CINXE.COM

Search results for: Radioactivity

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Radioactivity</title> <meta name="description" content="Search results for: Radioactivity"> <meta name="keywords" content="Radioactivity"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Radioactivity" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Radioactivity"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 60</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Radioactivity</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Study of Radioactivity of Oil and Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harish%20Aryal">Harish Aryal</a>, <a href="https://publications.waset.org/abstracts/search?q=Thalia%20Balderas"> Thalia Balderas</a>, <a href="https://publications.waset.org/abstracts/search?q=Alondra%20Rodriguez"> Alondra Rodriguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radioactivity present in nature possess a major challenge to public health and occupational concerns. Even at low doses, NORM can cause radiation-induced cancers, heritable diseases, genetic defects, etc. There have not been enough radiological studies and consequently, there is a lack of supportive data. In addition, there is no universal medical surveillance program for low-level doses and there is a need for NORM management guidelines for appropriate control. Naturally Occurring Radioactive Material (NORM) is present everywhere during oil/gas exploration. Currently, there is limited data available to quantify radioactivity. This research presents the study of radioactivity in different areas in the United States to be encouraged to be used for further study in Texas or similar areas within the oil and gas industry. Many materials that are found in the oil and gas industry are NORM (Naturally Occurring Radioactive Materials). The NORM is made of various types of materials, including Radium 226, Radium 228, and Radon 222. Efforts to characterize the geographic distribution of NORM have been limited by poor statistical representation in this area of study. In addition, the fate of NORM in the environment has not been fully defined, and few human health risk assessments have been conducted. To further comprehend how to measure radioactivity in oil and gas, it will be essential to understand the amount and type of radioactivity that is wasted on the water and soil of the industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NORM" title="NORM">NORM</a>, <a href="https://publications.waset.org/abstracts/search?q=radium%20226" title=" radium 226"> radium 226</a>, <a href="https://publications.waset.org/abstracts/search?q=radon%20222" title=" radon 222"> radon 222</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20formations" title=" geological formations"> geological formations</a> </p> <a href="https://publications.waset.org/abstracts/167625/study-of-radioactivity-of-oil-and-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> Determination of Natural Gamma Radioactivity in Sand along the Black Sea Coastal Region of Giresun, North Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Karadeniz">A. Karadeniz</a>, <a href="https://publications.waset.org/abstracts/search?q=Belgin%20Kucukomeroglu"> Belgin Kucukomeroglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study natural gamma radioactivity levels are determined on sands along the coastal regions of Giresun/Turkey. The coast of Giresun about 290 km long in investigated to collect 101 sand samples. Natural and artificial radioactivity concentrations of sand samples were measured by using HPGe gamma spectrometry. The average activity concentrations of 238U, 232Th, 40K and 137Cs on sand samples of Giresun were found to be 10.83±2.92 Bq/kg, 21.28±3.22 Bq/kg, 6.42±1.06 Bq/kg, 230.94±10.67 Bq/kg respectively. The average activity concentrations for these radionuclides were compared with the reported data of other parts of Turkey and other countries. The average absorbed dose rate for Giresun was calculated to be 38.68 nGy/h respectively. This value is significantly lower than the World averaged value of 60 nGy/h. The external annual effective dose rate concentration in Giresun was found to be 0.047 mSv/y respectively. This result is much lower than the recommeded limit of 5 mSv/y. The external hazard dose rate for Giresun weas calculated to be 0.21 respectively. This result is much lower than the recommended limit of 1.0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentration" title="concentration">concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactivity" title=" radioactivity"> radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Giresun" title=" Giresun"> Giresun</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gamma%20radioactivity" title=" natural gamma radioactivity"> natural gamma radioactivity</a> </p> <a href="https://publications.waset.org/abstracts/29636/determination-of-natural-gamma-radioactivity-in-sand-along-the-black-sea-coastal-region-of-giresun-north-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Natural Radioactivity in Foods Consumed in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Kam">E. Kam</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Karahan"> G. Karahan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Asl%C4%B1yuksek"> H. Aslıyuksek</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bozkurt"> A. Bozkurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine the natural radioactivity levels in some foodstuffs produced in Turkey. For this purpose, 48 different foods samples were collected from different land parcels throughout the country. All samples were analyzed to designate both gross alpha and gross beta radioactivities and the radionuclides&rsquo; concentrations. The gross alpha radioactivities were measured as below 1 Bq kg<sup>-1</sup> in most of the samples, some of them being due to the detection limit of the counting system. The gross beta radioactivity levels ranged from 1.8 Bq kg<sup>-1</sup> to 453 Bq kg<sup>-1</sup>, larger levels being observed in leguminous seeds while the highest level being in haricot bean. The concentrations of natural radionuclides in the foodstuffs were investigated by the method of gamma spectroscopy. High levels of <sup>40</sup>K