CINXE.COM
Search results for: ballast water management
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ballast water management</title> <meta name="description" content="Search results for: ballast water management"> <meta name="keywords" content="ballast water management"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ballast water management" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ballast water management"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17066</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ballast water management</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17066</span> Quality Evaluation of Treated Ballast Seawater for Potential Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Muhamad">Siti Nur Muhamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Abu%20Ubaidah%20Amir"> Mohamad Abu Ubaidah Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Adenen%20Shuhada%20Abdul%20Aziz"> Adenen Shuhada Abdul Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Sarah%20Mohd%20Isnan"> Siti Sarah Mohd Isnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainul%20Husna%20Abdul%20Rahman"> Ainul Husna Abdul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Afiqah%20Rosly"> Nur Afiqah Rosly</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshamida%20Abd%20Jamil"> Roshamida Abd Jamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The International Convention for the Control and Management of Ships’ Ballast Water and Sediments (BWM Convention) will commencing on 8 September 2017 after ratified by 51 States in September 2016. However, there is no value recovered for the treated ballast water as it simply discharged during de-ballasting. In order to evaluate value creation of treated ballast water, three seawater applications which are seawater toilet flushing, cooling tower and desalination was studied and compared with treated ballast seawater. An exploratory study was conducted in Singapore as a case study as this country is facing water scarcity issues and a busy port in the world which received more than 28 billion m3 of ballast water in 2015. Surprisingly the treatment technology between seawater toilet flushing and ballast water management has similarity as both applications use screening and disinfection process and quality standard and analysis between treated ballast water with seawater applications found that seawater toilet flushing have the same quality parameter with treated ballast water. Thus, the treated ballast water can replace the raw seawater for seawater desalination. As such, with reduction of cost for screen unit, desalination water can exceed water production by NEWater in Singapore as the cost can recover the energy needed for desalination. It can conclude that treated ballast water has high recovery value and can be reused in seawater application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast%20water%20treatment" title="ballast water treatment">ballast water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=BWM%20convention" title=" BWM convention"> BWM convention</a>, <a href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management" title=" ballast water management"> ballast water management</a> </p> <a href="https://publications.waset.org/abstracts/64168/quality-evaluation-of-treated-ballast-seawater-for-potential-reuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17065</span> Ballast Water Management Triad: Administration, Ship Owner and the Seafarer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajoo%20Balaji">Rajoo Balaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Yaakob"> Omar Yaakob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Ballast Water Convention requires less than 5% of the world tonnage for ratification. Consequently, ships will have to comply with the requirements. Compliance evaluation and enforcement will become mandatory. Ship owners have to invest in treatment systems and shipboard personnel have to operate them and ensure compliance. The monitoring and enforcement will be the responsibilities of the Administrations. Herein, a review of the current status of the Ballast Water Management and the issues faced by these are projected. Issues range from efficacy and economics of the treatment systems to sampling and testing. Health issues of chemical systems, paucity of data for decision support etc., are other issues. It is emphasized that management of ballast water must be extended to ashore and sustainable solutions must be researched upon. An exemplar treatment system based on ship’s waste heat is also suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ballast%20Water%20Management" title="Ballast Water Management">Ballast Water Management</a>, <a href="https://publications.waset.org/abstracts/search?q=compliance%20evaluation" title=" compliance evaluation"> compliance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=compliance%20enforcement" title=" compliance enforcement"> compliance enforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/13591/ballast-water-management-triad-administration-ship-owner-and-the-seafarer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17064</span> Development of Database for Risk Assessment Appling to Ballast Water Managements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun-Chan%20Kim">Eun-Chan Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong-Hwan%20Oh"> Jeong-Hwan Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Guk%20Lee"> Seung-Guk Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Billions of tones of ballast water including various aquatic organisms are being carried around the world by ships. When the ballast water is discharged into new environments, some aquatic organisms discharged with ballast water may become invasive and severely disrupt the native ecology. Thus, International Maritime Organization (IMO) adopted the Ballast Water Management Convention in 2004. Regulation A-4 of the convention states that a government in waters under their jurisdiction may grant exemptions to any requirements to ballast water management, but only when they are granted to a ship or ships on a voyage or voyages between specified ports or locations, or to a ship which operates exclusively between specified ports or locations. In order to grant exemptions, risk assessment should be conducted based on the guidelines for risk assessment developed by the IMO. For the risk assessment, it is essential to collect the relevant information and establish a database system. This paper studies the database system for ballast water risk assessment. This database consists of the shipping database, ballast water database, port environment database and species database. The shipping database has been established based on the data collected from the port management information system of Korea Government. For the ballast water database, ballast water discharge has only been estimated by the loading/unloading of the cargoes as the convention has not come into effect yet. The port environment database and species database are being established based on the reference documents, and existing and newly collected monitoring data. This database system has been approved to be a useful system, capable of appropriately analyzing the risk assessment in the all ports of Korea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast%20water" title="ballast water">ballast water</a>, <a href="https://publications.waset.org/abstracts/search?q=IMO" title=" IMO"> IMO</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=shipping" title=" shipping"> shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=species" title=" species"> species</a> </p> <a href="https://publications.waset.org/abstracts/14757/development-of-database-for-risk-assessment-appling-to-ballast-water-managements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17063</span> The Influence of Contact Models on Discrete Element Modeling of the Ballast Layer Subjected to Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Aela">Peyman Aela</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Zong"> Lu Zong</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoqing%20Jing"> Guoqing Jing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there has been growing interest in numerical modeling of ballast railway tracks. A commonly used mechanistic modeling approach for ballast is the discrete element method (DEM). Up to now, the effects of the contact model on ballast particle behavior have not been precisely examined. In this regard, selecting the appropriate contact model is mainly associated with the particle characteristics and the loading condition. Since ballast is cohesionless material, different contact models, including the linear spring, Hertz-Mindlin, and Hysteretic models, could be used to calculate particle-particle or wall-particle contact forces. Moreover, the simulation of a dynamic test is vital to investigate the effect of damping parameters on the ballast deformation. In this study, ballast box tests were simulated by DEM to examine the influence of different contact models on the mechanical behavior of the ballast layer under cyclic loading. This paper shows how the contact model can affect the deformation and damping of a ballast layer subjected to cyclic loading in a ballast box. