weather factors"> weather factors</a> </p> <a href="https://publications.waset.org/abstracts/103991/major-sucking-pests-of-rose-and-their-seasonal-abundance-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6179</span> The Fate of Plastic Debris and Microplastic Particles in Mangroves in the Sultanate of Oman</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Al-Tarshi">Muna Al-Tarshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution and accumulation dynamics of anthropogenic marine debris (AMD) and microplastic particles in mangrove habitats in the region are poorly understood. The abundance, sorting, and diversity aspects of AMD and microplastics were investigated in three types of mangroves creeks ( Natural mangrove, afforested mangrove, and non-planted). Abundance, concentration, and particles form of microplastics have been illustrated in three substrate in mangrove habitats e.g. sediment, water, and aquatic organisms. Density separation method by using highly saturated solution was implemented to extract the plastic particles from the sediment samples. The average size of particles in each transect was done using image software, and the polymer type was determined via FTIR. There was variability in abundance of microplastics and marine debris between the habitats and within the substrates in the habitats.Biomonitoring program was developed to detect the pollution of microplastics in mangrove habitats in Sultanate of Oman. Sediment dwelling species were the best choice. Testing whether the zooplankton (Artemia) eating the microplastics via FlowCam technique have been studied. The zooplanktons (Artemia) were eating the microplastics as mistaken food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microplastics" title="microplastics">microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20debris" title=" marine debris"> marine debris</a>, <a href="https://publications.waset.org/abstracts/search?q=flowcam" title=" flowcam"> flowcam</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=artemia" title=" artemia"> artemia</a> </p> <a href="https://publications.waset.org/abstracts/151004/the-fate-of-plastic-debris-and-microplastic-particles-in-mangroves-in-the-sultanate-of-oman" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6178</span> Spatial Interactions Between Earthworm Abundance and Tree Growth Characteristics in Western Niger Delta</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olatunde%20Sunday%20Eludoyin">Olatunde Sunday Eludoyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Obiechina%20Olisa"> Charles Obiechina Olisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the spatial interactions between earthworm abundance (EA) and tree growth characteristics in ecological belts of Western Niger Delta, Nigeria. Eight 20m x 20m quadrat were delimited in the natural vegetation in each of the rainforest (RF), mangrove (M), fresh water swamp (FWS), and guinea savanna (GS) ecological belts to gather data about the tree species (TS) characteristics which included individual number of tree species (IN), diversity (Di), density (De) and richness (Ri). Three quadrats of 1m x 1m were delineated in each of the 20m x 20m quadrats to collect earthworm species the topsoil (0-15cm), and subsoil (15-30cm) and were taken to laboratory for further analysis. Descriptive statistics and inferential statistics were used for data analysis. Findings showed that a total of 19 earthworm species was found, with 58.5% individual species recorded in the topsoil and 41.5% recorded in the subsoil. The total population ofEudriliuseugeniae was predominantly highest in both topsoil (38.4%) and subsoil (27.1%). The total population of individual species of earthworm was least in GS in the topsoil (11.9%) and subsoil (8.4%). A total of 40 different species of TS was recorded, of which 55.5% were recorded in FWS, while RF was significantly highest in the species diversity(0.5971). Regression analysis revealed that Ri, IN, DBH, Di, and De of trees explained 65.9% of the variability of EA in the topsoil, while 46.9 % of the variability of earthworm abundance was explained by the floristic parameters in the subsoil.Similarly, correlation statistics revealed that in the topsoil, EA is positively and significantly correlated with Ri (r=0.35; p<0.05), IN (r=0.523; p<0.05) and De (r=0.469; p<0.05) while DBH was negatively and significantly correlated with earthworm abundance (r=-0.437; p<0.05). In the subsoil, only Ri and DBH correlated significantly with EA. The study concluded that EA in the study locations was highly influenced by tree growth species especially Ri, IN, DBH, Di, and De. The study recommended that the TSabundance should be improved in the study locations to ensure the survival of earthworms for ecosystem functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interactions" title="interactions">interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=earthworm%20abundance" title=" earthworm abundance"> earthworm abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=tree%20growth" title=" tree growth"> tree growth</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20zones" title=" ecological zones"> ecological zones</a>, <a href="https://publications.waset.org/abstracts/search?q=western%20niger%20delta" title=" western niger delta"> western niger delta</a> </p> <a href="https://publications.waset.org/abstracts/148774/spatial-interactions-between-earthworm-abundance-and-tree-growth-characteristics-in-western-niger-delta" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6177</span> Examining the Role of Soil pH on the Composition and Abundance of Nitrite Oxidising Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansur%20Abdulrasheed">Mansur Abdulrasheed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20I.%20Ibrahim"> Hussein I. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20F.%20Umar"> Ahmed F. Umar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrification, the microbial oxidation of ammonia to nitrate (NO3-) via nitrite (NO2-) is a vital process in the biogeochemical nitrogen cycle and is performed by two distinct functional groups; ammonia oxidisers (comprised of ammonia oxidising bacteria (AOB) and ammonia oxidising archaea (AOA)) and nitrite oxidising bacteria. Autotrophic nitrification is said to occur in acidic soils, even though most laboratory cultures of isolated ammonia and nitrite oxidising bacteria fail to grow below neutral pH. Published studies revealed that soil pH is a major driver for determining the distribution and abundance of AOB and AOA. To determine whether distinct populations of nitrite oxidising bacteria within the lineages of Nitrospira and Nitrobacter are adapted to a particular range of pH as observed in ammonia oxidising organisms, the community structure of Nitrospira-like and Nitrobacter-like NOB were examined across a pH gradient (4.5–7.5) by amplifying nitrite oxido-reductase (nxrA) and 16S rRNA genes followed by denaturing gradient gel electrophoresis (DGGE). The community structure of both Nitrospira and Nitrobacter changed with soil pH, with distinct populations observed in acidic and neutral soils. The abundance of Nitrospira-like 16S rRNA and Nitrobacter-like nxrA gene copies contrasted across the pH gradient. Nitrobacter-like nxrA gene abundance decreased with increasing soil pH, whereas Nitrospira-like 16S rRNA gene abundance increased with increasing pH. Findings indicated that abundance and distributions of soil NOB is influence by soil pH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrospira" title="nitrospira">nitrospira</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrobacter" title=" nitrobacter"> nitrobacter</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrite-oxidizing%20bacteria" title=" nitrite-oxidizing bacteria"> nitrite-oxidizing bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrification" title=" nitrification"> nitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil "> soil </a> </p> <a href="https://publications.waset.org/abstracts/42862/examining-the-role-of-soil-ph-on-the-composition-and-abundance-of-nitrite-oxidising-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6176</span> Comparative Study of the Abundance of Winter Nests of the Pine Processionary Caterpillar in Different Forests of Pinus Halepensis, pinus Pinaster, Pinus Pinea and Cedrus Atlantica, in Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boudjahem%20Ibtissem">Boudjahem Ibtissem</a>, <a href="https://publications.waset.org/abstracts/search?q=Aouati%20Amel"> Aouati Amel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thaumetopoea pityocampa is one of the major insect pests of pine forests in Algeria, the Mediterranean region, and central Europe. This pest is responsible for several natural and human damages these last years. The caterpillar can feed itself during the larval stage on several species of pine or cedar. The forests attack by the insect can reduce their resistance against other forest enemies, fires, or drought conditions. In this case, the tree becomes more vulnerable to other pests. To understand the eating behavior of the insect in its ecological conditions, and its nutritional preference, we realized a study of the abundance of winter nests of the pine processionary caterpillar in four different forests: Pinus halepensis; Pinus pinaster; Pinus pinea, and Cedrus atlantica. A count of the sites affected by the processionary caterpillar was carried out on a hundred