CINXE.COM

Search results for: activation constant

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: activation constant</title> <meta name="description" content="Search results for: activation constant"> <meta name="keywords" content="activation constant"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="activation constant" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="activation constant"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3041</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: activation constant</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2921</span> Probing Multiple Relaxation Process in Zr-Cu Base Alloy Using Mechanical Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Srivastava">A. P. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Srivastava"> D. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20J.%20Browne"> D. J. Browne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Relaxation dynamics of Zr44Cu40Al8Ag8 bulk metallic glass (BMG) has been probed using dynamic mechanical analyzer. The BMG sample was casted in the form of a plate of dimension 55 mm x 40 mm x 3 mm using tilt casting technique. X-ray diffraction and transmission electron microscope have been used for the microstructural characterization of as-cast BMG. For the mechanical spectroscopy study, samples in the form of a bar of size 55 mm X 2 mm X 3 mm were machined from the BMG plate. The mechanical spectroscopy was performed on dynamic mechanical analyzer (DMA) by 50 mm 3-point bending method in a nitrogen atmosphere. It was observed that two glass transition process were competing in supercooled liquid region around temperature 390°C and 430°C. The supercooled liquid state was completely characterized using DMA and differential scanning calorimeter (DSC). In addition to the main α-relaxation process, presence of β relaxation process around temperature 360°C; below the glass transition temperature was also observed. The β relaxation process could be described by Arrhenius law with the activation energy of 160 kJ/mole. The volume of the flow unit associated with this relaxation process has been estimated. The results from DMA study has been used to characterize the shear transformation zone in terms of activation volume and size. High fragility parameter value of 34 and higher activation volume indicates that this alloy could show good plasticity in supercooled liquid region. The possible mechanism for the relaxation processes has been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DMA" title="DMA">DMA</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20transition" title=" glass transition"> glass transition</a>, <a href="https://publications.waset.org/abstracts/search?q=metallic%20glass" title=" metallic glass"> metallic glass</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20forming" title=" thermoplastic forming"> thermoplastic forming</a> </p> <a href="https://publications.waset.org/abstracts/67294/probing-multiple-relaxation-process-in-zr-cu-base-alloy-using-mechanical-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2920</span> The Impact of Intestinal Ischaemia-Reperfusion Injury upon the Biological Function of Mesenteric Lymph</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beth%20Taylor">Beth Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=Kojima%20Mituaki"> Kojima Mituaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Atsushi%20Senda"> Atsushi Senda</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Morishita"> Koji Morishita</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuhiro%20Otomo"> Yasuhiro Otomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intestinal ischaemia-reperfusion injury drives systemic inflammation and organ failure following trauma/haemorrhagic shock (T/HS), through the release of pro-inflammatory mediators into the mesenteric lymph (ML). However, changes in the biological function of ML are not fully understood, and therefore, a specific model of intestinal ischaemia-reperfusion injury is required to obtain ML for the study of its biological function upon inflammatory cells. ML obtained from a model of intestinal ischaemia-reperfusion injury was used to assess biological function upon inflammatory cells and investigate changes in the biological function of individual ML components. An additional model was used to determine the effect of vagal nerve stimulation (VNS) upon biological function. Rat ML was obtained by mesenteric lymphatic duct cannulation before and after occlusion of the superior mesenteric artery (SMAO). ML was incubated with human polymorphonuclear neutrophils (PMNs), monocytes and lymphocytes, and the biological function of these cells was assessed. ML was then separated into supernatant, exosome and micro-vesicle components, and biological activity was compared in monocytes. A model with an additional VNS phase was developed, in which the right cervical vagal nerve was exposed and stimulated, and ML collected for comparison of biological function with the conventional model. The biological function of ML was altered by intestinal ischaemia-reperfusion injury, increasing PMN activation, monocyte activation, and lymphocyte apoptosis. Increased monocyte activation was only induced by the exosome component of ML, with no significant changes induced by the supernatant or micro-vesicle components. VNS partially attenuated monocyte activation, but no attenuation of PMN activation was observed. Intestinal ischaemia-reperfusion injury induces changes in the biological function of ML upon both innate and adaptive inflammatory cells, supporting the role of intestinal ischaemia-reperfusion injury in driving systemic inflammation following T/HS. The exosome component of ML appears to be critical to the transport of pro-inflammatory mediators in ML. VNS partially attenuates changes in innate inflammatory cell biological activity observed, presenting possibilities for future novel treatment development in multiple organ failure patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exosomes" title="exosomes">exosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20ischaemia" title=" intestinal ischaemia"> intestinal ischaemia</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenteric%20lymph" title=" mesenteric lymph"> mesenteric lymph</a>, <a href="https://publications.waset.org/abstracts/search?q=vagal%20stimulation" title=" vagal stimulation"> vagal stimulation</a> </p> <a href="https://publications.waset.org/abstracts/111415/the-impact-of-intestinal-ischaemia-reperfusion-injury-upon-the-biological-function-of-mesenteric-lymph" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2919</span> Modeling the Time-Dependent Rheological Behavior of Clays Used in Fabrication of Ceramic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Hammadi">Larbi Hammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boudjenane"> N. Boudjenane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhallou"> N. Benhallou</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Houjedje"> R. Houjedje</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Reffis"> R. Reffis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Belhadri"> M. Belhadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many of clays exhibited the thixotropic behavior in which, the apparent viscosity of material decreases with time of shearing at constant shear rate. The structural kinetic model (SKM) was used to characterize the thixotropic behavior of two different kinds of clays used in fabrication of ceramic. Clays selected for analysis represent the fluid and semisolid clays materials. The SKM postulates that the change in the rheological behavior is associated with shear-induced breakdown of the internal structure of the clays. This model for the structure decay with time at constant shear rate assumes nth order kinetics for the decay of the material structure with a rate constant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic" title="ceramic">ceramic</a>, <a href="https://publications.waset.org/abstracts/search?q=clays" title=" clays"> clays</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20kinetic%20model" title=" structural kinetic model"> structural kinetic model</a>, <a href="https://publications.waset.org/abstracts/search?q=thixotropy" title=" thixotropy"> thixotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a> </p> <a href="https://publications.waset.org/abstracts/31716/modeling-the-time-dependent-rheological-behavior-of-clays-used-in-fabrication-of-ceramic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2918</span> Pain and Lumbar Muscle Activation before and after Functional Task in Nonspecific Chronic Low Back Pain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L%C3%ADdia%20E.%20O.%20Cruz">Lídia E. O. Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriano%20P.%20C.