CINXE.COM
Search results for: efficient use of plasma
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: efficient use of plasma</title> <meta name="description" content="Search results for: efficient use of plasma"> <meta name="keywords" content="efficient use of plasma"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="efficient use of plasma" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="efficient use of plasma"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5938</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: efficient use of plasma</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5938</span> Development of new Ecological Cleaning Process of Metal Sheets </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20L%C3%B3pez%20L%C3%B3pez">L. M. López López</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20V.%20Montesdeoca%20Contreras"> J. V. Montesdeoca Contreras</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20R.%20Cuji%20Fajardo"> A. R. Cuji Fajardo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Garz%C3%B3n%20Mu%C3%B1oz"> L. E. Garzón Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20I.%20Fajardo%20Seminario"> J. I. Fajardo Seminario</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article a new method of cleaning process of metal sheets for household appliances was developed, using low-pressure cold plasma. In this context, this research consist in analyze the results of metal sheets cleaning process using plasma and compare with pickling process to determinate the efficiency of each process and the level of contamination produced. Surface Cleaning was evaluated by measuring the contact angle with deionized water, diiodo methane and ethylene glycol, for the calculus of the surface free energy by means of the Fowkes theories and Wu. Showing that low-pressure cold plasma is very efficient both in cleaning process how in environment impact. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma" title="efficient use of plasma">efficient use of plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20impact%20of%20plasma" title=" ecological impact of plasma"> ecological impact of plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20sheets%20cleaning%20means" title=" metal sheets cleaning means"> metal sheets cleaning means</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20cleaning%20process." title=" plasma cleaning process. "> plasma cleaning process. </a> </p> <a href="https://publications.waset.org/abstracts/30939/development-of-new-ecological-cleaning-process-of-metal-sheets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5937</span> An Efficient Automated Radiation Measuring System for Plasma Monopole Antenna</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurkirandeep%20Kaur">Gurkirandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Rana%20Pratap%20Yadav"> Rana Pratap Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental study is aimed to examine the radiation characteristics of different plasma structures of a surface wave-driven plasma antenna by an automated measuring system. In this study, a 30 cm long plasma column of argon gas with a diameter of 3 cm is excited by surface wave discharge mechanism operating at 13.56 MHz with RF power level up to 100 Watts and gas pressure between 0.01 to 0.05 mb. The study reveals that a single structured plasma monopole can be modified into an array of plasma antenna elements by forming multiple striations or plasma blobs inside the discharge tube by altering the values of plasma properties such as working pressure, operating frequency, input RF power, discharge tube dimensions, i.e., length, radius, and thickness. It is also reported that plasma length, electron density, and conductivity are functions of operating plasma parameters and controlled by changing working pressure and input power. To investigate the antenna radiation efficiency for the far-field region, an automation-based radiation measuring system has been fabricated and presented in detail. This developed automated system involves a combined setup of controller, dc servo motors, vector network analyzer, and computing device to evaluate the radiation intensity, directivity, gain and efficiency of plasma antenna. In this system, the controller is connected to multiple motors for moving aluminum shafts in both elevation and azimuthal plane whereas radiation from plasma monopole antenna is measured by a Vector Network Analyser (VNA) which is further wired up with the computing device to display radiations in polar plot forms. Here, the radiation characteristics of both continuous and array plasma monopole antenna have been studied for various working plasma parameters. The experimental results clearly indicate that the plasma antenna is as efficient as a metallic antenna. The radiation from plasma monopole antenna is significantly influenced by plasma properties which provides a wider range in radiation pattern where desired radiation parameters like beam-width, the direction of radiation, radiation intensity, antenna efficiency, etc. can be achieved in a single monopole. Due to its wide range of selectivity in radiation pattern; this can meet the demands of wider bandwidth to get high data speed in communication systems. Moreover, this developed system provides an efficient and cost-effective solution for measuring the radiation pattern in far-field zone for any kind of antenna system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna%20radiation%20characteristics" title="antenna radiation characteristics">antenna radiation characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamically%20reconfigurable" title=" dynamically reconfigurable"> dynamically reconfigurable</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20antenna" title=" plasma antenna"> plasma antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20column" title=" plasma column"> plasma column</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20striations" title=" plasma striations"> plasma striations</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20wave" title=" surface wave"> surface wave</a> </p> <a href="https://publications.waset.org/abstracts/93278/an-efficient-automated-radiation-measuring-system-for-plasma-monopole-antenna" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5936</span> Magnetic Field Generation in Inhomogeneous Plasma via Ponderomotive Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Shahi">Fatemeh Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Sharifian"> Mehdi Sharifian</a>, <a href="https://publications.waset.org/abstracts/search?q=Laia%20Shahrassai"> Laia Shahrassai</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Eskandari%20A."