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast" title="ballast">ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20model" title=" contact model"> contact model</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title=" cyclic loading"> cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=DEM" title=" DEM"> DEM</a> </p> <a href="https://publications.waset.org/abstracts/131827/the-influence-of-contact-models-on-discrete-element-modeling-of-the-ballast-layer-subjected-to-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17062</span> Investigating the Shear Behaviour of Fouled Ballast Using Discrete Element Modelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngoc%20Trung%20Ngo">Ngoc Trung Ngo</a>, <a href="https://publications.waset.org/abstracts/search?q=Buddhima%20Indraratna"> Buddhima Indraratna</a>, <a href="https://publications.waset.org/abstracts/search?q=Cholachat%20Rujikiathmakjornr"> Cholachat Rujikiathmakjornr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For several hundred years, the design of railway tracks has practically remained unchanged. Traditionally, rail tracks are placed on a ballast layer due to several reasons, including economy, rapid drainage, and high load bearing capacity. The primary function of ballast is to distributing dynamic track loads to sub-ballast and subgrade layers, while also providing lateral resistance and allowing for rapid drainage. Upon repeated trainloads, the ballast becomes fouled due to ballast degradation and the intrusion of fines which adversely affects the strength and deformation behaviour of ballast. This paper presents the use of three-dimensional discrete element method (DEM) in studying the shear behaviour of the fouled ballast subjected to direct shear loading. Irregularly shaped particles of ballast were modelled by grouping many spherical balls together in appropriate sizes to simulate representative ballast aggregates. Fouled ballast was modelled by injecting a specified number of miniature spherical particles into the void spaces. The DEM simulation highlights that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increase level of fouling. Additionally, the distributions of contact force chain and particle displacement vectors were captured during shearing progress, explaining the formation of shear band and the evolutions of volumetric change of fouled ballast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=railway%20ballast" title="railway ballast">railway ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=coal%20fouling" title=" coal fouling"> coal fouling</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20modelling" title=" discrete element modelling"> discrete element modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20element%20method" title=" discrete element method"> discrete element method</a> </p> <a href="https://publications.waset.org/abstracts/34239/investigating-the-shear-behaviour-of-fouled-ballast-using-discrete-element-modelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17061</span> Investigating the Dynamic Response of the Ballast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Brinji">Osama Brinji</a>, <a href="https://publications.waset.org/abstracts/search?q=Wing%20Kong%20Chiu"> Wing Kong Chiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Graham%20Tew"> Graham Tew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast" title="ballast">ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=sleeper" title=" sleeper"> sleeper</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/35116/investigating-the-dynamic-response-of-the-ballast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17060</span> A Review of Test Protocols for Assessing Coating Performance of Water Ballast Tank Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20A.%20Oriaifo">Emmanuel A. Oriaifo</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Perera"> Noel Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20Guy"> Alan Guy</a>, <a href="https://publications.waset.org/abstracts/search?q=Pak.%20S.%20Leung"> Pak. S. Leung</a>, <a href="https://publications.waset.org/abstracts/search?q=Kian%20T.%20Tan"> Kian T. Tan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concerns on corrosion and effective coating protection of double hull tankers and bulk carriers in service have been raised especially in water ballast tanks (WBTs). Test protocols/methodologies specifically that which is incorporated in the International Maritime Organisation (IMO), Performance Standard for Protective Coatings for Dedicated Sea Water ballast tanks (PSPC) are being used to assess and evaluate the performance of the coatings for type approval prior to their application in WBTs. However, some of the type approved coatings may be applied as very thick films to less than ideally prepared steel substrates in the WBT. As such films experience hygrothermal cycling from operating and environmental conditions, they become embrittled which may ultimately result in cracking. This embrittlement of the coatings is identified as an undesirable feature in the PSPC but is not mentioned in the test protocols within it. There is therefore renewed industrial research aimed at understanding this issue in order to eliminate cracking and achieve the intended coating lifespan of 15 years in good condition. This paper will critically review test protocols currently used for assessing and evaluating coating performance, particularly the IMO PSPC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20test" title="corrosion test">corrosion test</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20cycling" title=" hygrothermal cycling"> hygrothermal cycling</a>, <a href="https://publications.waset.org/abstracts/search?q=coating%20test%20protocols" title=" coating test protocols"> coating test protocols</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20ballast%20tanks" title=" water ballast tanks"> water ballast tanks</a> </p> <a href="https://publications.waset.org/abstracts/10871/a-review-of-test-protocols-for-assessing-coating-performance-of-water-ballast-tank-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17059</span> Railway Ballast Volumes Automated Estimation Based on LiDAR Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahar%20Salavati%20Vie%20Le%20Sage">Bahar Salavati Vie Le Sage</a>, <a href="https://publications.waset.org/abstracts/search?q=Isma%C3%AFl%20Ben%20Hariz"> Ismaïl Ben Hariz</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavien%20Viguier"> Flavien Viguier</a>, <a href="https://publications.waset.org/abstracts/search?q=Sirine%20Noura%20Kahil"> Sirine Noura Kahil</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrey%20Jacquin"> Audrey Jacquin</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Convert"> Maxime Convert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ballast layer plays a key role in railroad maintenance and the geometry of the track structure. Ballast also holds the track in place as the trains roll over it. Track ballast is packed between the sleepers and on the sides of railway tracks. An imbalance in ballast volume on the tracks can lead to safety issues as well as a quick degradation of the overall quality of the railway segment. If there is a lack of ballast in the track bed during the summer, there is a risk that the rails will expand and buckle slightly due to the high temperatures. Furthermore, the knowledge of the ballast quantities that will be excavated during renewal works is important for efficient ballast management. The volume of excavated ballast per meter of track can be calculated based on excavation depth, excavation width, volume of track skeleton (sleeper and rail) and sleeper spacing. Since 2012, SNCF has been collecting 3D points cloud data covering its entire railway network by using 3D laser scanning technology (LiDAR). This vast amount of data represents a modelization of the entire railway infrastructure, allowing to conduct various simulations for maintenance purposes. This paper aims to present an automated method for ballast volume estimation based on the processing of LiDAR data. The estimation of abnormal volumes in ballast on the tracks is performed by analyzing the cross-section of the