%20Calvo"> Adriano P. C. Calvo</a>, <a href="https://publications.waset.org/abstracts/search?q=Renato%20J.%20Soares"> Renato J. Soares</a>, <a href="https://publications.waset.org/abstracts/search?q=Regiane%20A.%20Carvalho"> Regiane A. Carvalho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Individuals with non-specific chronic low back pain may present altered movement patterns during functional activities. However, muscle behavior before and after performing a functional task with different load conditions is not yet fully understood. The aim of this study is to analyze lumbar muscle activity before and after performing the functional task of picking up and placing an object on the ground (with and without load) in individuals with nonspecific chronic low back pain. 20 subjects with nonspecific chronic low back pain and 20 healthy subjects participated in this study. A surface electromyography was performed in the ilio-costal, longissimus and multifidus muscles to evaluate lumbar muscle activity before and after performing the functional task of picking up and placing an object on the ground, with and without load. The symptomatic participants had greater lumbar muscle activation compared to the asymptomatic group, more evident in performing the task without load, with statistically significant difference (p = 0,033) between groups for the right multifidus muscle. This study showed that individuals with nonspecific chronic low back pain have higher muscle activation before and after performing a functional task compared to healthy participants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20low%20back%20pain" title="chronic low back pain">chronic low back pain</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20task" title=" functional task"> functional task</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20muscles" title=" lumbar muscles"> lumbar muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20activity" title=" muscle activity"> muscle activity</a> </p> <a href="https://publications.waset.org/abstracts/135179/pain-and-lumbar-muscle-activation-before-and-after-functional-task-in-nonspecific-chronic-low-back-pain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2917</span> A Simple Recursive Framework to Generate Gray Codes for Weak Orders in Constant Amortized Time </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marsden%20Jacques">Marsden Jacques</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20Wong"> Dennis Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A weak order is a way to rank n objects where ties are allowed. In this talk, we present a recursive framework to generate Gray codes for weak orders. We then describe a simple algorithm based on the framework that generates 2-Gray codes for weak orders in constant amortized time per string. This framework can easily be modified to generate other Gray codes for weak orders. We provide an example on using the framework to generate the first Shift Gray code for weak orders, also in constant amortized time, where consecutive strings differ by a shift or a symbol change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weak%20order" title="weak order">weak order</a>, <a href="https://publications.waset.org/abstracts/search?q=Cayley%20permutation" title=" Cayley permutation"> Cayley permutation</a>, <a href="https://publications.waset.org/abstracts/search?q=Gray%20code" title=" Gray code"> Gray code</a>, <a href="https://publications.waset.org/abstracts/search?q=shift%20Gray%20code" title=" shift Gray code"> shift Gray code</a> </p> <a href="https://publications.waset.org/abstracts/118752/a-simple-recursive-framework-to-generate-gray-codes-for-weak-orders-in-constant-amortized-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2916</span> On Constructing a Cubically Convergent Numerical Method for Multiple Roots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Hee%20Geum">Young Hee Geum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose the numerical method defined by xn+1 = xn − λ[f(xn − μh(xn))/]f'(xn) , n ∈ N, and determine the control parameter λ and μ to converge cubically. In addition, we derive the asymptotic error constant. Applying this proposed scheme to various test functions, numerical results show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-precision computability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20error%20constant" title="asymptotic error constant">asymptotic error constant</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20method" title=" iterative method"> iterative method</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20root" title=" multiple root"> multiple root</a>, <a href="https://publications.waset.org/abstracts/search?q=root-finding" title=" root-finding"> root-finding</a> </p> <a href="https://publications.waset.org/abstracts/4187/on-constructing-a-cubically-convergent-numerical-method-for-multiple-roots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2915</span> Structural Properties of Polar Liquids in Binary Mixture Using Microwave Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shagufta%20Tabassum">Shagufta Tabassum</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Pawar"> V. P. Pawar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of static dielectric properties in a binary mixture of 1,2 dichloroethane (DE) and n,n dimethylformamide (DMF) polar liquids has been carried out in the frequency range of 10 MHz to 30 GHz for 11 different concentration using time domain reflectometry technique at 10&ordm;C temperature. The dielectric relaxation study of solute-solvent mixture at microwave frequencies gives information regarding the creation of monomers and multimers as well as interaction between the molecules of the binary mixture. The least squares fit method is used to determine the values of dielectric parameters such as static dielectric constant (&epsilon;<sub>0</sub>), dielectric constant at high frequency (&epsilon;<sub>&infin;</sub>) and relaxation time (&tau;). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shagufta%20shaikhexcess%20parameters" title="shagufta shaikhexcess parameters">shagufta shaikhexcess parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time" title=" relaxation time"> relaxation time</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20dielectric%20constant" title=" static dielectric constant"> static dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20reflectometry" title=" time domain reflectometry"> time domain reflectometry</a> </p> <a href="https://publications.waset.org/abstracts/87837/structural-properties-of-polar-liquids-in-binary-mixture-using-microwave-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2914</span> Activation-TV® to Reduce Elderly Loneliness and Insecurity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hannele%20Laaksonen">Hannele Laaksonen</a>, <a href="https://publications.waset.org/abstracts/search?q=Seija%20Nyqvist"> Seija Nyqvist</a>, <a href="https://publications.waset.org/abstracts/search?q=Kari%20Nurmes"> Kari Nurmes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: In the year 2011 the City of Vaasa started to develop know-how in the technology and the introduction of services for aging people in cooperation with the Polytechnic Novia University of Applied Sciences and VAMK, University of Applied Sciences. The project´s targets included: to help elderly people to maintain their ability to function, to provide them social and physical activities, to prevent their social exclusion, to decrease their feelings of loneliness and insecurity and to develop their technical know-how. Methods: The project was built based on open source code, tailor-made service system and user interface for the elderly living at home and their families, based on the users´ expectations and experiences of services. Activation-TV®-project vas carried out 1.4.2011-31.3.2014. A pilot group of eight elderly persons, who were living at home, were selected to the project. All necessary technical means as well as guidance and teaching equipment were provided to the pilot group. The students of University of Applied Sciences (VAMK, Novia) and employees of Center of Ageing were made all programs to the Activation-TV®. The project group were interviewed after and before intervention. The data were evaluated both qualitatively and quantitatively. Results: The built service includes a video library, a group room for interactive programs and a personal room for bilateral meetings and direct shipment. The program is bilingual and produced in both national languages. The Activation TV® reduced elderly peoples´ (n=8) feelings of emptiness, added mental well-being and quality of life with social contacts. Relatives felt, that they were able to get in to older peoples´ everyday life with Activation TV®. Discussion: The built application was tailored to the model that has not been developed elsewhere