were measured in all the samples, the highest activities being again in leguminous seeds. Low concentrations of <sup>238</sup>U and <sup>226</sup>Ra were found in some of the samples, which are comparable to the reported results in the literature. Based on the activity concentrations obtained in this study, average annual effective dose equivalents for the radionuclides <sup>226</sup>Ra, <sup>238</sup>U, and <sup>40</sup>K were calculated as 77.416 &micro;Sv y<sup>-1</sup>, 0.978 &micro;Sv y<sup>-1</sup>, and 140.55 &micro;Sv y<sup>-1</sup>, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foods" title="foods">foods</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactivity" title=" radioactivity"> radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20alpha" title=" gross alpha"> gross alpha</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20beta" title=" gross beta"> gross beta</a>, <a href="https://publications.waset.org/abstracts/search?q=annual%20equivalent%20dose" title=" annual equivalent dose"> annual equivalent dose</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/52059/natural-radioactivity-in-foods-consumed-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52059.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> European Commission Radioactivity Environmental Monitoring Database REMdb: A Law (Art. 36 Euratom Treaty) Transformed in Environmental Science Opportunities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mar%C3%ADn-Ferrer">M. Marín-Ferrer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hern%C3%A1ndez"> M. A. Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Tollefsen"> T. Tollefsen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vanzo"> S. Vanzo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Nweke"> E. Nweke</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Tognoli"> P. V. Tognoli</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Cort"> M. De Cort </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under the terms of Article 36 of the Euratom Treaty, European Union Member States (MSs) shall periodically communicate to the European Commission (EC) information on environmental radioactivity levels. Compilations of the information received have been published by the EC as a series of reports beginning in the early 1960s. The environmental radioactivity results received from the MSs have been introduced into the Radioactivity Environmental Monitoring database (REMdb) of the Institute for Transuranium Elements of the EC Joint Research Centre (JRC) sited in Ispra (Italy) as part of its Directorate General for Energy (DG ENER) support programme. The REMdb brings to the scientific community dealing with environmental radioactivity topics endless of research opportunities to exploit the near 200 millions of records received from MSs containing information of radioactivity levels in milk, water, air and mixed diet. The REM action was created shortly after Chernobyl crisis to support the EC in its responsibilities in providing qualified information to the European Parliament and the MSs on the levels of radioactive contamination of the various compartments of the environment (air, water, soil). Hence, the main line of REM’s activities concerns the improvement of procedures for the collection of environmental radioactivity concentrations for routine and emergency conditions, as well as making this information available to the general public. In this way, REM ensures the availability of tools for the inter-communication and access of users from the Member States and the other European countries to this information. Specific attention is given to further integrate the new MSs with the existing information exchange systems and to assist Candidate Countries in fulfilling these obligations in view of their membership of the EU. Article 36 of the EURATOM treaty requires the competent authorities of each MS to provide regularly the environmental radioactivity monitoring data resulting from their Article 35 obligations to the EC in order to keep EC informed on the levels of radioactivity in the environment (air, water, milk and mixed diet) which could affect population. The REMdb has mainly two objectives: to keep a historical record of the radiological accidents for further scientific study, and to collect the environmental radioactivity data gathered through the national environmental monitoring programs of the MSs to prepare the comprehensive annual monitoring reports (MR). The JRC continues his activity of collecting, assembling, analyzing and providing this information to public and MSs even during emergency situations. In addition, there is a growing concern with the general public about the radioactivity levels in the terrestrial and marine environment, as well about the potential risk of future nuclear accidents. To this context, a clear and transparent communication with the public is needed. EURDEP (European Radiological Data Exchange Platform) is both a standard format for radiological data and a network for the exchange of automatic monitoring data. The latest release of the format is version 2.0, which is in use since the beginning of 2002. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20radioactivity" title="environmental radioactivity">environmental radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Euratom" title=" Euratom"> Euratom</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring%20report" title=" monitoring report"> monitoring report</a>, <a href="https://publications.waset.org/abstracts/search?q=REMdb" title=" REMdb"> REMdb</a> </p> <a href="https://publications.waset.org/abstracts/20147/european-commission-radioactivity-environmental-monitoring-database-remdb-a-law-art-36-euratom-treaty-transformed-in-environmental-science-opportunities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Radiological Assessment of Fish Samples Due to Natural Radionuclides in River Yobe, North Eastern Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20T.