track. Further, since the amount of ballast required varies depending on the track configuration, the knowledge of the ballast profile is required. Prior to track rehabilitation, excess ballast is often present in the ballast shoulders. Based on 3D laser scans, a Digital Terrain Model (DTM) was generated and automatic extraction of the ballast profiles from this data is carried out. The surplus in ballast is then estimated by performing a comparison between this ballast profile obtained empirically, and a geometric modelization of the theoretical ballast profile thresholds as dictated by maintenance standards. Ideally, this excess should be removed prior to renewal works and recycled to optimize the output of the ballast renewal machine. Based on these parameters, an application has been developed to allow the automatic measurement of ballast profiles. We evaluated the method on a 108 kilometers segment of railroad LiDAR scans, and the results show that the proposed algorithm detects ballast surplus that amounts to values close to the total quantities of spoil ballast excavated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast" title="ballast">ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=railroad" title=" railroad"> railroad</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR" title=" LiDAR "> LiDAR </a>, <a href="https://publications.waset.org/abstracts/search?q=cloud%20point" title=" cloud point"> cloud point</a>, <a href="https://publications.waset.org/abstracts/search?q=track%20ballast" title=" track ballast"> track ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20point" title=" 3D point"> 3D point</a> </p> <a href="https://publications.waset.org/abstracts/164329/railway-ballast-volumes-automated-estimation-based-on-lidar-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17058</span> Study of Receiving Opportunity of Water Soluble and Non-Ballast Micro Fertilizer on the Base of Manganese-Containing Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marine%20Shavlakadze">Marine Shavlakadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the raw material base existed in Georgia (manganese ores, manganese containing mud), particularly, within the point of view of production availability, especial interest is paid to micro- fertilizers containing manganese. As a result of conducted investigation, there was established receiving of such manganese containing materials on the basis of manganese raw-material base (ore, mud) existed in Georgia, which shall be able to maximally provide assimilation ability of manganese, as microelement, in the desired period of time. And also, determinant of effectiveness and competitiveness of received materials with new composition shall become high content (more than 30%) of microelements in them (in comparison with existed similar products), when the total sum of useful components presented in them (active i.e. assimilated) is more than 50-70%, i.e. received materials belong to the materials having low-ballast and functionally revealed possibilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manganese" title="manganese">manganese</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizers" title=" fertilizers"> fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=non-ballast" title=" non-ballast"> non-ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-%20fertilizers" title=" micro- fertilizers "> micro- fertilizers </a> </p> <a href="https://publications.waset.org/abstracts/76450/study-of-receiving-opportunity-of-water-soluble-and-non-ballast-micro-fertilizer-on-the-base-of-manganese-containing-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17057</span> Application of Ground Penetrating Radar and Light Falling Weight Deflectometer in Ballast Quality Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Cafiso">S. Cafiso</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Capace"> B. Capace</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Di%20Graziano"> A. Di Graziano</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20D%E2%80%99Agostino"> C. D’Agostino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Systematic monitoring of the trackbed is necessary to assure safety and quality of service in the railway system. Moreover, to produce effective management of the maintenance treatments, the assessment of bearing capacity of the railway trackbed must include ballast, sub-ballast and subgrade layers at different depths. Consequently, there is an increasing interest in obtaining a consistent measure of ballast bearing capacity with no destructive tests (NDTs) able to work in the physical and time restrictions of railway tracks in operation. Moreover, in the case of the local railway with reduced gauge, the use of the traditional high-speed track monitoring systems is not feasible. In that framework, this paper presents results from in site investigation carried out on ballast and sleepers with Ground Penetrating Radar (GPR) and Light Falling Weight Deflectometer (LWD). These equipment are currently used in road pavement maintenance where they have shown their reliability and effectiveness. Application of such Non-Destructive Tests in railway maintenance is promising but in the early stage of the investigation. More specifically, LWD was used to estimate the stiffness of ballast and sleeper support, as well. LWD, despite the limited load (6 kN in the trial test) applied directly on the sleeper, was able to detect defects in the bearing capacity at the Sleeper/Ballast interface. A dual frequency GPR was applied to detect the presence of layers’ discontinuities at different depths due to fouling phenomena that are the main causes of changing in the layer dielectric proprieties within the ballast thickness. The frequency of 2000Mhz provided high-resolution data to approximately 0.4m depth, while frequency of 600Mhz showed greater depth penetration up to 1.5 m. In the paper literature review and trial in site experience are used to identify Strengths, Weaknesses, Opportunities, and Threats (SWOT analysis) of the application of GPR and LWD for the assessment of bearing capacity of railway track-bed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bearing%20capacity" title="bearing capacity">bearing capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR" title=" GPR"> GPR</a>, <a href="https://publications.waset.org/abstracts/search?q=LWD" title=" LWD"> LWD</a>, <a href="https://publications.waset.org/abstracts/search?q=no%20destructive%20test" title=" no destructive test"> no destructive test</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20track" title=" railway track"> railway track</a> </p> <a href="https://publications.waset.org/abstracts/108589/application-of-ground-penetrating-radar-and-light-falling-weight-deflectometer-in-ballast-quality-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17056</span> Study of Biofouling Wastewater Treatment Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangho%20Park">Sangho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Mansoo%20Kim"> Mansoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyujung%20Chae"> Kyujung Chae</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhyuk%20Yang"> Junhyuk Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The International Maritime Organization (IMO) recognized the problem of invasive species invasion and adopted the "International Convention for the Control and Management of Ships' Ballast Water and Sediments" in 2004, which came into force on September 8, 2017. In 2011, the IMO approved the "Guidelines for the Control and Management of Ships' Biofouling to Minimize the Transfer of Invasive Aquatic Species" to minimize the movement of invasive species by hull-attached organisms and required ships to manage the organisms attached to their hulls. Invasive species enter new environments through ships' ballast water and hull attachment. However, several obstacles to implementing these guidelines have been identified, including a lack of underwater cleaning equipment, regulations on underwater cleaning activities in ports, and difficulty accessing crevices in underwater areas. The shipping industry, which is the party responsible for understanding these guidelines, wants to implement them for fuel cost savings resulting from the removal of organisms attached to the hull, but they anticipate significant difficulties in implementing the guidelines due to the obstacles mentioned above. Robots or people remove the organisms attached to the hull underwater, and the resulting wastewater includes various species of organisms and particles of paint and other pollutants. Currently, there is no technology available to sterilize the organisms in the wastewater or stabilize the heavy metals in the paint particles. In this study, we aim to analyze the characteristics of the wastewater generated from the removal of hull-attached organisms and select the optimal treatment technology. The organisms in the wastewater generated from the removal of the attached organisms meet the biological treatment standard (D-2) using the sterilization technology applied in the ships' ballast water treatment system. The heavy metals and other pollutants in the paint particles generated during removal are treated using stabilization technologies such as thermal decomposition. The wastewater generated is treated using a two-step process: 1) development of sterilization technology through pretreatment filtration equipment and electrolytic sterilization treatment and 2) development of technology for removing particle pollutants such as heavy metals and dissolved inorganic substances. Through this study, we will develop a biological removal technology and an environmentally friendly processing system for the waste generated after removal that meets the requirements of the government and the shipping industry and lays the groundwork for future treatment standards. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofouling" title="biofouling">biofouling</a>, <a href="https://publications.waset.org/abstracts/search?q=ballast%20water%20treatment%20system" title=" ballast water treatment system"> ballast water treatment system</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=sterilization" title=" sterilization"> sterilization</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/166797/study-of-biofouling-wastewater-treatment-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17055</span> An Analysis of the Relations between Aggregates’ Shape and Mechanical Properties throughout the Railway Ballast Service Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daianne%20Fernandes%20Diogenes">Daianne Fernandes Diogenes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Railway ballast aggregates’ shape properties and size distribution can be directly affected by several factors, such as traffic, fouling, and maintenance processes, which cause breakage and wearing, leading to the fine particles’ accumulation through the ballast layer. This research aims to analyze the influence of traffic, tamping process, and sleepers’ stiffness on aggregates' shape and mechanical properties, by using traditional and digital image processing (DIP) techniques and cyclic tests, like resilient modulus (RM) and permanent deformation (PD). Aggregates were collected in different phases of the railway service life: (i) right after the crushing process; (ii) after construction, for the aggregates positioned below the sleepers and (iii) after 5 years of operation. An increase in the percentage of cubic particles was observed for the materials (ii) and (iii), providing a better interlocking, increasing stiffness and reducing axial deformation after 5 years of service, when compared to the initial conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20processing" title="digital image processing">digital image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20ballast" title=" railway ballast"> railway ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20properties" title=" shape properties"> shape properties</a> </p> <a href="https://publications.waset.org/abstracts/116860/an-analysis-of-the-relations-between-aggregates-shape-and-mechanical-properties-throughout-the-railway-ballast-service-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17054</span> Determination of Geogrid Reinforced Ballast Behavior Using Finite Element Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bu%C4%9Fra%20Sinmez">Buğra Sinmez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In some countries, such as China, Turkey, andseveralEuropeanUnionnations, the therailwaypavementstructuralsystem has recently undergonerapid growth as a vital element of the transportation infrastructure, particularlyfortheuse of high-speed trains. It is vitaltoconsiderthe High-SpeedInfrastructureDemandwhendevelopingandconstructingtherailwaypavementstructure. HSRL can create more substantial ldifficultiestotheballastorbaselayer of regularlyusedballastedrailwaypavementsthanstandardrailwaytrains. The deterioration of the theballastorbaselayermayleadtosubstructuredegradation, which might lead to safety concerns and catastrophicincidents. As a result, the efficiency of railways will be impactedbylargecargoesorhigh-speed trains. A railwaypavement construction can be strengthened using geosyntheticmaterials in theballastorfoundationlayer as a countermeasure. However, there is still a need in the literature to quantifytheinfluence of geosynthetic materials, particularlygeogrid, on the mechanical responses of railwaypavementstructuresto HSRL loads which is essential knowledge in supporting the selection of appropriate material and geogridinstallationposition. As a result, the purpose of this research is to see how a geogridreinforcementlayermayaffectthekeyfeatures of a ballastedrailwaypavementstructure, with a particular focus on the materialtypeandgeogridplacementpositionthatmayassistreducethe rate of degradation of the therailwaypavementstructuresystem. Thisstudyusesnumericalmodeling in a genuinerailwaycontexttovalidatethebenefit of geogrid reinforcement. The usage of geogrids in the railway system has been thoroughly researched in the technical literature. Three distinct types of geogrid installed at two distinct positions (i.e.,withintheballastlayer, betweentheballastandthesub-ballast layer) within a railwaypavementconstructionwereevaluatedunder a variety of verticalwheelloadsusing a three-dimensional (3D) finite element model. As a result, fouralternativegeogridreinforcementsystemsweremodeledtoreflectdifferentconditions in the ballastedrailwaysystems (G0: no reinforcement; G1: reinforcedwithgeogridhavingthelowestdensityandYoung'smodulus; G2: reinforcedwithgeogridhavingtheintermediateYoung'smodulusanddensity; G3: reinforcedwithgeogridhavingthegreatestdensityandYoung'smodulus). Themechanicalreactions of the railway, such as verticalsurfacedeflection, maximumprimarystressandstrain, andmaximumshearstress, werestudiedandcomparedbetweenthefourgeogridreinforcementscenariosandfourverticalwheelloadlevels (i.e., 75, 100, 150, and 200 kN). Differences in the mechanical reactions of railwaypavementconstructionsowingtotheuse of differentgeogridmaterialsdemonstratethebenefits of suchgeosynthetics in ballast. In comparison to a non-reinforcedrailwaypavementconstruction, thereinforcedconstructionsfeaturedecreasedverticalsurfacedeflection, maximum shear stress at the sleeper-ballast contact, and maximum main stress at the bottom of the ballast layer. As a result, addinggeogridtotheballastlayerandbetweentheballastandsub-ballast layer in a ballastedrailwaypavementconstruction has beenfoundtolowercriticalshearand main stresses as well as verticalsurfacedeflection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=geogrid" title=" geogrid"> geogrid</a>, <a href="https://publications.waset.org/abstracts/search?q=railway" title=" railway"> railway</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation" title=" transportation"> transportation</a> </p> <a href="https://publications.waset.org/abstracts/142242/determination-of-geogrid-reinforced-ballast-behavior-using-finite-element-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17053</span> Effects and Mechanization of a High Gradient Magnetic Separation Process for Particulate and Microbe Removal from Ballast Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Ren">Zhijun Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lin"> Zhang Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Ye"> Zhao Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuo%20Xiangyu"> Zuo Xiangyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei%20Dongxing"> Mei Dongxing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a pretreatment process of ballast water treatment, the performance of high gradient magnetic separation (HGMS) technology for the removal of particulates and microorganisms was studied. The results showed that HGMS process could effectively remove suspended particles larger than 5 µm and had ability to resist impact load. Microorganism could also be effectively removed by HGMS process, and the removal effect increased with increasing magnetic field strength. The maximum removal rates for <em>Escherichia coli</em> (<em>E. </em><em>coli</em>) and <em>Staphylococcus aureus</em> (<em>S. aureus</em>) were 4016.1% and 9675.3% higher, respectively, than without the magnetic field. In addition, the superoxide dismutase (SOD) activity of the microbes decreased by 32.2% when the magnetic field strength was 15.4 mT for 72 min. The microstructure of the stainless steel wool was