> Elham Eskandari A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new mechanism is reported here for magnetic field generation in laser-plasma interaction by means of nonlinear ponderomotive force. The plasma considered here is unmagnetized inhomogeneous plasma with an exponentially decreasing profile. A damped periodic magnetic field with a relatively lower frequency is obtained using the ponderomotive force exerted on plasma electrons. Finally, with an electric field and by using Faraday’s law, the magnetic field profile in the plasma has been obtained. Because of the negative exponential density profile, the generated magnetic field is relatively slowly oscillating and damped through the plasma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20generation" title="magnetic field generation">magnetic field generation</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-plasma%20interaction" title=" laser-plasma interaction"> laser-plasma interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=ponderomotive%20force" title=" ponderomotive force"> ponderomotive force</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneous%20plasma" title=" inhomogeneous plasma"> inhomogeneous plasma</a> </p> <a href="https://publications.waset.org/abstracts/134152/magnetic-field-generation-in-inhomogeneous-plasma-via-ponderomotive-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5935</span> Condition for Plasma Instability and Stability Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Sen">Ratna Sen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As due to very high temperature of Plasma it is very difficult to confine it for sufficient time so that nuclear fusion reactions to take place, As we know Plasma escapes faster than the binary collision rates. We studied the ball analogy and the ‘energy principle’ and calculated the total potential energy for the whole Plasma. If δ ⃗w is negative, that is decrease in potential energy then the plasma will be unstable. We also discussed different approaches of stability analysis such as Nyquist Method, MHD approximation and Vlasov approach of plasma stability. So that by using magnetic field configurations we can able to create a stable Plasma in Tokamak for generating energy for future generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jello" title="jello">jello</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field%20configuration" title=" magnetic field configuration"> magnetic field configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD%20approximation" title=" MHD approximation"> MHD approximation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20principle" title=" energy principle"> energy principle</a> </p> <a href="https://publications.waset.org/abstracts/50172/condition-for-plasma-instability-and-stability-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5934</span> Quantom Magnetic Effects of P-B Fusion in Plasma Focus Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Habibi">M. Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The feasibility of proton-boron fusion in plasmoids caused by magneto hydrodynamics instabilities in plasma focus devices is studied analytically. In plasmoids, fusion power for 76 keV < Ti < 1500 keV exceeds bremsstrahlung loss (W/Pb=5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus device will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect, W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion-electron collision rate due to quantization of electron orbits. While approximately there is no change in electron-ion collision rate, the effect of quantum magnetic field makes ions much hotter than electrons which enhance the fraction of fusion power to bremsstrahlung loss. Therefore self-sustained p-11B fusion reactions would be possible and it could be said that p-11B fuelled plasma focus device is a clean and efficient source of energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmoids" title="plasmoids">plasmoids</a>, <a href="https://publications.waset.org/abstracts/search?q=p11B%20fuel" title=" p11B fuel"> p11B fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20viscous%20heating" title=" ion viscous heating"> ion viscous heating</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20magnetic%20field" title=" quantum magnetic field"> quantum magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20focus%20device" title=" plasma focus device"> plasma focus device</a> </p> <a href="https://publications.waset.org/abstracts/26776/quantom-magnetic-effects-of-p-b-fusion-in-plasma-focus-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5933</span> The Effects of Spark Plasma on Infectious Wound Healing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erfan%20Ghasemi">Erfan Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Khani"> Mohammadreza Khani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidreza%20Mahmoudi"> Hamidreza Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Nilforoushzadeh"> Mohammad Ali Nilforoushzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Shokri"> Babak Shokri</a>, <a href="https://publications.waset.org/abstracts/search?q=Pouria%20Akbartehrani"> Pouria Akbartehrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the global significance of treating infectious wounds, the goal of this study is to use spark plasma as a new treatment for infectious wounds. To generate spark plasma, a high-voltage (7 kV) and high-frequency (75 kHz) source was used. Infectious wounds in the peritoneum of mice were divided into control and plasma-treated groups at random. The plasma-treated animals received plasma radiation every 4 days for 12 days, for 60 seconds each time. On the 15th day after the first session, the wound in the plasma-treated group had completely healed. The spectra of spark plasma emission and tissue properties were studied. The mechanical resistance of the wound healed in the plasma treatment group was considerably higher than in the control group (p<0.05), according to the findings. Furthermore, histological evidence suggests that wound re-epithelialization is faster in comparison to controls. Angiogenesis and fibrosis (collagen production) were also dramatically boosted in the plasma-treated group, whereas the stage of wound healing inflammation was significantly reduced. Plasma therapy accelerated wound healing by causing considerable wound constriction. The results of this investigation show that spark plasma has an influence on the treatment of infectious wounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infectious%20wounds" title="infectious wounds">infectious wounds</a>, <a href="https://publications.waset.org/abstracts/search?q=mice" title=" mice"> mice</a>, <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma" title=" spark plasma"> spark plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/140938/the-effects-of-spark-plasma-on-infectious-wound-healing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5932</span> Atmospheric Pressure Microwave Plasma System and Its Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waqas%20A.%20Toor">Waqas A. Toor</a>, <a href="https://publications.waset.org/abstracts/search?q=Anis%20U.%20Baig"> Anis U. Baig</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuaman%20Shafqat"> Nuaman Shafqat</a>, <a href="https://publications.waset.org/abstracts/search?q=Raafia%20Irfan"> Raafia Irfan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ashraf"> Muhammad Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 2.45GHz microwave plasma system and its few applications have been developed. Argon and helium plasma is produced by metallic nozzle and also in a quartz tube at atmospheric pressure, using WR-340 waveguide and its tapered version. The waveguide applicator is also simulated in HFSS and field patterns are analyzed for maximum power absorption in the load. The system is tuned to operate at less than 10% reflected power. Various experimental techniques are used to initiate and sustain the plasma at atmospheric pressure. Plasma of atmospheric air is also produced without using any other shielding gas. The plasma flame is also characterized by its spectrum. Spectral analyses of plasma flame can be used for online analysis of combustion gases produced in industry. The applications of the system include glass and quartz processing, vitrification, emission spectroscopy, plasma coating. Low pressure plasma applications of the system include intense UV light for water purification and ozone generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HFSS%20high%20frequency%20structure%20simulator" title="HFSS high frequency structure simulator">HFSS high frequency structure simulator</a>, <a href="https://publications.waset.org/abstracts/search?q=Microwave%20plasma" title=" Microwave plasma"> Microwave plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20ultraviolet" title=" UV ultraviolet"> UV ultraviolet</a>, <a href="https://publications.waset.org/abstracts/search?q=WR%20rectangular%20waveguide" title=" WR rectangular waveguide"> WR rectangular waveguide</a> </p> <a href="https://publications.waset.org/abstracts/91066/atmospheric-pressure-microwave-plasma-system-and-its-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5931</span> Interesting Behavior of Non-Thermal Plasma Photonic Crystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mousavi">A. Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sadegzadeh"> S. Sadegzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, the effect of non-thermal micro plasma with non-Maxwellian distribution function on the one dimensional plasma photonic crystals containing alternate plasma-dielectric layers, has been studied. By using Kronig Penny model, the dispersion relation of electromagnetic modes for such a periodic structure is obtained. In this study we take two plasma photonic crystals with different dielectric layers: the first one with Silicon monoxide named PPCI, and the second one with Tellurium dioxide named PPCII. The effects of the plasma layer thickness and the material of the dielectric layer on the plasma photonic crystal band gaps have been illustrated in the dispersion relation and the group velocity figures. Results revealed that in such a system, the non-thermal plasma exerts stronger limit on the wave’s propagation. In another word, for the non-thermal plasma photonic crystals (NPPC), there are two distinct regions in the dispersion plot. The upper region consists of alternate band gaps in such a way that both width and length of the bands decrease gradually as the band gaps order increases. Whereas in the lower region where v_ph > 20 c (for PPCI), waves will not be allowed to propagate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=band%20gap" title="band gap">band gap</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20relation" title=" dispersion relation"> dispersion relation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-thermal%20plasma" title=" non-thermal plasma"> non-thermal plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20photonic%20crystal" title=" plasma photonic crystal"> plasma photonic crystal</a> </p> <a href="https://publications.waset.org/abstracts/24618/interesting-behavior-of-non-thermal-plasma-photonic-crystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5930</span> The Evolution of the Strategic Plasma Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Ghasemi">Zahra Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Babaei"> Fatemeh Babaei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma-derived medicinal products are vital categories of biological therapies. These products are used to treat rare, chronic, severe, and life-threatening conditions, such as bleeding disorders (Hemophilia A and B), hemolytic disease of the fetus and newborn, severe infections, burns and liver diseases, and other diseases caused by the absence or malfunction of certain proteins. In addition, they improve the patient’s quality of life. The process of producing plasma-derived medicinal products begins with the collection of human plasma from healthy donors. This initial stage is complex and is monitored with high precision and sensitivity by global authorities to maintain the quality and safety of the final products as well as the health of the donors. The amount of manufactured plasma-derived medicinal products depends on the availability of its raw material, human plasma, so collecting enough plasma for fractionation is essential. Therefore, adopting a suitable national policy regarding plasma donation, establishing collection centers, and increasing public awareness of the importance of plasma donation will improve any country’s conditions regarding the timely and sufficient supply of these medicines. In this study, we tried to briefly examine the importance of sustainability of the plasma industry and its situation in our beloved country of Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20plasma" title=" source plasma"> source plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma-derived%20medicinal%20products" title=" plasma-derived medicinal products"> plasma-derived medicinal products</a>, <a href="https://publications.waset.org/abstracts/search?q=fractionation" title=" fractionation"> fractionation</a> </p> <a href="https://publications.waset.org/abstracts/158132/the-evolution-of-the-strategic-plasma-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5929</span> Wear Resistance of 20MnCr5 Steel Nitrided by Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okba%20Belahssen">Okba Belahssen</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Benramache"> Said Benramache</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents wear behavior of the plasma-nitrided 20MnCr5 steel. Untreated and plasma nitrided samples were tested. The morphology was observed by scanning electron microscopy (SEM). The plasma nitriding behaviors of 20MnCr5 steel have been assessed by evaluating tribological properties and surface hardness by using a pin-on-disk wear machine and microhardness tester. Experimental results showed that the nitrides ε-Fe2−3N and γ′-Fe4N present in the white layer improve the wear resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma-nitriding" title="plasma-nitriding">plasma-nitriding</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy%2020mncr5" title=" alloy 20mncr5"> alloy 20mncr5</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/31284/wear-resistance-of-20mncr5-steel-nitrided-by-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5928</span> Temperature Calculation for an Atmospheric Pressure Plasma Jet by Optical Emission Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Lee">H. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jr."> Jr.