in Finland. This model can be copied from one server to another and thus transferred to other municipalities but the program requires its own personnel system management and maintenance as well as program production cooperation between the different actors. This service can be used for the elderly who are living at home without dementia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mental%20well-being" title="mental well-being">mental well-being</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly%20people" title=" elderly people"> elderly people</a>, <a href="https://publications.waset.org/abstracts/search?q=Finland" title=" Finland"> Finland</a> </p> <a href="https://publications.waset.org/abstracts/13507/activation-tv-to-reduce-elderly-loneliness-and-insecurity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2913</span> Activation of Mitophagy and Autophagy in Familial Forms of Parkinson&#039;s Disease, as a Potential Strategy for Cell Protection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nafisa%20Komilova">Nafisa Komilova</a>, <a href="https://publications.waset.org/abstracts/search?q=Plamena%20Angelova"> Plamena Angelova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Abramov"> Andrey Abramov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulugbek%20Mirkhodjaev"> Ulugbek Mirkhodjaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parkinson’s disease (PD) is a progressive neurodegenerative disorder which is induced by the loss of dopaminergic neurons in the midbrain. The mechanism of neurodegeneration is associated with the aggregation of misfolded proteins, oxidative stress, and mitochondrial disfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of cytosol can activate mitophagy and autophagy, and here we used sodium pyruvate and sodium lactate in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-syn triplication, A53T) to induce changes in intracellular pH. We have found that both lactate and pyruvate in millimolar concentrations can induce short-time acidification of cytosol in these cells. It induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, the application of lactate to acute brain slices of control and Pink1 knockout mice also induced a reduction of pH in neurons and astrocytes that increase the level of mitophagy. Thus, acidification of cytosol by compounds which play important role in cell metabolism also can activate mitophagy and autophagy and protect cells in the familial form of PD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parkinson%27s%20disease" title="Parkinson&#039;s disease">Parkinson&#039;s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=mutations" title=" mutations"> mutations</a>, <a href="https://publications.waset.org/abstracts/search?q=mitophagy" title=" mitophagy"> mitophagy</a>, <a href="https://publications.waset.org/abstracts/search?q=autophagy" title=" autophagy"> autophagy</a> </p> <a href="https://publications.waset.org/abstracts/138945/activation-of-mitophagy-and-autophagy-in-familial-forms-of-parkinsons-disease-as-a-potential-strategy-for-cell-protection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138945.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2912</span> NLRP3-Inflammassome Participates in the Inflammatory Response Induced by Paracoccidioides brasiliensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Kanagushiku%20Pereira">Eduardo Kanagushiku Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Gregory%20Cavalcante%20da%20Silva"> Frank Gregory Cavalcante da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Soares%20Gon%C3%A7alves"> Barbara Soares Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20L%C3%BAcia%20Bergamasco%20Galastri"> Ana Lúcia Bergamasco Galastri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronei%20Luciano%20Mamoni"> Ronei Luciano Mamoni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inflammatory response initiates after the recognition of pathogens by receptors expressed by innate immune cells. Among these receptors, the NLRP3 was associated with the recognition of pathogenic fungi in experimental models. NLRP3 operates forming a multiproteic complex called inflammasome, which actives caspase-1, responsible for the production of the inflammatory cytokines IL-1beta and IL-18. In this study, we aimed to investigate the involvement of NLRP3 in the inflammatory response elicited in macrophages against Paracoccidioides brasiliensis (Pb), the etiologic agent of PCM. Macrophages were differentiated from THP-1 cells by treatment with phorbol-myristate-acetate. Following differentiation, macrophages were stimulated by Pb yeast cells for 24 hours, after previous treatment with specific NLRP3 (3,4-methylenedioxy-beta-nitrostyrene) and/or caspase-1 (VX-765) inhibitors, or specific inhibitors of pathways involved in NLRP3 activation such as: Reactive Oxigen Species (ROS) production (N-Acetyl-L-cysteine), K+ efflux (Glibenclamide) or phagossome acidification (Bafilomycin). Quantification of IL-1beta and IL-18 in supernatants was performed by ELISA. Our results showed that the production of IL-1beta and IL-18 by THP-1-derived-macrophages stimulated with Pb yeast cells was dependent on NLRP3 and caspase-1 activation, once the presence of their specific inhibitors diminished the production of these cytokines. Furthermore, we found that the major pathways involved in NLRP3 activation, after Pb recognition, were dependent on ROS production and K+ efflux. In conclusion, our results showed that NLRP3 participates in the recognition of Pb yeast cells by macrophages, leading to the activation of the NLRP3-inflammasome and production of IL-1beta and IL-18. Together, these cytokines can induce an inflammatory response against P. brasiliensis, essential for the establishment of the initial inflammatory response and for the development of the subsequent acquired immune response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflammation" title="inflammation">inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-1beta" title=" IL-1beta"> IL-1beta</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-18" title=" IL-18"> IL-18</a>, <a href="https://publications.waset.org/abstracts/search?q=NLRP3" title=" NLRP3"> NLRP3</a>, <a href="https://publications.waset.org/abstracts/search?q=Paracoccidioidomycosis" title=" Paracoccidioidomycosis"> Paracoccidioidomycosis</a> </p> <a href="https://publications.waset.org/abstracts/57374/nlrp3-inflammassome-participates-in-the-inflammatory-response-induced-by-paracoccidioides-brasiliensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2911</span> Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Gautam">Rajesh Kumar Gautam</a>, <a href="https://publications.waset.org/abstracts/search?q=Debabrata%20Seth"> Debabrata Seth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20eutectic%20solvent" title="deep eutectic solvent">deep eutectic solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=photophysics" title=" photophysics"> photophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=Thioflavin%20T" title=" Thioflavin T"> Thioflavin T</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20torsional%20rate%20constant" title=" the torsional rate constant"> the torsional rate constant</a> </p> <a href="https://publications.waset.org/abstracts/98134/photophysics-and-torsional-dynamics-of-thioflavin-t-in-deep-eutectic-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2910</span> Language Activation Theory: Unlocking Bilingual Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leorisyl%20D.%20Siarot">Leorisyl D. Siarot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is conventional to see and hear Filipinos, in general, speak two or more languages. This phenomenon brings us to a closer look on how our minds process the input and produce an output with a specific chosen language. This study aimed to generate a theoretical model which explained the interaction of the first and the second languages in the human mind. After a careful analysis of the gathered data, a theoretical prototype called Language Activation Model was generated. For every string, there are three specialized banks: lexico-semantics, morphono-syntax, and pragmatics. These banks are interrelated to other banks of other language strings. As the bilingual learns more languages, a new string is replicated and is filled up with the information of the new language learned. The principles of the first and second languages' interaction are drawn; these are expressed in laws, namely: law of dominance, law of availability, law of usuality and law of preference. Furthermore, difficulties encountered in the learning of second languages were also determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilingualism" title="bilingualism">bilingualism</a>, <a href="https://publications.waset.org/abstracts/search?q=psycholinguistics" title=" psycholinguistics"> psycholinguistics</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20language%20learning" title=" second language learning"> second language learning</a>, <a href="https://publications.waset.org/abstracts/search?q=languages" title=" languages"> languages</a> </p> <a href="https://publications.waset.org/abstracts/7232/language-activation-theory-unlocking-bilingual-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2909</span> Stabilisation of a Soft Soil by Alkaline Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadjavad%20Yaghoubi">Mohammadjavad Yaghoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arul%20Arulrajah"> Arul Arulrajah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20M.