investigated, and the results showed that particle removal by HGMS has common function by the magnetic force of the high-strength, high-gradient magnetic field on weakly magnetic particles in the water, and on the stainless steel wool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HGMS" title="HGMS">HGMS</a>, <a href="https://publications.waset.org/abstracts/search?q=particulates" title=" particulates"> particulates</a>, <a href="https://publications.waset.org/abstracts/search?q=superoxide%20dismutase%20%28SOD%29%20activity" title=" superoxide dismutase (SOD) activity"> superoxide dismutase (SOD) activity</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20wool%20magnetic%20medium" title=" steel wool magnetic medium"> steel wool magnetic medium</a> </p> <a href="https://publications.waset.org/abstracts/58997/effects-and-mechanization-of-a-high-gradient-magnetic-separation-process-for-particulate-and-microbe-removal-from-ballast-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17052</span> Sustainable Water Resource Management and Challenges in Indian Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajendra%20Kumar%20Isaac">Rajendra Kumar Isaac</a>, <a href="https://publications.waset.org/abstracts/search?q=Monisha%20Isaac"> Monisha Isaac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> India, having a vast cultivable area and regional climatic variability, encounters water Resource Management Problems at various levels. The agricultural production of India needs to be increased to meet out projected population growth. Sustainable water resource is the only option to ensure food security, especially in northern Indian states, where the ground and surface water resources are fast depleting. Various tools and technologies available for management of scarce water resources have been discussed. It was concluded that multiple use of water, adopting latest water management options, identification of climate adoptable cropping and farming systems, can enhance water productivity and would encounter the fast growing water management and water shortage problems in Indian agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20resource%20management" title="water resource management">water resource management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management%20technologies" title=" water management technologies"> water management technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20productivity" title=" water productivity"> water productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/69837/sustainable-water-resource-management-and-challenges-in-indian-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17051</span> Numerical Modelling and Soil-structure Interaction Analysis of Rigid Ballast-less and Flexible Ballast-based High-speed Rail Track-embankments Using Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tokirhusen%20Iqbalbhai%20Shaikh">Tokirhusen Iqbalbhai Shaikh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Shah"> M. V. Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With an increase in travel demand and a reduction in travel time, high-speed rail (HSR) has been introduced in India. Simplified 3-D finite element modelling is necessary to predict the stability and deformation characteristics of railway embankments and soil structure interaction behaviour under high-speed design requirements for Indian soil conditions. The objective of this study is to analyse the rigid ballast-less and flexible ballast-based high speed rail track embankments for various critical conditions subjected to them, viz. static condition, moving train condition, sudden brake application, and derailment case, using software. The input parameters for the analysis are soil type, thickness of the relevant strata, unit weight, Young’s modulus, Poisson’s ratio, undrained cohesion, friction angle, dilatancy angle, modulus of subgrade reaction, design speed, and other anticipated, relevant data. Eurocode 1, IRS-004(D), IS 1343, IRS specifications, California high-speed rail technical specifications, and the NHSRCL feasibility report will be followed in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20structure%20interaction" title="soil structure interaction">soil structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20rail" title=" high speed rail"> high speed rail</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20modelling" title=" numerical modelling"> numerical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=PLAXIS3D" title=" PLAXIS3D"> PLAXIS3D</a> </p> <a href="https://publications.waset.org/abstracts/166467/numerical-modelling-and-soil-structure-interaction-analysis-of-rigid-ballast-less-and-flexible-ballast-based-high-speed-rail-track-embankments-using-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17050</span> Ceramic Ware Waste Potential as Co-Ballast in Dense Masonry Unit Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Ajayi-Banji">A. A. Ajayi-Banji</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Adegbile"> M. A. Adegbile</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20D.%20Akpenpuun"> T. D. Akpenpuun</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Bello"> J. Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Omobowale"> O. Omobowale</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20A.%20Jenyo"> D. A. Jenyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ceramic ware waste applicability as coarse aggregate was considered in this study for dense masonry unit production. The waste was crushed into 1.4 mm particle size and mixed with natural fine aggregate in the ratio 2:3. Portland ordinary cement, aggregate, and water mix ratio was 1:7:0.5. Masonry units produced were cured for 7, 21 and 28 days prior to compressive test. The result shows that curing age have a significant effect on all the compressive strength indices inspected except for Young’s modulus. Crushing force and the compressive strength of the ceramic-natural fine aggregate blocks increased by 11.7 – 54.7% and 11.6 – 59.2% respectively. The highest ceramic-natural fine block compressive strength at yield and peak, 4.97 MPa, was obtained after 21 days curing age. Ceramic aggregate introduced into the dense blocks improved the suitability of the blocks for construction purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20ware%20waste" title="ceramic ware waste">ceramic ware waste</a>, <a href="https://publications.waset.org/abstracts/search?q=co-ballast" title=" co-ballast"> co-ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=dense%20masonry%20unit" title=" dense masonry unit"> dense masonry unit</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20time" title=" curing time"> curing time</a> </p> <a href="https://publications.waset.org/abstracts/82381/ceramic-ware-waste-potential-as-co-ballast-in-dense-masonry-unit-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17049</span> Water Crisis Management in a Tourism Dependent Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishath%20Shakeela">Aishath Shakeela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At a global level, water stewardship, water stress and water security are crucial factors in tourism planning and development considerations. Challenges associated with water is of particular concern to the Maldives as there is limited availability of freshwater, high dependency on desalinated water, and high unit cost associated with desalinating water. While the Maldives is promoted as an example of sustainable tourism, a key sustainability challenge facing tourism dependent communities is the efficient use and management of available water resources. A water crisis event in the capital island of Maldives highlighted how precarious water related issues are in this tourism dependent destination. Applying netnography, the focus of this working paper is to present community perceptions of how government policies addressed Malé Water and Sewerage Company (MWSC) water crisis event. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crisis%20management" title="crisis management">crisis management</a>, <a href="https://publications.waset.org/abstracts/search?q=government%20policies" title=" government policies"> government policies</a>, <a href="https://publications.waset.org/abstracts/search?q=Maldives" title=" Maldives"> Maldives</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism" title=" tourism"> tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water "> water </a> </p> <a href="https://publications.waset.org/abstracts/34238/water-crisis-management-in-a-tourism-dependent-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17048</span> Empirical Superpave Mix-Design of Rubber-Modified Hot-Mix Asphalt in Railway Sub-Ballast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernando%20M.