</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Bo-ot"> L. Bo-ot</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Tumlos"> R. Tumlos</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ramos"> H. Ramos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the study is to be able to calculate excitation and vibrational temperatures of a 2.45 GHz microwave-induced atmospheric pressure plasma jet. The plasma jet utilizes Argon gas as a primary working gas, while Nitrogen is utilized as a shroud gas for protecting the quartz tube from the plasma discharge. Through Optical Emission Spectroscopy (OES), various emission spectra were acquired from the plasma discharge. Selected lines from Ar I and N2 I emissions were used for the Boltzmann plot technique. The Boltzmann plots yielded values for the excitation and vibrational temperatures. The various values for the temperatures were plotted against varying parameters such as the gas flow rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20jet" title="plasma jet">plasma jet</a>, <a href="https://publications.waset.org/abstracts/search?q=OES" title=" OES"> OES</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20plots" title=" Boltzmann plots"> Boltzmann plots</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrational%20temperatures" title=" vibrational temperatures"> vibrational temperatures</a> </p> <a href="https://publications.waset.org/abstracts/12879/temperature-calculation-for-an-atmospheric-pressure-plasma-jet-by-optical-emission-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">713</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5927</span> Effects of Plasma Treatment on Seed Germination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yong%20Ho%20Jeon">Yong Ho Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Youn%20Mi%20Lee"> Youn Mi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Yoon%20Lee"> Yong Yoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of cold plasma treatment on various plant seed germination were studied. The seeds of hot pepper, cucumber, tomato and arabidopsis were exposed to plasma and the plasma was generated in various devices. The germination speed was evaluated compared to an unexposed control. A positive effect on germination speed was observed in all tested seeds but the effects strongly depended on the type of the used plasma device (Argon-DBD, surface-DBD or MARX generator), time of exposure (6s~10min or 1~10shots) and kind of seeds. The SEM images showed that arrays of gold particles along the cell wall were observed on the surface of cucumber seeds showed a germination-accelerating effect by plasma treatment, which was the same as untreated. However, when treated with the high dose plasma, gold particles were not arrayed at the seed surface, it seems that due to the surface etching. This may suggest that the germination is not promoted by etching or damage of surface caused by the plasma treatment. Seedling growth improvement was also observed by indirect plasma treatment. These lead to an important conclusion that the effect of charged particles on plasma play the essential role in plant germination and indirect plasma treatment offers new perspectives for large scale application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20plasma" title="cold plasma">cold plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=cucumber" title=" cucumber"> cucumber</a>, <a href="https://publications.waset.org/abstracts/search?q=germination" title=" germination"> germination</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM "> SEM </a> </p> <a href="https://publications.waset.org/abstracts/49540/effects-of-plasma-treatment-on-seed-germination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5926</span> Contribution of Exchange-correlation Effects on Weakly Relativistic Plasma Expansion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Fermous">Rachid Fermous</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Mebrek"> Rima Mebrek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma expansion is an important physical process that takes place in laser interactions with solid targets. Within a self-similar model for the hydrodynamic multi-fluid equations, we investigated the expansion of dense plasma. The weakly relativistic electrons are produced by ultra-intense laser pulses, while ions are supposed to be in a non-relativistic regime. It is shown that dense plasma expansion is found to be governed mainly by quantum contributions in the fluid equations that originate from the degenerate pressure in addition to the nonlinear contributions from exchange and correlation potentials. The quantum degeneracy parameter profile provides clues to set the limit between under-dense and dense relativistic plasma expansions at a given density and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20expansion" title="plasma expansion">plasma expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20degeneracy" title=" quantum degeneracy"> quantum degeneracy</a>, <a href="https://publications.waset.org/abstracts/search?q=weakly%20relativistic" title=" weakly relativistic"> weakly relativistic</a>, <a href="https://publications.waset.org/abstracts/search?q=under-dense%20%20plasma" title=" under-dense plasma"> under-dense plasma</a> </p> <a href="https://publications.waset.org/abstracts/167933/contribution-of-exchange-correlation-effects-on-weakly-relativistic-plasma-expansion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5925</span> A Unification and Relativistic Correction for Boltzmann’s Law</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lloyd%20G.%20Allred">Lloyd G. Allred</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution of velocities of particles in plasma is a well understood discipline of plasma physics. Boltzmann’s law and the Maxwell-Boltzmann distribution describe the distribution of velocity of a particle in plasma as a function of mass and temperature. Particles with the same mass tend to have the same velocity. By expressing the same law in terms of energy alone, the author obtains a distribution independent of mass. In summary, for particles in plasma, the energies tend to equalize, independent of the masses of the individual particles. For high-energy plasma, the original law predicts velocities greater than the speed of light. If one uses Einstein’s formula for energy (<em>E=mc<sup>2</sup></em>), then a relativistic correction is not required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cosmology" title="cosmology">cosmology</a>, <a href="https://publications.waset.org/abstracts/search?q=EMP" title=" EMP"> EMP</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20physics" title=" plasma physics"> plasma physics</a>, <a href="https://publications.waset.org/abstracts/search?q=relativity" title=" relativity"> relativity</a> </p> <a href="https://publications.waset.org/abstracts/84272/a-unification-and-relativistic-correction-for-boltzmanns-law" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5924</span> Failure Analysis of Electrode, Nozzle Plate, and Powder Injector during Air Plasma Spray Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nemes%20Alexandra">Nemes Alexandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the research is to develop an optimum microstructure of steel coatings on aluminum surfaces for application on the crankcase cylinder bores. For the proper design of the microstructure of the coat, it is important to control the plasma gun unit properly. The maximum operating time was determined while the plasma gun could optimally work before its destruction. Objectives: The aim of the research is to determine the optimal operating time of the plasma gun between renovations (the renovation shall involve the replacement of the test components of the plasma gun: electrode, nozzle plate, powder injector. Methodology: Plasma jet and particle flux analysis with PFI (PFI is a diagnostic tool for all kinds of thermal spraying processes), CT reconstruction and analysis on the new and the used plasma guns, failure analysis of electrodes, nozzle plates, and powder injectors, microscopic examination of the microstructure of the coating. Contributions: As the result of the failure analysis detailed above, the use of the plasma gun was maximized at 100 operating hours in order to get optimal microstructure for the coat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=APS" title="APS">APS</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20plasma%20spray" title=" air plasma spray"> air plasma spray</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title=" failure