trees from the forests in different regions in Algeria; Alkala region, Mila region, Annaba region, and Blida region; the total rate and average abundance are calculated for each forest. Ecological parameters are also estimated for each infestation. The results indicated a higher rate of infestation in Pinus halepensis trees (85%) followed by Cedrus atlantica (66%) and Pinus pinaster (50%) trees. The Pinus pinea forest is the least attacked region by the pine processionary caterpillar (23%). The abundance of the pine processionary caterpillar can be influenced by the height of the trees, the climate of the region, the age of the forest but also the quality of needles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thaumetopoea%20pityocampa" title="Thaumetopoea pityocampa">Thaumetopoea pityocampa</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinus%20halepensis" title=" Pinus halepensis"> Pinus halepensis</a>, <a href="https://publications.waset.org/abstracts/search?q=needles" title=" needles"> needles</a>, <a href="https://publications.waset.org/abstracts/search?q=winter%20nests" title=" winter nests"> winter nests</a> </p> <a href="https://publications.waset.org/abstracts/129357/comparative-study-of-the-abundance-of-winter-nests-of-the-pine-processionary-caterpillar-in-different-forests-of-pinus-halepensis-pinus-pinaster-pinus-pinea-and-cedrus-atlantica-in-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6175</span> Influence of Physicochemical Water Quality Parameters on Abundance of Aquatic Insects in Rivers of Perak, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Atirah%20Hasmi">Nur Atirah Hasmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Nisha%20Musa"> Nadia Nisha Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasnun%20Nita%20Ismail"> Hasnun Nita Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Zulfadli%20Mahfodz"> Zulfadli Mahfodz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of water quality parameters on the abundance of aquatic insects has been studied in Batu Berangkai, Dipang, Kuala Woh and Lata Kinjang Rivers, Perak, northern peninsular Malaysia. The focuses are to compare the abundance of aquatic insects in each sampling areas and to investigate the physical and chemical factors (water temperature, depth of water, canopy, water velocity, pH value, and dissolved oxygen) on the abundance of aquatic insects. The samples and data were collected by using aquatic net and multi-probe parameter. Physical parameters; water velocity, water temperature, depth, canopy cover, and two chemical parameters; pH value and dissolved oxygen have been measured in situ and recorded. A total of 631 individuals classified into 6 orders and 18 families of aquatic insects were identified from four sampling sites. The largest percentage of samples collected is from order Plecoptera 35.8%, followed by Ephemeroptera 32.6%, Trichoptera 17.0%, Hemiptera 8.1%, Coleoptera 4.8%, and the least is Odonata 1.7%. The aquatic insects collected from Dipang River have the highest abundance of 273 individuals from 6 orders and 13 families and the least insects trapped at Lata Kinjang which only have 64 individuals from 5 orders and 6 families. There is significant association between different sampling areas and abundance of aquatic insects (p<0.05). High abundance of aquatic insects was found in higher water temperature, low water velocity, deeper water, low pH, high amount of dissolved oxygen, and the area that is not covered by canopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquatic%20insect" title="aquatic insect">aquatic insect</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20parameter" title=" physicochemical parameter"> physicochemical parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=river" title=" river"> river</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/57477/influence-of-physicochemical-water-quality-parameters-on-abundance-of-aquatic-insects-in-rivers-of-perak-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6174</span> Maintenance of Non-Crop Plants Reduces Insect Pest Population in Tropical Chili Pepper Agroecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madelaine%20Venzon">Madelaine Venzon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dany%20S.%20S.%20L.%20Amaral"> Dany S. S. L. Amaral</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20L.%20Perez"> André L. Perez</a>, <a href="https://publications.waset.org/abstracts/search?q=Nat%C3%A1lia%20S.%20Diaz"> Natália S. Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliana%20A.%20Martinez%20Chiguachi"> Juliana A. Martinez Chiguachi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maira%20C.%20M.%20Fonseca"> Maira C. M. Fonseca</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20D.%20Harwood"> James D. Harwood</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Pallini"> Angelo Pallini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrating strategies of sustainable crop production and promoting the provisioning of ecological services on farms and within rural landscapes is a challenge for today’s agriculture. Habitat management, through increasing vegetational diversity, enhances heterogeneity in agroecosystems and has the potential to improve the recruitment of natural enemies of pests, which promotes biological control services. In tropical agroecosystems, however, there is a paucity of information pertaining to the resources provided by associated plants and their interactions with natural enemies. The maintenance of non-crop plants integrated into and/or surrounding crop fields provides the farmer with a low-investment option to enhance biological control. We carried out field experiments in chili pepper agroecosystems with small stakeholders located in the Zona da Mata, State of Minas Gerais, Brazil, from 2011 to 2015 where we assessed: (a) whether non-crop plants within and around chili pepper fields affect the diversity and abundance of aphidophagous species; (b) whether there are direct interactions between non-crop plants and aphidophagous arthropods; and (c) the importance of non-crop plant resources for survival of Coccinellidae and Chrysopidae species. Aphidophagous arthropods were dominated by Coccinellidae, Neuroptera, Syrphidae, Anthocoridae and Araneae. These natural enemies were readily observed preying on aphids, feeding on flowers or extrafloral nectaries and using plant structures for oviposition and/or protection. Aphid populations were lower on chili pepper fields associated with non-crop plants that on chili pepper monocultures. Survival of larvae and adults of different species of Coccinellidae and Chrysopidae on non-crop resources varied according to the plant species. This research provides evidence that non-crop plants in chili pepper agroecosystems can affect aphid abundance and their natural enemy abundance and survival. It is also highlighting the need for further research to fully characterize the structure and function of plant resources in these and other tropical agroecosystems. Financial support: CNPq, FAPEMIG and CAPES (Brazil). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Conservation%20biological%20control" title="Conservation biological control">Conservation biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=aphididae" title=" aphididae"> aphididae</a>, <a href="https://publications.waset.org/abstracts/search?q=Coccinellidae" title=" Coccinellidae"> Coccinellidae</a>, <a href="https://publications.waset.org/abstracts/search?q=Chrysopidae" title=" Chrysopidae"> Chrysopidae</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20diversification" title=" plant diversification"> plant diversification</a> </p> <a href="https://publications.waset.org/abstracts/48741/maintenance-of-non-crop-plants-reduces-insect-pest-population-in-tropical-chili-pepper-agroecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6173</span> Impacts of Commercial Honeybees on Native Butterflies in High-Elevation Meadows in Utah, USA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacqueline%20Kunzelman">Jacqueline Kunzelman</a>, <a href="https://publications.waset.org/abstracts/search?q=Val%20Anderson"> Val Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Johnson"> Robert Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Anderson"> Nicholas Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Bates"> Rebecca Bates</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an effort to protect honeybees from colony collapse disorder, beekeepers are filing for government permits to use natural lands as summer pasture for honeybees under the multiple-use management regime in the United States. Utilizing natural landscapes in high mountain ranges may help strengthen honeybee colonies, as this natural setting is generally void of chemical pollutants and pesticides that are found in agricultural and urban settings. However, the introduction of a competitive species could greatly impact the native species occupying these natural landscapes. While honeybees and butterflies have different life histories, behavior, and foraging strategies, they compete for the same nectar resources. Few, if any, studies have focused on the potential population effects of commercial honeybees on native butterfly abundance and diversity. This study attempts to observe this impact using a paired before-after control-impact (BACI) design. Over the course of two years, malaise trap samples were collected every week during the months of the flowering season in two similar areas separated by 11 kilometers. Each area contained nine malaise trap sites for replication. In the first year, samples were taken to analyze and establish trends within the pollinating communities. In the second year, honeybees were introduced to only one of the two areas, and a change in trends between the two areas was assessed. Contrary to the original hypothesis, the resulting observation was an overall significant increase in the mean butterfly abundance in the impact areas after honeybees were introduced, while control areas remained relatively stable. This overall increase in abundance over the season can be attributed to an increase in butterflies during the first and second periods of the data collection when populations were near their peak. Several potential theories are 1) Honeybees are deterring a natural predator/competitor of butterflies that previously limited population growth. 