%20Disfani"> Mahdi M. Disfani</a>, <a href="https://publications.waset.org/abstracts/search?q=Suksun%20Horpibulsuk"> Suksun Horpibulsuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Myint%20W.%20Bo"> Myint W. Bo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20P.%20Darmawan"> Stephen P. Darmawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activation of fly ash (FA) to use in deep soil mixing (DSM) technology. The content of FA was 20% by dry mass of soil, and the alkaline activator was sodium silicate (Na2SiO3). Samples were cured for 3, 7, 14, 28 and 56 days to evaluate the effect of curing time on strength development. To study the effect of adding slag (S) to the mixture on the strength development, 5% S was replaced with FA. In addition, the effect of the initial unit weight of samples on strength development was studied by preparing specimens with two different static compaction stresses. This was to replicate the field conditions where during implementing the DSM technique, the pressure on the soil while being mixed, increases with depth. Unconfined compression strength (UCS), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) tests were conducted on the specimens. The results show that adding S to the FA based geopolymer activated by Na2SiO3 decreases the strength. Furthermore, samples prepared at a higher unit weight demonstrate greater strengths. Moreover, samples prepared at lower unit weight reached their final strength at about 14 days of curing, whereas the strength development continues to 56 days for specimens prepared at a higher unit weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20activation" title="alkaline activation">alkaline activation</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20time" title=" curing time"> curing time</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a> </p> <a href="https://publications.waset.org/abstracts/67439/stabilisation-of-a-soft-soil-by-alkaline-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2908</span> Activating Psychological Resources of DUI (Drivers under the Influence of Alcohol) Using the Traffic Psychology Intervention (IFT Course), Germany</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parichehr%20Sharifi">Parichehr Sharifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Reschke"> Konrad Reschke</a>, <a href="https://publications.waset.org/abstracts/search?q=Hans-Liudger%20Dienel"> Hans-Liudger Dienel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Psychological intervention generally targets changes in attitudes and behavior. Working with DUIs is part of traffic psychologists’ work. The primary goal of this field is to reduce the probability of re-conspicuous of the delinquent driver. One of these measurements in Germany is IFT courses for DUI s. The IFT course was designed by the Institute for Therapy Research. Participants are drivers who have fallen several times or once with a blood alcohol concentration of 1.6 per mill and who have completed a medical-psychological assessment (MPU) with the result of the course recommendation. The course covers four sessions of 3.5 hours each (1 hour / 60 m) and in a period of 3 to 4 weeks in the group discussion. This work analyzes interventions for the rehabilitation of DUI (Drunk Drivers offenders) offenders in groups under the aspect of activating psychological resources. From the aspect of sustainability, they should also have long-term consequences for the maintenance of unproblematic driving behavior in terms of the activation of resources. It is also addressing a selected consistency-theory-based intervention effect, activating psychological resources. So far, this has only been considered in the psychotherapeutic field but never in the field of traffic psychology. The methodology of this survey is one qualitative and three quantitative. In four sub-studies, it will be examined which measurements can determine the resources and how traffic psychological interventions can strengthen resources. The results of the studies have the following implications for traffic psychology research and practice: (1) In the field of traffic psychology intervention for the restoration of driving fitness, it can be stated that aspects of resource activation in this work have been investigated for the first time by qualitative and quantitative methods. (2) The resource activation could be confirmed based on the determined results as an effective factor of traffic psychological intervention. (3) Two sub-studies show a range of resources and resource activation options that must be given greater emphasis in traffic psychology interventions: - Social resource activation - improvement of the life skills of participants - Reactivation of existing social support options - Re-experiencing self-esteem, self-assurance, and acceptance of traffic-related behaviors. (4) In revising the IFT-§70 course, as well as other courses on recreating aptitude for DUI, new traffic-specific resource-enabling interventions against alcohol abuse should be developed to further enhance the courses through motivational, cognitive, and behavioral effects of resource activation, Resource-activating interventions can not only be integrated into behavioral group interventions but can also be applied in psychodynamic, psychodynamic (individual psychological) and other contexts of individual traffic psychology. The results are indicative but clearly show that personal resources can be strengthened through traffic psychology interventions. In the research, practice, training, and further education of traffic psychology, the aspect of primary resource activation (Grawe, 1999), therefore, always deserves the greatest attention for the rehabilitation of DUIs and Traffic safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20safety" title="traffic safety">traffic safety</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological%20resources" title=" psychological resources"> psychological resources</a>, <a href="https://publications.waset.org/abstracts/search?q=activating%20of%20resources" title=" activating of resources"> activating of resources</a>, <a href="https://publications.waset.org/abstracts/search?q=intervention%20programs%20for%20alcohol%20offenders" title=" intervention programs for alcohol offenders"> intervention programs for alcohol offenders</a>, <a href="https://publications.waset.org/abstracts/search?q=empowerment" title=" empowerment"> empowerment</a> </p> <a href="https://publications.waset.org/abstracts/156389/activating-psychological-resources-of-dui-drivers-under-the-influence-of-alcohol-using-the-traffic-psychology-intervention-ift-course-germany" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2907</span> Emotion Processing Differences Between People</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Unveren">Elif Unveren</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Bozkurt"> Ozlem Bozkurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emotion processing happens when someone has a negative, stressful experience and gets over it in time, and it is a different experience for every person. As to look into emotion processing can be categorised by intensity, awareness, coordination, speed, accuracy and response. It may vary depending on people’s age, sex and conditions. Each emotion processing shows different activation patterns in different brain regions. Activation is significantly higher in the right frontal areas. The highest activation happens in extended frontotemporal areas during the processing of happiness, sadness and disgust. Those emotions also show widely disturbed differences and get produced earlier than anger and fear. For different occasions, listed variables may have less or more importance. A borderline personality disorder is a condition that creates an unstable personality, sudden mood swings and unpredictability of actions. According to a study that was made with healthy people and people who had BPD, there were significant differences in some categories of emotion processing, such as intensity, awareness and accuracy. According to another study that was made to show the emotional processing differences between puberty and was made for only females