%20Abba">H. T. Abba</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Baba%20Kura"> Abbas Baba Kura </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Assessment of natural radioactivity of some fish samples in river Yobe was conducted, using gamma spectroscopy method with NaI(TI) detector. Radioactivity is phenomenon that leads to production of radiations, whereas radiation is known to trigger or induce cancer. The fish were analyzed to estimate the radioactivity (activity) concentrations due to natural radionuclides (Radium 222(226Ra), Thorium 232 (232Th) and Potassium 40 (40K)). The obtained result show that the activity concentration for (226Ra), in all the fish samples collected ranges from 15.23±2.45 BqKg-1 to 67.39±2.13 BqKg-1 with an average value of 34.13±1.34 BqKg-1. That of 232Th, ranges from 42.66±0.81 BqKg-1 to 201.18±3.82 BqKg-1, and the average value stands at 96.01±3.82 BqKg-1. The activity concentration for 40K, ranges between 243.3±1.56 BqKg-1 to 618.2±2.81 BqKg-1 and the average is 413.92±1.7 BqKg-1. This study indicated that average daily intake due to natural activity from the fish is valued at 0.913 Bq/day, 2.577Bq/day and 11.088 Bq/day for 226Ra, 232Th and 40K respectively. This shows that the activity concentration values for fish, shows a promising result with most of the fish activity concentrations been within the acceptable limits. However locations (F02, F07 and F12) fish, became outliers with significant values of 112.53μSvy-1, 121.11μSvy-1 and 114.32μSvy-1 effective Dose. This could be attributed to variation in geological formations within the river as while as the feeding habits of these fish. The work shows that consumers of fish from River Yobe have no risk of radioactivity ingestion, even though no amount of radiation is assumed to be totally safe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation" title="radiation">radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=radio-activity" title=" radio-activity"> radio-activity</a>, <a href="https://publications.waset.org/abstracts/search?q=dose" title=" dose"> dose</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20Yobe" title=" river Yobe "> river Yobe </a> </p> <a href="https://publications.waset.org/abstracts/12312/radiological-assessment-of-fish-samples-due-to-natural-radionuclides-in-river-yobe-north-eastern-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12312.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Radioactivity Assessment of Sediments in Negombo Lagoon Sri Lanka</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20N.%20L.%20Handagiripathira">H. M. N. L. Handagiripathira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distributions of naturally occurring and anthropogenic radioactive materials were determined in surface sediments taken at 27 different locations along the bank of Negombo Lagoon in Sri Lanka. Hydrographic parameters of lagoon water and the grain size analyses of the sediment samples were also carried out for this study. The conductivity of the adjacent water was varied from 13.6 mS/cm to 55.4 mS/cm near to the southern end and the northern end of the lagoon, respectively, and equally salinity levels varied from 7.2 psu to 32.1 psu. The average pH in the water was 7.6 and average water temperature was 28.7 &deg;C. The grain size analysis emphasized the mass fractions of the samples as sand (60.9%), fine sand (30.6%) and fine silt+clay (1.3%) in the sampling locations. The surface sediment samples of wet weight, 1 kg each from upper 5-10 cm layer, were oven dried at 105 &deg;C for 24 hours to get a constant weight, homogenized and sieved through a 2 mm sieve (IAEA technical series no. 295). The radioactivity concentrations were determined using gamma spectrometry technique. Ultra Low Background Broad Energy High Purity Ge Detector, BEGe (Model BE5030, Canberra) was used for radioactivity measurement with Canberra Industries&#39; Laboratory Source-less Calibration Software (LabSOCS) mathematical efficiency calibration approach and Geometry composer software. The mean activity concentration was found to be 24 &plusmn; 4, 67 &plusmn; 9, 181 &plusmn; 10, 59 &plusmn; 8, 3.5 &plusmn; 0.4 and 0.47 &plusmn; 0.08 Bq/kg for 238U, 232Th, 40K, 210Pb, 235U and 137Cs respectively. The mean absorbed dose rate in air, radium equivalent activity, external hazard index, annual gonadal dose equivalent and annual effective dose equivalent were 60.8 nGy/h, 137.3 Bq/kg, 0.4, 425.3 mSv/year and 74.6 mSv/year, respectively. The results of this study will provide baseline information on the natural and artificial radioactive isotopes and environmental pollution associated with information on radiological risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectrometry" title="gamma spectrometry">gamma spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=lagoon" title=" lagoon"> lagoon</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactivity" title=" radioactivity"> radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments" title=" sediments"> sediments</a> </p> <a href="https://publications.waset.org/abstracts/126939/radioactivity-assessment-of-sediments-in-negombo-lagoon-sri-lanka" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> In-Situ Determination of Radioactivity Levels and Radiological Hazards in and around the Gold Mine Tailings of the West Rand Area, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paballo%20M.%20Moshupya">Paballo M. Moshupya</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamiru%20A.%20Abiye"> Tamiru A. Abiye</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Korir"> Ian Korir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mining and processing of naturally occurring radioactive materials could result in elevated levels of natural radionuclides in the environment. The aim of this study was to evaluate the radioactivity levels on a large scale in the West Rand District in South Africa, which is dominated by abandoned gold mine tailings and the consequential radiological exposures to members of the public. The activity concentrations of ²³⁸U, ²³²Th and 40K in mine tailings, soil and rocks were assessed using the BGO Super-Spec (RS-230) gamma spectrometer. The measured activity concentrations for ²³⁸U, ²³²Th and 40K in the studied mine tailings were found to range from 209.95 to 2578.68 Bq/kg, 19.49 to 108.00 Bq/kg and 31.30 to 626.00 Bq/kg, respectively. In surface soils, the overall average activity concentrations were found to be 59.15 Bq/kg, 34.91 and 245.64 Bq/kg for 238U, ²³²Th and 40K, respectively. For the rock samples analyzed, the mean activity concentrations were 32.97 Bq/kg, 32.26 Bq/kg and 351.52 Bg/kg for ²³⁸U, ²³²Th and 40K, respectively. High radioactivity levels were found in mine tailings, with ²³⁸U contributing significantly to the overall activity concentration. The external gamma radiation received from surface soil in the area is generally low, with an average of 0.07 mSv/y. The highest annual effective doses were estimated from the tailings dams and the levels varied between 0.14 mSv/y and 1.09 mSv/y, with an average of 0.51 mSv/y. In certain locations, the recommended dose constraint of 0.25 mSv/y from a single source to the average member of the public within the exposed population was exceeded, indicating the need for further monitoring and regulatory control measures specific to these areas to ensure the protection of resident members of the public. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity%20concentration" title="activity concentration">activity concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20mine%20tailings" title=" gold mine tailings"> gold mine tailings</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20gamma%20spectrometry" title=" in-situ gamma spectrometry"> in-situ gamma spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=radiological%20exposures" title=" radiological exposures"> radiological exposures</a> </p> <a href="https://publications.waset.org/abstracts/146072/in-situ-determination-of-radioactivity-levels-and-radiological-hazards-in-and-around-the-gold-mine-tailings-of-the-west-rand-area-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> Natural Radioactivity in Tunisian Bottled Mineral Waters </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20Labidi">Salam Labidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Machraoui"> Sonia Machraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Souha%20Gharbi"> Souha Gharbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radium isotopes (226Ra, 228Ra) and uranium isotopes (234U, 238U) activity concentrations were determined in most popular Tunisian bottled mineral waters samples. Activity concentrations of uranium were studied by radiochemical separation procedures followed by alpha spectrometry and that of radium isotopes by gamma-ray spectrometry. The activity concentrations of 238U, 234U, 226Ra and 228Ra in water samples varied in range 3.3 - 22.5 mBq.L−1, 4.0 - 34.2 mBq L−1, 2.0 - 67.0 mBq L−1 and 2.0 - 30.2 mBq L−1, respectively. These values are comparable with those reported for many other countries in the world for different types of water. Based on the activity concentration results obtained in this study, the estimated annual ingestion dose rates for three different age groups (babies, children and adults) due to the ingestion of radium and uranium isotopes through drinking water are lower than the limit of intake prescribed by WHO. The annual doses exceed the recommended value of 0.1 mSv y-1 in one case for babies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mineral%20water" title="mineral water">mineral water</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20radioactivity" title=" natural radioactivity"> natural radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a>, <a href="https://publications.waset.org/abstracts/search?q=radium" title=" radium"> radium</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium" title=" uranium"> uranium</a> </p> <a href="https://publications.waset.org/abstracts/60196/natural-radioactivity-in-tunisian-bottled-mineral-waters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Radioactive Contamination by ¹³⁷Cs in Marine Sediments Taken up from Cuba&#039;s North and South Coast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maris%C3%A9%20Garc%C3%ADa%20Batlle">Marisé García Batlle</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Manuel%20Navarrete%20Tejero"> Juan Manuel Navarrete Tejero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In aquatic ecosystems, the main indicators of pollution are contaminated sediments, which are the primary repository of radionuclides and chemicals elements in the marine environment. Radioactive Contamination Factor (RCF) has been proposed as a suitable unit to measure the magnitude of radioactive contamination at global scale, caused mainly by more than 2,000 nuclear explosions tests performed during the 1945-65 period. It is obtained as percentage of contaminant radioactivity (¹³⁷Cs) compared to natural radioactivity (⁴⁰K), both expressed in Bq/g of marine sediments conditioned in Marinelli containers and detected in both NaI(Tl) and HPGe detectors. So, in this paper samples of marine sediments were taken up along the occidental Cuban coasts and analyzed by gamma spectrometry for the determination of gamma-emitting radioisotopes with energies between 60 and 2000 keV. The results proved that the proposed method is simple and suitable to evaluated radioactive contamination. Also, the RCF values provide an appropriate indicator to predict which pollution levels in the future will be and if the rate will go down as disintegrates the ¹³⁷Cs present when only 2,4 half-lives have passed away. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cuba" title="Cuba">Cuba</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectrometry" title=" gamma spectrometry"> gamma spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20sediments" title=" marine sediments"> marine sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20pollution" title=" radioactive pollution"> radioactive pollution</a> </p> <a href="https://publications.waset.org/abstracts/81508/radioactive-contamination-by-137cs-in-marine-sediments-taken-up-from-cubas-north-and-south-coast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Measurement of Radon Exhalation Rate, Natural Radioactivity, and Radiation Hazard Assessment in Soil Samples from the Surrounding Area of Kasimpur Thermal Power Plant Kasimpur (U. P.), India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Sharma">Anil Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Mahur"> Ajay Kumar Mahur</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Sonkawade"> R. G. Sonkawade</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Sharma"> A. C. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Prasad"> R. Prasad </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In coal fired thermal power stations, large amount of fly ash is produced after burning of coal. Fly ash is spread and distributed in the surrounding area by air and may be deposited on the soil of the region surrounding the power plant. Coal contains increased levels of these radionuclides and fly ash may increase the radioactivity in the soil around the power plant. Radon atoms entering into the pore space from the mineral grain are transported by diffusion and advection through this space until they in turn decay or are released into the atmosphere. In the present study, Soil samples were collected from the region around a Kasimpur Thermal Power Plant, Kasimpur, Aligarh (U.P.). Radon activity, radon surface exhalation and mass exhalation rates were measured using “sealed can technique” using LR 115-type II nuclear track detectors. Radon activities vary from 92.9 to 556.8 Bq m-3 with mean value of 279.8 Bq m-3. Surface exhalation rates (EX) in these samples are found to vary from 33.4 to 200.2 mBq m-2 h-1 with an average value of 100.5 mBq m-2 h-1 whereas, Mass exhalation rates (EM) vary from 1.2 to 7.7 mBq kg-1 h-1 with an average value of 3.8 mBq kg-1 h-1. Activity concentrations of radionuclides were measured in these samples by using a low level NaI (Tl) based gamma ray spectrometer. Activity concentrations of 226Ra 232Th and 40K vary from 12 to 49 Bq kg-1, 24 to 49 Bq kg-1 and 135 to 546 Bq kg-1 with overall mean values of 30.3 Bq kg-1, 38.5 Bq kg-1 and 317.8 Bq kg-1, respectively. Radium equivalent activity has been found to vary from 80.0 to 143.7 Bq kg-1 with an average value of 109.7 Bq kg-1. Absorbed dose rate varies from 36.1 to 66.4 nGy h-1 with an average value of 50.4 nGy h-1 and corresponding outdoor annual effective dose varies from 0.044 to 0.081 mSv with an average value of 0.061 mSv. Values of external and internal hazard index Hex, Hin in this study vary from 0.21 to 0.38 and 0.27 to 0.50 with an average value of 0.29 and 0.37, Respectively. The results will be discussed in light of various factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20radioactivity" title="natural radioactivity">natural radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radium%20equivalent%20activity" title=" radium equivalent activity"> radium equivalent activity</a>, <a href="https://publications.waset.org/abstracts/search?q=absorbed%20dose%20rate" title=" absorbed dose rate"> absorbed dose rate</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20ray%20spectroscopy" title=" gamma ray spectroscopy "> gamma ray spectroscopy </a> </p> <a href="https://publications.waset.org/abstracts/26839/measurement-of-radon-exhalation-rate-natural-radioactivity-and-radiation-hazard-assessment-in-soil-samples-from-the-surrounding-area-of-kasimpur-thermal-power-plant-kasimpur-u-p-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Bacteriological Analysis of Logan&#039;s Branch Rowan County, Kentucky Utilizing Membrane Filtration Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20G.%20Hereford">Elizabeth G. Hereford</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoffrey%20W.%20Gearner"> Geoffrey W. Gearner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Logan’s Branch, within the Triplett Creek Watershed of Rowan County, Kentucky, is a waterway located near important agricultural and residential areas. Part of Logan’s Branch flows over an exposed black shale formation with elevated radioactivity and heavy metals. Three sites were chosen in relation to the formation and sampled five times over a thirty-day period during the recreational season. A fourth site in North Fork in Rowan County, Kentucky was also sampled periodically as it too has contact with the shale formation. These sites were then sampled monthly. All samples are analyzed for concentrations of Escherichia coli, heterotrophic bacteria, and total coliform bacteria utilizing the membrane filtration method and various culture media. Current data suggests that the radioactivity of the shale formation influences the bacteriological growth present in the waterway; however, further data will be collected and compared with that of my colleagues to confirm this trend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteriological%20analysis" title="bacteriological analysis">bacteriological analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Escherichia%20coli" title=" Escherichia coli"> Escherichia coli</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20bacteria" title=" heterotrophic bacteria"> heterotrophic bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactive%20black%20shale%20formation" title=" radioactive black shale formation"> radioactive black shale formation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/86253/bacteriological-analysis-of-logans-branch-rowan-county-kentucky-utilizing-membrane-filtration-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> Environmental Radioactivity Analysis by a Sequential Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Medkour%20Ishak-Boushaki">G. Medkour Ishak-Boushaki</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Taibi"> A. Taibi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Allab"> M. Allab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantitative environmental radioactivity measurements are needed to determine the level of exposure of a population to ionizing radiations and for the assessment of the associated risks. Gamma spectrometry remains a very powerful tool for the analysis of radionuclides present in an environmental sample but the basic problem in such measurements is the low rate of detected events. Using large environmental samples could help to get around this difficulty but, unfortunately, new issues are raised by gamma rays attenuation and self-absorption. Recently, a new method has been suggested, to detect and identify without quantification, in a short time, a gamma ray of a low count source. This method does not require, as usually adopted in gamma spectrometry measurements, a pulse height spectrum acquisition. It is based on a chronological record of each detected photon by