2) Honeybees are consuming resources regularly used by butterflies, which may extend the foraging time and consequent capture rates of butterflies. 3) Environmental factors such as number of rainy days were inconsistent between control and impact areas, biasing capture rates. This ongoing research will help determine the suitability of high mountain ranges for the summer pasturing of honeybees and the population impacts on many different pollinators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=butterfly" title="butterfly">butterfly</a>, <a href="https://publications.waset.org/abstracts/search?q=competition" title=" competition"> competition</a>, <a href="https://publications.waset.org/abstracts/search?q=honeybee" title=" honeybee"> honeybee</a>, <a href="https://publications.waset.org/abstracts/search?q=pollinator" title=" pollinator"> pollinator</a> </p> <a href="https://publications.waset.org/abstracts/112444/impacts-of-commercial-honeybees-on-native-butterflies-in-high-elevation-meadows-in-utah-usa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6172</span> Alterations in the Abundance of Ruminal Microbial Species during the Peripartal Period in Dairy Cows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Alqarni">S. Alqarni</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20McCann"> J. C. McCann</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Palladino"> A. Palladino</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Loor"> J. J. Loor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seven fistulated Holstein cows were used from 3 weeks prepartum to 4 weeks postpartum to determine the relative abundance of 7 different species of ruminal microorganisms. The prepartum diet was based on corn silage. In the postpartum, diet included ground corn, grain by-products, and alfalfa haylage. Ruminal digesta were collected at five times: -14, -7, 10, 20, and 28 days around parturition. Total DNA from ruminal digesta was isolated and real-time quantitative PCR was used to determine the relative abundance of bacterial species. Eubacterium ruminantium and Selenomonas ruminantium were not affected by time (P>0.05). Megasphaera elsdenii and Prevotella bryantii increased significantly postpartum (P<0.001). Conversely, Butyrivibrio proteoclasticus decreased gradually from -14 through 28 days (P<0.001). Fibrobacter succinogenes was affected by time being lowest at day 10 (P=0.02) while Anaerovibrio lipolytica recorded the lowest abundance at -7 d followed by an increase by 20 days postpartum (P<0.001). Overall, these results indicate that changes in diet after parturition affect the abundance of ruminal bacteria, particularly M. elsdenii (a lactate-utilizing bacteria) and P. bryantii (a starch-degrading bacteria) which increased markedly after parturition likely as a consequence of a higher concentrate intake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rumen%20bacteria" title="rumen bacteria">rumen bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20cows" title=" transition cows"> transition cows</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20metabolism" title=" rumen metabolism"> rumen metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=peripartal%20period" title=" peripartal period"> peripartal period</a> </p> <a href="https://publications.waset.org/abstracts/9617/alterations-in-the-abundance-of-ruminal-microbial-species-during-the-peripartal-period-in-dairy-cows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6171</span> Study on the Effect of Weather Variables on the Spider Abundance in Two Ecological Zones of Ogun State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odejayi%20Adedayo%20Olugbenga">Odejayi Adedayo Olugbenga</a>, <a href="https://publications.waset.org/abstracts/search?q=Aina%20Adebisi"> Aina Adebisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weather variables (rainfall and temperature) affect the diversity and abundance of both fauna and flora species. This study compared the weather variables with spider abundance in two ecological zones of Ogun State, Nigeria namely Ago-iwoye (Rainforest) in the Ijebu axis and Aiyetoro (Derived Savannah) in the Yewa axis. Seven study sites chosen by Simple Random Sampling in each ecosystem were used for the study. In each sampling area, a 60 m x 120 m land area was marked and sampled, spider collection techniques were; hand picking, use of sweep netting, and Pitfall trap. Adult spiders were identified to the species level. Species richness was estimated by a non-parametric species estimator while the diversity of spider species was assessed by Simpson Diversity Index and Species Richness by One-way Analysis of Variance. Results revealed that spiders were more abundant in rainforest zones than in derived savannah ecosystems. However, the pattern of spider abundance in rainforest zone and residential areas were similar. During high temperatures, the activities of spiders tended to increase according to this study. In contrast, results showed that there was a negative correlation between rainfall and spider species abundance in addition to a negative and weak correlation between rainfall and species richness. It was concluded that heavy downpour has lethal effects on both immature and sometimes matured spiders, which could lead to the extinction of some unknown species of spiders. Tree planting should be encouraged, as this shelters the spider. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spider" title="spider">spider</a>, <a href="https://publications.waset.org/abstracts/search?q=abundance" title=" abundance"> abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20richness" title=" species richness"> species richness</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20diversity" title=" species diversity"> species diversity</a> </p> <a href="https://publications.waset.org/abstracts/168175/study-on-the-effect-of-weather-variables-on-the-spider-abundance-in-two-ecological-zones-of-ogun-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168175.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6170</span> Insects and Meteorological Inventories in a Mango-Based Agroforestry System in Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Ruhul%20Amin">Md. Ruhul Amin</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakura%20Namni"> Shakura Namni</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Ramiz%20Uddin%20Miah"> Md. Ramiz Uddin Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Giashuddin%20Miah"> Md. Giashuddin Miah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zakaria"> Mohammad Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Jae%20Suh"> Sang Jae Suh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Jung%20Kwon"> Yong Jung Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insect species abundance and diversity associated with meteorological factors during January to June 2013 at a mango-based agroforestry research field in Bangladesh, and the effects of pests and pollinator species on mango are presented in this study. Among the collected and identified insects, nine species belong to 3 orders were found as pollinator, 11 species in 5 orders as pest, and 13 species in 6 orders as predator. The mango hopper, fruit fly and stone weevil appeared as major pest because of their high levels of abundance and infestation. The hoppers caused 100% inflorescence damage followed by fruit fly (51.7% fruit) and stone weevil (31.0% mature fruit). The major pests exerted significantly higher abundance compared to pollinator, predator and minor pests. Hemipteroid insects were most abundant (60%) followed by Diptera (21%), Hymenoptera (10%), Lepidoptera (5%), and Coleoptera (4%). Insect population increased with increasing trend of temperature and humidity, and revealed peak abundance during April-May. The flower visiting insects differed in their landing duration and showed preference to forage with time of a day. Their foraging activity was found to be peaked between 11.00 am to 01.00 pm. The activity of the pollinators led to higher level of fruit set. This study provides baseline information about the phenological patterns of insect abundance in an agroforestry research field which could be an indication to incorporate some aspects of pest management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agroforestry" title="agroforestry">agroforestry</a>, <a href="https://publications.waset.org/abstracts/search?q=abundance" title=" abundance"> abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=abiotic%20factors" title=" abiotic factors"> abiotic factors</a>, <a href="https://publications.waset.org/abstracts/search?q=insects" title=" insects"> insects</a>, <a href="https://publications.waset.org/abstracts/search?q=mango" title=" mango"> mango</a> </p> <a href="https://publications.waset.org/abstracts/11520/insects-and-meteorological-inventories-in-a-mango-based-agroforestry-system-in-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6169</span> Quantitative Polymerase Chain Reaction Analysis of Phytoplankton Composition and Abundance to Assess Eutrophication: A Multi-Year Study in Twelve Large Rivers across the United States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiqian%20Zhang">Chiqian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyle%20D.