%20Soto">Fernando M. Soto</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaetano%20Di%20Mino"> Gaetano Di Mino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of an unmodified bituminous mixture and three rubber-aggregate mixtures containing rubber-aggregate by a dry process (RUMAC) was evaluated, using an empirical-analytical approach based on experimental findings obtained in the laboratory with the volumetric mix design by gyratory compaction. A reference dense-graded bituminous sub-ballast mixture (3% of air voids and a bitumen 4% over the total weight of the mix), and three rubberized mixtures by dry process (1,5 to 3% of rubber by total weight and 5-7% of binder) were used applying the Superpave mix-design for a level 3 (high-traffic) design rail lines. The railway trackbed section analyzed was a granular layer of 19 cm compacted, while for the sub-ballast a thickness of 12 cm has been used. In order to evaluate the effect of increasing the specimen density (as a percent of its theoretical maximum specific gravity), in this article, are illustrated the results obtained after different comparative analysis into the influence of varying the binder-rubber percentages under the sub-ballast layer mix-design. This work demonstrates that rubberized blends containing crumb and ground rubber in bituminous asphalt mixtures behave at least similar or better than conventional asphalt materials. By using the same methodology of volumetric compaction, the densification curves resulting from each mixture have been studied. The purpose is to obtain an optimum empirical parameter multiplier of the number of gyrations necessary to reach the same compaction energy as in conventional mixtures. It has provided some experimental parameters adopting an empirical-analytical method, evaluating the results obtained from the gyratory-compaction of bituminous mixtures with an HMA and rubber-aggregate blends. An extensive integrated research has been carried out to assess the suitability of rubber-modified hot mix asphalt mixtures as a sub-ballast layer in railway underlayment trackbed. Design optimization of the mixture was conducted for each mixture and the volumetric properties analyzed. Also, an improved and complete manufacturing process, compaction and curing of these blends are provided. By adopting this increase-parameters of compaction, called 'beta' factor, mixtures modified with rubber with uniform densification and workability are obtained that in the conventional mixtures. It is found that considering the usual bearing capacity requirements in rail track, the optimal rubber content is 2% (by weight) or 3.95% (by volumetric substitution) and a binder content of 6%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20approach" title="empirical approach">empirical approach</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber-asphalt" title=" rubber-asphalt"> rubber-asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-ballast" title=" sub-ballast"> sub-ballast</a>, <a href="https://publications.waset.org/abstracts/search?q=superpave%20mix-design" title=" superpave mix-design"> superpave mix-design</a> </p> <a href="https://publications.waset.org/abstracts/69025/empirical-superpave-mix-design-of-rubber-modified-hot-mix-asphalt-in-railway-sub-ballast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17047</span> Modeling Water Resources Carrying Capacity, Optimizing Water Treatment, Smart Water Management, and Conceptualizing a Watershed Management Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pius%20Babuna">Pius Babuna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable water use is important for the existence of the human race. Water resources carrying capacity (WRCC) measures the sustainability of water use; however, the calculation and optimization of WRCC remain challenging. This study used a mathematical model (the Logistics Growth of Water Resources -LGWR) and a linear objective function to model water sustainability. We tested the validity of the models using data from Ghana. Total freshwater resources, water withdrawal, and population data were used in MATLAB. The results show that the WRCC remains sustainable until the year 2132 ±18, when half of the total annual water resources will be used. The optimized water treatment cost suggests that Ghana currently wastes GHȼ 1115.782± 50 cedis (~$182.21± 50) per water treatment plant per month or ~ 0.67 million gallons of water in an avoidable loss. Adopting an optimized water treatment scheme and a watershed management approach will help sustain the WRCC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20carrying%20capacity" title="water resources carrying capacity">water resources carrying capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20water%20management" title=" smart water management"> smart water management</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20water%20use" title=" sustainable water use"> sustainable water use</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20withdrawal" title=" water withdrawal"> water withdrawal</a> </p> <a href="https://publications.waset.org/abstracts/159894/modeling-water-resources-carrying-capacity-optimizing-water-treatment-smart-water-management-and-conceptualizing-a-watershed-management-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17046</span> Application of WebGIS-Based Water Environment Capacity Inquiry and Planning System in Water Resources Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tao%20Ding">Tao Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Danjia%20Yan"> Danjia Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinye%20Li"> Jinye Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao%20Ren"> Chao Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhua%20Hu"> Xinhua Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper based on the research background of the current situation of water shortage in China and intelligent management of water resources in the information era. And the paper adopts WebGIS technology, combining the mathematical model of water resources management to develop a WebGIS-based water environment capacity inquiry and polluted water emission planning. The research significance of the paper is that it can inquiry the water environment capacity of Jinhua City in real time and plan how to drain polluted water into the river, so as to realize the effective management of water resources. This system makes sewage planning more convenient and faster. For the planning of the discharge enterprise, the decision on the optimal location of the sewage outlet can be achieved through calculation of the Sewage discharge planning model in the river, without the need for site visits. The system can achieve effective management of water resources and has great application value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sewerage%20planning" title="sewerage planning">sewerage planning</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20environment%20capacity" title=" water environment capacity"> water environment capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title=" water resources management"> water resources management</a>, <a href="https://publications.waset.org/abstracts/search?q=WebGIS" title=" WebGIS"> WebGIS</a> </p> <a href="https://publications.waset.org/abstracts/96905/application-of-webgis-based-water-environment-capacity-inquiry-and-planning-system-in-water-resources-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17045</span> Risk Management of Water Derivatives: A New Commodity in The Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Mokatsanyane">Daniel Mokatsanyane</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnny%20Jansen%20Van%20Rensburg"> Johnny Jansen Van Rensburg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is a concise introduction of the risk management on the water derivatives market. Water, a new commodity in the market, is one of the most important commodity on earth. As important to life and planet as crops, metals, and energy, none of them matters without water. This paper presents a brief overview of water as a tradable commodity via a new first of its kind futures contract on the Nasdaq Veles California Water Index (NQH2O) derivative instrument, TheGeneralised Autoregressive Conditional Heteroscedasticity (GARCH) statistical model will be the used to measure the water price volatility of the instrument and its performance since it’s been traded. describe the main products and illustrate their usage in risk management and also discuss key challenges with modeling and valuation of water as a traded commodity and finally discuss how water derivatives may be taken as an alternative asset investment class. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20derivatives" title="water derivatives">water derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=commodity%20market" title=" commodity market"> commodity market</a>, <a href="https://publications.waset.org/abstracts/search?q=nasdaq%20veles%20california%20water%20Index%20%28NQH2O" title=" nasdaq veles california water Index (NQH2O"> nasdaq veles california water Index (NQH2O</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20price" title=" water price"> water price</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a> </p> <a href="https://publications.waset.org/abstracts/153057/risk-management-of-water-derivatives-a-new-commodity-in-the-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17044</span> Water Supply and Utility Management to Address Urban Sanitation Issues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akshaya%20P.">Akshaya P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Priyanjali%20Prabhkaran"> Priyanjali Prabhkaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper examines the formulation of strategies to develop a comprehensive model of city level water utility management to addressing urban sanitation issues. The water is prime life sustaining natural resources and nature’s gifts to all living beings on the earth multiple urban sanitation issues are addressed in the supply of water in a city. Many of these urban sanitation issues are linked to population expansion and economic inequity. Increased usage of water and the development caused water scarcity. The lack of water supply results increases the chance of unhygienic situations in the cities. In this study, the urban sanitation issues are identified with respect to water supply and utility management. The study compared based on their best practices and initiatives. From this, best practices and initiatives identify suitable sustainable measures to address water supply issues in the city level. The paper concludes with the listed provision that should be considered suitable measures for water supply and utility management in city level to address the urban sanitation issues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=benchmarking%20water%20supply" title=" benchmarking water supply"> benchmarking water supply</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply%20networks" title=" water supply networks"> water supply networks</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20supply%20management" title=" water supply management"> water supply management</a> </p> <a href="https://publications.waset.org/abstracts/153591/water-supply-and-utility-management-to-address-urban-sanitation-issues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17043</span> Analysis and Design of Single Switch Mosfet Dimmer for AC Driven Lamp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.Pandeeswari">S.Pandeeswari</a>, <a href="https://publications.waset.org/abstracts/search?q=Raju%20Padma"> Raju Padma </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a new solution to implement and control single-stage electronic ballast based on the integration of a buck-boost power factor correction stage and a half bridge resonant inverter is presented. The control signals are obtained using the inverter resonant current by means of a saturable transformer. Core saturation is used to control the required dead time between the control pulses on both switches. The turn-on time of one of the inverter switches is controlled to provide proper cathode preheating during the lamp ignition process. No special integrated circuits are required to control the ballast and the total number of components is minimized. Analysis and basic design of phase cut dimmer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MOSFET%20dimmer" title="MOSFET dimmer">MOSFET dimmer</a>, <a href="https://publications.waset.org/abstracts/search?q=PIC%2016F877A" title=" PIC 16F877A"> PIC 16F877A</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20regulator" title=" voltage regulator"> voltage regulator</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20rectifier" title=" bridge rectifier"> bridge rectifier</a> </p> <a href="https://publications.waset.org/abstracts/27910/analysis-and-design-of-single-switch-mosfet-dimmer-for-ac-driven-lamp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17042</span> Calculation of Water Economy Balance for Water Management </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vakhtang%20Geladze">Vakhtang Geladze</a>, <a href="https://publications.waset.org/abstracts/search?q=Nana%20Bolashvili"> Nana Bolashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamazi%20Karalashvili"> Tamazi Karalashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Nino%20Machavariani"> Nino Machavariani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Karalashvili"> Ana Karalashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Geladze"> George Geladze</a>, <a href="https://publications.waset.org/abstracts/search?q=Nana%20Kvirkvelia"> Nana Kvirkvelia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fresh water deficit is one of the most important global problems today. It must be taken into consideration that in the nearest future fresh water crisis will become even more acute owing to the global climate warming and fast desertification processes in the world. Georgia is rich in water resources, but there are disbalance between the eastern and western parts of the country. The goal of the study is to integrate the recent mechanisms compatible with European standards into Georgian water resources management system on the basis of GIS. Moreover, to draw up water economy balance for the purpose of proper determination of water consumption priorities that will be an exchange ratio of water resources and water consumption of the concrete territory. For study region was choose south-eastern part of country, Kvemo kartli Region. This is typical agrarian region, tends to the desertification. The water supply of the region was assessed on the basis of water economy balance, which was first time calculated for this region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desertification" title="desertification">desertification</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20management" title=" sustainable management"> sustainable management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a> </p> <a href="https://publications.waset.org/abstracts/86911/calculation-of-water-economy-balance-for-water-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17041</span> Importance of Determining the Water Needs of Crops in the Management of Water Resources in the Province of Djelfa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imessaoudene%20Y.">Imessaoudene Y.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhouche%20B."> Mouhouche B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sengouga%20A."> Sengouga A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20M."> Kadir M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to determine the virtual water of main crops grown in the province of Djelfa and water use efficiency (W.U.E.), Which is essential to approach the application and better integration with the offer in the region. In the case of agricultural production, virtual water is the volume of water evapo-transpired by crops. It depends on particular on the expertise of its producers and its global production area, warm and dry climates induce higher consumption. At the scale of the province, the determination of the quantities of virtual water is done by calculating the unit water requirements related to water irrigated hectare and total rainfall over the crop using the Cropwat 8.0 F.A.O. software. Quantifying the volume of agricultural virtual water of crops practiced in the study area demonstrates the quantitative importance of these volumes of water in terms of available water resources in the province, so the advantages which can be the concept of virtual water as an analysis tool and decision support for the management and distribution of water in scarcity situation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virtual%20water" title="virtual water">virtual water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20use%20efficiency" title=" water use efficiency"> water use efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20requirements" title=" water requirements"> water requirements</a>, <a href="https://publications.waset.org/abstracts/search?q=Djelfa" title=" Djelfa"> Djelfa</a> </p> <a href="https://publications.waset.org/abstracts/31138/importance-of-determining-the-water-needs-of-crops-in-the-management-of-water-resources-in-the-province-of-djelfa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17040</span> A Study on Water Quality