simultaneous measurements of its energy ε and its arrival time τ on the detector, the pair parameters [ε,τ] defining an event mode sequence (EMS). The EMS serials are analyzed sequentially by a Bayesian approach to detect the presence of a given radioactive source. The main object of the present work is to test the applicability of this sequential approach in radioactive environmental materials detection. Moreover, for an appropriate health oversight of the public and of the concerned workers, the analysis has been extended to get a reliable quantification of the radionuclides present in environmental samples. For illustration, we consider as an example, the problem of detection and quantification of 238U. Monte Carlo simulated experience is carried out consisting in the detection, by a Ge(Hp) semiconductor junction, of gamma rays of 63 keV emitted by 234Th (progeny of 238U). The generated EMS serials are analyzed by a Bayesian inference. The application of the sequential Bayesian approach, in environmental radioactivity analysis, offers the possibility of reducing the measurements time without requiring large environmental samples and consequently avoids the attached inconvenient. The work is still in progress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20approach" title="Bayesian approach">Bayesian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20mode%20sequence" title=" event mode sequence"> event mode sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectrometry" title=" gamma spectrometry"> gamma spectrometry</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20method" title=" Monte Carlo method"> Monte Carlo method</a> </p> <a href="https://publications.waset.org/abstracts/34310/environmental-radioactivity-analysis-by-a-sequential-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Measurement of Natural Radioactivity and Health Hazard Index Evaluation in Major Soils of Tin Mining Areas of Perak</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habila%20Nuhu">Habila Nuhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural radionuclides in the environment can significantly contribute to human exposure to ionizing radiation. The knowledge of their levels in an environment can help the radiological protection agencies in policymaking. Measurement of natural radioactivity in major soils in the tin mining state of Perak Malaysia has been conducted using an HPGe detector. Seventy (70) soil samples were collected at widely distributed locations in the state. Six major soil types were sampled, and thirteen districts around the state were covered. The following were the results of the 226Ra (238U), 228Ra (232Th), and 40K activity in the soil samples: 226Ra (238U) has a mean activity concentration of 191.83 Bq kg⁻¹, more than five times the UNSCEAR reference limits of 35 Bq kg⁻¹. The mean activity concentration of 228Ra (232Th) with a value of 232.41 Bq kg⁻¹ is over seven times the UNSCEAR reference values of 30 Bq kg⁻¹. The average concentration of 40K activity was 275.24 Bq kg⁻¹, which was less than the UNSCEAR reference limit of 400 Bq Kg⁻¹. The range of external hazards index (Hₑₓ) values was from 1.03 to 2.05, while the internal hazards index (Hin) was from 1.48 to 3.08. The Hex and Hin should be less than one for minimal external and internal radiation threats as well as secure use of soil material for building construction. The Hₑₓ and Hin results generally indicate that while using the soil types and their derivatives as building materials in the study area, care must be taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activity%20concentration" title="activity concentration">activity concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20index" title=" hazard index"> hazard index</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20samples" title=" soil samples"> soil samples</a>, <a href="https://publications.waset.org/abstracts/search?q=tin%20mining" title=" tin mining"> tin mining</a> </p> <a href="https://publications.waset.org/abstracts/160538/measurement-of-natural-radioactivity-and-health-hazard-index-evaluation-in-major-soils-of-tin-mining-areas-of-perak" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> Rare Earth Elements and Radioactivity of Granitoid Rocks at Abu Marw Area, South Eastern Desert, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20H.El-Afandy">Adel H.El-Afandy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abd%20Alrahman%20Embaby"> Abd Alrahman Embaby</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20A.%20El%20Harairey"> Mona A. El Harairey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abu Marw area is located in the southeastern part of the Eastern Desert, about 150km south east of Aswan. Abu Marw area is mainly covered by late Proterozoic igneous and metamorphic rocks. These basement rocks are nonconformably overlain by late Cretaceous Nubian sandstones in the western and northern parts of the areas. Abu Marw granitoid batholiths comprises a co-magmatic calc alkaline I type peraluminous suite of rocks ranging in composition from tonalite, granodiorite, monzogranite, syenogranite to alkali feldspar granite. The studied tonalite and granodiorite samples have ΣREE lower than the average REE values (250ppm) of granitic rocks, while the monzogranite, syenogranite and alkali feldspar granite samples have ΣREE above the average REE values of granitic rocks. Chondrite-normalized REE patterns of the considered granites display a gull-wing shape, characterized by large to moderately fractionated patterns and high LREE relative to the MREE and HREE contents. Furthermore, the studied rocks have a steadily decreasing Eu/Eu* values from the tonalite to the alkali feldspar granite with simultaneous increase in the ΣREE contents. The average U contents in different granitic rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=granite" title="granite">granite</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20element" title=" rare earth element"> rare earth element</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactivity" title=" radioactivity"> radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Marw" title=" Abu Marw"> Abu Marw</a>, <a href="https://publications.waset.org/abstracts/search?q=south%20eastern%20desert" title=" south