%20McIntosh"> Kyle D. McIntosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nathan%20Sienkiewicz"> Nathan Sienkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Struewing"> Ian Struewing</a>, <a href="https://publications.waset.org/abstracts/search?q=Erin%20A.%20Stelzer"> Erin A. Stelzer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20L.%20Graham"> Jennifer L. Graham</a>, <a href="https://publications.waset.org/abstracts/search?q=Jingrang%20Lu"> Jingrang Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytoplankton plays an essential role in freshwater aquatic ecosystems and is the primary group synthesizing organic carbon and providing food sources or energy to ecosystems. Therefore, the identification and quantification of phytoplankton are important for estimating and assessing ecosystem productivity (carbon fixation), water quality, and eutrophication. Microscopy is the current gold standard for identifying and quantifying phytoplankton composition and abundance. However, microscopic analysis of phytoplankton is time-consuming, has a low sample throughput, and requires deep knowledge and rich experience in microbial morphology to implement. To improve this situation, quantitative polymerase chain reaction (qPCR) was considered for phytoplankton identification and quantification. Using qPCR to assess phytoplankton composition and abundance, however, has not been comprehensively evaluated. This study focused on: 1) conducting a comprehensive performance comparison of qPCR and microscopy techniques in identifying and quantifying phytoplankton and 2) examining the use of qPCR as a tool for assessing eutrophication. Twelve large rivers located throughout the United States were evaluated using data collected from 2017 to 2019 to understand the relation between qPCR-based phytoplankton abundance and eutrophication. This study revealed that temporal variation of phytoplankton abundance in the twelve rivers was limited within years (from late spring to late fall) and among different years (2017, 2018, and 2019). Midcontinent rivers had moderately greater phytoplankton abundance than eastern and western rivers, presumably because midcontinent rivers were more eutrophic. The study also showed that qPCR- and microscope-determined phytoplankton abundance had a significant positive linear correlation (adjusted R² 0.772, p-value < 0.001). In addition, phytoplankton abundance assessed via qPCR showed promise as an indicator of the eutrophication status of those rivers, with oligotrophic rivers having low phytoplankton abundance and eutrophic rivers having (relatively) high phytoplankton abundance. This study demonstrated that qPCR could serve as an alternative tool to traditional microscopy for phytoplankton quantification and eutrophication assessment in freshwater rivers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoplankton" title="phytoplankton">phytoplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=eutrophication" title=" eutrophication"> eutrophication</a>, <a href="https://publications.waset.org/abstracts/search?q=river" title=" river"> river</a>, <a href="https://publications.waset.org/abstracts/search?q=qPCR" title=" qPCR"> qPCR</a>, <a href="https://publications.waset.org/abstracts/search?q=microscopy" title=" microscopy"> microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=spatiotemporal%20variation" title=" spatiotemporal variation"> spatiotemporal variation</a> </p> <a href="https://publications.waset.org/abstracts/160030/quantitative-polymerase-chain-reaction-analysis-of-phytoplankton-composition-and-abundance-to-assess-eutrophication-a-multi-year-study-in-twelve-large-rivers-across-the-united-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6168</span> A Faunistic Study of Syrphidae Flowerflies in Alfalfa Fields of North of Khouzestan, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Safaeian">Zahra Safaeian</a>, <a href="https://publications.waset.org/abstracts/search?q=Shila%20Goldasteh"> Shila Goldasteh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouhollah%20Radjabi"> Rouhollah Radjabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flowerflies of Syrphidae family is one of the largest families among the Diptera order that due to predatory habit of some species in larva stage has an important role for controlling aphids of the fields. In the present study, flowerflies fauna in the alfalfa fields of the north of Khouzestan were studied during 2012-2013. The species of the family were collected using appropriate methods including insect collecting sweeping net and Malaise traps. According to the fact that the shape of male genitalia in the male insect is important in identification of these species the male genitalia was separated from the body and microscopical slide was prepared then species identification was done considering the male genitalia, the patterns and figures on the abdomen and using available keys. Based on the finding four species of Sphaerophoria scripta, Sphaerophoria turkmenica, Melanostoma mellinu, Sphaerophoria ruppelli were collected and according to the abundance frequency of the collected species the most abundance was related to Sphaerophoria scripta, then Sphaerophoria turkmenica had the most abundance and the least abundance was related to Sphaerophoria ruppelli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=syrphidae" title="syrphidae">syrphidae</a>, <a href="https://publications.waset.org/abstracts/search?q=fauna" title=" fauna"> fauna</a>, <a href="https://publications.waset.org/abstracts/search?q=alfalfa" title=" alfalfa"> alfalfa</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/34884/a-faunistic-study-of-syrphidae-flowerflies-in-alfalfa-fields-of-north-of-khouzestan-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6167</span> Coupling Large Language Models with Disaster Knowledge Graphs for Intelligent Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhengrong%20Wu">Zhengrong Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Haibo%20Yang"> Haibo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the context of escalating global climate change and environmental degradation, the complexity and frequency of natural disasters are continually increasing. Confronted with an abundance of information regarding natural disasters, traditional knowledge graph construction methods, which heavily rely on grammatical rules and prior knowledge, demonstrate suboptimal performance in processing complex, multi-source disaster information. This study, drawing upon past natural disaster reports, disaster-related literature in both English and Chinese, and data from various disaster monitoring stations, constructs question-answer templates based on large language models. Utilizing the P-Tune method, the ChatGLM2-6B model is fine-tuned, leading to the development of a disaster knowledge graph based on large language models. This serves as a knowledge database support for disaster emergency response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20language%20model" title="large language model">large language model</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20graph" title=" knowledge graph"> knowledge graph</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster" title=" disaster"> disaster</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/182751/coupling-large-language-models-with-disaster-knowledge-graphs-for-intelligent-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6166</span> Relationship Between Wildfire and Plant Species in Arasbaran Forest, Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhila%20Hemati">Zhila Hemati</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Sajjad%20Hosseni"> Seyed Sajjad Hosseni</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohrab%20Zamzami"> Sohrab Zamzami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In nature, forests serve a multitude of functions. They stabilize and nourish soil, store carbon, clean the air and water, and support biodiverse ecosystems. A natural disaster that can affect forests and ecosystems locally or globally is wildfires. Iran experiences annual forest fires that affect roughly 6000 hectares, with the Arasbaran forest being the most affected. These fires may be generated unnaturally by human activity in the forests, or they could occur naturally as a result of climate change. These days, wildfires pose a major natural risk. Wildfires significantly reduce the amount of property and human life in ecosystems globally. Concerns regarding the immediate and longterm effects have been raised by the rise in fire activity in various Iranian regions in recent decades. Natural ecosystem abundance, quality, and health will all be impacted by pasture and forest fires. Monitoring