who were between the ages of 11 and 17, it was perceived that for different ages and hormone levels, different parts of the brain are used to understand the given task. Also, in the different study that was made for kids that were between the age of 4 and 15, it was observed that the older kids were processing emotion more intensely and expressing it to a greater extent. There was a significant increase in fear and disgust in those matters. To sum up, we can say that the activity of undertaking negative experiences is a unique thing for everybody for many different reasons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age" title="age">age</a>, <a href="https://publications.waset.org/abstracts/search?q=sex" title=" sex"> sex</a>, <a href="https://publications.waset.org/abstracts/search?q=conditions" title=" conditions"> conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20regions" title=" brain regions"> brain regions</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20processing" title=" emotion processing"> emotion processing</a> </p> <a href="https://publications.waset.org/abstracts/164526/emotion-processing-differences-between-people" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2906</span> Phosphoinositide 3-Kinase-Dependent CREB Activation is Required for the Induction of Aromatase in Tamoxifen-Resistant Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%20Hye%20Im">Ji Hye Im</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20T.%20T.%20Phuong"> Nguyen T. T. Phuong</a>, <a href="https://publications.waset.org/abstracts/search?q=Keon%20Wook%20Kang"> Keon Wook Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estrogens are important for the development and growth of estrogen receptor (ER)-positive breast cancer, for which anti-estrogen therapy is one of the most effective treatments. However, its efficacy can be limited by either de novo or acquired resistance. Aromatase is a key enzyme for the biosynthesis of estrogens, and inhibition of this enzyme leads to profound hypoestrogenism. Here, we found that the basal expression and activity of aromatase were significantly increased in tamoxifen (TAM)-resistant human breast cancer (TAMR-MCF-7) cells compared to control MCF-7 cells. We further revealed that aromatase immunoreactivity in tumor tissues was increased in recurrence group after TAM therapy compared to non-recurrence group after TAM therapy. Phosphorylation of Akt, extracellular signal-regulated kinase (ERK), and p38 kinase were all increased in TAMR-MCF-7 cells. Inhibition of phosphoinositide 3-kinase (PI3K) suppressed the transactivation of the aromatase gene and its enzyme activity. Furthermore, we have also shown that PI3K/Akt-dependent cAMP-response element binding protein (CREB) activation was required for the enhanced expression of aromatase in TAMR-MCF-7 cells. Our findings suggest that aromatase expression is up-regulated in TAM-resistant breast cancer via PI3K/Akt-dependent CREB activation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TAMR-MCF-7" title="TAMR-MCF-7">TAMR-MCF-7</a>, <a href="https://publications.waset.org/abstracts/search?q=CREB" title=" CREB"> CREB</a>, <a href="https://publications.waset.org/abstracts/search?q=estrogen%20receptor" title=" estrogen receptor"> estrogen receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=aromatase" title=" aromatase"> aromatase</a> </p> <a href="https://publications.waset.org/abstracts/21891/phosphoinositide-3-kinase-dependent-creb-activation-is-required-for-the-induction-of-aromatase-in-tamoxifen-resistant-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2905</span> A Comparative Study between Behaviour Activation, Rational Emotive Behaviour Therapy and Waiting List Control for Major Depressive Disorder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Jha">Shweta Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=Digambar%20Darekar"> Digambar Darekar</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishna%20Kadam"> Krishna Kadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Major Depressive Disorder (MDD) is one of the most common of psychiatric disorders. It has a wide range of symptoms, aetiologies and risk factors, and these reasons make MDD affect not only the primary patient, but also their family, caregivers and associates; by negatively impacting their self dignity, economic condition and self-confidence. Thus, it is important to help individuals suffering from MDD learn adaptive mechanism and deal effectively with their environment, with that aim this study focused on a comparative therapeutic intervention using Behaviour Activation (BA), Rational Emotive Behaviour Therapy (REBT) and Waiting list control (WLC) for management of MDD. This study apart from enhancing personal skills will also help us understand which therapeutic method would be more beneficial in treating and prolonging relapse in patients with MDD in Indian population. Fifteen individuals following application of inclusion and exclusion criteria were selected as study samples. They were randomly assigned to three treatment groups. Ten sessions of therapy, forty-five minutes each according to the proposed sessions plan were conducted for each group. The individuals selected as samples were re–assessed after 2 months and 6 months post intervention. The overall result showed that individuals treated with BA and REBT showed more improvement in comparison to those in WLC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=behaviour%20activation" title="behaviour activation">behaviour activation</a>, <a href="https://publications.waset.org/abstracts/search?q=major%20depressive%20disorder" title=" major depressive disorder"> major depressive disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=rational%20emotive%20behaviour%20therapy" title=" rational emotive behaviour therapy"> rational emotive behaviour therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutic%20intervention" title=" therapeutic intervention"> therapeutic intervention</a> </p> <a href="https://publications.waset.org/abstracts/55129/a-comparative-study-between-behaviour-activation-rational-emotive-behaviour-therapy-and-waiting-list-control-for-major-depressive-disorder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2904</span> Biocompatible Chitosan Nanoparticles as an Efficient Delivery Vehicle for Mycobacterium Tuberculosis Lipids to Induce Potent Cytokines and Antibody Response through Activation of γδ T-Cells in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ishani%20Das">Ishani Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Padhi"> Avinash Padhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sitabja%20Mukherjee"> Sitabja Mukherjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Santosh%20Kar"> Santosh Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Sonawane"> Avinash Sonawane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activation of cell mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) are critical for protection. Herein, we show that mice immunized with Mtb lipid bound chitosan nanoparticles(NPs) induce secretion of prominent Th1 and Th2 cytokines in lymph node and spleen cells, and also induced significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice measured by ELISA. Furthermore, significantly enhanced γδ-T cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid coated chitosan-NPs as compared to mice immunized with chitosan-NPs alone or Mtb lipid liposomes through flow cytometric analysis. Also, it was observed that in comparison to CD8+ cells, significantly higher CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid coated chitosan NP. In conclusion, this study represents a promising new strategy for efficient delivery of Mtb lipids using chitosan NPs to trigger enhanced cell mediated and antibody response against Mtb lipids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody%20response" title="antibody response">antibody response</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan%20nanoparticles" title=" chitosan nanoparticles"> chitosan nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokines" title=" cytokines"> cytokines</a>, <a href="https://publications.waset.org/abstracts/search?q=mycobacterium%20tuberculosis%20lipids" title=" mycobacterium tuberculosis lipids"> mycobacterium tuberculosis lipids</a> </p> <a href="https://publications.waset.org/abstracts/55795/biocompatible-chitosan-nanoparticles-as-an-efficient-delivery-vehicle-for-mycobacterium-tuberculosis-lipids-to-induce-potent-cytokines-and-antibody-response-through-activation-of-ghd-t-cells-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2903</span> Determination of the Axial-Vector from an Extended Linear Sigma Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Sayed%20Taha%20Ali">Tarek Sayed Taha Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dependence of the axial-vector coupling constant