analysis"> failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle%20plate" title=" nozzle plate"> nozzle plate</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20injector" title=" powder injector"> powder injector</a> </p> <a href="https://publications.waset.org/abstracts/151362/failure-analysis-of-electrode-nozzle-plate-and-powder-injector-during-air-plasma-spray-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5923</span> Simulation Study on Spacecraft Surface Charging Induced by Jovian Plasma Environment with Particle in Cell Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meihua%20Fang">Meihua Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yipan%20Guo"> Yipan Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Fei"> Tao Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengyu%20Tian"> Pengyu Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space plasma caused spacecraft surface charging is the major space environment hazard. Particle in cell (PIC) method can be used to simulate the interaction between space plasma and spacecraft. It was proved that surface charging level of spacecraft in Jupiter’s orbits was high for its’ electron-heavy plasma environment. In this paper, Jovian plasma environment is modeled and surface charging analysis is carried out by PIC based software Spacecraft Plasma Interaction System (SPIS). The results show that the spacecraft charging potentials exceed 1000V at 2Rj, 15Rj and 25Rj polar orbits in the dark side at worst case plasma model. Furthermore, the simulation results indicate that the large Jovian magnetic field increases the surface charging level for secondary electron gyration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jupiter" title="Jupiter">Jupiter</a>, <a href="https://publications.waset.org/abstracts/search?q=PIC" title=" PIC"> PIC</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20plasma" title=" space plasma"> space plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charging" title=" surface charging"> surface charging</a> </p> <a href="https://publications.waset.org/abstracts/106455/simulation-study-on-spacecraft-surface-charging-induced-by-jovian-plasma-environment-with-particle-in-cell-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5922</span> A Study on the Water and Oil Repellency Characteristics of Plasma-Treated Pet and Pet/Elastane Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehtap%20%C3%87al%C4%B1%C5%9Fkan">Mehtap Çalışkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nil%C3%BCfer%20Y%C4%B1ld%C4%B1z%20Varan"> Nilüfer Yıldız Varan</a>, <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Kaplan"> Volkan Kaplan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New orientations have emerged in the textile sector as a result of increasing global competition and environmental problems. Under the scope of new understandings, it is required to bring forward multi-functional, simple and environmentally friendly methods that will meet tight economic and ecological demands of today. Plasma technology has become a significant alternative in this sense. This technology may provide great advantages in case it is developed, however, it does not receive adequate consideration. In this study, plasma treatment was applied by using glow discharge plasma system to 100% polyethylene terephthalate (PET) and 95% PET/5% elastane fabrics and then the effects of plasma polymerization on fabric surface was tested and analyzed using water and oil repellent finishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester" title=" polyester"> polyester</a>, <a href="https://publications.waset.org/abstracts/search?q=elastane" title=" elastane"> elastane</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20repellency" title=" water repellency"> water repellency</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20repellency" title=" oil repellency"> oil repellency</a> </p> <a href="https://publications.waset.org/abstracts/73125/a-study-on-the-water-and-oil-repellency-characteristics-of-plasma-treated-pet-and-petelastane-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5921</span> Effect of Pre-Plasma Potential on Laser Ion Acceleration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djemai%20Bara">Djemai Bara</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Faouzi%20Mahboub"> Mohamed Faouzi Mahboub</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Bennaceur-Doumaz"> Djamila Bennaceur-Doumaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the role of the preformed plasma created on the front face of a target, irradiated by a high intensity short pulse laser, in the framework of ion acceleration process, modeled by Target Normal Sheath Acceleration (TNSA) mechanism, is studied. This plasma is composed of cold ions governed by fluid equations and non-thermal & trapped with densities represented by a "Cairns-Gurevich" equation. The self-similar solution of the equations shows that electronic trapping and the presence of non-thermal electrons in the pre-plasma are both responsible in ion acceleration as long as the proportion of energetic electrons is not too high. In the case where the majority of electrons are energetic, the electrons are accelerated directly by the ponderomotive force of the laser without the intermediate of an accelerating plasma wave. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cairns-Gurevich%20Equation" title="Cairns-Gurevich Equation">Cairns-Gurevich Equation</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20acceleration" title=" ion acceleration"> ion acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20expansion" title=" plasma expansion"> plasma expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-plasma" title=" pre-plasma"> pre-plasma</a> </p> <a href="https://publications.waset.org/abstracts/105424/effect-of-pre-plasma-potential-on-laser-ion-acceleration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5920</span> Plasma Properties Effect on Fluorescent Tube Plasma Antenna Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Dagang">A. N. Dagang</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20I.%20Ismail"> E. I. Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Zakaria"> Z. Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the analysis on the performance of monopole antenna with fluorescent tubes. In this research, the simulation and experimental approach is conducted. The fluorescent tube with different length and size is designed using Computer Simulation Technology (CST) software and the characteristics of antenna parameter are simulated throughout the software. CST was used to simulate antenna parameters such as return loss, resonant frequency, gain and directivity. Vector Network Analyzer (VNA) was used to measure the return loss of plasma antenna in order to validate the simulation results. In the simulation and experiment, the supply frequency is set starting from 1 GHz to 10 GHz. The results show that the return loss of plasma antenna changes when size of fluorescent tubes is varied, correspond to the different plasma properties. It shows that different values of plasma properties such as plasma frequency and collision frequency gives difference result of return loss, gain and directivity. For the gain, the values range from 2.14 dB to 2.36 dB. The return loss of plasma antenna offers higher value range from -22.187 dB to -32.903 dB. The higher the values of plasma frequency and collision frequency, the higher return loss can be obtained. The values obtained are comparative to the conventional type of metal antenna. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20antenna" title="plasma antenna">plasma antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20tube" title=" fluorescent tube"> fluorescent tube</a>, <a href="https://publications.waset.org/abstracts/search?q=CST" title=" CST"> CST</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20parameters" title=" plasma parameters"> plasma parameters</a> </p> <a href="https://publications.waset.org/abstracts/52421/plasma-properties-effect-on-fluorescent-tube-plasma-antenna-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5919</span> 2D RF ICP Torch Modelling with Fluid Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mokhtar%20Labiod">Mokhtar Labiod</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Ikhlef"> Nabil Ikhlef</a>, <a href="https://publications.waset.org/abstracts/search?q=Keltoum%20Bouherine"> Keltoum Bouherine</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Leroy"> Olivier Leroy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical model for the radio-frequency (RF) Argon discharge chamber is developed to simulate the low pressure low temperature inductively coupled plasma. This model will be of fundamental importance in the design of the plasma magnetic control system. Electric and magnetic fields inside the discharge chamber are evaluated by solving a magnetic vector potential equation. To start with, the equations of the ideal magnetohydrodynamics theory will be presented describing the basic behaviour of magnetically confined plasma and equations are discretized with finite element method in cylindrical coordinates. The discharge chamber is assumed to be axially symmetric and the plasma is treated as a compressible gas. Plasma generation due to ionization is added to the continuity equation. Magnetic vector potential equation is solved for the electromagnetic fields. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct-coupled%20model" title="direct-coupled model">direct-coupled model</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic" title=" magnetohydrodynamic"> magnetohydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20torch%20simulation" title=" plasma torch simulation"> plasma torch simulation</a> </p> <a href="https://publications.waset.org/abstracts/38779/2d-rf-icp-torch-modelling-with-fluid-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5918</span> Contribution of Hydrogen Peroxide in the Selective Aspect of Prostate Cancer Treatment by Cold Atmospheric Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Moreau">Maxime Moreau</a>, <a href="https://publications.waset.org/abstracts/search?q=Silv%C3%A8re%20Baron"> Silvère Baron</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marc%20Lobaccaro"> Jean-Marc Lobaccaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Karine%20Charlet"> Karine Charlet</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Menecier"> Sébastien Menecier</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Perisse"> Frédéric Perisse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold Atmospheric Plasma (CAP) is an ionized gas generated at atmospheric pressure with the temperature of heavy particles (molecules, ions, atoms) close to the room temperature. Recent studies have shown that both in-vitro and in-vivo plasma exposition to many cancer cell lines are efficient to induce the apoptotic way of cell death. In some other works, normal cell lines seem to be less impacted by plasma than cancer cell lines. This is called selectivity of plasma. It is highly likely that the generated RNOS (Reactive Nitrogen Oxygen Species) in the plasma jet, but also in the medium, play a key-role in this selectivity. In this study, two CAP devices will be compared to electrical power, chemical species composition and their efficiency to kill cancer cells. A particular focus on the action of hydrogen peroxide will be made. The experiments will take place as described next for both devices: electrical and spectroscopic characterization for different voltages, plasma treatment of normal and cancer cells to compare the CAP efficiency between cell lines and to show that death is induced by an oxidative stress. To enlighten the importance of hydrogen peroxide, an inhibitor of H2O2 will be added in cell culture medium before treatment and a comparison will be made between the results of cell viability in this case and those from a simple plasma exposition. Besides, H2O2 production will be measured by only treating medium with plasma. Cell lines will also be exposed to different concentrations of hydrogen peroxide in order to characterize the cytotoxic threshold for cells and to make a comparison with the quantity of H2O2 produced by CAP devices. Finally, the activity of catalase for different cell lines will be quantified. This enzyme is an important antioxidant agent against hydrogen peroxide. A correlation between cells response to plasma exposition and this activity could be a strong argument in favor of the predominant role of H2O2 to explain the selectivity of plasma cancer treatment by cold atmospheric plasma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20atmospheric%20plasma" title="cold atmospheric plasma">cold atmospheric plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a> </p> <a href="https://publications.waset.org/abstracts/153096/contribution-of-hydrogen-peroxide-in-the-selective-aspect-of-prostate-cancer-treatment-by-cold-atmospheric-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5917</span> Atmospheric Plasma Treatment to Improve Water and Oil Repellent Finishing for PET and PET/Spandex Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehtap%20%C3%87al%C4%B1%C5%9Fkan">Mehtap Çalışkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nil%C3%BCfer%20Y%C4%B1ld%C4%B1z%20Varan"> Nilüfer Yıldız Varan</a>, <a href="https://publications.waset.org/abstracts/search?q=Volkan%20Kaplan"> Volkan Kaplan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of an atmospheric plasma treatment on the durability of water and oil repellent finishes of PET and PET/Spandex fabrics were tested. Fabrics were treated with a low-frequency atmospheric pressure glow discharge. After plasma treatments, the water and oil repellent finishes were applied using pad-dry-cure method. It was observed that plasma treatments improved the durability finish for all fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20plasma" title="atmospheric plasma">atmospheric plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=durable%20coating" title=" durable coating"> durable coating</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20repellency" title=" oil repellency"> oil repellency</a>, <a href="https://publications.waset.org/abstracts/search?q=PET%2Fspandex%20fabrics" title=" PET/spandex fabrics"> PET/spandex fabrics</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20repellency" title=" water repellency"> water repellency</a> </p> <a href="https://publications.waset.org/abstracts/68560/atmospheric-plasma-treatment-to-improve-water-and-oil-repellent-finishing-for-pet-and-petspandex-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5916</span> Inorganic Microporous Membranes Fabricated by Atmospheric Pressure Plasma Liquid Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damian%20A.%20Mooney">Damian A. Mooney</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20T.%20P.%20Mc%20Cann"> Michael T. P. Mc Cann</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Don%20MacElroy"> J. M. Don MacElroy</a>, <a href="https://publications.waset.org/abstracts/search?q=Olli%20Antson"> Olli Antson</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20P.