is the first line of defense against and control for forest fires. To determine the spatial-temporal variations of these occurrences in the vegetation regions of Arasbaran, this study was carried out to estimate the areas affected by fires. The findings indicated that July through September, which spans over 130000 hectares, is when fires in Arasbaran's vegetation areas occur to their greatest extent. A significant portion of the nation's forests caught fire in 2024, particularly in the northwest of the Arasbaran vegetation area. On the other hand, January through March sees the least number of fire locations in the Arasbaran vegetation areas. The Arasbaran forest experiences its greatest number of forest fires during the hot, dry months of the year. As a result, the linear association between the burned and active fire regions in the Arasbaran forest indicates a substantial relationship between species abundance and plant species. This link demonstrates that some of the active forest fire centers are the burned regions in Arasbaran's vegetation areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wildfire" title="wildfire">wildfire</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetation" title=" vegetation"> vegetation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20species" title=" plant species"> plant species</a>, <a href="https://publications.waset.org/abstracts/search?q=forest" title=" forest"> forest</a> </p> <a href="https://publications.waset.org/abstracts/185188/relationship-between-wildfire-and-plant-species-in-arasbaran-forest-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6165</span> Effects of Artificial Nectar Feeders on Bird Distribution and Erica Visitation Rate in the Cape Fynbos</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monique%20Du%20Plessis">Monique Du Plessis</a>, <a href="https://publications.waset.org/abstracts/search?q=Anina%20Coetzee"> Anina Coetzee</a>, <a href="https://publications.waset.org/abstracts/search?q=Colleen%20L.%20Seymour"> Colleen L. Seymour</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20N.%20Spottiswoode"> Claire N. Spottiswoode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial nectar feeders are used to attract nectarivorous birds to gardens and are increasing in popularity. The costs and benefits of these feeders remain controversial, however. Nectar feeders may have positive effects by attracting nectarivorous birds towards suburbia, facilitating their urban adaptation, and supplementing bird diets when floral resources are scarce. However, this may come at the cost of luring them away from the plants they pollinate in neighboring indigenous vegetation. This study investigated the effect of nectar feeders on an African pollinator-plant mutualism. Given that birds are important pollinators to many fynbos plant species, this study was conducted in gardens and natural vegetation along the urban edge of the Cape Peninsula. Feeding experiments were carried out to compare relative bird abundance and local distribution patterns for nectarivorous birds (i.e., sunbirds and sugarbirds) between feeder and control treatments. Resultant changes in their visitation rates to Erica flowers in the natural vegetation were tested by inspection of their anther ring status. Nectar feeders attracted higher densities of nectarivores to gardens relative to natural vegetation and decreased their densities in the neighboring fynbos, even when floral abundance in the neighboring vegetation was high. The consequent changes to their distribution patterns and foraging behavior decreased their visitation to at least Erica plukenetii flowers (but not to Erica abietina). This study provides evidence that nectar feeders may have positive effects for birds themselves by reducing their urban sensitivity but also highlights the unintended negative effects feeders may have on the surrounding fynbos ecosystem. Given that nectar feeders appear to compete with the flowers of Erica plukenetii, and perhaps those of other Erica species, artificial feeding may inadvertently threaten bird-plant pollination networks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=avian%20nectarivores" title="avian nectarivores">avian nectarivores</a>, <a href="https://publications.waset.org/abstracts/search?q=bird%20feeders" title=" bird feeders"> bird feeders</a>, <a href="https://publications.waset.org/abstracts/search?q=bird%20pollination" title=" bird pollination"> bird pollination</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20effects%20in%20human-wildlife%20interactions" title=" indirect effects in human-wildlife interactions"> indirect effects in human-wildlife interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=sugar%20water%20feeders" title=" sugar water feeders"> sugar water feeders</a>, <a href="https://publications.waset.org/abstracts/search?q=supplementary%20feeding" title=" supplementary feeding"> supplementary feeding</a> </p> <a href="https://publications.waset.org/abstracts/129497/effects-of-artificial-nectar-feeders-on-bird-distribution-and-erica-visitation-rate-in-the-cape-fynbos" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6164</span> Impact of Land-Use and Climate Change on the Population Structure and Distribution Range of the Rare and Endangered Dracaena ombet and Dobera glabra in Northern Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emiru%20Birhane">Emiru Birhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Tesfay%20Gidey"> Tesfay Gidey</a>, <a href="https://publications.waset.org/abstracts/search?q=Haftu%20Abrha"> Haftu Abrha</a>, <a href="https://publications.waset.org/abstracts/search?q=Abrha%20Brhan"> Abrha Brhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanuel%20Zenebe"> Amanuel Zenebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Girmay%20Gebresamuel"> Girmay Gebresamuel</a>, <a href="https://publications.waset.org/abstracts/search?q=Florent%20Noul%C3%A8koun"> Florent Noulèkoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dracaena ombet and Dobera glabra are two of the most rare and endangered tree species in dryland areas. Unfortunately, their sustainability is being compromised by different anthropogenic and natural factors. However, the impacts of ongoing land use and climate change on the population structure and distribution of the species are less explored. This study was carried out in the grazing lands and hillside areas of the Desa'a dry Afromontane forest, northern Ethiopia, to characterize the population structure of the species and predict the impact of climate change on their potential distributions. In each land-use type, abundance, diameter at breast height, and height of the trees were collected using 70 sampling plots distributed over seven transects spaced one km apart. The geographic coordinates of each individual tree were also recorded. The results showed that the species populations were characterized by low abundance and unstable population structure. The latter was evinced by a lack of seedlings and mature trees. The study also revealed that the total abundance and dendrometric traits of the trees were significantly different between the two land uses. The hillside areas had a denser abundance of bigger and taller trees than the grazing lands. Climate change predictions using the MaxEnt model highlighted that future temperature increases coupled with reduced precipitation would lead to significant reductions in the suitable habitats of the species in northern Ethiopia. The species' suitable habitats were predicted to decline by 48–83% for D. ombet and 35–87% for D. glabra. Hence, to sustain the species populations, different strategies should be adopted, namely the introduction of alternative livelihoods (e.g., gathering NTFP) to reduce the overexploitation of the species for subsistence income and the protection of the current habitats that will remain suitable in the future using community-based exclosures. Additionally, the preservation of the species' seeds in gene banks is crucial to ensure their long-term conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grazing%20lands" title="grazing lands">grazing lands</a>, <a href="https://publications.waset.org/abstracts/search?q=hillside%20areas" title=" hillside areas"> hillside areas</a>, <a href="https://publications.waset.org/abstracts/search?q=land-use%20change" title=" land-use change"> land-use change</a>, <a href="https://publications.waset.org/abstracts/search?q=MaxEnt" title=" MaxEnt"> MaxEnt</a>, <a href="https://publications.waset.org/abstracts/search?q=range%20limitation" title=" range limitation"> range limitation</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20and%20endangered%20tree%20species" title=" rare and endangered tree species"> rare and endangered tree species</a> </p> <a href="https://publications.waset.org/abstracts/174106/impact-of-land-use-and-climate-change-on-the-population-structure-and-distribution-range-of-the-rare-and-endangered-dracaena-ombet-and-dobera-glabra-in-northern-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6163</span> Plant Growth, Symbiotic Performance and Grain Yield of 63 Common Bean Genotypes Grown Under Field Conditions at Malkerns Eswatini</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rotondwa%20P.%20Gunununu">Rotondwa P. Gunununu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20Mohammed"> Mustapha Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20D.