CINXE.COM

ACP - Editor's choice

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <!--[if lt IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 lt-ie7 co-ui"> <![endif]--> <!--[if IE 7]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 lt-ie8 co-ui"> <![endif]--> <!--[if IE 8]> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js lt-ie9 co-ui"> <![endif]--> <!--[if gt IE 8]><!--> <html xmlns="https://www.w3.org/1999/xhtml" xml:lang="en" lang="en" class="no-js co-ui"> <!--<![endif]--> <!-- remove class no-js if js is available --><head> <!-- BEGIN_HEAD --> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="theme-color" content="#000000" /> <meta name="application-name" content="1" /> <meta name="msapplication-TileColor" content="#FFFFFF" /> <link rel="preconnect" crossorigin="" href="https://contentmanager.copernicus.org/" /><link rel="icon" size="16x16" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_16x16_.ico" type="image/x-icon" /><link rel="icon" size="24x24" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_24x24_.ico" type="image/x-icon" /><link rel="icon" size="32x32" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_32x32_.ico" type="image/x-icon" /><link rel="icon" size="48x48" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_48x48_.ico" type="image/x-icon" /><link rel="icon" size="64x64" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_64x64_.ico" type="image/x-icon" /><link rel="icon" size="228x228" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_228x228_.png" type="image/png-icon" /><link rel="icon" size="195x195" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_195x195_.png" type="image/png-icon" /><link rel="icon" size="196x196" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_196x196_.png" type="image/png-icon" /><link rel="icon" size="128x128" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_128x128_.png" type="image/png-icon" /><link rel="icon" size="96x96" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_96x96_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="180x180" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_180x180_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="120x120" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_120x120_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="152x152" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_152x152_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="76x76" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_76x76_.png" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="57x57" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_57x57_.ico" type="image/png-icon" /><link rel="apple-touch-icon-precomposed" size="144x144" href="https://www.atmospheric-chemistry-and-physics.net/favicon_copernicus_144x144_.png" type="image/png-icon" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/mustache/2.3.0/mustache.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/jquery.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/js/copernicus.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/htmlgenerator-v2.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/dszparallexer/dzsparallaxer.js"></script><link rel="stylesheet" type="text/css" media="all" id="hasBootstrap" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-media.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-grid.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/bootstrap/current/css/bootstrap-reboot.min.css" /><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/popper.js"></script><script type="text/javascript" src="https://cdn.copernicus.org/libraries/bootstrap/current/js/bootstrap.min.js"></script><link rel="preconnect" crossorigin="" href="https://cdn.copernicus.org/" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/copernicus-min.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/css/fontawesome.css" /><link rel="stylesheet" type="text/css" media="all" href="https://cdn.copernicus.org/fonts/FontAwesome/5.11.2_and_4.7.0/css/all.font.css" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/237997/10/ssl" /><link rel="stylesheet" type="text/css" media="projection, handheld, screen, tty, tv, print" href="https://contentmanager.copernicus.org/2154804/10/ssl" /><link rel="stylesheet" type="text/css" media="print" href="https://contentmanager.copernicus.org/2154805/10/ssl" /><script src="https://contentmanager.copernicus.org/1672/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/1468/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/402/10/ssl" type="text/javascript"> </script><script src="https://contentmanager.copernicus.org/2154808/10/ssl" type="text/javascript"> </script><!-- END_HEAD --><meta name="global_projectID" content="10" /><meta name="global_pageID" content="297" /><meta name="global_pageIdentifier" content="home" /><meta name="global_moBaseURL" content="https://meetingorganizer.copernicus.org/" /><meta name="global_projectShortcut" content="ACP" /><meta name="global_projectDomain" content="https://www.atmospheric-chemistry-and-physics.net/" /> <title>ACP - Editor's choice</title> <meta name="data-non-mobile-optimized-message" content="" /><script id="networker"> window.isSafari = /^((?!chrome|android).)*safari/i.test(navigator.userAgent); /** * */ function createToastsFunctionality() { const toastsWrapper = $('<div>') .attr('aria-live', 'polite') .attr('aria-atomic', 'true') .addClass('toasts-notifications-wrapper'); $('body').append(toastsWrapper); } function isOS() { return [ 'iPad Simulator', 'iPhone Simulator', 'iPod Simulator', 'iPad', 'iPhone', 'iPod' ].includes(navigator.platform) || (navigator.userAgent.includes("Mac") && "ontouchend" in document) } /** * * @param notificationContent */ function addToast(notificationContent) { const toast = $('<div>').addClass('toast').attr('role', 'alert').attr('aria-live', 'assertive') .attr('aria-atomic', 'true').attr('data-autohide', 'false'); const toastHeader = $('<div>').addClass('toast-header'); const toastHeaderTitle = $('<strong>').addClass('mr-auto').html(notificationContent.title); const toastHeaderCloseButton = $('<button>').addClass('ml-2').addClass('mb-1').addClass('close').attr('type', 'button') .attr('data-dismiss', 'toast'); const toastHeaderCloseIcon = $('<span>').attr('aria-hidden', 'true').html('&times;'); let url = ''; if (notificationContent.hasOwnProperty('url')) { url = notificationContent.url; } else { url = 'https://networker.copernicus.org/my-network'; } const toastBody = $('<div>').addClass('toast-body').html('<a target="_blank" href="' + url + '">' + notificationContent.text + '</a>'); $(toastHeaderCloseButton).append(toastHeaderCloseIcon); $(toastHeader).append(toastHeaderTitle); $(toastHeader).append(toastHeaderCloseButton); $(toast).append(toastHeader); $(toast).append(toastBody); $('.toasts-notifications-wrapper').append(toast); $('.toast').toast('show'); } function coNetworker_sendUsersLocation(location, userHash, publicLabel, projectID, application) { if (templateHasBootstrap()) { createToastsFunctionality(); } userHash = userHash || 'null'; location = location || 'c_content_manager::getProjectTemplateMobileOpt'; publicLabel = publicLabel || ''; if (publicLabel === ''){ publicLabel = location; } if (userHash !== null && userHash.length > 5) { try { if(typeof window.ws === 'undefined' || window.ws === null || !window.ws) { window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } else { window.ws.close(1000); window.ws = new WebSocket('wss://websockets.copernicus.org:8080'); } const data = { 'type': 'status', 'action': 'start', 'data': { 'userIdentifier': userHash, 'projectID': projectID, 'coApp': application, 'location': location, 'publicLabel': publicLabel } }; if (window.ws === 1) { window.ws.send(JSON.stringify(data)); } else { window.ws.onopen = function (msg) { window.ws.send(JSON.stringify(data)); dispatchEvent(new CustomEvent('loadCommonNetworker')); }; window.ws.onmessage = function (event) { try { const data = JSON.parse(event.data); switch (data.type) { case 'notification': const pushNotificationData = data.data; if (pushNotificationData.hasOwnProperty('user') && pushNotificationData.user.length > 5 && pushNotificationData.user === userHash) { window.showPushNotification(pushNotificationData); } break; } } catch (e) { console.log(e); } } } } catch (e) { console.error(e); } } } window.showPushNotification = function (notificationContent) { showMessage(notificationContent); function showMessage(notificationContent){ if (templateHasBootstrap()) { showBootstrapModal(notificationContent); } } function showBootstrapModal(notificationContent) { const randomId = getRandomInt(100,999); let modal = $('<div>').addClass('modal').attr('id', 'modal-notification' + randomId); let modalDialog = $('<div>').addClass('modal-dialog'); let modalContent = $('<div>').addClass('modal-content'); let modalBody = $('<div>').addClass('modal-body'); let message = $('<div>').addClass('modal-push-message').html('<h3 class="mb-3">' + notificationContent.title + '</h3><p>' + notificationContent.text + '</p>'); let buttonsWrapper = $('<div>').addClass('row'); let buttonsWrapperCol = $('<div>').addClass('col-12').addClass('text-right'); let buttonCancel = $('<button>').addClass('btn').addClass('btn-danger').addClass('mr-2').html('Cancel') let buttonSuccess = $('<button>').addClass('btn').addClass('btn-success').html('OK') $(buttonsWrapper).append(buttonsWrapperCol); $(buttonsWrapperCol).append(buttonCancel); $(buttonsWrapperCol).append(buttonSuccess); $(modalBody).append(message).append(buttonsWrapper); $(modalContent).append(modalBody); $(modalDialog).append(modalContent); $(modal).append(modalDialog); $(buttonCancel).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); }); $(buttonSuccess).on('click', (event) => { event.preventDefault(); event.stopPropagation(); event.stopImmediatePropagation(); $(modal).modal('hide'); handleOnclickNotification(notificationContent); }); $(modal).modal('show'); setTimeout(() => { dispatchEvent(new CustomEvent('modalLoaded', {'detail': 'modal-notification' + randomId})); }, 1000); } window.addEventListener('modalLoaded', function (event) { setTimeout(() => { $('#' + event.detail).modal('hide'); }, 9000); }); function handleOnclickNotification(notificationContent) { if (notificationContent.hasOwnProperty('withConnect') && notificationContent.withConnect.length > 0) { acceptContactRequest(notificationContent); } if (notificationContent.hasOwnProperty('url')) { if (window.isSafari && isOS()) { window.location.href = notificationContent.url; } else { window.open(notificationContent.url, '_blank').focus(); } } else { if (window.isSafari && isOS()) { window.open('https://networker.copernicus.org/my-network', '_blank'); } else { window.open('https://networker.copernicus.org/my-network', '_blank').focus(); } } } /** * * @param notificationContent */ function acceptContactRequest(notificationContent) { const formData = new FormData(); formData.append('r', notificationContent.userFrom); formData.append('a', 'a'); $.ajax({ url: 'https://networker.copernicus.org/handle-request-job', type: 'POST', data: formData, processData: false, contentType: false, xhrFields: { withCredentials: true }, beforeSend: function () { $('.splash').fadeIn(); $('.lightbox').fadeIn(); } }) .done(function (dataResponse) { const data = JSON.parse(dataResponse); let text = 'Please consider joining the text chat now.'; window.sendPushNotification({ title: window.userDataCommonNetworker.name + ' aims to chat with you.', text: text, user: data.message.userIdentifier, url: notificationContent.url }); $('.splash').fadeOut(); $('.lightbox').fadeOut(); }) .fail(function (error) { $('.splash').fadeOut(); $('.lightbox').fadeOut(); }); } } function templateHasBootstrap() { const bootstrap = document.getElementById('hasBootstrap'); return bootstrap !== null && typeof bootstrap !== 'undefined'; } coNetworker_sendUsersLocation(); dispatchEvent(new CustomEvent('loadCommonNetworker')); function getRandomInt(min, max) { min = Math.ceil(min); max = Math.floor(max); return Math.floor(Math.random() * (max - min + 1)) + min; } </script> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/dark-icon-skin/dark-icon-skin.css"> <base href="/"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/unsemantic/unsemantic.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.css"> <link rel="stylesheet" type="text/css" href="https://cdn.copernicus.org/apps/htmlgenerator/css/htmlgenerator.css?v=1"> <meta name="citation_fulltext_world_readable" content=""> <meta name="citation_publisher" content=""/> <meta name="citation_title" content=""/> <meta name="citation_abstract" content=""/> <meta name="citation_journal_title" content=""/> <meta name="citation_doi" content="https://doi.org/"/> <meta name="citation_firstpage" content=""/> <meta name="citation_lastpage" content=""/> <meta name="citation_xml_url" content=""/> <meta name="citation_language" content="English"/> <meta name="libraryUrl" content=""/> <link rel="icon" href="https://www.atmospheric-chemistry-and-physics.net/favicon.ico" type="image/x-icon"/> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/jquery-ui-slider-pips.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/jquery/1.11.1/ui/template_jquery-ui-touch.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/js/respond.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/highstock/2.0.4/highstock.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/apps/htmlgenerator/js/CoPublisher.js"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { fonts: ["TeX"] ,linebreaks: { automatic: true, width: "90% container" } } }); </script> <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=MML_HTMLorMML-full"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe-ui-default.min.js"></script> <script type="text/javascript" src="https://cdn.copernicus.org/libraries/photoswipe/4.1/photoswipe.min.js"></script> <script type="text/javascript"> /* <![CDATA[ */ /* ]]> */ </script> <style type="text/css"> .top_menu { margin-right: 0!important; } </style> </head><body><header id="printheader" class="d-none d-print-block container"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </header> <header class="d-print-none mb-n3 version-2023"> <div class="container"> <div class="row no-gutters mr-0 ml-0 align-items-center header-wrapper mb-lg-3"> <div class="col-auto pr-3"> <div class="layout__moodboard-logo-year-container"> <a class="layout__moodboard-logo-link" target="_blank" href="http://www.egu.eu"> <div class="layout__moodboard-logo"> <img src="https://contentmanager.copernicus.org/800952/10/ssl" alt="" style="width: 508px; height: 223px;" /> </div> </a> </div> </div> <div class="d-none d-lg-block col text-md-right layout__title-desktop"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="d-none d-md-block d-lg-none col text-md-right layout__title-tablet"> <div class="layout__m-location-and-time"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> Atmospheric Chemistry and Physics </a> </div> </div> <div class="col layout__m-location-and-time-mobile d-md-none text-center layout__title-mobile"> <a class="moodboard-title-link" href="https://www.atmospheric-chemistry-and-physics.net/"> ACP </a> </div> <!-- End Logo --> <div class="col-auto text-right"> <button class="navbar-toggler light mx-auto mr-sm-0" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbar_menu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon light"></span> </button> </div> <!-- Topbar --> <div class="topbar d-print-none"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </div> <!-- End Topbar --> </div> </div> <div class="banner-navigation-breadcrumbs-wrapper"> <div id="navigation"> <nav class="container navbar navbar-expand-lg navbar-light"><!-- Logo --> <div class="collapse navbar-collapse CMSCONTAINER" id="navbar_menu"> <div id="cmsbox_126167" class="cmsbox navbar-collapse"><button style="display: none;" class="navbar-toggler navigation-extended-toggle-button" type="button" data-toggle="collapse" data-target="#navbar_menu" aria-controls="navbarSupportedContent" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="navbar-collapse CMSCONTAINER collapse show" id="navbarSupportedContent"> <ul class="navbar-nav mr-auto no-styling"> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/home.html"><i class='fal fa-home fa-lg' title='Home'></i></a> </li> <li class="nav-item megamenu "> <a target="_self" class="nav-link dropdown-toggle active " href="#" id="navbarDropdown10845" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Articles & preprints <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10845"> <div class="container"> <div class="row"> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Recent</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/">Recent papers</a> </div> <div class="dropdown-header">Highlights</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/acp_letters.html">ACP Letters</a> </div> <div class="dropdown-item level-2 active " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/editors_choice.html">Editor's choice</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/opinion.html">Opinions</a> </div> <div class="dropdown-header">Regular articles</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/research_article.html">Research articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/review_article.html">Review articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/measurement_report.html">Measurement reports</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/technical_note.html">Technical notes</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Special issues</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issue_overview.html">SI overview articles</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://acp.copernicus.org/special_issues.html">Published SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/scheduled_sis.html">Scheduled SIs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/how_to_apply_for_an_si.html">How to apply for an SI</a> </div> <div class="dropdown-header">EGU Compilations</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egu-letters.net/">EGU Letters</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://encyclopedia-of-geosciences.net/">Encyclopedia of Geosciences</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_blank" class="" href="https://egusphere.net/">EGUsphere</a> </div> </div> <div class="col-md-12 col-lg-4 col-sm-12"> <div class="dropdown-header">Alerts</div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/articles_and_preprints/subscribe_to_alerts.html">Subscribe to alerts</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/submission.html">Submission</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown10849" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Policies <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown10849"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/licence_and_copyright.html">Licence & copyright</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/general_terms.html">General terms</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_authors.html">Guidelines for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/guidelines_for_editors.html">Guidelines for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_policy.html">Publication policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/data_policy.html">Data policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/publication_ethics.html">Publication ethics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/inclusivity_in_global_research.html">Inclusivity in global research</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/competing_interests_policy.html">Competing interests policy</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/appeals_and_complaints.html">Appeals & complaints</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/proofreading_guidelines.html">Proofreading guidelines</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_authors.html">Obligations for authors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_editors.html">Obligations for editors</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/obligations_for_referees.html">Obligations for referees</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/policies/author_name_change.html">Inclusive author name-change policy</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown300" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Peer review <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown300"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/interactive_review_process.html">Interactive review process</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/finding_an_editor.html">Finding an editor</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/review_criteria.html">Review criteria</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a data-non-mobile-optimized="1" target="_parent" class="" href="https://editor.copernicus.org/ACP/my_manuscript_overview">Manuscript tracking</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/peer_review/reviewer_recognition.html">Reviewer recognition</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/editorial_board.html">Editorial board</a> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown29677" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Awards <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown29677"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-referee-awards.html">Outstanding referee awards</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/outstanding-editor-award.html">Outstanding editor award</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/awards/paul-crutzen-publication-award.html">Paul Crutzen Publication award</a> </div> </div> </div> </div> </div> </li> <li class="nav-item dropdown "> <a target="_self" class="nav-link dropdown-toggle " href="#" id="navbarDropdown6086" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">About <span class="caret"></span></a> <div class="dropdown-menu level-1 " aria-labelledby="navbarDropdown6086"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/aims_and_scope.html">Aims & scope</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/subject_areas.html">Subject areas</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/manuscript_types.html">Manuscript types</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_processing_charges.html">Article processing charges</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/financial_support.html">Financial support</a> </div> <div class="dropdown dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="dropdown-toggle dropdown-item " href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press.html" > News & press<span class="caret"></span> </a> <div class="dropdown-menu level-2 " aria-labelledby="navbarDropdown316"> <div > <div > <div class="col-md-12 col-lg-12 col-sm-12"> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2019-11-27_thanks-to-cristina-facchini-and-rolf-sander-and-welcome-to-barbara-ervens.html">Many thanks to Cristina Facchini and Rolf Sander and welcome to Barbara Ervens as executive editor of ACP</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2020-08-28_first-acp-letter-published.html">First ACP Letter: The value of remote marine aerosol measurements for constraining radiative forcing uncertainty</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-01-14_atmospheric-evolution-of-emissions-from-a-boreal-forest-fire-the-formation-of-highly-functionalized-oxygen-nitrogen-and-sulfur-containing-organic-compounds.html">Atmospheric evolution of emissions from a boreal forest fire: the formation of highly functionalized oxygen-, nitrogen-, and sulfur-containing organic compounds</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-04-25_observing-the-timescales-of-aerosol-cloud-interactions-in-snapshot-satellite-images.html">Observing the timescales of aerosol–cloud interactions in snapshot satellite images</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-10-15_new-acp-letter-how-alkaline-compounds-control-atmospheric-aerosol-particle-acidity.html">New ACP Letter: How alkaline compounds control atmospheric aerosol particle acidity</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2021-11-16_changes-in-biomass-burning-wetland-extent-or-agriculture-drive-atmospheric-nh3-trends-in-select-african-regions.html">Changes in biomass burning, wetland extent, or agriculture drive atmospheric NH3 trends in select African regions</a> </div> <div class="dropdown-item level-3 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/news_and_press/2022-07-18_two-of-acps-founding-executive-editors-step-down.html">Two of ACP's founding executive editors step down</a> </div> </div> </div> </div> </div> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/egu_resources.html">EGU resources</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/promote_your_work.html">Promote your work</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_statistics.html">Journal statistics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/journal_metrics.html">Journal metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/abstracted_and_indexed.html">Abstracted & indexed</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/article_level_metrics.html">Article level metrics</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/faqs.html">FAQs</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a> </div> <div class="dropdown-item level-2 " style="list-style: none"> <a target="_parent" class="" href="https://www.atmospheric-chemistry-and-physics.net/about/xml_harvesting_and_oai-pmh.html">XML harvesting & OAI-PMH</a> </div> </div> </div> </div> </div> </li> <li class="nav-item "> <a target="_parent" class="nav-link " href="https://www.atmospheric-chemistry-and-physics.net/egu_publications.html">EGU publications</a> </li> <li class="nav-item "> <a target="_blank" class="nav-link " data-non-mobile-optimized="1" href="https://editor.copernicus.org/ACP/"><i class='fal fa-sign-in-alt fa-lg' title='Login'></i></a> </li> <!