gA on the quark masses has been investigated in the frame work of the extended linear sigma model. The field equations have been solved in the mean-field approximation. Our study shows a better fitting to the experimental data compared with the existing models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20linear%20sigma%20model" title="extended linear sigma model">extended linear sigma model</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleon%20properties" title=" nucleon properties"> nucleon properties</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20coupling%20constant" title=" axial coupling constant"> axial coupling constant</a>, <a href="https://publications.waset.org/abstracts/search?q=physic" title=" physic"> physic</a> </p> <a href="https://publications.waset.org/abstracts/2310/determination-of-the-axial-vector-from-an-extended-linear-sigma-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2902</span> The Role of Inflammasomes for aβ Microglia Phagocytosis in Alzheimer Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesca%20La%20Rosa">Francesca La Rosa </a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Saresella"> Marina Saresella</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20Clerici"> Mario Clerici</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Heneka"> Michael Heneka </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuroinflammation plays a key role in the modulation of the pathogenesis of neurodegenerative disorder such as Alzheimer's Disease (AD). Microglia, the main immune effector of the brain, are able to migrate to sites of Amyloid-beta (Aβ) deposition to eliminate Aβ phagocytosis upon activation by multiple receptors: Toll like receptors and scavenger receptors. The issue of whether microglia are able to eliminate pathological lesions such as neurofibrillary tangles or senile plaques from AD brain still remains the matter of controversy. Recent data suggest that the Nod Like Receptor 3 (NLRP3), multiprotein inflammasome complexes, plays a role in AD, as its activation in the microglia by Aβ triggers. IL-1β is produced as a biologically inactive pro-form and requires caspase-1 for activation and secretion. Caspase-1 activity is controlled by inflammasomes. We investigate about the importance of inflammasomes complex in the Aβ phagocytosis and its degradation. The preliminary results of phagocytosis assay and immunofluorescent experiment on primary Microglia cells to lipopolysaccharide (LPS) an Aβ exposure show that a previous treatment with LPS reduce Aβ phagocytosis. Different results were obtained in Primary Microglia wild type, NLRP3 and ASC Knockout suggesting a real inflammasomes involvement in Alzheimer's pathology. Inflammasomes inactivation reduces the production of inflammatory cytokines prolonging the protective activity of microglia and Aβ clearance, featuring a typical microglia phenotype of the early stage of AD disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%20disease" title="Alzheimer disease">Alzheimer disease</a>, <a href="https://publications.waset.org/abstracts/search?q=innate%20immunity" title=" innate immunity"> innate immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroinflammation" title=" neuroinflammation"> neuroinflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=NLRP3" title=" NLRP3"> NLRP3</a> </p> <a href="https://publications.waset.org/abstracts/30475/the-role-of-inflammasomes-for-av-microglia-phagocytosis-in-alzheimer-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2901</span> Remote Monitoring and Control System of Potentiostat Based on the Internet of Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Zhao">Liang Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Guangwen%20Wang"> Guangwen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guichang%20Liu"> Guichang Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Constant potometer is an important component of pipeline anti-corrosion systems in the chemical industry. Based on Internet of Things (IoT) technology, Programmable Logic Controller (PLC) technology and database technology, this paper developed a set of a constant potometer remote monitoring management system. The remote monitoring and remote adjustment of the working status of the constant potometer are realized. The system has real-time data display, historical data query, alarm push management, user permission management, and supporting Web access and mobile client application (APP) access. The actual engineering project test results show the stability of the system, which can be widely used in cathodic protection systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title="internet of things">internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20corrosion%20protection" title=" pipe corrosion protection"> pipe corrosion protection</a>, <a href="https://publications.waset.org/abstracts/search?q=potentiostat" title=" potentiostat"> potentiostat</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20monitoring" title=" remote monitoring"> remote monitoring</a> </p> <a href="https://publications.waset.org/abstracts/110860/remote-monitoring-and-control-system-of-potentiostat-based-on-the-internet-of-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2900</span> Parameters Tuning of a PID Controller on a DC Motor Using Honey Bee and Genetic Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Jalilzadeh">Saeid Jalilzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PID controllers are widely used to control the industrial plants because of their robustness and simple structures. Tuning of the controller's parameters to get a desired response is difficult and time consuming. With the development of computer technology and artificial intelligence in automatic control field, all kinds of parameters tuning methods of PID controller have emerged in endlessly, which bring much energy for the study of PID controller, but many advanced tuning methods behave not so perfect as to be expected. Honey Bee algorithm (HBA) and genetic algorithm (GA) are extensively used for real parameter optimization in diverse fields of study. This paper describes an application of HBA and GA to the problem of designing a PID controller whose parameters comprise proportionality constant, integral constant and derivative constant. Presence of three parameters to optimize makes the task of designing a PID controller more challenging than conventional P, PI, and PD controllers design. The suitability of the proposed approach has been demonstrated through computer simulation using MATLAB/SIMULINK. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=controller" title="controller">controller</a>, <a href="https://publications.waset.org/abstracts/search?q=GA" title=" GA"> GA</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=PID" title=" PID"> PID</a>, <a href="https://publications.waset.org/abstracts/search?q=PSO" title=" PSO"> PSO</a> </p> <a href="https://publications.waset.org/abstracts/15526/parameters-tuning-of-a-pid-controller-on-a-dc-motor-using-honey-bee-and-genetic-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2899</span> Preparation of Activated Carbon Fibers (ACF) Impregnated with Ionic Silver Particles from Cotton Woven Waste and Its Performance as Antibacterial Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonathan%20Andres%20Pullas%20Navarrete">Jonathan Andres Pullas Navarrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Hale%20de%20la%20Torre%20Chauvin"> Ernesto Hale de la Torre Chauvin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the antibacterial effect of activated carbon fibers (ACF) impregnated with ionic silver particles was studied. ACF were prepared from samples of cotton woven wastes (cotton based fabrics 5x10 cm) by applying a chemical activation procedure with H3PO4. This treatment was performed using several H3PO4: Cotton based fabrics weight ratios (1:2–2:1), temperatures (600–900 ºC) and activation times (0.5–2 h). The ACF obtained under the best activation conditions showed BET surface area of 1103 m2/g; this result along with iodine index demonstrated the microporous nature of the fibers herein obtained. Then, the obtained fibers were impregnated with ionic silver particles by immersion in 0.1 and 0.5 M AgNO3 solutions followed by drying and thermal decomposition in order to fix the silver particles in the structure of ACF. It was determined that the presence of Ag ions lowered the BET surface area of the ACF in approximately 17 % due to the obstruction of the porosities along the carbonized structure. Finally, the antibacterial effect of the ACF impregnated with silver was studied through direct counting method for coliforms. The antibacterial activity of the impregnated fibers was demonstrated, and it was attributed to the strongly inhibition of bacteria growth because of chemical properties of the particles of silver inside the ACF. This behavior was demonstrated at concentrations of silver as low as 0.035 % w/w. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=coliforms" title=" coliforms"> coliforms</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20area" title=" surface area"> surface area</a> </p> <a href="https://publications.waset.org/abstracts/58753/preparation-of-activated-carbon-fibers-acf-impregnated-with-ionic-silver-particles-from-cotton-woven-waste-and-its-performance-as-antibacterial-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2898</span> Electrical Activities of Sulfur Dopants in GaAs Introduced by Self-Assembled Molecular Monolayers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhengfang%20Fan">Zhengfang Fan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaping%20Dan"> Yaping Dan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The self-assembled molecular monolayer doping technique continues to attract significant research attention due to its inherent characteristics of being conformal, nondestructive, and self-limiting in nature. However, the carrying molecules may contaminate the substrate and electrically deactivate the dopants. In this work, we investigate the electrical activities of sulfur dopants in GaAs introduced by the self-assembled molecular monolayer doping technique. The sulfur dopants are then driven into GaAs to create electrical doping effect by rapid thermal annealing process. The total number of dopants diffused into GaAs is analyzed by secondary ion mass spectroscopy and source-limited diffusion model. Hall effect measurements are employed to find the electron concentration at different temperature. The temperature dependent electron concentration is fitted with the dopant activation theory, from which we extract the activation energy as 68 meV and the concentration of electrically active sulfur dopants as high as 4.4 Х 1014 cm-2. We find that more than 91% of sulfur dopants in GaAs are electrically active, indicating that the impact of carrying molecules is minimal. We employ this monolayer doping technique to create a PN junction diode on a p-type GaAs substrate. The PN junction diode exhibits an outstanding performance with an ideality factor of 1.26 and a rectification ratio up to 104 within the bias of ± 0.6V. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfur%20monolayer" title="sulfur monolayer">sulfur monolayer</a>, <a href="https://publications.waset.org/abstracts/search?q=hall%20effect" title=" hall effect"> hall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20activation" title=" electrical activation"> electrical activation</a>, <a href="https://publications.waset.org/abstracts/search?q=PN%20junction" title=" PN junction"> PN junction</a> </p> <a href="https://publications.waset.org/abstracts/198150/electrical-activities-of-sulfur-dopants-in-gaas-introduced-by-self-assembled-molecular-monolayers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/198150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2897</span> On Bianchi Type Cosmological Models in Lyra’s Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Dubey">R. K. Dubey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bianchi type cosmological models have been studied on the basis of Lyra&rsquo;s geometry. Exact solution has been obtained by considering a time dependent displacement field for constant deceleration parameter and varying cosmological term of the universe. The physical behavior of the different models has been examined for different cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bianchi%20type-I%20cosmological%20model" title="Bianchi type-I cosmological model">Bianchi type-I cosmological model</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20gravitational%20coupling" title=" variable gravitational coupling"> variable gravitational coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmological%20constant%20term" title=" cosmological constant term"> cosmological constant term</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyra%27s%20model" title=" Lyra&#039;s model"> Lyra&#039;s model</a> </p> <a href="https://publications.waset.org/abstracts/7581/on-bianchi-type-cosmological-models-in-lyras-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2896</span> Upregulation of CD40/CD40L System in Rheumatic Mitral Stenosis With or Without Atrial Fibrillation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azzam%20H.">Azzam H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Abousamra%20N.%20K."> Abousamra N. K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafa%20A.%20A."> Wafa A. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafez%20M.%20M."> Hafez M. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=El-Gilany%20A.%20H."> El-Gilany A. H.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Platelet activation occurs in peripheral blood of patients with rheumatic mitral stenosis (MS) and atrial fibrillation (AF) and could be related to abnormal thrombogenesis. The CD40/CD40 ligand (CD40L) which reflects platelet activation, mediate a central role in thrombotic diseases. However, the role of CD40/CD40L system in rheumatic MS with or without AF remains unclear. Expressions of CD40 on monocytes and CD40L on platelets were determined by whole blood flow cytometry and serum levels of soluble CD40L were measured by enzyme-linked immunosorbent assay in group 1 (19 patients with MS) and group 2 (20 patients with MS and AF) compared to group 3 (10 controls). Patients with groups 1 and 2 had a significant increase in expression of CD40 on monocytes (P1 and P2 = 0.000) and serum levels of sCD40L (P1 = 0.014 and P2 = 0.033, respectively), but nonsignificant increase in expression of CD40L on platelets (P1 = 0.109 and P2 = 0.060, respectively) as compared to controls. There were no significant difference in all the parameters in group 1 compared to group 2. Correlation analysis demonstrated that there was a significant direct relationship between the severity of MS and serum levels of sCD40L (r = -0.469, p = 0.043). In conclusion, rheumatic MS patients with or without AF had upregulation of the CD40/CD40L system as well as elevated sCD40L levels. The levels of sCD40L had a significantly direct relationship with the severity of MS and it was the stenotic mitral valve, not AF, that had a significant impact on platelet activation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CD40" title="CD40">CD40</a>, <a href="https://publications.waset.org/abstracts/search?q=CD40L" title=" CD40L"> CD40L</a>, <a href="https://publications.waset.org/abstracts/search?q=mitral%20stenosis" title=" mitral stenosis"> mitral stenosis</a>, <a href="https://publications.waset.org/abstracts/search?q=atrial%20fibrillation" title=" atrial fibrillation"> atrial fibrillation</a> </p> <a href="https://publications.waset.org/abstracts/158032/upregulation-of-cd40cd40l-system-in-rheumatic-mitral-stenosis-with-or-without-atrial-fibrillation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2895</span> Analysis of a Power Factor Correction Converter for Light Emitting Diode Driver Application </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edwina%20G.%20Rodrigues">Edwina G. Rodrigues</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Bindhu"> S. J. Bindhu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Rajesh"> A. V. Rajesh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a switched capacitor based driver circuit for high power light emitting diodes with a front end rectifier. LEDs are low-voltage light sources, requiring a constant DC voltage or current to operate optimally. LEDs, therefore, require a device that can convert incoming AC power to the proper DC voltage, and regulate the current flowing through the LED during operation. Proposed topology has a front end converter. It is an AC-DC rectifier that works on bridgeless boost topology which shapes the input current waveform. The front end converter is followed by a DC-DC converter which provides a constant DC voltage across the LEDs. A 12V AC input is given to the input of frontend converter which rectifies and boost the voltage to 24v DC and gives it to the DC-DC converter. The DC-DC converter converts the 24V DC and regulates this constant DC voltage across the LEDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridgeless%20rectifier" title="bridgeless rectifier">bridgeless rectifier</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20factor%20correction%28PFC%29" title=" power factor correction(PFC)"> power factor correction(PFC)</a>, <a href="https://publications.waset.org/abstracts/search?q=SC%20converter" title=" SC converter"> SC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20harmonic%20distortion%20%28THD%29" title=" total harmonic distortion (THD)"> total harmonic distortion (THD)</a> </p> <a