%20Dakora"> Felix D. Dakora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Common bean is the most importantly high protein grain legume grown in Southern Africa for human consumption and income generation. Although common bean can associate with rhizobia to fix N₂ for bacterial use and plant growth, it is reported to be a poor nitrogen fixer when compared to other legumes. N₂ fixation can vary with legume species, genotype and rhizobial strain. Therefore, screening legume germplasm can reveal rhizobia/genotype combinations with high N₂-fixing efficiency for use by farmers. This study assessed symbiotic performance and N₂ fixation in 63 common bean genotypes under field conditions at Malkerns Station in Eswatini, using the ¹⁵N natural abundance technique. The shoots of common bean genotypes were sampled at a pod-filling stage, oven-dried (65oC for 72h), weighed, ground into a fine powder (0.50 mm sieve), and subjected to ¹⁵N/¹⁴N isotopic analysis using mass spectrometry. At maturity, plants from the inner rows were harvested for the determination of grain yield. The results revealed significantly higher modulation (p≤0.05) in genotypes MCA98 and CIM-RM01-97-8 relative to the other genotypes. Shoot N concentration was highest in genotype MCA 98, followed by KAB 10 F2.8-84, with most genotypes showing shoot N concentrations below 2%. Percent N derived from atmospheric N₂ fixation (%Ndfa) differed markedly among genotypes, with CIM-RM01-92-3 and DAB 174, respectively, recording the highest values of 66.65% and 66.22 % N derived from fixation. There were also significant differences in grain yield, with CIM-RM02-79-1 producing the highest yield (3618.75 kg/ha). These results represent an important contribution in the profiling of symbiotic functioning of common bean germplasm for improved N₂ fixation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20fixation" title="nitrogen fixation">nitrogen fixation</a>, <a href="https://publications.waset.org/abstracts/search?q=%25Ndfa" title=" %Ndfa"> %Ndfa</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance" title="¹⁵N natural abundance">¹⁵N natural abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20yield" title=" grain yield"> grain yield</a> </p> <a href="https://publications.waset.org/abstracts/140469/plant-growth-symbiotic-performance-and-grain-yield-of-63-common-bean-genotypes-grown-under-field-conditions-at-malkerns-eswatini" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6162</span> Sustainable Mangrove Environment and Biodiversity of Gastropods and Crabs: A Case Study on the Effect of Mangrove Replantation under Ecotourism and Restoration in Ko Libong, Trang, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wah%20Wah%20Min">Wah Wah Min</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relative abundance and diversities of gastropods and crabs were assessed for mangrove areas of Ko Libong, Kantang district, Trang, Thailand in June 2022. Two sample sites (I and II) were studied. The site I was replanted under ecotourism, whereas site II represented the protected natural restored mangroves. This study is aimed to assess faunal diversity and how it could become re-established and resemble to natural restored mangroves. There was one sample plot at each study site with the dimension (10m x 25m) in study site I and (20m x 30m) in site II. The sample was randomly taken from each plot by using a quadrate measuring at (1 m2) in site I and (3m2) in site II; there were four quadrates in total of each site. The species richness (S), Shannon Index (H’) and Evenness Index (J’), vegetative measurements and physico-chemical parameters were calculated for each site. Seventeen gastropod species belonged to 11 families and six crab species under two families, which were collected in both study sites. Overall, in gastropod species, the highest relative abundance of Nerita planospira exhibited (53.45%, category C) with lower population density (1.61 individuals/m2), whichwas observed in study site II and for crab species, Parasesarma plicatum (83.33%, category C) with lower population density (0.33 individuals/m2). The diversity indices of gastropod species at the study site I was calculated higher indicating by (S= 12, H’= 2.27, J’ and SDI=0.91) compared to study site II (S= 7, H’= 1.22, J’ and SDI=0.63, 0.62). For the crabs, (S= 4, H’=1.33, J’ and SDI=0.96, 0.9) in study site I and (S= 2, H’=0.64, J’ and SDI=0.92, 0.67) in site II. Overall, the higher species diversity indices of study site I can be categorized “very equally” with a very good category according to evenness criteria (>0.81). This can be gained by increasing restoration sites through an ecotourism replanting program for achieving the goals of sustainable development for mangrove conservation and long-term studies are required to confirm this hypothesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=ecotourism" title=" ecotourism"> ecotourism</a>, <a href="https://publications.waset.org/abstracts/search?q=restoration" title=" restoration"> restoration</a>, <a href="https://publications.waset.org/abstracts/search?q=population" title=" population"> population</a> </p> <a href="https://publications.waset.org/abstracts/163881/sustainable-mangrove-environment-and-biodiversity-of-gastropods-and-crabs-a-case-study-on-the-effect-of-mangrove-replantation-under-ecotourism-and-restoration-in-ko-libong-trang-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6161</span> Patterns in Fish Diversity and Abundance of an Abandoned Gold Mine Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20E.%20Obayemi">O. E. Obayemi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ayoade"> M. A. Ayoade</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Komolafe"> O. O. Komolafe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish survey was carried out for an annual cycle covering both rainy and dry seasons using cast nets, gill nets and traps at two different reservoirs. The objective was to examined the fish assemblages of the reservoirs and provide more additional information on the reservoir. The fish species in the reservoirs comprised of twelve species of six families. The results of the study also showed that five species of fish were caught in reservoir five while ten fish species were captured in reservoir six. Species such as Malapterurus electricus, Ctenopoma kingsleyae, Mormyrus rume, Parachanna obscura, Sarotherodon galilaeus, Tilapia mariae, C. guntheri, Clarias macromystax, Coptodon zilii and Clarias gariepinus were caught during the sampling period. There was a significant difference (p=0.014, t = 1.711) in the abundance of fish species in the two reservoirs. Seasonally, reservoirs five (p=0.221, t = 1.859) and six (p=0.453, t = 1.734) showed there was no significant difference in their fish populations. Also, despite being impacted with gold mining the diversity indices were high when compared to less disturbed waterbodies. The study concluded that the environments recorded low abundant fish species which suggests the influence of mining on the abundance and diversity of fish species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Igun" title="Igun">Igun</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon-Wiener%20Index" title=" Shannon-Wiener Index"> Shannon-Wiener Index</a>, <a href="https://publications.waset.org/abstracts/search?q=Simpson%20index" title=" Simpson index"> Simpson index</a>, <a href="https://publications.waset.org/abstracts/search?q=Pielou%20index" title=" Pielou index"> Pielou index</a> </p> <a href="https://publications.waset.org/abstracts/173907/patterns-in-fish-diversity-and-abundance-of-an-abandoned-gold-mine-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6160</span> A Study for Area-level Mosquito Abundance Prediction by Using Supervised Machine Learning Point-level Predictor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Theoktisti%20Makridou">Theoktisti Makridou</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Tsaprailis"> Konstantinos Tsaprailis</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Arvanitakis"> George Arvanitakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Charalampos%20Kontoes"> Charalampos Kontoes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the literature, the data-driven approaches for mosquito abundance prediction relaying on supervised machine learning models that get trained with historical in-situ measurements. The counterpart of this approach is once the model gets trained on pointlevel (specific x,y coordinates) measurements, the predictions of the model refer again to point-level. These point-level predictions reduce the applicability of those solutions once a lot of early warning and mitigation actions applications need predictions for an area level, such as a municipality, village, etc... In this study, we apply a data-driven predictive model, which relies on public-open satellite Earth Observation and geospatial data and gets trained with historical point-level in-Situ measurements of mosquito abundance. Then we propose a methodology to extract information from a point-level predictive model to a broader area-level prediction. Our methodology relies on the randomly spatial sampling of the area of interest (similar to the Poisson hardcore process), obtaining the EO and geomorphological information for each sample, doing the point-wise prediction for each sample, and aggregating the predictions to represent the average mosquito abundance of the area. We quantify the performance of the transformation from the pointlevel to