-- Topbar --> <li class="d-print-none d-lg-none pt-2 topbar-mobile"> <!-- <iframe frameborder="0" id="co_auth_check_authiframecontainer" style="width: 179px; height: 57px; margin: 0; margin-bottom: 5px; margin-left: 10px; margin-top: -15px; padding: 0; border: none; overflow: hidden; background-color: transparent; display: none;" src=""></iframe> --> </li> <!-- End Topbar --> </ul> </div> </div></div> </nav> </div> <section id="banner" class="banner dzsparallaxer use-loading auto-init height-is-based-on-content mode-scroll loaded dzsprx-readyall"> <div class="divimage dzsparallaxer--target layout__moodboard-banner" data-src="" style=""></div> <div id="headers-content-container" class="container CMSCONTAINER"> <div id="cmsbox_126230" class="cmsbox "> <span class="header-small text-uppercase">&nbsp;</span> <h1 class="display-4 header-get-function home-header hide-md-on-version2023"> Editor's choice &nbsp; </h1> </div></div> </section> <div id="breadcrumbs" class="breadcrumbs"> <div class="container"> <div class="row align-items-center"> <div class="d-none d-sm-block text-nowrap pageactions"></div> <!-- START_SEARCH --> <!-- END_SEARCH --> <!-- The template part snippet fo breadcrubs is in source code--> <div class="justify-content-between col-auto col-md CMSCONTAINER" id="breadcrumbs_content_container"><div id="cmsbox_1088152" class="cmsbox "><!-- tpl: templates/get_functions/get_breadcrumbs/index --> <!-- START_BREADCRUMBS_CONTAINER --> <ol class="breadcrumb"> <!-- START_BREADCRUMBS --> <li class="breadcrumb-item home"><a href="https://www.atmospheric-chemistry-and-physics.net">Home</a></li> <li class="breadcrumb-item"><a href="https://ACP.copernicus.org">Articles &amp; preprints</a></li> <!-- END_BREADCRUMBS --> </ol> <!-- END_BREADCRUMBS_CONTAINER --> </div></div> <div class="col col-md-4 text-right page-search CMSCONTAINER" id="search_content_container"><div id="cmsbox_1088035" class="cmsbox "><!-- v1.31 --> <!-- 1.31: added placeholder for test system sanitizing--> <!-- 1.3: #855 --> <!-- 1.2: #166 --> <!-- CMS ressources/FinderBreadcrumbBox.html --> <!-- START_SITE_SEARCH --> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div> <div class="row align-items-center no-gutters py-1" id="search-wrapper"> <div class="col-auto pl-0 pr-1"> <a id="templateSearchInfoBtn" role="button" tabindex="99" data-container="body" data-toggle="popover" data-placement="bottom" data-trigger="click"><span class="fal fa-info-circle"></span></a> </div> <div class="col pl-0 pr-1"> <input type="search" placeholder="Search" name="q" class="form-control form-control-sm" id="search_query_solr"/> </div> <div class="col-auto pl-0"> <button title="Start site search" id="start_site_search_solr" class="btn btn-sm btn-success"><span class="co-search"></span></button> </div> </div> <div class="text-left"> <div id="templateSearchInfo" class="d-none"> <div> <p> Multiple terms: term1 term2<br /> <i>red apples</i><br /> returns results with all terms like:<br /> <i>Fructose levels in <strong>red</strong> and <strong>green</strong> apples</i><br /> </p> <p> Precise match in quotes: "term1 term2"<br /> <i>"red apples"</i><br /> returns results matching exactly like:<br /> <i>Anthocyanin biosynthesis in <strong>red apples</strong></i><br /> </p> <p> Exclude a term with -: term1 -term2<br /> <i>apples -red</i><br /> returns results containing <i><strong>apples</strong></i> but not <i><strong>red</strong></i>:<br /> <i>Malic acid in green <strong>apples</strong></i><br /> </p> </div> </div> <div class="modal " id="templateSearchResultModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content"> <div class="modal-header modal-header--sticky shadow one-column d-block"> <div class="row no-gutters mx-1"> <div class="col mr-3"> <h1 class="" id="resultsSearchHeader"><span id="templateSearchResultNr"></span> hit<span id="templateSearchResultNrPlural">s</span> for <span id="templateSearchResultTerm"></span></h1> </div> <div class="col-auto"> <a id="scrolltopmodal" href="javascript:void(0)" onclick="scrollModalTop();" style="display: none;"><i class="co-home"></i></a> </div> <div class="col-auto"> <button data-dismiss="modal" aria-label="Close" class="btn btn-danger mt-1">Close</button> </div> </div> </div> <div class="modal-body one-column"> <!-- $$co-sanitizing-slot1$$ --> <div class="grid-container mx-n3"><div class="grid-85 tablet-grid-85"> <button aria-label="Refine" id="refineSearchModal" class="btn btn-primary float-left mt-4">Refine your search</button> <button aria-label="Refine" id="refineSearchModalHide" class="btn btn-danger float-left d-none mt-4">Hide refinement</button> </div></div> <div class="grid-container mx-n3"><div class="grid-100 tablet-grid-100"><div id="templateRefineSearch" class="d-none"></div></div></div> <div id="templateSearchResultContainer" class="searchResultsModal mx-n3"></div> <div class="grid-container mb-0"><div class="grid-100 tablet-grid-100"><div id="templateSearchResultContainerEmpty" class="co-notification d-none">There are no results for your search term.</div></div></div> </div> </div> </div> </div> </div> <!-- feedback network problems --> <div class="modal " id="templateSearchErrorModal1" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Network problems</h1> <div class="co-error">We are sorry, but your search could not be completed due to network problems. Please try again later.</div> </div> </div> </div> </div> <!-- feedback server timeout --> <div class="modal " id="templateSearchErrorModal2" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Server timeout</h1> <div class="co-error">We are sorry, but your search could not be completed due to server timeouts. Please try again later.</div> </div> </div> </div> </div> <!-- feedback invalid search term --> <div class="modal " id="templateSearchErrorModal3" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Empty search term</h1> <div class="co-error">You have applied the search with an empty search term. Please revisit and try again.</div> </div> </div> </div> </div> <!-- feedback too many requests --> <div class="modal " id="templateSearchErrorModal4" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-lg modal-dialog-centered"> <div class="modal-content p-3"> <div class="modal-body text-left"> <h1 class="mt-0 pt-0">Too many requests</h1> <div class="co-error">We are sorry, but we have received too many parallel search requests. Please try again later.</div> </div> </div> </div> </div> <!-- loading --> <div class="modal " id="templateSearchLoadingModal" role="dialog" aria-labelledby="Search results" aria-hidden="true"> <div class="modal-dialog modal-sm modal-dialog-centered"> <div class="modal-content p-3 co_LoadingDotsContainer"> <div class="modal-body"> <div class="text">Searching</div> <div class="dots d-flex justify-content-center"><div class="dot"></div><div class="dot"></div><div class="dot"></div></div></div> </div> </div> </div> </div> <style> /*.modal {*/ /* background: rgba(255, 255, 255, 0.8);*/ /*}*/ .modal-header--sticky { position: sticky; top: 0; background-color: inherit; z-index: 1055; } .grid-container { margin-bottom: 1em; /*padding-left: 0;*/ /*padding-right: 0;*/ } #templateSearchInfo{ display: none; background-color: var(--background-color-primary); margin-top: 1px; z-index: 5; border: 1px solid var(--color-primary); opacity: .8; font-size: .7rem; border-radius: .25rem; } #templateSearchLoadingModal .co_LoadingDotsContainer { z-index: 1000; } #templateSearchLoadingModal .co_LoadingDotsContainer .text { text-align: center; font-weight: bold; padding-bottom: 1rem; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot { background-color: #0072BC; border: 2px solid white; border-radius: 50%; float: left; height: 2rem; width: 2rem; margin: 0 5px; -webkit-transform: scale(0); transform: scale(0); -webkit-animation: animation_dots_breath 1000ms ease infinite 0ms; animation: animation_dots_breath 1000ms ease infinite 0ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(2) { -webkit-animation: animation_dots_breath 1000ms ease infinite 300ms; animation: animation_dots_breath 1000ms ease infinite 300ms; } #templateSearchLoadingModal .co_LoadingDotsContainer .dot:nth-child(3) { -webkit-animation: animation_dots_breath 1000ms ease infinite 600ms; animation: animation_dots_breath 1000ms ease infinite 600ms; } #templateSearchResultModal [class*="grid-"] { padding-left: 10px !important; padding-right: 10px !important; } #templateSearchResultTerm { font-weight: bold; } #resultsSearchHeader { display: block !important; } #scrolltopmodal { font-size: 3.0em; margin-top: 0 !important; margin-right: 15px; } @-webkit-keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @keyframes animation_dots_breath { 50% { -webkit-transform: scale(1); transform: scale(1); opacity: 1; } 100% { opacity: 0; } } @media (min-width: 768px) and (max-width: 991px) { #templateSearchResultModal .modal-dialog { max-width: 90%; } } </style> <script> if(document.querySelector('meta[name="global_moBaseURL"]').content == "https://meetingorganizer.copernicus.org/") FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder-app')+"search/library.php"; else FINDER_URL = document.querySelector('meta[name="global_moBaseURL"]').content.replace('meetingorganizer', 'finder')+"search/library.php"; SEARCH_INPUT = document.getElementById('search_query_solr'); SEARCH_INPUT_MODAL = document.getElementById('search_query_modal'); searchRunning = false; offset = 20; INITIAL_OFFSET = 20; var MutationObserver = window.MutationObserver || window.WebKitMutationObserver || window.MozMutationObserver; const targetNodeSearchModal = document.getElementById("templateSearchResultModal"); const configSearchModal = { attributes: true, childList: true, subtree: true }; // Callback function to execute when mutations are observed const callbackSearchModal = (mutationList, observer) => { for (const mutation of mutationList) { if (mutation.type === "childList") { // console.log("A child node has been added or removed."); picturesGallery(); } else if (mutation.type === "attributes") { // console.log(`The ${mutation.attributeName} attribute was modified.`); } } }; // Create an observer instance linked to the callback function const observer = new MutationObserver(callbackSearchModal); // Start observing the target node for configured mutations observer.observe(targetNodeSearchModal, configSearchModal); function _addEventListener() { document.getElementById('search_query_solr').addEventListener('keypress', (e) => { if (e.key === 'Enter') _runSearch(); }); document.getElementById('start_site_search_solr').addEventListener('click', (e) => { _runSearch(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $('#templateSearchResultModal').scroll(function() { if ($(this).scrollTop()) { $('#scrolltopmodal:hidden').stop(true, true).fadeIn().css("display","inline-block"); } else { $('#scrolltopmodal').stop(true, true).fadeOut(); } }); } function scrollModalTop() { $('#templateSearchResultModal').animate({ scrollTop: 0 }, 'slow'); // $('#templateSearchResultModal').scrollTop(0); } function picturesGallery() { $('body').off('click', '.paperlist-avatar img'); $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; if (typeof search_gallery != "undefined") { search_gallery = null; } $('body').on('click', '#templateSearchResultContainer .paperlist-avatar img', function (e) { if(searchPaperListAvatarThumb.length === 0 && searchPaperListAvatar.length === 0) { $('#templateSearchResultContainer .paperlist-avatar img').each(function () { var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption = $(this).attr('data-caption'); var figure = { src: webversion, w: width, h: height, title: caption }; searchPaperListAvatarThumb.push($(this)[0]); searchPaperListAvatar.push(figure); }); } var target = $(this); var index = $('#templateSearchResultContainer .paperlist-avatar img').index(target); var options = { showHideOpacity:false, bgOpacity:0.8, index:index, spacing:0.15, history: false, focus:false, getThumbBoundsFn: function(index) { var thumbnail = searchPaperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; search_gallery = new PhotoSwipe( search_pswpElement, PhotoSwipeUI_Default,[searchPaperListAvatar[index]],options); search_gallery.init(); }); } function showError(code, msg) { console.error(code, msg); $("#templateSearchLoadingModal").modal("hide"); switch(code) { case -3: // http request fail case -2: // invalid MO response case 4: // CORS case 1: // project $("#templateSearchErrorModal1").modal({}); break; case -1: // timeout $("#templateSearchErrorModal2").modal({}); break; case 2: // empty term $("#templateSearchErrorModal3").modal({}); break; case 3: // DOS $("#templateSearchErrorModal4").modal({}); break; default: $("#templateSearchErrorModal1").modal({}); break; } } function clearForm() { var myFormElement = document.getElementById("library-filters") var elements = myFormElement.elements; $(".form-check-input").prop('checked', false).change().parent().removeClass('active'); for(i=0; i<elements.length; i++) { field_type = elements[i].type.toLowerCase(); switch(field_type) { case "text": case "password": case "textarea": case "hidden": elements[i].value = ""; break; case "radio": case "checkbox": if (elements[i].checked) { elements[i].checked = false; } break; case "select-one": case "select-multi": elements[i].selectedIndex = -1; break; default: break; } } } function generateShowMoreButton(offset, term) { var code = '<button aria-label="ShowMore" id="showMore" class="btn btn-success float-right mr-2" data-offset="' + offset + '">Show more</button>'; return code; } function hideModal(id) { $("#"+id).modal('hide'); } function showModal(id) { $("#"+id).modal({}); } function prepareForPhotoSwipe() { searchPaperListAvatar = []; searchPaperListAvatarThumb = []; search_pswpElement = document.querySelectorAll('.pswp')[0]; } function _sendAjax(projectID, term) { let httpRequest = new XMLHttpRequest(); if(searchRunning) { console.log("Search running"); return; } if (!httpRequest) { console.error("Giving up :( Cannot create an XMLHTTP instance"); showError(-1); return false; } // httpRequest.timeout = 20000; // time in milliseconds httpRequest.withCredentials = false; httpRequest.ontimeout = (e) => { showError(-1, "result timeout"); searchRunning = false; }; httpRequest.onreadystatechange = function() { if (httpRequest.readyState === XMLHttpRequest.DONE) { searchRunning = false; if (httpRequest.status === 200) { let rs = JSON.parse(httpRequest.responseText); if(rs) { if(rs.isError) { showError(rs.errorCode, rs.errorMessage); } else { let html = rs.resultHTMLs; $("#modal_search_query").val(rs.term); $("#templateSearchResultTerm").html(rs.term); $("#templateSearchResultNr").html(rs.resultsNr); $("#templateRefineSearch").html(rs.filter); if(rs.filter == false) { console.log('filter empty'); $("#refineSearchModal").removeClass('d-block').addClass('d-none'); } if(rs.resultsNr==1) $("#templateSearchResultNrPlural").hide(); else $("#templateSearchResultNrPlural").show(); if(rs.resultsNr==0) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(""); $("#templateSearchResultContainerEmpty").removeClass("d-none"); showModal('templateSearchResultModal'); } else { if((rs.resultsNr - offset)>0) { html = html + generateShowMoreButton(offset, term); } $("#templateSearchResultContainerEmpty").addClass("d-none"); if( offset == INITIAL_OFFSET) { hideModal('templateSearchLoadingModal'); $("#templateSearchResultContainer").html(html); showModal('templateSearchResultModal'); } else { $('#showMore').remove(); startHtml = $("#templateSearchResultContainer").html(); $("#templateSearchResultContainer").html(startHtml + html); } // prepareForPhotoSwipe(); } } } else { showError(-2, "invalid result"); } } else { showError(-3, "There was a problem with the request."); } } }; if(offset == INITIAL_OFFSET) { hideModal('templateSearchResultModal'); showModal('templateSearchLoadingModal'); } httpRequest.open("GET", FINDER_URL+"?project="+projectID+"&term="+encodeURI(term)+((offset>INITIAL_OFFSET)?("&offset="+(offset-INITIAL_OFFSET)) : "")); httpRequest.send(); searchRunning = true; } function _runSearch() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var term = _searchTrimInput(SEARCH_INPUT.value); if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } function _searchTrimInput(str) { return str.replace(/^\s+|\s+$/gm, ''); } function run() { _addEventListener(); $('#templateSearchInfoBtn, #modalSearchInfoBtn').popover({ sanitize: false, html: true, content: $("#templateSearchInfo").html(), placement: "bottom", template: '<div class="popover" role="tooltip"><div class="arrow"></div><button class="m-1 float-right btn btn-sm btn-danger" id="templateSearchInfoClose"><i class="fas fa-times-circle"></i></button><h3 class="popover-header"></h3><div class="popover-body"></div></div>', title: "Search tips", }); $(document).click(function (e) { let t = $(e.target); let a = t && t.attr("data-toggle")!=="popover" && t.parent().attr("data-toggle")!=="popover"; let b = t && $(".popover").has(t).length===0; if(a && b) { $('#templateSearchInfoBtn').popover('hide'); $('#modalSearchInfoBtn').popover('hide'); } }); $('#templateSearchInfoBtn').on('shown.bs.popover', function () { $("#templateSearchInfoClose").click(function(e){ $('#templateSearchInfoBtn').popover('hide'); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }) $('#templateSearchResultModal').on('hidden.bs.modal', function(e) { $('body').off('click', '#templateSearchResultContainer .paperlist-avatar img'); var pswpElement = document.querySelectorAll('.pswp')[0]; var gallery = null; var paperListAvatar = []; var paperListAvatarThumb = []; $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); $('body').on('click', '.paperlist-avatar img', function (e) { if(paperListAvatarThumb.length === 0 && paperListAvatar.length === 0){ $('.paperlist-avatar img').each(function(){ var webversion = $(this).attr('data-web'); var width = $(this).attr('data-width'); var height = $(this).attr('data-height'); var caption =$(this).attr('data-caption'); var figure = { src:webversion, w:width, h:height, title:caption }; paperListAvatarThumb.push($(this)[0]); paperListAvatar.push(figure); }); } var target = $(this); var index = $('.paperlist-avatar img').index(target); var options = { showHideOpacity:true, bgOpacity:0.8, index:index, spacing:0.15, getThumbBoundsFn: function(index) { var thumbnail = paperListAvatarThumb[index]; var pageYScroll = window.pageYOffset || document.documentElement.scrollTop; var rect = thumbnail.getBoundingClientRect(); return {x:rect.left, y:rect.top + pageYScroll, w:rect.width}; } }; gallery = new PhotoSwipe( pswpElement, PhotoSwipeUI_Default,[paperListAvatar[index]],options); gallery.init(); }); }); $('#templateSearchResultModal').on('hide.bs.modal', function(e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); offset = INITIAL_OFFSET; }) $(document).on("click", "#showMore", function(e){ offset+=INITIAL_OFFSET; runSearchModal() e.stopPropagation(); e.stopImmediatePropagation(); return false; }); $(document).ready(function() { $(document).on("click", "#refineSearchModal", function (e) { $("#templateRefineSearch").removeClass('d-none').addClass('d-block'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModalHide").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#refineSearchModalHide", function (e) { $("#templateRefineSearch").removeClass('d-block').addClass('d-none'); $(this).removeClass('d-block').addClass('d-none'); $("#refineSearchModal").removeClass('d-none').addClass('d-block'); }); $(document).on("click", "#modal_start_site_search", function (e) { runSearchModal(); e.stopPropagation(); e.stopImmediatePropagation(); return false; }); }); } function runSearchModal() { var projectID = document.querySelector('meta[name="global_projectID"]').content; var queryString = $('#library-filters').serialize(); var term = _searchTrimInput($('#modal_search_query').val()); term+='&'+queryString; if(term.length > 0) { _sendAjax(projectID, term); } else { showError(2, 'Empty search term') } } if(document.getElementById('search_query_solr')) { run(); } </script> <!-- END_SITE_SEARCH --></div></div> </div> </div> </div> </div> </header> <!--=== Content ===--> <main class="one-column version-2023"> <div id="content" class="container"> <div id="page_content_container" class="CMSCONTAINER row"> <div class="col"> <div class="level1Toc"> <div class="grid-container no-margin"> <div class="grid-100"> <h1>Editor's choice</h1> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="0"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png" data-width="531" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Nov 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/12259/2024/">Tropospheric links to uncertainty in stratospheric subseasonal predictions</a> <div class="authors">Rachel W.-Y. Wu, Gabriel Chiodo, Inna Polichtchouk, and Daniela I. V. Domeisen</div> <div class="citation">Atmos. Chem. Phys., 24, 12259&ndash;12275, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-12259-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-12259-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_120744" data-show=".short_summary_120744" data-hide=".short_summary_button_120744" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_120744 ml-2" data-show=".ce_comment_120744" data-hide=".ce_comment_button_120744">Executive editor</span> <div class="j-widget__max short_summary short_summary_120744" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Strong variations in the strength of the stratospheric polar vortex can profoundly affect surface weather extremes; therefore, accurately predicting the stratosphere can improve surface weather forecasts. The research reveals how uncertainty in the stratosphere is linked to the troposphere. The findings suggest that refining models to better represent the identified sources and impact regions in the troposphere is likely to improve the prediction of the stratosphere and its surface impacts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_120744" data-show=".short_summary_button_120744">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_120744 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> There has been much emphasis on the increased predictability of the extratropical tropospheric circulation after stratospheric sudden warmings and the potential value of this to weather forecasting. But it remains the case that the sudden warmings themselves, which are significantly (but not exclusively) driven by variabiliity in the troposphere, have limited predictability. This paper uses ensemble forecasts to identify tropospheric circulation features that, if poorly predicted in the period prior to a sudden warming, lead to a poor prediction of the warming itself and hence provides a potentially useful focus for future improvements to forecast models. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_120744" data-show=".ce_comment_button_120744">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/12259/2024/acp-24-12259-2024-avatar-web.png" data-width="531" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="2"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/11133/2024/acp-24-11133-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/11133/2024/acp-24-11133-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/11133/2024/acp-24-11133-2024-avatar-web.png" data-width="600" data-height="457" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Oct 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/11133/2024/">Stable and unstable fall motions of plate-like ice crystal analogues</a> <div class="authors">Jennifer R. Stout, Christopher D. Westbrook, Thorwald H. M. Stein, and Mark W. McCorquodale</div> <div class="citation">Atmos. Chem. Phys., 24, 11133&ndash;11155, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-11133-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-11133-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_117914" data-show=".short_summary_117914" data-hide=".short_summary_button_117914" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_117914 ml-2" data-show=".ce_comment_117914" data-hide=".ce_comment_button_117914">Executive editor</span> <div class="j-widget__max short_summary short_summary_117914" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study uses 3D-printed ice crystal analogues falling in a water&ndash;glycerine mix and observed with multi-view cameras, simulating atmospheric conditions. Four types of motion are observed: stable, zigzag, transitional, and spiralling. Particle shape strongly influences motion; complex shapes have a wider range of conditions where they fall steadily compared to simple plates. The most common orientation of unstable particles is non-horizontal, contrary to prior assumptions of always horizontal. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_117914" data-show=".short_summary_button_117914">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_117914 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Among the most important atmospheric processes to humans is precipitation, which may take the liquid phase (rainfall) or ice phase (snowfall) at the Earth's surface. However, the great majority of precipitation reaching the Earth's surface passes through an ice phase before melting, and thus descends some distance through the atmosphere at a rate that is commonly understood to depend on ice particle shape. While it is colloquially said that no two snowflakes are exactly alike, their shapes do fall into a range of categories. In this work, a common diversity of ice crystal shapes are reproduced via 3D printing and their shapes are found to lead to a range of stable and unstable patterns of motion, such as zigzagging or spiraling. These motions are systematically investigated and characterized. Such advances in understanding the variability of ice fall speeds bear on a wide range of disciplines including climate forecasting and a variety of approaches to remote sensing of atmospheric conditions. [Videos are recommended accompaniment.] </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_117914" data-show=".ce_comment_button_117914">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/11133/2024/acp-24-11133-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/11133/2024/acp-24-11133-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/11133/2024/acp-24-11133-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="457" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="3"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/9939/2024/acp-24-9939-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/9939/2024/acp-24-9939-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/9939/2024/acp-24-9939-2024-avatar-web.png" data-width="600" data-height="384" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Sep 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/9939/2024/">Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization</a> <div class="authors">Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes</div> <div class="citation">Atmos. Chem. Phys., 24, 9939&ndash;9974, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-9939-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-9939-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_118312" data-show=".short_summary_118312" data-hide=".short_summary_button_118312" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_118312 ml-2" data-show=".ce_comment_118312" data-hide=".ce_comment_button_118312">Executive editor</span> <div class="j-widget__max short_summary short_summary_118312" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Ice nucleating particle (INP) concentrations&nbsp; are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_118312" data-show=".short_summary_button_118312">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_118312 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Ice Nucleating Particles (INP) remain one of the biggest sources of uncertainty when mechanistically predicting the properties of clouds and precipitation in meteorological and earth system models. This paper presents the results from some comprehensive in situ and remote sensing measurements of these aerosols at a mountaintop site in the Eastern Mediterranean, performing a highly detailed study of their sources and properties, including those of dust and bioaerosol. The results are then used to generate new parameterisations that can be applied in large-scale models, thus providing an observational basis for improving future predictions. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_118312" data-show=".ce_comment_button_118312">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/9939/2024/acp-24-9939-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/9939/2024/acp-24-9939-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/9939/2024/acp-24-9939-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="384" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="5"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/8105/2024/acp-24-8105-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/8105/2024/acp-24-8105-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/8105/2024/acp-24-8105-2024-avatar-web.png" data-width="391" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 18 Jul 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/8105/2024/">Using historical temperature to constrain the climate sensitivity, the transient climate response, and aerosol-induced cooling</a> <div class="authors">Olaf Morgenstern</div> <div class="citation">Atmos. Chem. Phys., 24, 8105&ndash;8123, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-8105-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-8105-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_115493" data-show=".short_summary_115493" data-hide=".short_summary_button_115493" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_115493 ml-2" data-show=".ce_comment_115493" data-hide=".ce_comment_button_115493">Executive editor</span> <div class="j-widget__max short_summary short_summary_115493" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> I use errors in climate model simulations to derive correction factors for the impacts of greenhouse gases and particles that bring these simulated temperature fields into agreement with an observational reconstruction of the Earth's temperature. On average across eight models, a reduction by about one-half of the particle-induced cooling would be required, causing only 0.24 K of cooling since 1850&ndash;1899. The greenhouse gas warming simulated by several highly sensitive models would also reduce. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_115493" data-show=".short_summary_button_115493">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_115493 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> The question of the climate sensitivity of CMIP models (used for IPCC) is a central question regarding the reliability of climate projections. Aerosol aspects are central here </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_115493" data-show=".ce_comment_button_115493">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/8105/2024/acp-24-8105-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/8105/2024/acp-24-8105-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/8105/2024/acp-24-8105-2024-avatar-web.png" data-width="391" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="6"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/5935/2024/acp-24-5935-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/5935/2024/acp-24-5935-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/5935/2024/acp-24-5935-2024-avatar-web.png" data-width="600" data-height="339" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 24 May 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/5935/2024/">Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations</a> <div class="authors">Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon</div> <div class="citation">Atmos. Chem. Phys., 24, 5935&ndash;5952, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-5935-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-5935-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_116121" data-show=".short_summary_116121" data-hide=".short_summary_button_116121" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_116121 ml-2" data-show=".ce_comment_116121" data-hide=".ce_comment_button_116121">Executive editor</span> <div class="j-widget__max short_summary short_summary_116121" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> <span lang="en-US">Upper tropical clouds have a strong impact on Earth's climate but are challenging to observe.</span><span lang="en-US"> We report the first long-duration observations of tropical clouds from lidars flying on board stratospheric balloons. Comparisons with spaceborne observations reveal </span><span lang="en-US">the enhanced</span><span lang="en-US"> sensitivity of balloon-borne lidar to optically thin cirrus. These clouds, which have a significant coverage and lie in the uppermost troposphere, are linked with the dehydration of air masses on their way to the stratosphere.</span> </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_116121" data-show=".short_summary_button_116121">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_116121 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> The tropical tropopause region (14-18km altitude) plays an important role in the climate system, but the technical difficulties of making measurements in this region are severe. This paper reports observations of very thin tropical tropopause cirrus clouds made using a new lidar instrument carried on long-duration balloon flights, lasting several weeks and travelling about 20000km, from the Indian Ocean to the Central Pacific. The sensitivity of the new instrument reveals that clouds are much more frequent in this part of the atmosphere than had been identified previously. The quantitative significance for the large-scale climate system, e.g. for the radiation balance, is yet to be assessed, but it is clear that these observations will be a valuable resource for scientists studying this truly remote part of the atmosphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_116121" data-show=".ce_comment_button_116121">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/5935/2024/acp-24-5935-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/5935/2024/acp-24-5935-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/5935/2024/acp-24-5935-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="339" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="9"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/3421/2024/acp-24-3421-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/3421/2024/acp-24-3421-2024-avatar-thumb80.png" data-caption="© Authors for the graph. Distributed under the Creative Commons Attribution 4.0 License. © NASA/ESPO for the background image. Copyright waived." data-web="https://acp.copernicus.org/articles/24/3421/2024/acp-24-3421-2024-avatar-web.png" data-width="600" data-height="341" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Mar 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/3421/2024/">Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O<sub>3</sub> destruction</a> <div class="authors">James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake</div> <div class="citation">Atmos. Chem. Phys., 24, 3421&ndash;3443, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-3421-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-3421-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_111193" data-show=".short_summary_111193" data-hide=".short_summary_button_111193" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_111193 ml-2" data-show=".ce_comment_111193" data-hide=".ce_comment_button_111193">Executive editor</span> <div class="j-widget__max short_summary short_summary_111193" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1&ndash;10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_111193" data-show=".short_summary_button_111193">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_111193 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Bromine chemistry in polar regions is important for the composition of the atmosphere as well as climate. Reactive bromine strongly affects the oxidation capacity and the local ozone budget, and through the export to lower latitudes, it affects the ozone budget and the atmosphere's radiative properties outside polar regions. The newly identified bromine reservoir changes our understanding of the chemical budgets of polar halogens which will have implications for the ozone and mercury removal cycles. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_111193" data-show=".ce_comment_button_111193">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/3421/2024/acp-24-3421-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/3421/2024/acp-24-3421-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/3421/2024/acp-24-3421-2024-avatar-web.png" data-width="600" data-caption="© Authors for the graph. Distributed under the Creative Commons Attribution 4.0 License. © NASA/ESPO for the background image. Copyright waived." data-height="341" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="9"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/2415/2024/acp-24-2415-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/2415/2024/acp-24-2415-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/2415/2024/acp-24-2415-2024-avatar-web.png" data-width="600" data-height="411" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Feb 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/2415/2024/">Explaining the green volcanic sunsets after the 1883 eruption of Krakatoa</a> <div class="authors">Christian von Savigny, Anna Lange, Christoph G. Hoffmann, and Alexei Rozanov</div> <div class="citation">Atmos. Chem. Phys., 24, 2415&ndash;2422, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-2415-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-2415-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_113397" data-show=".short_summary_113397" data-hide=".short_summary_button_113397" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_113397 ml-2" data-show=".ce_comment_113397" data-hide=".ce_comment_button_113397">Executive editor</span> <div class="j-widget__max short_summary short_summary_113397" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> It is well known that volcanic eruptions strongly affect the colours of the twilight sky. Typically, volcanic eruptions lead to enhanced reddish and violet twilight colours. In rare cases, however, volcanic eruptions can also lead to green sunsets. This study provides an explanation for the occurrence of these unusual green sunsets based on simulations with a radiative transfer model. Green volcanic sunsets require a sufficient stratospheric aerosol optical depth and specific aerosol sizes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_113397" data-show=".short_summary_button_113397">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_113397 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> The Royal Society report on the Krakatoa eruption included some marvelous paintings of extraordinary and highly unusual green sunsets. This article provides a novel explanation employing a detailed physical model that emphasizes the necessity for large sizes and amounts of aerosols. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_113397" data-show=".ce_comment_button_113397">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/2415/2024/acp-24-2415-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/2415/2024/acp-24-2415-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/2415/2024/acp-24-2415-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="411" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="11"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/109/2024/acp-24-109-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/109/2024/acp-24-109-2024-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/24/109/2024/acp-24-109-2024-avatar-web.png" data-width="600" data-height="278" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Jan 2024</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/24/109/2024/">Climatologically invariant scale invariance seen in distributions of cloud horizontal sizes</a> <div class="authors">Thomas D. DeWitt, Timothy J. Garrett, Karlie N. Rees, Corey Bois, Steven K. Krueger, and Nicolas Ferlay</div> <div class="citation">Atmos. Chem. Phys., 24, 109&ndash;122, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-24-109-2024,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-24-109-2024,</span> 2024</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_111372" data-show=".short_summary_111372" data-hide=".short_summary_button_111372" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_111372 ml-2" data-show=".ce_comment_111372" data-hide=".ce_comment_button_111372">Executive editor</span> <div class="j-widget__max short_summary short_summary_111372" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Viewed from space, a defining feature of Earth's atmosphere is the wide spectrum of cloud sizes. A recent study predicted the distribution of cloud sizes, and this paper compares the prediction to observations. Although there is nuance in viewing perspective, we find robust agreement with theory across different climatological conditions, including land&ndash;ocean contrasts, time of year, or latitude, suggesting a minor role for Coriolis forces, aerosol loading, or surface temperature. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_111372" data-show=".short_summary_button_111372">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_111372 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> The field of climate prediction has been bedeviled by the problem of how to represent the enormous complexity of clouds. The usual strategy is to peform deterministic simulations with advanced cloud models. The study outlined here concentrates on a statistical approach that is arguably better suited to determining the mean climatological state. The presented observations from a wide range of satellite platforms show that a power-law well describes frequencies of occurence of cloud sizes across a very wide range of scales, and that the exponent is robust to local climatological characteristics as surface temperature, aerosol loading, Coriolis forces, or dominant cloud type. Instead, the distribution of cloud sizes emerge simply from a competition for energy and air that occurs due to small-scale cloud mixing processes at cloud edge. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_111372" data-show=".ce_comment_button_111372">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/24/109/2024/acp-24-109-2024-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/24/109/2024/acp-24-109-2024-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/24/109/2024/acp-24-109-2024-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="278" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="12"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/15589/2023/acp-23-15589-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/15589/2023/acp-23-15589-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/15589/2023/acp-23-15589-2023-avatar-web.png" data-width="600" data-height="239" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Dec 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/15589/2023/">Drivers controlling black carbon temporal variability in the lower troposphere of the European Arctic</a> <div class="authors">Stefania Gilardoni, Dominic Heslin-Rees, Mauro Mazzola, Vito Vitale, Michael Sprenger, and Radovan Krejci</div> <div class="citation">Atmos. Chem. Phys., 23, 15589&ndash;15607, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-15589-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-15589-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_112617" data-show=".short_summary_112617" data-hide=".short_summary_button_112617" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_112617 ml-2" data-show=".ce_comment_112617" data-hide=".ce_comment_button_112617">Executive editor</span> <div class="j-widget__max short_summary short_summary_112617" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Models still fail in reproducing black carbon (BC) temporal variability in the Arctic. Analysis of equivalent BC concentrations in the European Arctic shows that BC seasonal variability is modulated by the efficiency of removal by precipitation during transport towards high latitudes. Short-term variability is controlled by synoptic-scale circulation patterns. The advection of warm air from lower latitudes is an effective pollution transport pathway during summer. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_112617" data-show=".short_summary_button_112617">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_112617 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Black carbon is a key source of uncertainty in regional climate predictions through aerosol-radiation interactions, cloud modifications and enhanced snow melt, and the arctic is particularly sensitive to these effects. Understanding the influence of continental emissions on arctic aerosols is crucial in earth system science, and this influence can be expected to evolve with changes to the atmospheric circulation in response to climate change. This paper uses a machine learning approach to study the factors controlling observations of black carbon in the arctic and quantitatively links these to meteorological processes and trends. This phenomenological assessment will facilitate predictions in the long range transport of black carbon transport under various climate change scenarios. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_112617" data-show=".ce_comment_button_112617">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/15589/2023/acp-23-15589-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/15589/2023/acp-23-15589-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/15589/2023/acp-23-15589-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="239" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="12"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/15305/2023/acp-23-15305-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/15305/2023/acp-23-15305-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/15305/2023/acp-23-15305-2023-avatar-web.png" data-width="600" data-height="216" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Dec 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/15305/2023/">Climate intervention using marine cloud brightening (MCB) compared with stratospheric aerosol injection (SAI) in the UKESM1 climate model</a> <div class="authors">Jim M. Haywood, Andy Jones, Anthony C. Jones, Paul Halloran, and Philip J. Rasch</div> <div class="citation">Atmos. Chem. Phys., 23, 15305&ndash;15324, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-15305-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-15305-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_113236" data-show=".short_summary_113236" data-hide=".short_summary_button_113236" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_113236 ml-2" data-show=".ce_comment_113236" data-hide=".ce_comment_button_113236">Executive editor</span> <div class="j-widget__max short_summary short_summary_113236" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The difficulties in ameliorating global warming and the associated climate change via conventional mitigation are well documented, with all climate model scenarios exceeding 1.5&thinsp;&deg;C above the preindustrial level in the near future. There is therefore a growing interest in geoengineering to reflect a greater proportion of sunlight back to space and offset some of the global warming. We use a state-of-the-art Earth-system model to investigate two of the most prominent geoengineering strategies. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_113236" data-show=".short_summary_button_113236">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_113236 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> This paper presents a timely and topical research. It directly compares the marine cloud brightening (MCB) with the stratospheric aerosol injection (SAI) effects by utilizing the fully coupled atmosphere-ocean simulations. The study also reveals some new side effects by the MCB geoengineering, such as the locking of the climate into a permanent La Nina state and an increase in sea-level over the south Pacific Ocean. Those effects should be taken into account when developing geoengineering plans. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_113236" data-show=".ce_comment_button_113236">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/15305/2023/acp-23-15305-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/15305/2023/acp-23-15305-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/15305/2023/acp-23-15305-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="216" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="12"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/13735/2023/acp-23-13735-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/13735/2023/acp-23-13735-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/13735/2023/acp-23-13735-2023-avatar-web.png" data-width="600" data-height="464" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 03 Nov 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/13735/2023/">Mechanisms controlling giant sea salt aerosol size distributions along a tropical orographic coastline</a> <div class="authors">Katherine L. Ackerman, Alison D. Nugent, and Chung Taing</div> <div class="citation">Atmos. Chem. Phys., 23, 13735&ndash;13753, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-13735-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-13735-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_112681" data-show=".short_summary_112681" data-hide=".short_summary_button_112681" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_112681 ml-2" data-show=".ce_comment_112681" data-hide=".ce_comment_button_112681">Executive editor</span> <div class="j-widget__max short_summary short_summary_112681" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Sea salt aerosol is an important marine aerosol that may be produced in greater quantities in coastal regions than over the open ocean. This study observed these particles along the windward coastline of O'ahu, Hawai'i, to understand how wind and waves influence their production and dispersal. Overall, wave heights were the strongest variable correlated with changes in aerosol concentrations, while wind speeds played an important role in their horizontal dispersal and vertical mixing. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_112681" data-show=".short_summary_button_112681">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_112681 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Giant CCN have long been recognised as highly important in warm marine clouds, as while these are low in number, they often dictate precipitation rates and thus many climate-important properties such as cloud optical thickness and lifetime. However, measuring these particles is remains challenging on a technical level and many models of their production are poorly constrained. This paper presents the results using a new methodology and goes on to explore the role of coastlines in enhancing wave breaking and thus giant CCN production. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_112681" data-show=".ce_comment_button_112681">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/13735/2023/acp-23-13735-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/13735/2023/acp-23-13735-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/13735/2023/acp-23-13735-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="464" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="14"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/13283/2023/acp-23-13283-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/13283/2023/acp-23-13283-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/13283/2023/acp-23-13283-2023-avatar-web.png" data-width="600" data-height="438" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Oct 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/13283/2023/">N<sub>2</sub>O as a regression proxy for dynamical variability in stratospheric trace gas trends</a> <div class="authors">Kimberlee Dubé, Susann Tegtmeier, Adam Bourassa, Daniel Zawada, Douglas Degenstein, Patrick E. Sheese, Kaley A. Walker, and William Randel</div> <div class="citation">Atmos. Chem. Phys., 23, 13283&ndash;13300, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-13283-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-13283-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_111564" data-show=".short_summary_111564" data-hide=".short_summary_button_111564" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_111564 ml-2" data-show=".ce_comment_111564" data-hide=".ce_comment_button_111564">Executive editor</span> <div class="j-widget__max short_summary short_summary_111564" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This paper presents a technique for understanding the causes of long-term changes in stratospheric composition. By using N<sub>2</sub>O as a proxy for stratospheric circulation in the model used to calculated trends, it is possible to separate the effects of dynamics and chemistry on observed trace gas trends. We find that observed HCl increases are due to changes in the stratospheric circulation, as are O<sub>3</sub> decreases above 30&thinsp;hPa in the Northern Hemisphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_111564" data-show=".short_summary_button_111564">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_111564 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Stratospheric ozone is important for the energy budget of the planetary atmosphere and for protecting life on Earth from harmful solar UV radiation. An unexpected decline in ozone in the extratropical lower stratosphere over the past two decades is therefore worrying and contrary to the Montreal Protocol's goal of ozone recovery. The study by Dube et al. adds important information to the ongoing discussion of this trend, which is being investigated internationally in activities such as SPARC/LOTUS, SPARC/OCTAVE-UTLS or the WMO ozone assessments. By their approach to use N2O as a tracer of stratospheric transport, the authors are able to separate ozone decrease due to circulation changes from a decrease caused by other, not further detailed reasons. They find that the latitudinal and altitudinal region where the ozone decrease cannot be explained by circulation changes is restricted to altitudes below 30hPa in the Northern hemisphere. They suggest a possible cause for the remaining ozone loss, namely a change in the tropopause altitude, thus narrowing successfully the search for processes leading to the observed ozone loss. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_111564" data-show=".ce_comment_button_111564">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/13283/2023/acp-23-13283-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/13283/2023/acp-23-13283-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/13283/2023/acp-23-13283-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="438" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="14"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/13125/2023/acp-23-13125-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/13125/2023/acp-23-13125-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/13125/2023/acp-23-13125-2023-avatar-web.png" data-width="600" data-height="162" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 18 Oct 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/13125/2023/">Global observations of aerosol indirect effects from marine liquid clouds</a> <div class="authors">Casey J. Wall, Trude Storelvmo, and Anna Possner</div> <div class="citation">Atmos. Chem. Phys., 23, 13125&ndash;13141, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-13125-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-13125-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_112884" data-show=".short_summary_112884" data-hide=".short_summary_button_112884" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_112884 ml-2" data-show=".ce_comment_112884" data-hide=".ce_comment_button_112884">Executive editor</span> <div class="j-widget__max short_summary short_summary_112884" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Interactions between aerosol pollution and liquid clouds are one of the largest sources of uncertainty in the effective radiative forcing of climate over the industrial era. We use global satellite observations to decompose the forcing into components from changes in cloud-droplet number concentration, cloud water content, and cloud amount. Our results reduce uncertainty in these forcing components and clarify their relative importance. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_112884" data-show=".short_summary_button_112884">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_112884 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> One of the largest sources of uncertainty in the overall anthropogenic forcing of climate is still the aerosol impact on liquid clouds. Disentangling the various aerosol-cloud interactions helps to improve estimates of the magnitude of global warming in the future. The current study provides the most rigorous method to date in assessing the aerosol radiative effects from satellite observations across the global ocean. The aerosol responses are decomposed into the Twomey effect (cooling due to an increase in cloud-droplet number concentration), and the adjustments of the cloud liquid water path and cloud fraction (often analysed separately) at a near-global scale. The total effective radiative forcing of liquid clouds since 1850 has been found to be negative, with the cloud adjustments larger than the Twomey effect, which was previously thought to be larger. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_112884" data-show=".ce_comment_button_112884">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/13125/2023/acp-23-13125-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/13125/2023/acp-23-13125-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/13125/2023/acp-23-13125-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="162" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="14"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/10625/2023/acp-23-10625-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/10625/2023/acp-23-10625-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/10625/2023/acp-23-10625-2023-avatar-web.png" data-width="600" data-height="459" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 26 Sep 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/10625/2023/">Molecular simulations reveal that heterogeneous ice nucleation occurs at higher temperatures in water under capillary tension</a> <div class="authors">Elise Rosky, Will Cantrell, Tianshu Li, Issei Nakamura, and Raymond A. Shaw</div> <div class="citation">Atmos. Chem. Phys., 23, 10625&ndash;10642, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-10625-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-10625-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_109847" data-show=".short_summary_109847" data-hide=".short_summary_button_109847" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_109847 ml-2" data-show=".ce_comment_109847" data-hide=".ce_comment_button_109847">Executive editor</span> <div class="j-widget__max short_summary short_summary_109847" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Using computer simulations of water, we find that water under tension freezes more easily than under normal conditions. A linear equation describes how freezing temperature increases with tension. Accordingly, simulations show that naturally occurring tension in water capillary bridges leads to higher freezing temperatures. This work is an early step in determining if atmospheric cloud droplets freeze due to naturally occurring tension, for example, during processes such as droplet collisions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_109847" data-show=".short_summary_button_109847">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_109847 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> I agree with the handling editor that this paper shows an important aspect of heterogeneous ice nucleation in water under capillary tension. The results can be of general interest to a broad geoscience community. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_109847" data-show=".ce_comment_button_109847">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/10625/2023/acp-23-10625-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/10625/2023/acp-23-10625-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/10625/2023/acp-23-10625-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="459" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="15"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/9685/2023/acp-23-9685-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/9685/2023/acp-23-9685-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/9685/2023/acp-23-9685-2023-avatar-web.png" data-width="600" data-height="505" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 01 Sep 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/9685/2023/">Atmospheric CO<sub>2</sub> inversion reveals the Amazon as a minor carbon source caused by fire emissions, with forest uptake offsetting about half of these emissions</a> <div class="authors">Luana S. Basso, Chris Wilson, Martyn P. Chipperfield, Graciela Tejada, Henrique L. G. Cassol, Egídio Arai, Mathew Williams, T. Luke Smallman, Wouter Peters, Stijn Naus, John B. Miller, and Manuel Gloor</div> <div class="citation">Atmos. Chem. Phys., 23, 9685&ndash;9723, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-9685-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-9685-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_108787" data-show=".short_summary_108787" data-hide=".short_summary_button_108787" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_108787 ml-2" data-show=".ce_comment_108787" data-hide=".ce_comment_button_108787">Executive editor</span> <div class="j-widget__max short_summary short_summary_108787" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The Amazon’s carbon balance may have changed due to forest degradation, deforestation and warmer climate. We used an atmospheric model and atmospheric CO<sub>2</sub> observations to quantify Amazonian carbon emissions (2010&ndash;2018). The region was a small carbon source to the atmosphere, mostly due to fire emissions. Forest uptake compensated for ~&thinsp;50&thinsp;% of the fire emissions, meaning that the remaining forest is still a small carbon sink. We found no clear evidence of weakening carbon uptake over the period. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_108787" data-show=".short_summary_button_108787">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_108787 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> The Amazon's role in the tropical and global carbon cycle is highly significant. Usually considered as the "lung of the planet", it is mandatory to monitor if this role is kept, or if the large rainforest even turns into a source of carbon dioxide. The study by Basso et al. finds that during the analysed years, from 2010 to 2018, the Amazon is a small net source of carbon to the atmosphere. They find that fire is the primary driver of the Amazonian source, while drought years intensify the carbon emissions. The study also examined the contributions of different regions to the Amazonian carbon budget and found that emissions in the eastern Amazon were greater than those in the western region, primarily due to fires. These findings are of high relevance - and concern - to the larger geosciences community and indicate how important it is to stop slash-and-burn in the large rainforests. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_108787" data-show=".ce_comment_button_108787">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/9685/2023/acp-23-9685-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/9685/2023/acp-23-9685-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/9685/2023/acp-23-9685-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="505" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="15"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/9401/2023/acp-23-9401-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/9401/2023/acp-23-9401-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/9401/2023/acp-23-9401-2023-avatar-web.png" data-width="600" data-height="326" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Aug 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/9401/2023/">A rise in HFC-23 emissions from eastern Asia since 2015</a> <div class="authors">Hyeri Park, Jooil Kim, Haklim Choi, Sohyeon Geum, Yeaseul Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Kieran M. Stanley, Simon O'Doherty, Paul J. Fraser, Peter G. Simmonds, Paul B. Krummel, Ray F. Weiss, Ronald G. Prinn, and Sunyoung Park</div> <div class="citation">Atmos. Chem. Phys., 23, 9401&ndash;9411, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-9401-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-9401-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_108748" data-show=".short_summary_108748" data-hide=".short_summary_button_108748" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_108748 ml-2" data-show=".ce_comment_108748" data-hide=".ce_comment_button_108748">Executive editor</span> <div class="j-widget__max short_summary short_summary_108748" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Based on atmospheric HFC-23 observations, the first estimate of post-CDM HFC-23 emissions in eastern Asia for 2008&ndash;2019 shows that these emissions contribute significantly to the global emissions rise. The observation-derived emissions were much larger than the bottom-up estimates expected to approach zero after 2015 due to national abatement activities. These discrepancies could be attributed to unsuccessful factory-level HFC-23 abatement and inaccurate quantification of emission reductions. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_108748" data-show=".short_summary_button_108748">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_108748 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> The international Montreal Protocol was signed in 1987 in order to protect the atmospheric ozone layer by phasing out the production of halogenated hydrocarbons that deplete stratospheric ozone. The protocol was successfully implemented and, over the years, amendments and adjustments of the protocol were essential to its success. Ultimately, the protocol has resulted in a reduced halogen loading of the atmosphere since the mid-1990s. Trifluoromethane (HFC-23) is one of the substances regulated by the Montreal protocol since the Kigali amendment in 2016. HFC-23 does not deplete stratospheric ozone but is a very potent greenhouse gas. Commitments were made to reduce emissions of HFC-23 during the production of HCFC-22 as part of agreements in the protocol. However, the data presented and analysed in this paper indicate that in China more than the agreed amount of HFC-23 has been emitted since 2015, resulting either from unsuccessful factory-level HFC-23 abatement and/or inaccurate quantification of emission reductions. The analysis provides valuable data of atmospheric HFC-23. The study is also a good example of how compliance with the Montreal Protocol can be monitored. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_108748" data-show=".ce_comment_button_108748">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/9401/2023/acp-23-9401-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/9401/2023/acp-23-9401-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/9401/2023/acp-23-9401-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="326" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="17"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/7503/2023/acp-23-7503-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/7503/2023/acp-23-7503-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/7503/2023/acp-23-7503-2023-avatar-web.png" data-width="533" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Jul 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/7503/2023/">Continuous weekly monitoring of methane emissions from the Permian Basin by inversion of TROPOMI satellite observations</a> <div class="authors">Daniel J. Varon, Daniel J. Jacob, Benjamin Hmiel, Ritesh Gautam, David R. Lyon, Mark Omara, Melissa Sulprizio, Lu Shen, Drew Pendergrass, Hannah Nesser, Zhen Qu, Zachary R. Barkley, Natasha L. Miles, Scott J. Richardson, Kenneth J. Davis, Sudhanshu Pandey, Xiao Lu, Alba Lorente, Tobias Borsdorff, Joannes D. Maasakkers, and Ilse Aben</div> <div class="citation">Atmos. Chem. Phys., 23, 7503&ndash;7520, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-7503-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-7503-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_107549" data-show=".short_summary_107549" data-hide=".short_summary_button_107549" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_107549 ml-2" data-show=".ce_comment_107549" data-hide=".ce_comment_button_107549">Executive editor</span> <div class="j-widget__max short_summary short_summary_107549" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We use TROPOMI satellite observations to quantify weekly methane emissions from the US Permian oil and gas basin from May 2018 to October 2020. We find that Permian emissions are highly variable, with diverse economic and activity drivers. The most important drivers during our study period were new well development and natural gas price. Permian methane intensity averaged 4.6&thinsp;% and decreased by 1&thinsp;% per year. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_107549" data-show=".short_summary_button_107549">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_107549 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Methane is a potent greenhouse gas with a global warming potential much greater than carbon dioxide. In order to understand and limit its global warming effect, it is important to have have observation systems to estimate its anthropogenic emissions. This paper analyses in a novel way TROPOMI satellite observations to track methane emissions from the largest oil production basin in the United States over a 2-year period. The analysis shows that emission variability and trends are driven by multiple factors, among which new well development and natural gas spot price are the most significant ones. The work is an excellent demonstration of the potential of satellite observations for near-real-time monitoring of methane emissions. It opens a broad range of applications, helping science and policy to understand and mitigate climate change. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_107549" data-show=".ce_comment_button_107549">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/7503/2023/acp-23-7503-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/7503/2023/acp-23-7503-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/7503/2023/acp-23-7503-2023-avatar-web.png" data-width="533" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="17"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/7001/2023/acp-23-7001-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/7001/2023/acp-23-7001-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/7001/2023/acp-23-7001-2023-avatar-web.png" data-width="600" data-height="532" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 23 Jun 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/7001/2023/">Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations</a> <div class="authors">Sandra Wallis, Hauke Schmidt, and Christian von Savigny</div> <div class="citation">Atmos. Chem. Phys., 23, 7001&ndash;7014, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-7001-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-7001-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_108789" data-show=".short_summary_108789" data-hide=".short_summary_button_108789" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_108789 ml-2" data-show=".ce_comment_108789" data-hide=".ce_comment_button_108789">Executive editor</span> <div class="j-widget__max short_summary short_summary_108789" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Strong volcanic eruptions are able to alter the temperature and the circulation of the middle atmosphere. This study simulates the atmospheric response to an idealized strong tropical eruption and focuses on the impact on the mesosphere. The simulations show a warming of the polar summer mesopause in the first November after the eruption. Our study indicates that this is mainly due to dynamical coupling in the summer hemisphere with a potential contribution from interhemispheric coupling. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_108789" data-show=".short_summary_button_108789">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_108789 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Large volcanic eruptions can have significant effects on the atmosphere and on climate. Comparing the observed effects against model predictions is also a very valuable test of our scientific understanding of how the atmosphere works. This paper describes a model investigation of a hypothetical eruption, about twice the size of that of Pinatubo in 1991, and is unusual that it focuses on the response in the mesosphere -- the part of the atmosphere in the 50-80km altitude range. The eruption deposits aerosol in the tropics in the 20-25km altitude range, in the lower stratosphere and well below the mesosphere. The effect is felt in the mesosphere through dynamical coupling communicated through small-scale gravity waves, which transport momentum and as a result can drive changes in winds and temperatures. The predictions made in the paper will be helpful in future in interpreting changes in the mesosphere observed following volcanic eruptions. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_108789" data-show=".ce_comment_button_108789">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/7001/2023/acp-23-7001-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/7001/2023/acp-23-7001-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/7001/2023/acp-23-7001-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="532" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="18"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/6789/2023/acp-23-6789-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/6789/2023/acp-23-6789-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/6789/2023/acp-23-6789-2023-avatar-web.png" data-width="600" data-height="447" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Jun 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/6789/2023/">Particle shapes and infrared extinction spectra of nitric acid dihydrate (NAD) crystals: optical constants of the <i>β</i>-NAD modification</a> <div class="authors">Robert Wagner, Alexander D. James, Victoria L. Frankland, Ottmar Möhler, Benjamin J. Murray, John M. C. Plane, Harald Saathoff, Ralf Weigel, and Martin Schnaiter</div> <div class="citation">Atmos. Chem. Phys., 23, 6789&ndash;6811, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-6789-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-6789-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_109081" data-show=".short_summary_109081" data-hide=".short_summary_button_109081" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_109081 ml-2" data-show=".ce_comment_109081" data-hide=".ce_comment_button_109081">Executive editor</span> <div class="j-widget__max short_summary short_summary_109081" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Polar stratospheric clouds (PSCs) play an important role in the depletion of stratospheric ozone. They can consist of different chemical species, including crystalline nitric acid hydrates. We found that mineral dust or meteoric ablation material can efficiently catalyse the formation of a specific phase of nitric acid dihydrate crystals. We determined predominant particle shapes and infrared optical properties of these crystals, which are important inputs for remote sensing detection of PSCs. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_109081" data-show=".short_summary_button_109081">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_109081 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Polar Stratospheric Clouds (PSCs) catalyze ozone depletion at high latitudes with important impacts on energetic, biologically effective UV radiation. The present study is a unique experiment into PSC particle optical properties and formation performed in a large, coolable cloud chamber. Robert Wagner and his colleagues find evidence that a nitric acid dihydrate can be efficiently crystallized in PSCs through heterogeneous nucleation, for example by mineral dust or micrometeorites. It has a "beta-polymorph" crystalline structure - with distinct optical properties - clearly separable from an alpha-polymorph that forms at low temperatures through homogeneous nucleation. Interestingly, electron microscopy, infrared spectroscopy, X-ray diffraction and calculations all point to the same conclusion. The results have important implications for our understanding and the detection of PSCs. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_109081" data-show=".ce_comment_button_109081">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/6789/2023/acp-23-6789-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/6789/2023/acp-23-6789-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/6789/2023/acp-23-6789-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="447" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="19"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/4863/2023/acp-23-4863-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/4863/2023/acp-23-4863-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/4863/2023/acp-23-4863-2023-avatar-web.png" data-width="528" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 25 Apr 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/4863/2023/">Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021</a> <div class="authors">Liang Feng, Paul I. Palmer, Robert J. Parker, Mark F. Lunt, and Hartmut Bösch</div> <div class="citation">Atmos. Chem. Phys., 23, 4863&ndash;4880, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-4863-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-4863-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_104560" data-show=".short_summary_104560" data-hide=".short_summary_button_104560" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_104560 ml-2" data-show=".ce_comment_104560" data-hide=".ce_comment_button_104560">Executive editor</span> <div class="j-widget__max short_summary short_summary_104560" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Our understanding of recent changes in atmospheric methane has defied explanation. Since 2007, the atmospheric growth of methane has accelerated to record-breaking values in 2020 and 2021. We use satellite observations of methane to show that (1) increasing emissions over the tropics are mostly responsible for these recent atmospheric changes, and (2) changes in the OH sink during the 2020 Covid-19 lockdown can explain up to 34&percnt; of changes in atmospheric methane for that year. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_104560" data-show=".short_summary_button_104560">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_104560 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> After a period of near-zero growth of atmospheric methane, a major greenhouse gas, its growth rates have increased, with values in 2020 and 2021 exceeding all prior values since the beginning of systematic measurements in 1983. This recent acceleration, particularly during the covid-19 years 2020 and 2021, raises the question whether the methane increase was due to stronger sources or reduced sinks in the troposphere. A reduction of the tropospheric abundance of the hydroxyl radical (OH), the reaction of which is the main tropospheric methane sink, could be plausibly explained by global-scale reductions in nitrogen oxides due to pandemic-related industry shutdowns. Using an inversion scheme, Feng et al. demonstrate that such a reduction only accounts for about 34% in 2020 and 10% in 2021 of the observed methane rise. Instead, the authors attribute increased methane emissions to hydrological anomalies and microbial sources over the tropics, i.e., Eastern Africa and tropical South America, and temperate North America. The study demonstrates the importance of simultaneously accounting for changes in methane emissions and sinks for an improved quantitative understanding of the evolution of the methane concentrations to assess the role of greenhouse gases in climate change and tropospheric composition. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_104560" data-show=".ce_comment_button_104560">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/4863/2023/acp-23-4863-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/4863/2023/acp-23-4863-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/4863/2023/acp-23-4863-2023-avatar-web.png" data-width="528" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="20"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/4373/2023/acp-23-4373-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/4373/2023/acp-23-4373-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/4373/2023/acp-23-4373-2023-avatar-web.png" data-width="495" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 13 Apr 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/4373/2023/">Selective deuteration as a tool for resolving autoxidation mechanisms in <i>α</i>-pinene ozonolysis</a> <div class="authors">Melissa Meder, Otso Peräkylä, Jonathan G. Varelas, Jingyi Luo, Runlong Cai, Yanjun Zhang, Theo Kurtén, Matthieu Riva, Matti Rissanen, Franz M. Geiger, Regan J. Thomson, and Mikael Ehn</div> <div class="citation">Atmos. Chem. Phys., 23, 4373&ndash;4390, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-4373-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-4373-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_107282" data-show=".short_summary_107282" data-hide=".short_summary_button_107282" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_107282 ml-2" data-show=".ce_comment_107282" data-hide=".ce_comment_button_107282">Executive editor</span> <div class="j-widget__max short_summary short_summary_107282" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We discuss and show the viability of a method where multiple isotopically labelled precursors are used for probing the formation pathways of highly oxygenated organic molecules (HOMs) from the oxidation of the monoterpene a-pinene. HOMs are very important for secondary organic aerosol (SOA) formation in forested regions, and monoterpenes are the single largest source of SOA globally. The fast reactions forming HOMs have thus far remained elusive despite considerable efforts over the last decade. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_107282" data-show=".short_summary_button_107282">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_107282 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> In the last decade it was discovered that autoxidation of monoterpenes produces highly oxidised organic molecules (HOM) in the atmosphere. These have low volatility and produce secondary organic aerosols that are relevant to climate and human health. Autoxidation involves organic peroxy radicals which undergo one or more intramolecular H-shifts with subsequent O2 addition leading to the formation of HOMs. The experimental and theoretical elucidation of the mechanism is challenging due to the large number and isomerism of possible intermediates and their numerous reaction pathways. In the present study, selective isotope labeling was combined with high-resolution mass spectrometry to greatly enhance the possibilities to identify relevant reaction pathways. Selective isotopic labeling of organic molecules is a powerful method for studying reaction mechanisms, and it is currently underutilized in the community. This is a great example of using this method, hopefully paving the way to more studies of this sort to come. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_107282" data-show=".ce_comment_button_107282">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/4373/2023/acp-23-4373-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/4373/2023/acp-23-4373-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/4373/2023/acp-23-4373-2023-avatar-web.png" data-width="495" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="20"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/4149/2023/acp-23-4149-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/4149/2023/acp-23-4149-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/4149/2023/acp-23-4149-2023-avatar-web.png" data-width="600" data-height="332" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Apr 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/4149/2023/">Foreign emissions exacerbate PM<sub>2.5</sub> pollution in China through nitrate chemistry</a> <div class="authors">Jun-Wei Xu, Jintai Lin, Gan Luo, Jamiu Adeniran, and Hao Kong</div> <div class="citation">Atmos. Chem. Phys., 23, 4149&ndash;4163, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-4149-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-4149-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_106369" data-show=".short_summary_106369" data-hide=".short_summary_button_106369" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_106369 ml-2" data-show=".ce_comment_106369" data-hide=".ce_comment_button_106369">Executive editor</span> <div class="j-widget__max short_summary short_summary_106369" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Research on the sources of Chinese PM<sub>2.5</sub> pollution has focused on the contributions of China’s domestic emissions. However, the impact of foreign anthropogenic emissions has typically been simplified or neglected. Here we find that foreign anthropogenic emissions play an important role in Chinese PM<sub>2.5</sub> pollution through chemical interactions between foreign-transported pollutants and China’s local emissions. Thus, foreign emission reductions are essential for improving Chinese air quality. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_106369" data-show=".short_summary_button_106369">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_106369 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> This paper investigates the influence of internationally-transported pollution on China, with a specific highlight on the formation of secondary PM2.5 in the form of nitrate. While sources from within China have traditionally been of most interest for domestic air quality policy, these have diminished over recent years, so sources from outside China may become more significant. The topic of transboundary exchange of air pollution has long been studied in other parts of the world, in particular among CLRTAP signatory countries in North America and Europe, but East Asian transboundary pollution represents a different challenge, in part owing to differences in geography and emissions, but also compared to Europe in particular, the transportation scales are much larger. This work not only quantifies the impacts of long distance pollution on Chinese air quality, but also highlights the complex chemical interactions between the local and transboundary pollutants. Papers such as this will likely influence the debate regarding international controls of air pollutants. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_106369" data-show=".ce_comment_button_106369">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/4149/2023/acp-23-4149-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/4149/2023/acp-23-4149-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/4149/2023/acp-23-4149-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="332" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="22"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/1769/2023/acp-23-1769-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/1769/2023/acp-23-1769-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/1769/2023/acp-23-1769-2023-avatar-web.png" data-width="600" data-height="403" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 01 Feb 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/1769/2023/">Projected increases in wildfires may challenge regulatory curtailment of PM<sub>2.5</sub> over the eastern US by 2050</a> <div class="authors">Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang</div> <div class="citation">Atmos. Chem. Phys., 23, 1769&ndash;1783, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-1769-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-1769-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_102928" data-show=".short_summary_102928" data-hide=".short_summary_button_102928" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_102928 ml-2" data-show=".ce_comment_102928" data-hide=".ce_comment_button_102928">Executive editor</span> <div class="j-widget__max short_summary short_summary_102928" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_102928" data-show=".short_summary_button_102928">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_102928 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Wildfires enhance surface PM2.5 concentration and thus adversely affect air quality and human health. Based on online-coupled fire-climate-ecosystem model simulations, this paper projects a nearly 2-fold increase in wildfire-induced summer-mean surface PM2.5 by the mid-21st century over North America. The projected enhancement is substantial even in the less-densely forested eastern US - as already manifested in the poor air quality as observed in June 2023 due to Canadian wildfires -, which is attributed to the transport of smoke from North America as well as positive climatic feedback of smoke on PM2.5. Thus, future regulatory controls on PM2.5 in North America, particularly in the eastern US where anthropogenic emissions are falling, should consider the effect of future increases in wildfires. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_102928" data-show=".ce_comment_button_102928">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/1769/2023/acp-23-1769-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/1769/2023/acp-23-1769-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/1769/2023/acp-23-1769-2023-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="403" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="23"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/163/2023/acp-23-163-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/163/2023/acp-23-163-2023-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/23/163/2023/acp-23-163-2023-avatar-web.png" data-width="434" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Jan 2023</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/23/163/2023/">Dependence of strategic solar climate intervention on background scenario and model physics</a> <div class="authors">John T. Fasullo and Jadwiga H. Richter</div> <div class="citation">Atmos. Chem. Phys., 23, 163&ndash;182, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-23-163-2023,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-23-163-2023,</span> 2023</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_105789" data-show=".short_summary_105789" data-hide=".short_summary_button_105789" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_105789 ml-2" data-show=".ce_comment_105789" data-hide=".ce_comment_button_105789">Executive editor</span> <div class="j-widget__max short_summary short_summary_105789" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The continued high levels of anthropogenic greenhouse gas emissions increase the likelihood that key climate warming thresholds will be exceeded in the coming decades. Here we examine a recently proposed geoengineering approach using two recently produced climate model experiments. We find the associated latitudinal distribution of aerosol mass to exhibit substantial uncertainty, suggesting the need for significant flexibility in the location and amount of aerosol delivery, if implemented. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_105789" data-show=".short_summary_button_105789">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_105789 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Stratospheric aerosol injection (SAI) is often discussed in the media and in policy circles as a possible action to limit future increase in global temperatures. Indeed it has been demonstrated in model simulations that in principle injection could be 'controlled', using model information, to meet specific targets on the temperature increase and its spatial distribution. This paper shows that the simulated climate response to SAI is strongly model-dependent, reflecting fundamental uncertainties in model representation of key processes. In particular this means that the SAI determined by the control algorithms as those required to achieve temperature targets different significantly from one model to another. Specific mechanisms, in particular the difference in rapid response in clouds and in precipitation to an imposed radiative perturbation and the ensuing ocean circulation response, are identified that contribute to the strong differences in model response to SAI. There is also a strong sensitivity to the pre-existing sulphate distribution which will be determined by future anthropogenic emissions. The authors note that these inter-model differences are unlikely to be resolved quickly and that controlled SAI, to achieve specific temperature goals and with well-quantified risks of unexpected consequences, is likely to remain out of reach for many years. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_105789" data-show=".ce_comment_button_105789">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/23/163/2023/acp-23-163-2023-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/23/163/2023/acp-23-163-2023-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/23/163/2023/acp-23-163-2023-avatar-web.png" data-width="434" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="24"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/16003/2022/acp-22-16003-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/16003/2022/acp-22-16003-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/16003/2022/acp-22-16003-2022-avatar-web.png" data-width="397" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Dec 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/16003/2022/">Product distribution, kinetics, and aerosol formation from the OH oxidation of dimethyl sulfide under different RO<sub>2</sub> regimes</a> <div class="authors">Qing Ye, Matthew B. Goss, Jordan E. Krechmer, Francesca Majluf, Alexander Zaytsev, Yaowei Li, Joseph R. Roscioli, Manjula Canagaratna, Frank N. Keutsch, Colette L. Heald, and Jesse H. Kroll</div> <div class="citation">Atmos. Chem. Phys., 22, 16003&ndash;16015, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-16003-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-16003-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_105813" data-show=".short_summary_105813" data-hide=".short_summary_button_105813" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_105813 ml-2" data-show=".ce_comment_105813" data-hide=".ce_comment_button_105813">Executive editor</span> <div class="j-widget__max short_summary short_summary_105813" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The atmospheric oxidation of dimethyl sulfide (DMS) is a major natural source of sulfate particles in the atmosphere. However, its mechanism is poorly constrained. In our work, laboratory measurements and mechanistic modeling were conducted to comprehensively investigate DMS oxidation products and key reaction rates. We find that the peroxy radical (RO<sub>2</sub>) has a controlling effect on product distribution and aerosol yield, with the isomerization of RO<sub>2</sub> leading to the suppression of aerosol yield. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_105813" data-show=".short_summary_button_105813">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_105813 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> This paper is a significant advancement in the understanding of the chemistry of dimethyl sulfide (DMS) and its oxidation products in the atmosphere. DMS is mainly emitted by marine phytoplankton and forms a relevant natural source of non-sea salt sulfate aerosols which plays an important role in global aerosol climate effects. However, the chemistry by which DMS oxidizes to form sulfate aerosols is highly complex. This work represents a next important step in the understanding of chemical processes within the reaction of OH with DMS. The results of this study allow to include a better, because less simplified, inclusion of DMS chemistry in large-scale models which can reduce errors in predicted aerosol radiative effects in past, present and future atmospheres. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_105813" data-show=".ce_comment_button_105813">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/16003/2022/acp-22-16003-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/16003/2022/acp-22-16003-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/16003/2022/acp-22-16003-2022-avatar-web.png" data-width="397" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="24"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/15351/2022/acp-22-15351-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/15351/2022/acp-22-15351-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/15351/2022/acp-22-15351-2022-avatar-web.png" data-width="600" data-height="196" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 05 Dec 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/15351/2022/">Estimating emissions of methane consistent with atmospheric measurements of methane and <i>δ</i><sup>13</sup>C of methane</a> <div class="authors">Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John B. Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana V. Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca</div> <div class="citation">Atmos. Chem. Phys., 22, 15351&ndash;15377, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-15351-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-15351-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_102870" data-show=".short_summary_102870" data-hide=".short_summary_button_102870" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_102870 ml-2" data-show=".ce_comment_102870" data-hide=".ce_comment_button_102870">Executive editor</span> <div class="j-widget__max short_summary short_summary_102870" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Atmospheric methane (CH<sub>4</sub>) has been growing steadily since 2007 for reasons that are not well understood. Here we determine sources of methane using a technique informed by atmospheric measurements of CH<sub>4</sub> and its isotopologue <sup>13</sup>CH<sub>4</sub>. Measurements of <sup>13</sup>CH<sub>4</sub> provide for better separation of microbial, fossil, and fire sources of methane than CH<sub>4</sub> measurements alone. Compared to previous assessments such as the Global Carbon Project, we find a larger microbial contribution to the post-2007 increase. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_102870" data-show=".short_summary_button_102870">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_102870 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Methane is a potent greenhouse gas and an important sink of atmospheric OH radicals, which determine the global atmospheric oxidation capacity. CH4 has increased since pre-industrial times until the year 2000, after which its global concentration has remained relatively stable. Since 2007, it is rapidly increasing again for reasons that are not well understood. The current paper analyses source specific methane emissions that are likely responsible for the recent increase. Global CH4 sources are determined using variational inversion based on measurements of methane and its isotope signatures (δ13C). This latter provide better constraints on the contributions of microbial and fossil fuel CH4 sources than the concentrations alone. The analysis points to a more strongly increasing contribution of microbial sources since 2007 than predicted by previous assessments (Global Carbon Project). These findings have the potential to lead to a major reassessment of the global methane budget. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_102870" data-show=".ce_comment_button_102870">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/15351/2022/acp-22-15351-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/15351/2022/acp-22-15351-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/15351/2022/acp-22-15351-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="196" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="24"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022-avatar-web.png" data-width="523" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 23 Nov 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/14957/2022/">The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere</a> <div class="authors">Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger</div> <div class="citation">Atmos. Chem. Phys., 22, 14957&ndash;14970, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-14957-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-14957-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_104694" data-show=".short_summary_104694" data-hide=".short_summary_button_104694" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_104694 ml-2" data-show=".ce_comment_104694" data-hide=".ce_comment_button_104694">Executive editor</span> <div class="j-widget__max short_summary short_summary_104694" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_104694" data-show=".short_summary_button_104694">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_104694 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> This article describes the effect of the recent (January 2022) Hunga Tonga-Hunga Ha’apai volcanic eruption on the stratosphere. The eruption was highly energetic and as a result erupted material reached altitudes of around 30km. Such eruptions, with the 1991 Pinatubo eruption being a noteworthy example, often have a significant effect on tropospheric weather and climate, through the radiative effects of the volcanic aerosol, which may remain in the stratosphere for 2 or 3 years or more. In the 30 years since the Pinatubo eruption observations of the stratosphere, primarily from satellites, have improved enormously and in this Letter the authors provide a detailed description of the evolution of volcanic aerosol and of other chemical species injected by the eruption over a 6-month period following the eruption. The authors show that one important effect of the eruption was to inject a large quantity of water vapour into the stratosphere and suggest that the largest impact of the eruption on tropospheric weather and climate will be via the radiative effect of this water vapour, rather than of the injected aerosol. The initial detailed picture of the impact of the Hunga Tonga-Hunga Ha’apai eruption on the stratosphere provided in this Letter will stimulate further study of this remarkable natural event, which provides a rare opportunity to test our scientific understanding. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_104694" data-show=".ce_comment_button_104694">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/14957/2022/acp-22-14957-2022-avatar-web.png" data-width="523" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="24"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/14323/2022/acp-22-14323-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/14323/2022/acp-22-14323-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/14323/2022/acp-22-14323-2022-avatar-web.png" data-width="600" data-height="231" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 08 Nov 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/14323/2022/">The climate impact of hydrogen-powered hypersonic transport</a> <div class="authors">Johannes Pletzer, Didier Hauglustaine, Yann Cohen, Patrick Jöckel, and Volker Grewe</div> <div class="citation">Atmos. Chem. Phys., 22, 14323&ndash;14354, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-14323-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-14323-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_102909" data-show=".short_summary_102909" data-hide=".short_summary_button_102909" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_102909 ml-2" data-show=".ce_comment_102909" data-hide=".ce_comment_button_102909">Executive editor</span> <div class="j-widget__max short_summary short_summary_102909" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Very fast aircraft can travel long distances in extremely short times and can fly at high altitudes (15 to 35&thinsp;km). These aircraft emit water vapour, nitrogen oxides, and hydrogen. Water vapour emissions remain for months to several years at these altitudes and have an important impact on temperature. We investigate two aircraft fleets flying at 26 and 35&thinsp;km. Ozone is depleted more, and the water vapour perturbation and temperature change are larger for the aircraft flying at 35&thinsp;km. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_102909" data-show=".short_summary_button_102909">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_102909 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Emissions from conventional aircraft contribute to climate change by forming contrails and by increasing atmospheric CO2 concentrations. To fly faster and reduce the climate impact, super- or hypersonic aircraft fuelled by liquid hydrogen or natural gas are being considered. Hypersonic aircraft would fly at more than Mach 4 in the stratosphere, up to 35 km altitude, where the peak of the ozone layer resides. The paper by Pletzer et al. presents a thorough study of the chemical and radiative impacts of such high-speed aircraft using two chemistry-climate models. The study shows that hypersonic aircraft fuelled by liquid hydrogen and cruising at such altitudes would contribute to a significant global warming although they do not emit CO2. The main radiative effect comes from additional water vapour, with only a small effect from depletion of the ozone layer. Importantly, the authors discovered that although water vapour is destroyed in the stratosphere, perturbation of local photochemistry also creates water vapour. The authors estimate that the mean surface temperature change caused by a hypersonic transport fleet would be roughly 8-20 times larger than for a subsonic reference aircraft with the same transport volume. This comprehensive study provides convincing calculations for a large climatic effect of any future hydrogen-fuelled hypersonic aircraft fleet. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_102909" data-show=".ce_comment_button_102909">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/14323/2022/acp-22-14323-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/14323/2022/acp-22-14323-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/14323/2022/acp-22-14323-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="231" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="27"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/12113/2022/acp-22-12113-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/12113/2022/acp-22-12113-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/12113/2022/acp-22-12113-2022-avatar-web.png" data-width="600" data-height="492" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 19 Sep 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/12113/2022/">Cloud adjustments from large-scale smoke–circulation interactions strongly modulate the southeastern Atlantic stratocumulus-to-cumulus transition</a> <div class="authors">Michael S. Diamond, Pablo E. Saide, Paquita Zuidema, Andrew S. Ackerman, Sarah J. Doherty, Ann M. Fridlind, Hamish Gordon, Calvin Howes, Jan Kazil, Takanobu Yamaguchi, Jianhao Zhang, Graham Feingold, and Robert Wood</div> <div class="citation">Atmos. Chem. Phys., 22, 12113&ndash;12151, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-12113-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-12113-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_104372" data-show=".short_summary_104372" data-hide=".short_summary_button_104372" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_104372 ml-2" data-show=".ce_comment_104372" data-hide=".ce_comment_button_104372">Executive editor</span> <div class="j-widget__max short_summary short_summary_104372" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Smoke from southern Africa blankets the southeast Atlantic from June-October, overlying a major transition region between overcast and scattered clouds. The smoke affects Earth's radiation budget by absorbing sunlight and changing cloud properties. We investigate these effects in regional climate and large eddy simulation models based on international field campaigns. We find that large-scale circulation changes more strongly affect cloud transitions than smoke microphysical effects in our case. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_104372" data-show=".short_summary_button_104372">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_104372 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Large quantities of seasonal smoke are produced by agricultural burning in Southern Africa between the months of June and October. Between 2016 and 2018A a series of large field campaigns, ORACLES, CLARIFY, and LASIC, targeted study of the atmospheric impacts of these plumes. This study synthesizes these measurements with numerical simulations to investigate how biomass burning plumes blown westward affect a well-known transition from solid stratocumulus to broken cumulus over the Atlantic Ocean. The dynamics of the cloud transition are complex, and there are many possible ways that aerosols and clouds can interact. This study is particularly notable for considering not just how smoke particles directly modify the microphysical properties of clouds through interactions in the atmospheric boundary layer, but also how they impact clouds indirectly by absorbing solar radiation above the cloud deck. A surprising finding is that microphysical interactions have only a minimal impact on cloud transitions. Instead, the breakup of stratocumulus clouds decks is substantially slowed by the absorption of sunlight by smoke plumes above clouds and its subsequent impact on the vertical temperature and moisture profile of the atmosphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_104372" data-show=".ce_comment_button_104372">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/12113/2022/acp-22-12113-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/12113/2022/acp-22-12113-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/12113/2022/acp-22-12113-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="492" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="27"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/11125/2022/acp-22-11125-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/11125/2022/acp-22-11125-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/11125/2022/acp-22-11125-2022-avatar-web.png" data-width="600" data-height="234" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 01 Sep 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/11125/2022/">Bayesian assessment of chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC) and halon banks suggest large reservoirs still present in old equipment</a> <div class="authors">Megan Jeramaz Lickley, John S. Daniel, Eric L. Fleming, Stefan Reimann, and Susan Solomon</div> <div class="citation">Atmos. Chem. Phys., 22, 11125&ndash;11136, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-11125-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-11125-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_102304" data-show=".short_summary_102304" data-hide=".short_summary_button_102304" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_102304 ml-2" data-show=".ce_comment_102304" data-hide=".ce_comment_button_102304">Executive editor</span> <div class="j-widget__max short_summary short_summary_102304" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Halocarbons contained in equipment continue to be emitted after production has ceased. These <q>banks</q> must be carefully accounted for in evaluating compliance with the Montreal Protocol. We extend a Bayesian model to the suite of regulated chemicals subject to banking. We find that banks are substantially larger than previous estimates, and we identify banks by chemical and equipment type whose future emissions will contribute to global warming and delay ozone-hole recovery if left unrecovered. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_102304" data-show=".short_summary_button_102304">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_102304 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Banks of ozone-depleting halogenated carbon compounds continue to be sources of emissions. Their contribution to current and future emissions, however, is highly uncertain, and this uncertainty obscures ongoing emissions attribution and undermines international efforts to evaluate global compliance with the Montreal Protocol. The paper by Lickley et al. presents a convincing and thorough method to assess the banks of several halocarbons and their emissions based on known atmospheric lifetimes and constrained by observed atmospheric concentrations. The authors demonstrate that the banks of the halocarbons under assessment are very likely larger than previous international assessments suggest, and that total production has been very likely higher than reported. These are most important results that will find their way in the next WMO ozone assessment and have to be considered in assessments of global warming. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_102304" data-show=".ce_comment_button_102304">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/11125/2022/acp-22-11125-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/11125/2022/acp-22-11125-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/11125/2022/acp-22-11125-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="234" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="28"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/9617/2022/acp-22-9617-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/9617/2022/acp-22-9617-2022-avatar-thumb80.png" data-caption="Satellite icons were obtained from https://www.gosat.nies.go.jp for GOSATWikipedia Commons for TROPOMI, EMIT (International Space Station), and Sentinel-2; https://space.skyrocket.de for GOSAT-GW, MERLIN, CO2M, and Carbon Mapper; https://www.methanesat.org for MethaneSAT; ESA (2020) for Sentinel-5; https://www.ou.edu/geocarb/mission for GeoCarb; https://www.planetek.it/ for PRISMA; https://www.ghgsat.com/ for GHGSat; https://www.enmap.org/mission for EnMAP; https://directory.eoportal.org for WorldView-3; and https://www.usgs.gov/landsat-missions for Landsat." data-web="https://acp.copernicus.org/articles/22/9617/2022/acp-22-9617-2022-avatar-web.png" data-width="600" data-height="452" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 29 Jul 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/9617/2022/">Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane</a> <div class="authors">Daniel J. Jacob, Daniel J. Varon, Daniel H. Cusworth, Philip E. Dennison, Christian Frankenberg, Ritesh Gautam, Luis Guanter, John Kelley, Jason McKeever, Lesley E. Ott, Benjamin Poulter, Zhen Qu, Andrew K. Thorpe, John R. Worden, and Riley M. Duren</div> <div class="citation">Atmos. Chem. Phys., 22, 9617&ndash;9646, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-9617-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-9617-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_102351" data-show=".short_summary_102351" data-hide=".short_summary_button_102351" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_102351 ml-2" data-show=".ce_comment_102351" data-hide=".ce_comment_button_102351">Executive editor</span> <div class="j-widget__max short_summary short_summary_102351" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We review the capability of satellite observations of atmospheric methane to quantify methane emissions on all scales. We cover retrieval methods, precision requirements, inverse methods for inferring emissions, source detection thresholds, and observations of system completeness. We show that current instruments already enable quantification of regional and national emissions including contributions from large point sources. Coverage and resolution will increase significantly in coming years. </div> <span class="eg-link">This article is included in the <a target="_blank" href="https://encyclopedia-of-geosciences.net">Encyclopedia of Geosciences</a></span> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_102351" data-show=".short_summary_button_102351">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_102351 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Methane is a greenhouse gas that significantly contributes to global warming. Its sources are not well constrained as many point sources are missing in emission inventories that are built based on bottom-up approaches. Emissions include sources caused by human activities (oil/gas, lifestock) but also natural ones, e.g. wetlands. The current paper fills this gap by comprehensively reviewing the capabilities of current and forthcoming satellites as powerful top-down tools to observe atmospheric methane and quantify emissions. Their most important application is to quantify anthropogenic methane sources , where there is substantial interest in identifying hot spots to reduce emissions, closing the methane budget, and to ensure compliance with international climate agreements. This paper is of broad interest for the geoscience community, as it not only presents an overview of the existing discrepancies in the atmospheric methane budget and emissions but also addresses the difficulties in defining its emission inventories on various spatial scales. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_102351" data-show=".ce_comment_button_102351">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/9617/2022/acp-22-9617-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/9617/2022/acp-22-9617-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/9617/2022/acp-22-9617-2022-avatar-web.png" data-width="600" data-caption="Satellite icons were obtained from https://www.gosat.nies.go.jp for GOSATWikipedia Commons for TROPOMI, EMIT (International Space Station), and Sentinel-2; https://space.skyrocket.de for GOSAT-GW, MERLIN, CO2M, and Carbon Mapper; https://www.methanesat.org for MethaneSAT; ESA (2020) for Sentinel-5; https://www.ou.edu/geocarb/mission for GeoCarb; https://www.planetek.it/ for PRISMA; https://www.ghgsat.com/ for GHGSat; https://www.enmap.org/mission for EnMAP; https://directory.eoportal.org for WorldView-3; and https://www.usgs.gov/landsat-missions for Landsat." data-height="452" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="29"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/8863/2022/acp-22-8863-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/8863/2022/acp-22-8863-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/8863/2022/acp-22-8863-2022-avatar-web.png" data-width="600" data-height="542" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Jul 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/8863/2022/">Stable water isotope signals in tropical ice clouds in the West African monsoon simulated with a regional convection-permitting model</a> <div class="authors">Andries Jan de Vries, Franziska Aemisegger, Stephan Pfahl, and Heini Wernli</div> <div class="citation">Atmos. Chem. Phys., 22, 8863&ndash;8895, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-8863-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-8863-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_98780" data-show=".short_summary_98780" data-hide=".short_summary_button_98780" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_98780 ml-2" data-show=".ce_comment_98780" data-hide=".ce_comment_button_98780">Executive editor</span> <div class="j-widget__max short_summary short_summary_98780" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The Earth's water cycle contains the common H<sub>2</sub>O molecule but also the less abundant, heavier HDO. We use their different physical properties to study tropical ice clouds in model simulations of the West African monsoon. Isotope signals reveal different processes through which ice clouds form and decay in deep-convective and widespread cirrus. Previously observed variations in upper-tropospheric vapour isotopes are explained by microphysical processes in convective updraughts and downdraughts. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_98780" data-show=".short_summary_button_98780">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_98780 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Tropical convective clouds distribute water vapour across the tropical tropopause layer (TTL), which affects the radiative budget in both the troposphere below and the stratosphere above. Water isotopes can be used as tracers to conclude on the history of water vapour in these altitudes, i.e. whether it went through phase change processes and was part of ice or liquid clouds before. de Vries and coworkers used an innovative modelling scheme capable of simulating convection together with the phase-change processes producing the isotopic signatures to simulate tropical ice clouds and compare their simulations to respective observations. By this, they were able to disentangle processes of convective updraft versus cirrus cloud formation in tropical cloud systems and demonstrate how the isotopic fractionation of water vapour does help to distinguish respective processes. Over all, this paper is innovative and a considerable step forward in studies of convection and transport of water vapour into the upper tropospher/lower startosphere (UTLS). </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_98780" data-show=".ce_comment_button_98780">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/8863/2022/acp-22-8863-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/8863/2022/acp-22-8863-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/8863/2022/acp-22-8863-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="542" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="29"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/8683/2022/acp-22-8683-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/8683/2022/acp-22-8683-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/8683/2022/acp-22-8683-2022-avatar-web.png" data-width="600" data-height="493" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 06 Jul 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/8683/2022/">Black carbon aerosol reductions during COVID-19 confinement quantified by aircraft measurements over Europe</a> <div class="authors">Ovid O. Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John P. Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker</div> <div class="citation">Atmos. Chem. Phys., 22, 8683&ndash;8699, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-8683-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-8683-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_100557" data-show=".short_summary_100557" data-hide=".short_summary_button_100557" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_100557 ml-2" data-show=".ce_comment_100557" data-hide=".ce_comment_button_100557">Executive editor</span> <div class="j-widget__max short_summary short_summary_100557" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC on board a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 41&thinsp;%. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_100557" data-show=".short_summary_button_100557">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_100557 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Krüger et al. present observations of the effect of the COVID-19 lockdowns on black carbon emissions using a combination of airborne in situ observations and models. The impact of lockdowns on emissions from transport is by now well established, however the majority of studies to date have focused on NO2 as this is a regulated pollutant and high resolution observations are available in new satellite data products. This work instead uses a state-of-the-art airborne facility (DLR HALO) to report data on black carbon, which has established impacts both as a airborne pollutant damaging to human health, and as a highly potent short-lived climate forcing agent. Data from during the European lockdown period is compared with the prior EMeRGe campaign (https://acp.copernicus.org/articles/special_issue1074.html). The authors found a decrease in BC concentrations of 48% over Western and Southern Europe, of which 7% was likely due to meteorological differences during the two campaigns and 3-9% was due to a long-term downward trend, leading them to conclude that the lockdowns were overall responsible for a reduction in ambient concentrations of 32-38%. By seizing this unique opportunity, this study offers a new and unparalleled insight into the current nature of black carbon emissions from Europe. It also demonstrates how airborne in situ measurements and models can be used in combination to study the emission and transport of pollutants in the troposphere. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_100557" data-show=".ce_comment_button_100557">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/8683/2022/acp-22-8683-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/8683/2022/acp-22-8683-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/8683/2022/acp-22-8683-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="493" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="30"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/7893/2022/acp-22-7893-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/7893/2022/acp-22-7893-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/7893/2022/acp-22-7893-2022-avatar-web.png" data-width="451" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 Jun 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/7893/2022/">The Sun's role in decadal climate predictability in the North Atlantic</a> <div class="authors">Annika Drews, Wenjuan Huo, Katja Matthes, Kunihiko Kodera, and Tim Kruschke</div> <div class="citation">Atmos. Chem. Phys., 22, 7893&ndash;7904, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-7893-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-7893-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_93595" data-show=".short_summary_93595" data-hide=".short_summary_button_93595" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_93595 ml-2" data-show=".ce_comment_93595" data-hide=".ce_comment_button_93595">Executive editor</span> <div class="j-widget__max short_summary short_summary_93595" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Solar irradiance varies with a period of approximately 11 years. Using a unique large chemistry&ndash;climate model dataset, we investigate the solar surface signal in the North Atlantic and European region and find that it changes over time, depending on the strength of the solar cycle. For the first time, we estimate the potential predictability associated with including realistic solar forcing in a model. These results may improve seasonal to decadal predictions of European climate. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_93595" data-show=".short_summary_button_93595">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_93595 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> This paper by Drews et al. reports model simulations of the effect of the 11-year solar cycle on the atmospheric circulation and hence on year-to-year variations in weather patterns, . The physics of the effect of the solar cycle is complex, but one important mechanism is believed to be via the variation in short-wave radiation, which perturbs the ozone distribution in the upper stratosphere. The key development in this study is a good model representation of chemistry, radiation and dynamics and their interactions to enable the dynamical feedback processes, which  potentially communicate the direct physical effects of the solar cycle to the lower part of the atmosphere, to be adequately simulated. An important aspect of the paper is that the  authors exploit an ensemble of simulations that make it possible to distinguish a signal due to solar-cycle effects from natural weather variability. The results convincingly show a solar cycle effect, over the North Atlantic in particular, where variations in the circulation have important implications for the weather experienced in Europe. This is particularly the case in the current period (since 1950 or so) when the 11-year solar variation is strong relative to the entire historical record (starting in about 1850).  The results of this paper suggest that including solar cycle effects in models used for decadal climate predictions can provide worthwhile improvements in the skill of such predictions. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_93595" data-show=".ce_comment_button_93595">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/7893/2022/acp-22-7893-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/7893/2022/acp-22-7893-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/7893/2022/acp-22-7893-2022-avatar-web.png" data-width="451" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="30"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/7417/2022/acp-22-7417-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/7417/2022/acp-22-7417-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/7417/2022/acp-22-7417-2022-avatar-web.png" data-width="543" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Jun 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/7417/2022/">Australian wildfire smoke in the stratosphere: the decay phase in 2020/2021 and impact on ozone depletion</a> <div class="authors">Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano</div> <div class="citation">Atmos. Chem. Phys., 22, 7417&ndash;7442, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-7417-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-7417-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_100535" data-show=".short_summary_100535" data-hide=".short_summary_button_100535" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_100535 ml-2" data-show=".ce_comment_100535" data-hide=".ce_comment_button_100535">Executive editor</span> <div class="j-widget__max short_summary short_summary_100535" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We present and discuss 2 years of long-term lidar observations of the largest stratospheric perturbation by wildfire smoke ever observed. The smoke originated from the record-breaking Australian fires in 2019&ndash;2020 and affects climate conditions and even the ozone layer in the Southern Hemisphere. The obvious link between dense smoke occurrence in the stratosphere and strong ozone depletion found in the Arctic and in the Antarctic in 2020 can be regarded as a new aspect of climate change. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_100535" data-show=".short_summary_button_100535">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_100535 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Wildfires have attracted increasing attention in recent years because of their effects on local air quality, as well as on regional and global climate. Ohneiser et al. documents with impressive accuracy the appearance of wildfire plumes in the stratosphere over Australia in 2020/2021, showing strong influence on stratospheric ozone. We recommend readers to read this paper together with Solomon et al. ("On the stratospheric chemistry of midlatitude wildfire smoke", PNAS 2022,https://doi.org/10.1073/pnas.2117325119). Both studies highlight the importance of wildfires for stratospheric chemistry and the recovery of the ozone layer in a warming climate. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_100535" data-show=".ce_comment_button_100535">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/7417/2022/acp-22-7417-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/7417/2022/acp-22-7417-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/7417/2022/acp-22-7417-2022-avatar-web.png" data-width="543" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="30"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/7405/2022/acp-22-7405-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/7405/2022/acp-22-7405-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/7405/2022/acp-22-7405-2022-avatar-web.png" data-width="600" data-height="335" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 09 Jun 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/7405/2022/">New insights on the prevalence of drizzle in marine stratocumulus clouds based on a machine learning algorithm applied to radar Doppler spectra</a> <div class="authors">Zeen Zhu, Pavlos Kollias, Edward Luke, and Fan Yang</div> <div class="citation">Atmos. Chem. Phys., 22, 7405&ndash;7416, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-7405-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-7405-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_100571" data-show=".short_summary_100571" data-hide=".short_summary_button_100571" >Short summary</span> <span class="show-hide journal-contentLinkColor triangle ce_comment_button_100571 ml-2" data-show=".ce_comment_100571" data-hide=".ce_comment_button_100571">Executive editor</span> <div class="j-widget__max short_summary short_summary_100571" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Drizzle (small rain droplets) is an important component of warm clouds; however, its existence is poorly understood. In this study, we capitalized on a machine-learning algorithm to develop a drizzle detection method. We applied this algorithm to investigate drizzle occurrence and found out that drizzle is far more ubiquitous than previously thought. This study demonstrates the ubiquitous nature of drizzle in clouds and will improve understanding of the associated microphysical process. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_100571" data-show=".short_summary_button_100571">Hide</a></div> </div> </div> <div class="j-widget__max ce_comment ce_comment_100571 mt-3" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Executive editor</div> <div class="content"> Marine stratocumulus clouds are highly abundant, and they exert a significant cooling effect on the Earth's atmosphere. Improved understanding of their evolution and abundance has been targeted as critically important for constraining future climates. Droplets in these clouds, if sufficiently large and abundant, can collide to be converted into drizzle drops, acting as a sink for cloud moisture thereby limiting stratocumulus cloud lifetimes. Currently, the primary tool for ground-based detection of the presence of drizzle in stratocumulus is Doppler radar, although the longer wavelengths of the electromagnetic pulses generally limit drizzle detection to larger drops. The current study presents an innovative approach that extends radar detection to fine drizzle by using a machine-learning algorithm trained with aircraft in-situ measurements, identifying skewness in the Doppler radar signal as important for discriminating fine drizzle presence. Based on this method, the authors conclude that drizzle is far more common in marine stratocumulus clouds than previously thought, a result that represents a potentially major advance in our understanding of marine stratocumulus properties. Moreover, the study demonstrates the great potential of machine-learning for extending the capabilities of well-established atmospheric measurement techniques. </div> <div><a href="#" class="show-hide triangle" data-hide=".ce_comment_100571" data-show=".ce_comment_button_100571">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/7405/2022/acp-22-7405-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/7405/2022/acp-22-7405-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/7405/2022/acp-22-7405-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="335" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="30"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/6879/2022/acp-22-6879-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/6879/2022/acp-22-6879-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/6879/2022/acp-22-6879-2022-avatar-web.png" data-width="600" data-height="598" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 30 May 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/6879/2022/">Optically thin clouds in the trades</a> <div class="authors">Theresa Mieslinger, Bjorn Stevens, Tobias Kölling, Manfred Brath, Martin Wirth, and Stefan A. Buehler</div> <div class="citation">Atmos. Chem. Phys., 22, 6879&ndash;6898, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-6879-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-6879-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_94949" data-show=".short_summary_94949" data-hide=".short_summary_button_94949" >Short summary</span> <div class="j-widget__max short_summary short_summary_94949" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The trades are home to a plethora of small cumulus clouds that are often barely visible to the human eye and difficult to detect with active and passive remote sensing methods. With the help of a new method and by means of high-resolution data we can detect small and particularly thin clouds. We find that optically thin clouds are a common phenomenon in the trades, covering a large area and influencing the radiative effect of clouds if they are undetected and contaminate the cloud-free signal. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_94949" data-show=".short_summary_button_94949">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/6879/2022/acp-22-6879-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/6879/2022/acp-22-6879-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/6879/2022/acp-22-6879-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="598" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="31"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/6309/2022/acp-22-6309-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/6309/2022/acp-22-6309-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/6309/2022/acp-22-6309-2022-avatar-web.png" data-width="600" data-height="503" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 17 May 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/6309/2022/">Oceanic emissions of dimethyl sulfide and methanethiol and their contribution to sulfur dioxide production in the marine atmosphere</a> <div class="authors">Gordon A. Novak, Delaney B. Kilgour, Christopher M. Jernigan, Michael P. Vermeuel, and Timothy H. Bertram</div> <div class="citation">Atmos. Chem. Phys., 22, 6309&ndash;6325, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-6309-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-6309-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_98691" data-show=".short_summary_98691" data-hide=".short_summary_button_98691" >Short summary</span> <div class="j-widget__max short_summary short_summary_98691" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We describe field measurements of the mixing ratio and oceanic emission flux of dimethyl sulfide (DMS) and methanethiol (MeSH) from a coastal ocean site. DMS is known to impact aerosol formation and growth in the marine atmosphere, influencing cloud formation and climate. Measurements of MeSH, which is produced by the same oceanic source as DMS, are rare. We show that MeSH emissions are large and must be measured alongside DMS to understand marine sulfur chemistry and aerosol formation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_98691" data-show=".short_summary_button_98691">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/6309/2022/acp-22-6309-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/6309/2022/acp-22-6309-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/6309/2022/acp-22-6309-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="503" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="31"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/6135/2022/acp-22-6135-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/6135/2022/acp-22-6135-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/6135/2022/acp-22-6135-2022-avatar-web.png" data-width="600" data-height="380" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 May 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/6135/2022/">Assessing the consequences of including aerosol absorption in potential stratospheric aerosol injection climate intervention strategies</a> <div class="authors">Jim M. Haywood, Andy Jones, Ben T. Johnson, and William McFarlane Smith</div> <div class="citation">Atmos. Chem. Phys., 22, 6135&ndash;6150, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-6135-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-6135-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_99916" data-show=".short_summary_99916" data-hide=".short_summary_button_99916" >Short summary</span> <div class="j-widget__max short_summary short_summary_99916" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Simulations are presented investigating the influence of moderately absorbing aerosol in the stratosphere to combat the impacts of climate change. A number of detrimental impacts are noted compared to sulfate aerosol, including (i) reduced cooling efficiency, (ii) increased deficits in global precipitation, (iii) delays in the recovery of the stratospheric ozone hole, and (iv) disruption of the stratospheric circulation and the wintertime storm tracks that impact European precipitation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_99916" data-show=".short_summary_button_99916">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/6135/2022/acp-22-6135-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/6135/2022/acp-22-6135-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/6135/2022/acp-22-6135-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="380" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="31"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/6087/2022/acp-22-6087-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/6087/2022/acp-22-6087-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/6087/2022/acp-22-6087-2022-avatar-web.png" data-width="533" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 May 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/6087/2022/">Projections of hydrofluorocarbon (HFC) emissions and the resulting global warming based on recent trends in observed abundances and current policies</a> <div class="authors">Guus J. M. Velders, John S. Daniel, Stephen A. Montzka, Isaac Vimont, Matthew Rigby, Paul B. Krummel, Jens Muhle, Simon O'Doherty, Ronald G. Prinn, Ray F. Weiss, and Dickon Young</div> <div class="citation">Atmos. Chem. Phys., 22, 6087&ndash;6101, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-6087-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-6087-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_100312" data-show=".short_summary_100312" data-hide=".short_summary_button_100312" >Short summary</span> <div class="j-widget__max short_summary short_summary_100312" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The emissions of hydrofluorocarbons (HFCs) have increased significantly in the past as a result of the phasing out of ozone-depleting substances. Observations indicate that HFCs are used much less in certain refrigeration applications than previously projected. Current policies are projected to reduce emissions and the surface temperature contribution of HFCs from 0.28&ndash;0.44&thinsp;°C to 0.14&ndash;0.31&thinsp;°C in 2100. The Kigali Amendment is projected to reduce the contributions further to 0.04&thinsp;°C in 2100. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_100312" data-show=".short_summary_button_100312">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/6087/2022/acp-22-6087-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/6087/2022/acp-22-6087-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/6087/2022/acp-22-6087-2022-avatar-web.png" data-width="533" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="32"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/4951/2022/acp-22-4951-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/4951/2022/acp-22-4951-2022-avatar-thumb80.png" data-caption="MODIS" data-web="https://acp.copernicus.org/articles/22/4951/2022/acp-22-4951-2022-avatar-web.png" data-width="463" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Apr 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/4951/2022/">Formation, radiative forcing, and climatic effects of severe regional haze</a> <div class="authors">Yun Lin, Yuan Wang, Bowen Pan, Jiaxi Hu, Song Guo, Misti Levy Zamora, Pengfei Tian, Qiong Su, Yuemeng Ji, Jiayun Zhao, Mario Gomez-Hernandez, Min Hu, and Renyi Zhang</div> <div class="citation">Atmos. Chem. Phys., 22, 4951&ndash;4967, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-4951-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-4951-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_97934" data-show=".short_summary_97934" data-hide=".short_summary_button_97934" >Short summary</span> <div class="j-widget__max short_summary short_summary_97934" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Severe regional haze events, which are characterized by exceedingly high levels of fine particulate matter (PM), occur frequently in many developing countries (such as China and India), with profound implications for human health, weather, and climate. Our work establishes a synthetic view for the dominant regional features during severe haze events, unraveling rapid in situ PM production and inefficient transport, both of which are amplified by atmospheric stagnation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_97934" data-show=".short_summary_button_97934">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/4951/2022/acp-22-4951-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/4951/2022/acp-22-4951-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/4951/2022/acp-22-4951-2022-avatar-web.png" data-width="463" data-caption="MODIS" data-height="600" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="32"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/4867/2022/acp-22-4867-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/4867/2022/acp-22-4867-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/4867/2022/acp-22-4867-2022-avatar-web.png" data-width="600" data-height="526" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 12 Apr 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/4867/2022/">Interactions between the stratospheric polar vortex and Atlantic circulation on seasonal to multi-decadal timescales</a> <div class="authors">Oscar Dimdore-Miles, Lesley Gray, Scott Osprey, Jon Robson, Rowan Sutton, and Bablu Sinha</div> <div class="citation">Atmos. Chem. Phys., 22, 4867&ndash;4893, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-4867-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-4867-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_96980" data-show=".short_summary_96980" data-hide=".short_summary_button_96980" >Short summary</span> <div class="j-widget__max short_summary short_summary_96980" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This study examines interactions between variations in the strength of polar stratospheric winds and circulation in the North Atlantic in a climate model simulation. It finds that the Atlantic Meridional Overturning Circulation (AMOC) responds with oscillations to sets of consecutive Northern Hemisphere winters, which show all strong or all weak polar vortex conditions. The study also shows that a set of strong vortex winters in the 1990s contributed to the recent slowdown in the observed AMOC. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_96980" data-show=".short_summary_button_96980">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/4867/2022/acp-22-4867-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/4867/2022/acp-22-4867-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/4867/2022/acp-22-4867-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="526" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="32"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/4615/2022/acp-22-4615-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/4615/2022/acp-22-4615-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/4615/2022/acp-22-4615-2022-avatar-web.png" data-width="600" data-height="322" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 11 Apr 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/4615/2022/">Advances in air quality research – current and emerging challenges</a> <div class="authors">Ranjeet S. Sokhi, Nicolas Moussiopoulos, Alexander Baklanov, John Bartzis, Isabelle Coll, Sandro Finardi, Rainer Friedrich, Camilla Geels, Tiia Grönholm, Tomas Halenka, Matthias Ketzel, Androniki Maragkidou, Volker Matthias, Jana Moldanova, Leonidas Ntziachristos, Klaus Schäfer, Peter Suppan, George Tsegas, Greg Carmichael, Vicente Franco, Steve Hanna, Jukka-Pekka Jalkanen, Guus J. M. Velders, and Jaakko Kukkonen</div> <div class="citation">Atmos. Chem. Phys., 22, 4615&ndash;4703, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-4615-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-4615-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_96245" data-show=".short_summary_96245" data-hide=".short_summary_button_96245" >Short summary</span> <div class="j-widget__max short_summary short_summary_96245" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> This review of air quality research focuses on developments over the past decade. The article considers current and future challenges that are important from air quality research and policy perspectives and highlights emerging prominent gaps of knowledge. The review also examines how air pollution management needs to adapt to new challenges and makes recommendations to guide the direction for future air quality research within the wider community and to provide support for policy. </div> <span class="eg-link">This article is included in the <a target="_blank" href="https://encyclopedia-of-geosciences.net">Encyclopedia of Geosciences</a></span> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_96245" data-show=".short_summary_button_96245">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/4615/2022/acp-22-4615-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/4615/2022/acp-22-4615-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/4615/2022/acp-22-4615-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="322" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="32"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/4277/2022/acp-22-4277-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/4277/2022/acp-22-4277-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/4277/2022/acp-22-4277-2022-avatar-web.png" data-width="600" data-height="233" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Apr 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/4277/2022/">A stratospheric prognostic ozone for seamless Earth system models: performance, impacts and future</a> <div class="authors">Beatriz M. Monge-Sanz, Alessio Bozzo, Nicholas Byrne, Martyn P. Chipperfield, Michail Diamantakis, Johannes Flemming, Lesley J. Gray, Robin J. Hogan, Luke Jones, Linus Magnusson, Inna Polichtchouk, Theodore G. Shepherd, Nils Wedi, and Antje Weisheimer</div> <div class="citation">Atmos. Chem. Phys., 22, 4277&ndash;4302, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-4277-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-4277-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_91754" data-show=".short_summary_91754" data-hide=".short_summary_button_91754" >Short summary</span> <div class="j-widget__max short_summary short_summary_91754" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The stratosphere is emerging as one of the keys to improve tropospheric weather and climate predictions. This study provides evidence of the role the stratospheric ozone layer plays in improving weather predictions at different timescales. Using a new ozone modelling approach suitable for high-resolution global models that provide operational forecasts from days to seasons, we find significant improvements in stratospheric meteorological fields and stratosphere&ndash;troposphere coupling. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_91754" data-show=".short_summary_button_91754">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/4277/2022/acp-22-4277-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/4277/2022/acp-22-4277-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/4277/2022/acp-22-4277-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="233" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="32"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/4005/2022/acp-22-4005-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/4005/2022/acp-22-4005-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/4005/2022/acp-22-4005-2022-avatar-web.png" data-width="600" data-height="426" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 31 Mar 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/4005/2022/">Full latitudinal marine atmospheric measurements of iodine monoxide</a> <div class="authors">Hisahiro Takashima, Yugo Kanaya, Saki Kato, Martina M. Friedrich, Michel Van Roozendael, Fumikazu Taketani, Takuma Miyakawa, Yuichi Komazaki, Carlos A. Cuevas, Alfonso Saiz-Lopez, and Takashi Sekiya</div> <div class="citation">Atmos. Chem. Phys., 22, 4005&ndash;4018, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-4005-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-4005-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_96937" data-show=".short_summary_96937" data-hide=".short_summary_button_96937" >Short summary</span> <div class="j-widget__max short_summary short_summary_96937" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We have undertaken atmospheric iodine monoxide (IO) observations in the global marine boundary layer with a wide latitudinal coverage and sea surface temperature (SST) range. We conclude that atmospheric iodine is abundant over the Western Pacific warm pool, appearing as an iodine fountain, where ozone (O<sub>3</sub>) minima occur. Our study also found negative correlations between IO and O<sub>3</sub> concentrations over IO maxima, which requires reconsideration of the initiation process of halogen activation. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_96937" data-show=".short_summary_button_96937">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/4005/2022/acp-22-4005-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/4005/2022/acp-22-4005-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/4005/2022/acp-22-4005-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="426" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="33"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/3169/2022/acp-22-3169-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/3169/2022/acp-22-3169-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/3169/2022/acp-22-3169-2022-avatar-web.png" data-width="600" data-height="281" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Mar 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/3169/2022/">Persistence of moist plumes from overshooting convection in the Asian monsoon anticyclone</a> <div class="authors">Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh</div> <div class="citation">Atmos. Chem. Phys., 22, 3169&ndash;3189, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-3169-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-3169-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_96735" data-show=".short_summary_96735" data-hide=".short_summary_button_96735" >Short summary</span> <div class="j-widget__max short_summary short_summary_96735" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The Asian monsoon anticyclone is the key contributor to the global annual maximum in lower stratospheric water vapour. We investigate the impact of deep convection on the lower stratospheric water using a unique set of observations aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We find that convective plumes of wet air can persist within the Asian anticyclone for weeks, thereby enhancing the occurrence of high-level clouds. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_96735" data-show=".short_summary_button_96735">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/3169/2022/acp-22-3169-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/3169/2022/acp-22-3169-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/3169/2022/acp-22-3169-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="281" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="33"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/3203/2022/acp-22-3203-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/3203/2022/acp-22-3203-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/3203/2022/acp-22-3203-2022-avatar-web.png" data-width="600" data-height="597" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 10 Mar 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/3203/2022/">A predictive viscosity model for aqueous electrolytes and mixed organic–inorganic aerosol phases</a> <div class="authors">Joseph Lilek and Andreas Zuend</div> <div class="citation">Atmos. Chem. Phys., 22, 3203&ndash;3233, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-3203-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-3203-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_98257" data-show=".short_summary_98257" data-hide=".short_summary_button_98257" >Short summary</span> <div class="j-widget__max short_summary short_summary_98257" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Depending on temperature and chemical makeup, certain aerosols can be highly viscous or glassy, with atmospheric implications. We have therefore implemented two major upgrades to the predictive viscosity model AIOMFAC-VISC. First, we created a new viscosity model for aqueous electrolyte solutions containing an arbitrary number of ion species. Second, we integrated the electrolyte model within the existing AIOMFAC-VISC framework to enable viscosity predictions for organic&ndash;inorganic mixtures. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_98257" data-show=".short_summary_button_98257">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/3203/2022/acp-22-3203-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/3203/2022/acp-22-3203-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/3203/2022/acp-22-3203-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="597" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="33"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/2999/2022/acp-22-2999-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/2999/2022/acp-22-2999-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/2999/2022/acp-22-2999-2022-avatar-web.png" data-width="600" data-height="381" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 07 Mar 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/2999/2022/">The impact of stratospheric aerosol intervention on the North Atlantic and Quasi-Biennial Oscillations in the Geoengineering Model Intercomparison Project (GeoMIP) G6sulfur experiment</a> <div class="authors">Andy Jones, Jim M. Haywood, Adam A. Scaife, Olivier Boucher, Matthew Henry, Ben Kravitz, Thibaut Lurton, Pierre Nabat, Ulrike Niemeier, Roland Séférian, Simone Tilmes, and Daniele Visioni</div> <div class="citation">Atmos. Chem. Phys., 22, 2999&ndash;3016, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-2999-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-2999-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_98761" data-show=".short_summary_98761" data-hide=".short_summary_button_98761" >Short summary</span> <div class="j-widget__max short_summary short_summary_98761" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Simulations by six Earth-system models of geoengineering by introducing sulfuric acid aerosols into the tropical stratosphere are compared. A robust impact on the northern wintertime North Atlantic Oscillation is found, exacerbating precipitation reduction over parts of southern Europe. In contrast, the models show no consistency with regard to impacts on the Quasi-Biennial Oscillation, although results do indicate a risk that the oscillation could become locked into a permanent westerly phase. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_98761" data-show=".short_summary_button_98761">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/2999/2022/acp-22-2999-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/2999/2022/acp-22-2999-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/2999/2022/acp-22-2999-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="381" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="34"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/2049/2022/acp-22-2049-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/2049/2022/acp-22-2049-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/2049/2022/acp-22-2049-2022-avatar-web.png" data-width="600" data-height="485" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 14 Feb 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/2049/2022/">In situ observations of CH<sub>2</sub>Cl<sub>2</sub> and CHCl<sub>3</sub> show efficient transport pathways for very short-lived species into the lower stratosphere via the Asian and the North American summer monsoon</a> <div class="authors">Valentin Lauther, Bärbel Vogel, Johannes Wintel, Andrea Rau, Peter Hoor, Vera Bense, Rolf Müller, and C. Michael Volk</div> <div class="citation">Atmos. Chem. Phys., 22, 2049&ndash;2077, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-2049-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-2049-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_98266" data-show=".short_summary_98266" data-hide=".short_summary_button_98266" >Short summary</span> <div class="j-widget__max short_summary short_summary_98266" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> We show airborne in situ measurements of the very short-lived ozone-depleting substances CH<sub>2</sub>Cl<sub>2</sub> and CHCl<sub>3</sub>, revealing particularly high concentrations of both species in the lower stratosphere. Back-trajectory calculations and 3D model simulations show that the air masses with high concentrations originated in the Asian boundary layer and were transported via the Asian summer monsoon. We also identify a fast transport pathway into the stratosphere via the North American monsoon and by hurricanes. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_98266" data-show=".short_summary_button_98266">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/2049/2022/acp-22-2049-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/2049/2022/acp-22-2049-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/2049/2022/acp-22-2049-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="485" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="35"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/929/2022/acp-22-929-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/929/2022/acp-22-929-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/929/2022/acp-22-929-2022-avatar-web.png" data-width="600" data-height="330" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 20 Jan 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/929/2022/">An assessment of the tropospherically accessible photo-initiated ground state chemistry of organic carbonyls</a> <div class="authors">Keiran N. Rowell, Scott H. Kable, and Meredith J. T. Jordan</div> <div class="citation">Atmos. Chem. Phys., 22, 929&ndash;949, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-929-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-929-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_94781" data-show=".short_summary_94781" data-hide=".short_summary_button_94781" >Short summary</span> <div class="j-widget__max short_summary short_summary_94781" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Sunlight drives chemical reactions in the atmosphere by breaking chemical bonds. Motivated by the knowledge that if we can better understand the fundamental chemistry, we will be better able to predict atmospheric composition and model any future changes, we use quantum chemistry to investigate new classes of atmospheric reactions. We identify several potentially important reaction classes that will have implications for the atmospheric production of organic acids and molecular hydrogen. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_94781" data-show=".short_summary_button_94781">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/929/2022/acp-22-929-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/929/2022/acp-22-929-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/929/2022/acp-22-929-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="330" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="35"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/93/2022/acp-22-93-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/93/2022/acp-22-93-2022-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/22/93/2022/acp-22-93-2022-avatar-web.png" data-width="600" data-height="277" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 04 Jan 2022</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/22/93/2022/">Dependency of the impacts of geoengineering on the stratospheric sulfur injection strategy – Part 1: Intercomparison of modal and sectional aerosol modules</a> <div class="authors">Anton Laakso, Ulrike Niemeier, Daniele Visioni, Simone Tilmes, and Harri Kokkola</div> <div class="citation">Atmos. Chem. Phys., 22, 93&ndash;118, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-22-93-2022,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-22-93-2022,</span> 2022</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_95599" data-show=".short_summary_95599" data-hide=".short_summary_button_95599" >Short summary</span> <div class="j-widget__max short_summary short_summary_95599" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> The use of different spatio-temporal sulfur injection strategies with different magnitudes to create an artificial reflective aerosol layer to cool the climate is studied using sectional and modal aerosol schemes in a climate model. There are significant differences in the results depending on the aerosol microphysical module used. Different spatio-temporal injection strategies have a significant impact on the magnitude and zonal distribution of radiative forcing and atmospheric dynamics. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_95599" data-show=".short_summary_button_95599">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/22/93/2022/acp-22-93-2022-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/22/93/2022/acp-22-93-2022-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/22/93/2022/acp-22-93-2022-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="277" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="36"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/21/18531/2021/acp-21-18531-2021-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/21/18531/2021/acp-21-18531-2021-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/21/18531/2021/acp-21-18531-2021-avatar-web.png" data-width="600" data-height="514" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Dec 2021</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/21/18531/2021/">A simple model of ozone–temperature coupling in the tropical lower stratosphere</a> <div class="authors">William J. Randel, Fei Wu, Alison Ming, and Peter Hitchcock</div> <div class="citation">Atmos. Chem. Phys., 21, 18531&ndash;18542, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-21-18531-2021,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-21-18531-2021,</span> 2021</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_95404" data-show=".short_summary_95404" data-hide=".short_summary_button_95404" >Short summary</span> <div class="j-widget__max short_summary short_summary_95404" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Balloon and satellite observations show strong coupling between large-scale ozone and temperature fields in the tropical lower stratosphere, spanning timescales of days to years. We present a simple interpretation of this behavior based on an idealized model of transport by the tropical stratospheric circulation, and good quantitative agreement with observations demonstrates that this is a useful simplification. The results provide simple understanding of observed atmospheric behavior. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_95404" data-show=".short_summary_button_95404">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/21/18531/2021/acp-21-18531-2021-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/21/18531/2021/acp-21-18531-2021-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/21/18531/2021/acp-21-18531-2021-avatar-web.png" data-width="600" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="514" width="80" height="80"> </a> </div> </div> <div class="grid-container paperlist-object in-range paperList-final" data-diff="36"> <div class="grid-100 hide-on-desktop hide-on-tablet"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/21/18519/2021/acp-21-18519-2021-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/21/18519/2021/acp-21-18519-2021-avatar-thumb80.png" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-web="https://acp.copernicus.org/articles/21/18519/2021/acp-21-18519-2021-avatar-web.png" data-width="409" data-height="600" width="80" height="80"> </a> </div> <div class="grid-85 tablet-grid-85"> <div class="published-date"> 21 Dec 2021</div> <a class="article-title" target="_parent" href="https://acp.copernicus.org/articles/21/18519/2021/">Secondary ice production during the break-up of freezing water drops on impact with ice particles</a> <div class="authors">Rachel L. James, Vaughan T. J. Phillips, and Paul J. Connolly</div> <div class="citation">Atmos. Chem. Phys., 21, 18519&ndash;18530, <nobr class="hide-on-mobile hide-on-tablet">https://doi.org/10.5194/acp-21-18519-2021,</nobr><span class="hide-on-desktop">https://doi.org/10.5194/acp-21-18519-2021,</span> 2021</div> <span class="show-hide journal-contentLinkColor triangle short_summary_button_96117" data-show=".short_summary_96117" data-hide=".short_summary_button_96117" >Short summary</span> <div class="j-widget__max short_summary short_summary_96117" style="display: none"> <div class="widget dark-border"> <div class="legend journal-contentLinkColor">Short summary</div> <div class="content"> Secondary ice production (SIP) plays an important role in ice formation within mixed-phase clouds. We present a laboratory investigation of a potentially new SIP mechanism involving the collisions of supercooled water drops with ice particles. At impact, the supercooled water drop fragments form smaller secondary drops. Approximately 30&thinsp;% of the secondary drops formed during the retraction phase of the supercooled water drop impact freeze over a temperature range of &minus;4&thinsp;&deg;C to &minus;12&thinsp;&deg;C. </div> <div><a href="#" class="show-hide triangle" data-hide=".short_summary_96117" data-show=".short_summary_button_96117">Hide</a></div> </div> </div> </div> <div class="grid-15 tablet-grid-15 text-right hide-on-mobile"> <a class="paperlist-avatar" target="_blank" href="https://acp.copernicus.org/articles/21/18519/2021/acp-21-18519-2021-avatar-web.png"> <img class="img-responsive" src="https://acp.copernicus.org/articles/21/18519/2021/acp-21-18519-2021-avatar-thumb80.png" data-web="https://acp.copernicus.org/articles/21/18519/2021/acp-21-18519-2021-avatar-web.png" data-width="409" data-caption="© Author(s). Distributed under the Creative Commons Attribution 4.0 License." data-height="600" width="80" height="80"> </a> </div> </div> <div class="co-notification"> This list shows papers published within the last 1080 days. For more papers, please use the search function. </div> <!-- Root element of PhotoSwipe. Must have class pswp. --> <div class="pswp" tabindex="-1" role="dialog" aria-hidden="true" > <!-- Background of PhotoSwipe. It's a separate element as animating opacity is faster than rgba(). --> <div class="pswp__bg"></div> <!-- Slides wrapper with overflow:hidden. --> <div class="pswp__scroll-wrap"> <!-- Container that holds slides. PhotoSwipe keeps only 3 of them in the DOM to save memory. Don't modify these 3 pswp__item elements, data is added later on. --> <div class="pswp__container"> <div class="pswp__item"></div> <div class="pswp__item"></div> <div class="pswp__item"></div> </div> <!-- Default (PhotoSwipeUI_Default) interface on top of sliding area. Can be changed. --> <div class="pswp__ui pswp__ui--hidden"> <div class="pswp__top-bar"> <!-- Controls are self-explanatory. Order can be changed. --> <div class="pswp__counter"></div> <button class="pswp__button pswp__button--close" title="Close (Esc)"></button> <button class="pswp__button pswp__button--fs" title="Toggle fullscreen"></button> <!-- Preloader demo http://codepen.io/dimsemenov/pen/yyBWoR --> <!-- element will get class pswp__preloader--active when preloader is running --> <div class="pswp__preloader"> <div class="pswp__preloader__icn"> <div class="pswp__preloader__cut"> <div class="pswp__preloader__donut"></div> </div> </div> </div> </div> <div class="pswp__share-modal pswp__share-modal--hidden pswp__single-tap"> <div class="pswp__share-tooltip"></div> </div> <button class="pswp__button pswp__button--arrow--left" title="Previous (arrow left)"> </button> <button class="pswp__button pswp__button--arrow--right" title="Next (arrow right)"> </button> <div class="pswp__caption "> <div class="pswp__caption__center"></div> </div> </div> </div> </div> <!-- LOCKSS system has permission to collect, preserve, and serve this open access Archival Unit --> <a rel="license" style="display: none" href="https://creativecommons.org/licenses/by/4.0/">CC BY 4.0</a> </div> </div> <!-- CO c_contentmanager_services::callProjectTemplate::899 23.11.2024 01:13:17, memcached, 0.0011451244354248secs --> </div> </div> </main> <!--=== End Content ===--> <footer class="d-print-none version-2023"> <div class="footer"> <div class="container"> <div class="row align-items-center mb-3"> <div class="col-12 col-lg-auto text-center text-md-left title-wrapper"> <div id="j-header-footer" class="text-center text-md-left"> <div class="h1 text-center text-md-left"> Atmospheric Chemistry and Physics </div> <p>An interactive open-access journal of the European Geosciences Union</p> </div> </div> <div class="col-12 col-lg-auto text-center text-md-left pt-lg-2"> <div class="row align-items-center"> <div class="col-12 col-sm col-md-auto text-center text-md-left mb-3 mb-sm-0"> <span class="egu-logo"><a href="http://www.egu.eu/" target="_blank"><img src="https://contentmanager.copernicus.org/319373/10/ssl" alt="" style="width: 410px; height: 325px;" /></a></span> </div> <div class="col-12 col-sm text-center text-md-left"> <span class="copernicus-logo"><a href="https://publications.copernicus.org/" target="_blank"><img src="https://contentmanager.copernicus.org/319376/10/ssl" alt="" style="width: 1784px; height: 330px;" /></a></span> </div> </div> </div> </div> </div> </div> <div class="links pb-4 pt-4"> <div class="container"> <div class="row align-items-center"> <div class="col-12 col-xl-auto mt-3"> <div class="row align-items-start align-items-lg-center"> <div class="col-12 mb-3 mb-md-0 pl-md-0 text-center text-md-left"><a href="https://creativecommons.org/licenses/by/4.0/" target="_blank"><i class="fab fa-creative-commons fa-lg mr-1"></i><i class="fab fa-creative-commons-by fa-lg"></i></a> All site content, except where otherwise noted, is licensed under the <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank">Creative Commons Attribution 4.0 License</a>.</div> </div> </div> <div class="col-12 text-center text-md-left col-lg-auto mt-3"> <div class="row align-items-center"> <div class="col d-md-none px-0"></div> <div class="col-auto pr-1"><a href="https://www.atmospheric-chemistry-and-physics.net/about/contact.html">Contact</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.atmospheric-chemistry-and-physics.net/imprint.html">Imprint</a></div> <div class="col-auto px-1">|</div> <div class="col-auto px-1"><a href="https://www.copernicus.org/data_protection.html" target="_blank">Data protection</a></div> <div class="col-auto pl-2"><a class="twitter-follow-button" target="_blank" href="https://twitter.com/EGU_ACP"><i class="fa-brands fa-square-x-twitter fa-2x"></i></a></div> <div class="col d-md-none px-0"></div> </div> </div> </div> </div> </div> </footer> <!-- --></body> <!--CMS get_project_template.php::126 23.11.2024 01:13:17, CMS generated: 2.8778049945831sec --></html>

Pages: 1 2 3 4 5 6 7 8 9 10