eastern desert"> south eastern desert</a> </p> <a href="https://publications.waset.org/abstracts/31714/rare-earth-elements-and-radioactivity-of-granitoid-rocks-at-abu-marw-area-south-eastern-desert-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> Analyzing the Contamination of Some Food Crops Due to Mineral Deposits in Ondo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Chinyere%20Nwankpa">Alexander Chinyere Nwankpa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nneka%20Ngozi%20Nwankpa"> Nneka Ngozi Nwankpa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Nigeria, the Federal government is trying to make sure that everyone has access to enough food that is nutritiously adequate and safe. But in the southwest of Nigeria, notably in Ondo State, the most valuable minerals such as oil and gas, bitumen, kaolin, limestone talc, columbite, tin, gold, coal, and phosphate are abundant. Therefore, some regions of Ondo State are now linked to large quantities of natural radioactivity as a result of the mineral presence. In this work, the baseline radioactivity levels in some of the most important food crops in Ondo State were analyzed, allowing for the prediction of probable radiological health impacts. To this effect, maize (Zea mays), yam (Dioscorea alata) and cassava (Manihot esculenta) tubers were collected from the farmlands in the State because they make up the majority of food's nutritional needs. Ondo State was divided into eight zones in order to provide comprehensive coverage of the research region. At room temperature, the maize (Zea mays), yam (Dioscorea alata), and cassava (Manihot esculenta) samples were dried until they reached a consistent weight. They were pulverized, homogenized, and 250 g packed in a 1-liter Marinelli beaker and kept for 28 days to achieve secular equilibrium. The activity concentrations of Radium-226 (Ra-226), Thorium-232 (Th-232), and Potassium-40 (K-40) were determined in the food samples using Gamma-ray spectrometry. Firstly, the Hyper Pure Germanium detector was calibrated using standard radioactive sources. The gamma counting, which lasted for 36000s for each sample, was carried out in the Centre for Energy Research and Development, Obafemi Awolowo University, Ile-Ife, Nigeria. The mean activity concentration of Ra-226, Th-232 and K-40 for yam were 1.91 ± 0.10 Bq/kg, 2.34 ± 0.21 Bq/kg and 48.84 ± 3.14 Bq/kg, respectively. The content of the radionuclides in maize gave a mean value of 2.83 ± 0.21 Bq/kg for Ra-226, 2.19 ± 0.07 Bq/kg for Th-232 and 41.11 ± 2.16 Bq/kg for K-40. The mean activity concentrations in cassava were 2.52 ± 0.31 Bq/kg for Ra-226, 1.94 ± 0.21 Bq/kg for Th-232 and 45.12 ± 3.31 Bq/kg for K-40. The average committed effective doses in zones 6-8 were 0.55 µSv/y for the consumption of yam, 0.39 µSv/y for maize, and 0.49 µSv/y for cassava. These values are higher than the annual dose guideline of 0.35 µSv/y for the general public. Therefore, the values obtained in this work show that there is radiological contamination of some foodstuffs consumed in some parts of Ondo State. However, we recommend that systematic and appropriate methods also need to be established for the measurement of gamma-emitting radionuclides since these constitute important contributors to the internal exposure of man through ingestion, inhalation, or wound on the body. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contamination" title="contamination">contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactivity" title=" radioactivity"> radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a> </p> <a href="https://publications.waset.org/abstracts/163110/analyzing-the-contamination-of-some-food-crops-due-to-mineral-deposits-in-ondo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Qualitative and Quantitative Analysis of Uranium in Ceramic Tiles Using Laser-Induced Breakdown Spectroscopy and Gamma-Ray Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reem%20M.%20Altuwirqi">Reem M. Altuwirqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohja%20S.%20Summan"> Mohja S. Summan</a>, <a href="https://publications.waset.org/abstracts/search?q=Entesar%20A.%20Ganash"> Entesar A. Ganash</a>, <a href="https://publications.waset.org/abstracts/search?q=Safia%20H.%20Hamidalddin"> Safia H. Hamidalddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20E.%20Youssef"> Tamer E. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Gondal"> Mohammed A. Gondal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser-Induced Breakdown Spectroscopy (LIBS) technique using 1064 nm Nd: YAG laser was optimized and applied for investigating the existence of radioactive elements (uranium) in twenty-six different ceramic tiles. These tiles were collected from the local Saudi market. Qualitative and quantitative analysis for trace radioactive elements like uranium in these samples was achieved using LIBS. The plasma parameters such as temperature and electron density were calculated to confirm that the plasma generated by the tile samples under laser irradiation can be related to analyte concentrations. In order to perform a quantitative analysis, calibration curves were constructed for two uranium lines (U II (424.166 nm) and U II (424.437 nm)). The Uranium activity concentration in Bq/kg for each sample was measured. Cross-validation of LIBS results with a conventional technique such as Gamma-Ray spectroscopy was also carried out for five ceramic samples. The results show that the LIBS method is an effective way of determining radioactive elements such as uranium in ceramic tiles. Moreover, the uranium concentrations of the investigated samples were below the permissible safe limit for building materials in the majority of samples. Such LIBS system could be applied to determine the presence of natural radioactive elements in ceramic tiles and their radioactivity level rapidly to ensure that they are under the safe allowed limit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser-induced%20breakdown%20spectroscopy" title="laser-induced breakdown spectroscopy">laser-induced breakdown spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma-ray%20spectroscopy" title=" gamma-ray spectroscopy"> gamma-ray spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20radioactivity" title=" natural radioactivity"> natural radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium" title=" uranium"> uranium</a>, <a href="https://publications.waset.org/abstracts/search?q=ceramic%20tiles" title=" ceramic tiles"> ceramic tiles</a> </p> <a href="https://publications.waset.org/abstracts/143458/qualitative-and-quantitative-analysis-of-uranium-in-ceramic-tiles-using-laser-induced-breakdown-spectroscopy-and-gamma-ray-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Design of a Portable Shielding System for a Newly Installed NaI(Tl) Detector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mayesha%20Tahsin">Mayesha Tahsin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.S.