the area-level predictions, and we analyze it in order to understand which parameters have a positive or negative impact on it. The goal of this study is to propose a methodology that predicts the mosquito abundance of a given area by relying on point-level prediction and to provide qualitative insights regarding the expected performance of the area-level prediction. We applied our methodology to historical data (of Culex pipiens) of two areas of interest (Veneto region of Italy and Central Macedonia of Greece). In both cases, the results were consistent. The mean mosquito abundance of a given area can be estimated with similar accuracy to the point-level predictor, sometimes even better. The density of the samples that we use to represent one area has a positive effect on the performance in contrast to the actual number of sampling points which is not informative at all regarding the performance without the size of the area. Additionally, we saw that the distance between the sampling points and the real in-situ measurements that were used for training did not strongly affect the performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mosquito%20abundance" title="mosquito abundance">mosquito abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised%20machine%20learning" title=" supervised machine learning"> supervised machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=culex%20pipiens" title=" culex pipiens"> culex pipiens</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20sampling" title=" spatial sampling"> spatial sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=west%20nile%20virus" title=" west nile virus"> west nile virus</a>, <a href="https://publications.waset.org/abstracts/search?q=earth%20observation%20data" title=" earth observation data"> earth observation data</a> </p> <a href="https://publications.waset.org/abstracts/154245/a-study-for-area-level-mosquito-abundance-prediction-by-using-supervised-machine-learning-point-level-predictor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6159</span> Diversity and Structure of Trichoptera Communities and Water Quality Variables in Streams, Northern Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Prommi">T. Prommi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Thamsenanupap"> P. Thamsenanupap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of physicochemical water quality parameters on the abundance and diversity of caddisfly larvae was studied in seven sampling stations in Mae Tao and Mae Ku watersheds, Mae Sot District, Tak Province, northern Thailand. The streams: MK2 and MK8 as reference site, and impacted streams (MT1-MT5) were sampled bi-monthly during July 2011 to May 2012. A total of 4,584 individual of caddisfly larvae belonging to 10 family and 17 genera were found. The larvae of family Hydropsychidae were the most abundance, followed by Philopotamidae, Odontoceridae, and Leptoceridae, respectively. The genus Cheumatopsyche, Hydropsyche, and Chimarra were the most abundance genera in this study. Results of CCA ordination showed the total dissolved solids, sulfate, water temperature, dissolved oxygen and pH were the most important physicochemical factors to affect distribution of caddisflies communities. Changes in the caddisfly fauna may indicate changes in physicochemical factors owing to agricultural pollution, urbanization, or other human activities. Results revealed that the order Trichoptera, identified to species or genus, can be potentially used to assess environmental water quality status in freshwater ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Caddisfly%20larvae" title="Caddisfly larvae">Caddisfly larvae</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20variables" title=" environmental variables"> environmental variables</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=streams" title=" streams"> streams</a> </p> <a href="https://publications.waset.org/abstracts/28680/diversity-and-structure-of-trichoptera-communities-and-water-quality-variables-in-streams-northern-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6158</span> Biophysical Assessment of the Ecological Condition of Wetlands in the Parkland and Grassland Natural Regions of Alberta, Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marie-Claude%20Roy">Marie-Claude Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Locky"> David Locky</a>, <a href="https://publications.waset.org/abstracts/search?q=Ermias%20Azeria"> Ermias Azeria</a>, <a href="https://publications.waset.org/abstracts/search?q=Jim%20Schieck"> Jim Schieck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is estimated that up to 70% of the wetlands in the Parkland and Grassland natural regions of Alberta have been lost due to various land-use activities. These losses include ecosystem function and services they once provided. Those wetlands remaining are often embedded in a matrix of human-modified habitats and despite efforts taken to protect them the effects of land-uses on wetland condition and function remain largely unknown. We used biophysical field data and remotely-sensed human footprint data collected at 322 open-water wetlands by the Alberta Biodiversity Monitoring Institute (ABMI) to evaluate the impact of surrounding land use on the physico-chemistry characteristics and plant functional traits of wetlands. Eight physio-chemistry parameters were assessed: wetland water depth, water temperature, pH, salinity, dissolved oxygen, total phosphorus, total nitrogen, and dissolved organic carbon. Three plant functional traits were evaluated: 1) origin (native and non-native), 2) life history (annual, biennial, and perennial), and 3) habitat requirements (obligate-wetland and obligate-upland). Intensity land-use was quantified within a 250-meter buffer around each wetland. Ninety-nine percent of wetlands in the Grassland and Parkland regions of Alberta have land-use activities in their surroundings, with most being agriculture-related. Total phosphorus in wetlands increased with the cover of surrounding agriculture, while salinity, total nitrogen, and dissolved organic carbon were positively associated with the degree of soft-linear (e.g. pipelines, trails) land-uses. The abundance of non-native and annual/biennial plants increased with the amount of agriculture, while urban-industrial land-use lowered abundance of natives, perennials, and obligate wetland plants. Our study suggests that land-use types surrounding wetlands affect the physicochemical and biological conditions of wetlands. This research suggests that reducing human disturbances through reclamation of wetland buffers may enhance the condition and function of wetlands in agricultural landscapes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wetlands" title="wetlands">wetlands</a>, <a href="https://publications.waset.org/abstracts/search?q=biophysical%20assessment" title=" biophysical assessment"> biophysical assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use" title=" land use"> land use</a>, <a href="https://publications.waset.org/abstracts/search?q=grassland%20and%20parkland%20natural%20regions" title=" grassland and parkland natural regions"> grassland and parkland natural regions</a> </p> <a href="https://publications.waset.org/abstracts/67359/biophysical-assessment-of-the-ecological-condition-of-wetlands-in-the-parkland-and-grassland-natural-regions-of-alberta-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6157</span> Microbiota Associated With the Larval Culture of Red Cusk Eel Genipterus Chilensis in Chile</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luz%20Hurtado">Luz Hurtado</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Rojas"> Rodrigo Rojas</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Romero"> Jaime Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Concha"> Christopher Concha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The culture of the marine fish red cusk eel Genypterus chilensis is currently considered a priority for Chilean aquaculture which is a Chilean native species of high gastronomic demand and market value. The microbiota was analyzed in terms of diversity and structure using massive Illumina sequencing. The analysis of alpha diversity was performed in samples of G. chilensis larvae of 6, 18 and 32 dph (days post-hatching) and it was observed that there were significant differences (P = 0.05) between the days of culture for the Chao1 index, being the larvae of 18 dph the one with the highest index followed by the larvae of 6 dph, The lowest value for this index was presented in larvae of 32 dph. There were no significant differences in larvae between the days of culture for the Shannon (P=0.0857) and Simpson (P=0.0714) indices. In general, the larvae of G. chilensis have high rates of diversity. When analyzing the beta diversity, a differentiation between the bacterial communities is observed depending on the day of the culture of the larvae. Considering the PCoA elaborated from the unweighted UniFrac statistic, the explained variance was 46.2% (PC1 29.2% and PC2 17.0%) and in the case of the PCoA elaborated with the weighted UniFrac statistic; the explained variance was 65.5% (PC1 41.8% and PC2 23.7%) these differences were significant based on the Permanova statistical analysis (P= 0.002 and 0.037 respectively). When analyzing the taxonomic composition of the microbiota of the larvae in the different days of culture it was observed that at the phyla level the most abundant in