Parameters of Pond Water for Better Management of Pond</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dona%20Grace%20Jeyaseeli">Dona Grace Jeyaseeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water quality conditions in a pond are controlled by both natural processes and human influences. Natural factors such as the source of the pond water and the types of rock and soil in the pond watershed will influence some water quality characteristics. These factors are difficult to control but usually cause few problems. Instead, most serious water quality problems originate from land uses or other activities near or in the pond. The effects of these activities can often be minimized through proper management and early detection of problems through testing. In the present study a survey of three ponds in Coimbatore city, Tamilnadu, India were analyzed and found that water quality problems in their ponds, ranging from muddy water to fish kills. Unfortunately, most pond owners have never tested their ponds, and water quality problems are usually only detected after they cause a problem. Hence the present study discusses some common water quality parameters that may cause problems in ponds and how to detect through testing for better management of pond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title="water quality">water quality</a>, <a href="https://publications.waset.org/abstracts/search?q=pond" title=" pond"> pond</a>, <a href="https://publications.waset.org/abstracts/search?q=test" title=" test"> test</a>, <a href="https://publications.waset.org/abstracts/search?q=problem" title=" problem"> problem</a> </p> <a href="https://publications.waset.org/abstracts/1383/a-study-on-water-quality-parameters-of-pond-water-for-better-management-of-pond" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17039</span> Iraq Water Resources Planning: Perspectives and Prognoses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadhir%20Al-Ansari">Nadhir Al-Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20A.%20Ali"> Ammar A. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Sven%20Knutsson"> Sven Knutsson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iraq is located in the Middle East. It covers an area of 433,970 square kilometres populated by about 32 million inhabitants. Iraq greatly relies in its water resources on the Tigris and Euphrates Rivers. Recently, Iraq is suffering from water shortage problems. This is due to external and internal factors. The former includes global warming and water resources policies of neighbouring countries while the latter includes mismanagement of its water resources. The supply and demand are predicted to be 43 and 66.8 Billion Cubic Meters (BCM) respectively in 2015, while in 2025 it will be 17.61 and 77 BCM respectively. In addition, future prediction suggests that Tigris and Euphrates Rivers will be completely dry in 2040. To overcome this problem, prudent water management policies are to be adopted. This includes Strategic Water Management Vision, development of irrigation techniques, reduction of water losses, use of non-conventional water resources and research and development planning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iraq" title="Iraq">Iraq</a>, <a href="https://publications.waset.org/abstracts/search?q=Tigris%20River" title=" Tigris River"> Tigris River</a>, <a href="https://publications.waset.org/abstracts/search?q=Euphrates%20River" title=" Euphrates River"> Euphrates River</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20scarcity" title=" water scarcity"> water scarcity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title=" water resources management"> water resources management</a> </p> <a href="https://publications.waset.org/abstracts/13502/iraq-water-resources-planning-perspectives-and-prognoses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17038</span> Legal Basis for Water Resources Management in Brazil: Case Study of the Rio Grande Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%C3%ADna%20F.%20Guidolini">Janaína F. Guidolini</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20P.%20H.%20B.%20Ometto"> Jean P. H. B. Ometto</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%C3%A9lica%20Giarolla"> Angélica Giarolla</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20M.%20Toledo"> Peter M. Toledo</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20A.%20Valera"> Carlos A. Valera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The water crisis, a major problem of the 21<sup>st</sup> century, occurs mainly due to poor management. The central issue that should govern the management is the integration of the various aspects that interfere with the use of water resources and their protection, supported by legal basis. A watershed is a unit of water interacting with the physical, biotic, social, economic and cultural variables. The Brazilian law recognized river basin as the territorial management unit. Based on the diagnosis of the current situation of the water resources of the Rio Grande Basin, a discussion informed in the Brazilian legal basis was made to propose measures to fight or mitigate damages and environmental degradation in the Basin. To manage water resources more efficiently, conserve water and optimize their multiple uses, the integration of acquired scientific knowledge and management is essential. Moreover, it is necessary to monitor compliance with environmental legislation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservation%20of%20soil%20and%20water" title="conservation of soil and water">conservation of soil and water</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20laws" title=" environmental laws"> environmental laws</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20basin" title=" river basin"> river basin</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/80436/legal-basis-for-water-resources-management-in-brazil-case-study-of-the-rio-grande-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17037</span> The Role of Bridging Stakeholder in Water Management: Examining Social Networks in Working Groups and Co-Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Ebrahimi">Fariba Ebrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ghorbani"> Mehdi Ghorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comprehensive water management considers economic, environmental, technical and social sustainability of water resources for future generations. Integrated water management implies cooperative approach and involves all stakeholders and also introduces issues to managers and decision makers. Solving these issues needs integrated and system approach according to the recognition of actors or key persons in necessary to apply cooperative management of water resources. Therefore, social network analysis can be used to demonstrate the most effective actors for environmental base decisions. The linkage of diverse sets of actors and knowledge systems across management levels and institutional boundaries often poses one of the greatest challenges in adaptive water management. Bridging stakeholder can facilitate interactions among actors in management settings by lowering the transaction costs of collaboration. This research examines how network connections between group members affect in co- management. Cohesive network structures allow groups to more effectively achieve their goals and objectives Strong; centralized leadership is a better predictor of working group success in achieving goals and objectives. Finally, geometric position of each actor was illustrated in the network. The results of the research based on between centrality index have a key and bridging actor in recognition of cooperative management of water resources in Darbandsar village and also will help managers and planners of water in the case of recognition to organization and implementation of sustainable management of water resources and water security. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-management" title="co-management">co-management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20network" title=" social network"> social network</a>, <a href="https://publications.waset.org/abstracts/search?q=bridging%20stakeholder" title=" bridging stakeholder"> bridging stakeholder</a>, <a href="https://publications.waset.org/abstracts/search?q=darbandsar%20village" title=" darbandsar village"> darbandsar village</a> </p> <a href="https://publications.waset.org/abstracts/39615/the-role-of-bridging-stakeholder-in-water-management-examining-social-networks-in-working-groups-and-co-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=568">568</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=569">569</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>