href="https://publications.waset.org/abstracts/53400/analysis-of-a-power-factor-correction-converter-for-light-emitting-diode-driver-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">876</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2894</span> Microglia Activity and Induction of Mechanical Allodynia after Mincle Receptor Ligand Injection in Rat Spinal Cord</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihoon%20Yang">Jihoon Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeong%20II%20Choi"> Jeong II Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mincle is expressed in macrophages and is members of immunoreceptors induced after exposure to various stimuli and stresses. Mincle receptor activation promotes the production of these substances by increasing the transcription of inflammatory cytokines and chemokines. Cytokines, which play an important role in the initiation and maintenance of such inflammatory pain diseases, have a significant effect on sensory neurons in addition to their enhancement and inhibitory effects on immune and inflammatory cells as mediators of cell interaction. Glial cells in the central nervous system play a critical role in development and maintenance of chronic pain states. Microglia are tissue-resident macrophages in the central nervous system, and belong to a group of mononuclear phagocytes. In the central nervous system, mincle receptor is present in neurons and glial cells of the brain.This study was performed to identify the Mincle receptor in the spinal cord and to investigate the effect of Mincle receptor activation on nociception and the changes of microglia. Materials and Methods: C-type lectins(Mincle) was identified in spinal cord of Male Sprague–Dawley rats. Then, mincle receptor ligand (TDB), via an intrathecal catheter. Mechanical allodynia was measured using von Frey test to evaluate the effect of intrathecal injection of TDB. Result: The present investigation shows that the intrathecal administration of TDB in the rat produces a reliable and quantifiable mechanical hyperalgesia. In addition, The mechanical hyperalgesia after TDB injection gradually developed over time and remained until 10 days. Mincle receptor is identified in the spinal cord, mainly expressed in neuronal cells, but not in microglia or astrocyte. These results suggest that activation of mincle receptor pathway in neurons plays an important role in inducing activation of microglia and inducing mechanical allodynia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mincle" title="mincle">mincle</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20cord" title=" spinal cord"> spinal cord</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a>, <a href="https://publications.waset.org/abstracts/search?q=microglia" title=" microglia"> microglia</a> </p> <a href="https://publications.waset.org/abstracts/79571/microglia-activity-and-induction-of-mechanical-allodynia-after-mincle-receptor-ligand-injection-in-rat-spinal-cord" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2893</span> Kinetic Study of Municipal Plastic Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Salvia%20Diaz%20Silvarrey">Laura Salvia Diaz Silvarrey</a>, <a href="https://publications.waset.org/abstracts/search?q=Anh%20Phan"> Anh Phan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Municipal Plastic Waste (MPW) comprises a mixture of thermoplastics such as high and low density polyethylene (HDPE and LDPE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET). Recycling rate of these plastics is low, e.g. only 27% in 2013. The remains were incinerated or disposed in landfills. As MPW generation increases approximately 5% per annum, MPW management technologies have to be developed to comply with legislation . Pyrolysis, thermochemical decomposition, provides an excellent alternative to convert MPW into valuable resources like fuels and chemicals. Most studies on waste plastic kinetics only focused on HDPE and LDPE with a simple assumption of first order decomposition, which is not the real reaction mechanism. The aim of this study was to develop a kinetic study for each of the polymers in the MPW mixture using thermogravimetric analysis (TGA) over a range of heating rates (5, 10, 20 and 40°C/min) in N2 atmosphere and sample size of 1 – 4mm. A model-free kinetic method was applied to quantify the activation energy at each level of conversion. Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) equations jointly with Master Plots confirmed that the activation energy was not constant along all the reaction for all the five plastic studied, showing that MPW decomposed through a complex mechanism and not by first-order kinetics. Master plots confirmed that MPW decomposed following a random scission mechanism at conversions above 40%. According to the random scission mechanism, different radicals are formed along the backbone producing the cleavage of bonds by chain scission into molecules of different lengths. The cleavage of bonds during random scission follows first-order kinetics and it is related with the conversion. When a bond is broken one part of the initial molecule becomes an unsaturated one and the other a terminal free radical. The latter can react with hydrogen from and adjacent carbon releasing another free radical and a saturated molecule or reacting with another free radical and forming an alkane. Not every time a bonds is broken a molecule is evaporated. At early stages of the reaction (conversion and temperature below 40% and 300°C), most products are not short enough to evaporate. Only at higher degrees of conversion most of cleavage of bonds releases molecules small enough to evaporate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetic" title="kinetic">kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=municipal%20plastic%20waste" title=" municipal plastic waste"> municipal plastic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20scission" title=" random scission"> random scission</a> </p> <a href="https://publications.waset.org/abstracts/31085/kinetic-study-of-municipal-plastic-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2892</span> Carbon Nanomaterials from Agricultural Wastes for Adsorption of Organic Pollutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Blachnio">Magdalena Blachnio</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Bogatyrov"> Viktor Bogatyrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariia%20Galaburda"> Mariia Galaburda</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Derylo-Marczewska"> Anna Derylo-Marczewska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural waste materials from traditional oil mill and after extraction of natural raw materials in supercritical conditions were used for the preparation of carbon nanomaterials (activated carbons) by two various methods. Chemical activation using acetic acid and physical activation with a gaseous agent (carbon dioxide) were chosen as mild and environmentally friendly ones. The effect of influential factors: type of raw material, temperature and activation agent on the porous structure characteristics of the materials was discussed by using N₂ adsorption/desorption isotherms at 77 K. Furthermore scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to examine the physicochemical properties of the obtained sorbents. Selection of a raw material and an optimization of the conditions of the synthesis process, allowed to obtain the cheap sorbents with a targeted distribution of pores enabling effective adsorption of the model organic pollutants carried out in the multicomponent systems. Adsorption behavior (capacity and rate) of the chosen activated carbons was estimated by utilizing Crystal violet (CV), 4-chlorophenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid (2.4-D) as the adsorbates. Both rate and adsorption capacity of the organics on the sorbents evidenced that the activated carbons could be effectively used in sewage treatment plants. The mechanisms of organics adsorption were studied and correlated with activated carbons properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title=" adsorption equilibrium"> adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20kinetics" title=" adsorption kinetics"> adsorption kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=organics%20adsorption" title=" organics adsorption"> organics adsorption</a> </p> <a href="https://publications.waset.org/abstracts/90720/carbon-nanomaterials-from-agricultural-wastes-for-adsorption-of-organic-pollutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=4" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=4">4</a></li> <li class="page-item active"><span class="page-link">5</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=101">101</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=102">102</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activation%20constant&amp;page=6" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10