the larvae of 6 dph were Proteobacteria (57%) Verrucomicrobia (24%) and Firmicutes (14%), for the larvae of 18 dph the predominant phyla were Proteobacteria (90%), Dependientiae (5%), Actinobacteria (2%) and Plactomyces (2%), for the larvae of 32 dph the phyla that presented the highest relative abundance were Proteobacteria (57%), Firmicutes (29%), Verrucomicrobia (5%) and Actinobacteria (5%), when comparing the larvae between the days it was observed that the phylum Proteobacteria was the most abundant in the samples of larvae of 6, 18 and 32 dph being the larvae of 18 dph those that present the highest relative abundance, the larvae of 6 dph were those that presented the highest relative abundance for the phylum Verrucomicrobia and in the larvae of 32 dph was observed greater abundance of the phylum Firmicutes compared to the other days of larval culture. At the level of genera, those with the highest relative abundance in larvae of 6 dph were Rubritalea (30%), Psychrobacter (28%), staphylococcus (17%) and Ralstonia (10%), for the larvae of 18 dph the genera with the highest abundance were Psychrobacter (47%), Litoreibacter (13%), Nautella (9%) and Cohesibacter (8%), for the larvae of 32 dph the most abundant genera were Alloiococcus (25%), Dialister (14%), Neptunomonas (13%) and Piscirickettsia (11%). When observing the taxonomic composition of the larvae between the days of larval culture, it is observed that there are differences between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbiota" title="microbiota">microbiota</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Chilensis" title=" G. Chilensis"> G. Chilensis</a>, <a href="https://publications.waset.org/abstracts/search?q=larvae" title=" larvae"> larvae</a> </p> <a href="https://publications.waset.org/abstracts/167894/microbiota-associated-with-the-larval-culture-of-red-cusk-eel-genipterus-chilensis-in-chile" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6156</span> Using Hierarchical Modelling to Understand the Role of Plantations in the Abundance of Koalas, Phascolarctos cinereus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kita%20R.%20Ashman">Kita R. Ashman</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20R.%20Rendall"> Anthony R. Rendall</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20R.%20E.%20Symonds"> Matthew R. E. Symonds</a>, <a href="https://publications.waset.org/abstracts/search?q=Desley%20A.%20Whisson"> Desley A. Whisson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forest cover is decreasing globally, chiefly due to the conversion of forest to agricultural landscapes. In contrast, the area under plantation forestry is increasing significantly. For wildlife occupying landscapes where native forest is the dominant land cover, plantations generally represent a lower value habitat; however, plantations established on land formerly used for pasture may benefit wildlife by providing temporary forest habitat and increasing connectivity. This study investigates the influence of landscape, site, and climatic factors on koala population density in far south-west Victoria where there has been extensive plantation establishment. We conducted koala surveys and habitat characteristic assessments at 72 sites across three habitat types: plantation, native vegetation blocks, and native vegetation strips. We employed a hierarchical modeling framework for estimating abundance and constructed candidate multinomial N-mixture models to identify factors influencing the abundance of koalas. We detected higher mean koala density in plantation sites (0.85 per ha) than in either native block (0.68 per ha) or native strip sites (0.66 per ha). We found five covariates of koala density and using these variables, we spatially modeled koala abundance and discuss factors that are key in determining large-scale distribution and density of koala populations. We provide a distribution map that can be used to identify high priority areas for population management as well as the habitat of high conservation significance for koalas. This information facilitates the linkage of ecological theory with the on-ground implementation of management actions and may guide conservation planning and resource management actions to consider overall landscape configuration as well as the spatial arrangement of plantations adjacent to the remnant forest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abundance%20modelling" title="abundance modelling">abundance modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=arboreal%20mammals%20plantations" title=" arboreal mammals plantations"> arboreal mammals plantations</a>, <a href="https://publications.waset.org/abstracts/search?q=wildlife%20conservation" title=" wildlife conservation "> wildlife conservation </a> </p> <a href="https://publications.waset.org/abstracts/111222/using-hierarchical-modelling-to-understand-the-role-of-plantations-in-the-abundance-of-koalas-phascolarctos-cinereus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6155</span> Pruning Residue Effects on Symbiotic N₂ Fixation and δ¹³C Isotopic Composition of Sesbania sesban and Cajanus cajan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20T.%20Makhubedu">I. T. Makhubedu</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20A.%20Letty"> B. A. Letty</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20F.%20Scogings"> P. F. Scogings</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20L.%20Mafongoya"> P. L. Mafongoya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite their potential importance in recycling dinitrogen (N2) fixed in alley cropping systems, the effects of tree pruning residues on symbiotic N2 fixation are poorly studied. A 2 x 2 x 2 factorial experiment was conducted to evaluate the effects of pruning residue management and pruning date on symbiotic performance and <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alley%20cropping" title="alley cropping">alley cropping</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=N%E2%82%82%20fixed" title=" N₂ fixed"> N₂ fixed</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20abundance" title=" natural abundance"> natural abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/99673/pruning-residue-effects-on-symbiotic-n2-fixation-and-d13c-isotopic-composition-of-sesbania-sesban-and-cajanus-cajan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6154</span> Spacio-Temporal Variation of the Zooplanktonic Community of Esa-Odo Reservoir, Esa-Odo, Osun State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helen%20Yetunde%20Omoboye">Helen Yetunde Omoboye</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebukola%20Adenike%20Adedeji"> Adebukola Adenike Adedeji</a>, <a href="https://publications.waset.org/abstracts/search?q=Israel%20Funso%20Adeniyi"> Israel Funso Adeniyi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study of the biodiversity, community structure, and production capacity of the zooplankton community is an aspect of bio-monitoring of the aquatic ecosystem. Samples were selected horizontally and vertically from Esa-Odo Reservoir using improvised Meyer’s water sampler. Planktonic samples were collected at two months intervals for two years. Net and total plankton were sampled by filtration and sedimentation methods. Planktonic samples were preserved as 5% formalin and 1% Lugol’s solution. Measurement, enumeration, and scaled pictures of the recorded zooplankton were taken using a photomicrograph. The taxonomic composition of zooplankton biota was determined using identification keys. Eighty three (83) species of zooplankton recorded in this study belong to 4 groups: Rotifera, Cladocera, Copepoda, and Insecta. Rotifera was the most represented group (61.21%). Horizontally, 24 species with the highest mean abundance characterized the lacustrine; while 12 species and 10 species were unique to the transition and riverine zones, respectively. Vertically, most species had their mean abundance decreased from the surface to the bottom of the reservoir. A total of nine (9), two (2), and one (1) species were peculiar to the surface, bottom and mid-depth, respectively. Zooplankton was most abundant during the dry season. In conclusion, Esa-Odo Reservoir comprised highly diversified zooplankton fauna with great potential to support a rich aquatic community and fishery production. The reservoir can be classified as fairly clean based on the abundance of the rotifer group. However, the lake should be subjected to regular proper monitoring because of the presence of some pollution tolerant copepod species identified among the zooplankton fauna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zooplankton" title="zooplankton">zooplankton</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial" title=" spatial"> spatial</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal" title=" temporal"> temporal</a>, <a href="https://publications.waset.org/abstracts/search?q=abundance" title=" abundance"> abundance</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir" title=" reservoir"> reservoir</a> </p> <a href="https://publications.waset.org/abstracts/145056/spacio-temporal-variation-of-the-zooplanktonic-community-of-esa-odo-reservoir-esa-odo-osun-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=206">206</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=207">207</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B5N%20natural%20abundance&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>