%20Dowling"> Denis P. Dowling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric pressure plasma liquid deposition (APPLD) is a novel technology used for the deposition of thin films via the injection of a reactive liquid precursor into a high-energy discharge plasma at ambient pressure. In this work, APPLD, utilising a TEOS precursor, was employed to produce asymmetric membranes consisting of a thin (100 nm) layer of deposited silica on a microporous silica support in order to assess their suitability for high temperature gas separation applications. He and N₂ gas permeability measurements were made for each of the fabricated membranes and a maximum ideal He/N₂ selectivity of 66 was observed at room temperature. He, N₂ and CO2 gas permeances were also measured at the elevated temperature of 673K and ideal He/N₂ and CO₂/N₂ selectivities of 300 and 7.4, respectively, were observed. The results suggest that this plasma-based deposition technique can be a viable method for the manufacture of membranes for the efficient separation of high temperature, post-combustion gases, including that of CO₂/N₂ where the constituent gases differ in size by fractions of an Ångstrom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20membrane" title="asymmetric membrane">asymmetric membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20separation" title=" CO₂ separation"> CO₂ separation</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20deposition" title=" plasma deposition"> plasma deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/48713/inorganic-microporous-membranes-fabricated-by-atmospheric-pressure-plasma-liquid-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5915</span> Plasma Gasification as a Sustainable Way for Energy Recovery from Scrap Tyre </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gloria%20James">Gloria James</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nema"> S. K. Nema</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Anantha%20Singh"> T. S. Anantha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Vadivel%20Murugan"> P. Vadivel Murugan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The usage of tyre has increased enormously in day to day life. The used tyre and rubber products pose major threat to the environment. Conventional thermal techniques such as low temperature pyrolysis and incineration produce high molecular organic compounds (condensed and collected as aromatic oil) and carbon soot particles. Plasma gasification technique can dispose tyre waste and generate combustible gases and avoid the formation of high molecular aromatic compounds. These gases generated in plasma gasification process can be used to generate electricity or as fuel wherever required. Although many experiments have been done on plasma pyrolysis of tyres, very little work has been done on plasma gasification of tyres. In this work plasma gasification of waste tyres have been conducted in a fixed bed reactor having graphite electrodes and direct current (DC) arc plasma system. The output of this work has been compared with the previous work done on plasma pyrolysis of tyres by different authors. The aim of this work is to compare different process based on gas generation, efficiency of the process and explore the most effective option for energy recovery from waste tyres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/abstracts/search?q=syngas" title=" syngas"> syngas</a>, <a href="https://publications.waset.org/abstracts/search?q=tyre%20waste" title=" tyre waste"> tyre waste</a> </p> <a href="https://publications.waset.org/abstracts/103318/plasma-gasification-as-a-sustainable-way-for-energy-recovery-from-scrap-tyre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5914</span> Feasibility of Leukemia Cancer Treatment (K562) by Atmospheric Pressure Plasma Jet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mashayekh%20Amir%20Shahriar">Mashayekh Amir Shahriar</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhlaghi%20Morteza"> Akhlaghi Morteza</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajaee%20Hajar"> Rajaee Hajar</a>, <a href="https://publications.waset.org/abstracts/search?q=Khani%20Mohammad%20Reza"> Khani Mohammad Reza</a>, <a href="https://publications.waset.org/abstracts/search?q=Shokri%20Babak"> Shokri Babak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new and novel approach in medicine is the use of cold plasma for various applications such as sterilization blood coagulation and cancer cell treatment. In this paper a pin-to-hole plasma jet suitable for biological applications is investigated, characterized and the possibility and feasibility of cancer cell treatment is evaluated. The characterization includes power consumption via Lissajous method, thermal behavior of plasma using Infra-red camera as a novel method, Optical Emission Spectroscopy (OES) to determine the species that are generated. Treatment of leukemia cancer cells is also implemented and MTT assay is used to evaluate viability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atmospheric%20Pressure%20Plasma%20Jet%20%28APPJ%29" title="Atmospheric Pressure Plasma Jet (APPJ)">Atmospheric Pressure Plasma Jet (APPJ)</a>, <a href="https://publications.waset.org/abstracts/search?q=Plasma%20Medicine" title=" Plasma Medicine"> Plasma Medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=Cancer%20cell%20treatment" title=" Cancer cell treatment"> Cancer cell treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=leukemia" title=" leukemia"> leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=Optical%20Emission" title=" Optical Emission "> Optical Emission </a> </p> <a href="https://publications.waset.org/abstracts/16677/feasibility-of-leukemia-cancer-treatment-k562-by-atmospheric-pressure-plasma-jet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">660</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5913</span> Self-Action Effects of a Non-Gaussian Laser Beam Through Plasma </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Kumar">Sandeep Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Gupta"> Naveen Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The propagation of the Non-Gaussian laser beam results in strong self-focusing as compare to the Gaussian laser beam, which helps to achieve a prerequisite of the plasma-based electron, Terahertz generation, and higher harmonic generations. The theoretical investigation on the evolution of non-Gaussian laser beam through the collisional plasma with ramped density has been presented. The non-uniform irradiance over the cross-section of the laser beam results in redistribution of the carriers that modifies the optical response of the plasma in such a way that the plasma behaves like a converging lens to the laser beam. The formulation is based on finding a semi-analytical solution of the nonlinear Schrodinger wave equation (NLSE) with the help of variational theory. It has been observed that the decentred parameter ‘q’ of laser and wavenumber of ripples of medium contribute to providing the required conditions for the improvement of self-focusing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-Gaussian%20beam" title="non-Gaussian beam">non-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=collisional%20plasma" title=" collisional plasma"> collisional plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=variational%20theory" title=" variational theory"> variational theory</a>, <a href="https://publications.waset.org/abstracts/search?q=self-focusing" title=" self-focusing"> self-focusing</a> </p> <a href="https://publications.waset.org/abstracts/124754/self-action-effects-of-a-non-gaussian-laser-beam-through-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5912</span> FEDBD Plasma, A Promising Approach for Skin Rejuvenation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Charipoor">P. Charipoor</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khani"> M. Khani</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mahmoudi"> H. Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ghasemi"> E. Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Akbartehrani"> P. Akbartehrani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Shokri"> B. Shokri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold air plasma could have a variety of effects on cells and living organisms and also shows good results in medical and cosmetic cases. Herein, plasma floating electrode dielectric barrier discharge (FEDBD) plasma was designed for mouse skin rejuvenation purposes. It is safe and easy to use in clinics, laboratories, and homes. The effects of this device were investigated on mouse skin. Vitamin C ointment in combination with plasma was also used as a new method to improve FEDBD results. In this study, 20 Wistar rats were evaluated in four groups. The first group received high-dose plasma, the second group received moderate-dose plasma (with vitamin C cream), the third group received low-dose plasma (with vitamin C cream) for 6 minutes, and the fourth group received only vitamin C cream. This process was done 3 times a week for 4 weeks. Skin temperature was monitored to evaluate the thermal effect of plasma. The presence of reactive species was also demonstrated using optical spectroscopy. Mechanical assays were performed to evaluate the effect of plasma and vitamin C on the mechanical strength of the tissue, which showed a positive effect of plasma on the treated tissue compared to the control group. Using pathological and biometric skin tests, an increase in collagen levels, epidermal thickness, and an increase in fibroblasts was observed in rat skin, as well as increased skin elasticity. This study showed the positive effect of using the FEDBD plasma device on the effective parameters in skin rejuvenation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20rejuvenation" title=" skin rejuvenation"> skin rejuvenation</a>, <a href="https://publications.waset.org/abstracts/search?q=collagen" title=" collagen"> collagen</a>, <a href="https://publications.waset.org/abstracts/search?q=epidermal%20thickness" title=" epidermal thickness"> epidermal thickness</a> </p> <a href="https://publications.waset.org/abstracts/140957/fedbd-plasma-a-promising-approach-for-skin-rejuvenation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5911</span> Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Wadhwa">Jyoti Wadhwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvinder%20Singh"> Arvinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20rippled%20plasma" title="density rippled plasma">density rippled plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20order%20Gaussian%20laser%20beam" title=" higher order Gaussian laser beam"> higher order Gaussian laser beam</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20theory%20approach" title=" moment theory approach"> moment theory approach</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20harmonic%20generation." title=" second harmonic generation. "> second harmonic generation. </a> </p> <a href="https://publications.waset.org/abstracts/124846/second-harmonic-generation-of-higher-order-gaussian-laser-beam-in-density-rippled-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5910</span> Effect of Ionized Plasma Medium on the Radiation of a Rectangular Microstrip Antenna on Ferrite Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20Al%20Sawalha">Ayman Al Sawalha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents theoretical investigations on the radiation of rectangular microstrip antenna printed on a magnetized ferrite substrate Ni0.62Co0.02Fe1.948O4 in the presence of ionized plasma medium. The theoretical study of rectangular microstrip antenna in free space is carried out by applying the transmission line model combining with potential function techniques while hydrodynamic theory is used for it is analysis in plasma medium. By taking the biased and unbiased ferrite cases, far-field radiation patterns in free space and plasma medium are obtained which in turn are applied in computing radiated power, directivity, quality factor and bandwidth of antenna. It is found that the presence of plasma medium affects the performance of rectangular microstrip antenna structure significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrite" title="ferrite">ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20antenna" title=" microstrip antenna"> microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/45642/effect-of-ionized-plasma-medium-on-the-radiation-of-a-rectangular-microstrip-antenna-on-ferrite-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5909</span> Effect of Hydrogen Peroxide Concentration Produced by Cold Atmospheric Plasma on Inactivation of Escherichia Coli in Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zohreh%20Rashmei">Zohreh Rashmei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Plasma inactivation is one of the emerging technologies in biomedical field and has been applied to the inactivation of microorganisms in water. The inactivation effect has been attributed to the presence of active plasma species, i.e. OH, O, O3, H2O2, UV and electric fields, generated by the discharge of plasma. Material and Method: To evaluate germicidal effects of plasma, the electric spark discharge device was used. After the effect of the plasma samples were collected for culture medium agar plate count. In addition to biological experiments, the concentration of hydrogen peroxide was also measured. Results: The results showed that Plasma is able to inactivate a high concentration of E. coli. After a short period of plasma radiation on the surface of water, the amount log8 reduced the microbial load. Starting plasma radiation on the surface of the water, the measurements show of production and increasing the amount of hydrogen peroxide in water. So that at the end of the experiment, the concentration of hydrogen peroxide to about 100 mg / l increased. Conclusion: Increasing the concentration of hydrogen peroxide is directly related to the reduction of microbial load. The results of E. coli culture in media containing certain concentrations of H2O2 showed that E. coli can not to grow in a medium containing more than 2/5 mg/l of H2O2. Surely we can say that the main cause of killing bacteria is a molecule of H2O2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=disinfection" title=" disinfection"> disinfection</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a> </p> <a href="https://publications.waset.org/abstracts/123051/effect-of-hydrogen-peroxide-concentration-produced-by-cold-atmospheric-plasma-on-inactivation-of-escherichia-coli-in-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=197">197</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=198">198</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=efficient%20use%20of%20plasma&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>