%20Mollah"> A.S. Mollah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, a 1.5x1.5 inch NaI(Tl) detector based gamma-ray spectroscopy system has been installed in the laboratory of the Nuclear Science and Engineering Department of the Military Institute of Science and Technology for radioactivity detection purposes. The newly installed NaI(Tl) detector has a circular lead shield of 22 mm width. An important consideration of any gamma-ray spectroscopy is the minimization of natural background radiation not originating from the radioactive sample that is being measured. Natural background gamma-ray radiation comes from naturally occurring or man-made radionuclides in the environment or from cosmic sources. Moreover, the main problem with this system is that it is not suitable for measurements of radioactivity with a large sample container like Petridish or Marinelli beaker geometry. When any laboratory installs a new detector or/and new shield, it “must” first carry out quality and performance tests for the detector and shield. This paper describes a new portable shielding system with lead that can reduce the background radiation. Intensity of gamma radiation after passing the shielding will be calculated using shielding equation I=Ioe-µx where Io is initial intensity of the gamma source, I is intensity after passing through the shield, µ is linear attenuation coefficient of the shielding material, and x is the thickness of the shielding material. The height and width of the shielding will be selected in order to accommodate the large sample container. The detector will be surrounded by a 4π-geometry low activity lead shield. An additional 1.5 mm thick shield of tin and 1 mm thick shield of copper covering the inner part of the lead shielding will be added in order to remove the presence of characteristic X-rays from the lead shield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shield" title="shield">shield</a>, <a href="https://publications.waset.org/abstracts/search?q=NaI%20%28Tl%29%20detector" title=" NaI (Tl) detector"> NaI (Tl) detector</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity" title=" intensity"> intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20attenuation%20coefficient" title=" linear attenuation coefficient"> linear attenuation coefficient</a> </p> <a href="https://publications.waset.org/abstracts/146333/design-of-a-portable-shielding-system-for-a-newly-installed-naitl-detector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Honey Contamination in the Republic of Kazakhstan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Sadepovich%20Maikanov">B. Sadepovich Maikanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Shabanbayevich%20Adilbekov"> Z. Shabanbayevich Adilbekov</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Husainovna%20Mustafina"> R. Husainovna Mustafina</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Tyulegenovna%20Auteleyeva"> L. Tyulegenovna Auteleyeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study involves detailed information about contaminants of honey in the Republic of Kazakhstan. The requirements of the technical regulation &lsquo;Requirements to safety of honey and bee products&rsquo; and GOST 19792-2001 were taken into account in this research. Contamination of honey by antibiotics wqs determined by the IEA (immune-enzyme analysis), Ridder analyzer and Tecna produced test systems. Voltammetry (TaLab device) was used to define contamination by salts of heavy metals and gamma-beta spectrometry, &lsquo;Progress BG&rsquo; system, with preliminary ashing of the sample of honey was used to define radioactive contamination. This article pointed out that residues of chloramphenicol were detected in 24% of investigated products, in 22% of them &ndash;streptomycin, in 7.3% - sulfanilamide, in 2.4% - tylosin, and in 12% - combined contamination was noted. Geographically, the greatest degree of contamination of honey with antibiotics occurs in the Northern Kazakhstan &ndash; 54.4%, and Southern Kazakhstan - 50%, and the lowest in Central and Eastern Kazakhstan with 30% and 25%, respectively. Generally, pollution by heavy metals is within acceptable limits, but the contamination from lead is highest in the Akmola region. The level of radioactive cesium and strontium is also within acceptable concentrations. The highest radioactivity in terms of cesium was observed in the East Kazakhstan region - 49.00&plusmn;10 Bq/kg, in Akmola, North Kazakhstan and Almaty - 12.00&plusmn;5, 11.05&plusmn;3 and 19.0&plusmn;8 Bq/kg, respectively, while the norm is 100 Bq/kg. In terms of strontium, the radioactivity in the East Kazakhstan region is 25.03&plusmn;15 Bq/kg, while in Akmola, North Kazakhstan and Almaty regions it is 12.00&plusmn;3, 10.2&plusmn;4 and 1.0&plusmn;2 Bq/kg, respectively, with the norm of 80 Bq/kg. This accumulation is mainly associated with the environmental degradation, feeding and treating of bees. Moreover, in the process of collecting nectar, external substances can penetrate honey. Overall, this research determines factors and reasons of honey contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title="antibiotics">antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20of%20honey" title=" contamination of honey"> contamination of honey</a>, <a href="https://publications.waset.org/abstracts/search?q=honey" title=" honey"> honey</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a> </p> <a href="https://publications.waset.org/abstracts/76970/honey-contamination-in-the-republic-of-kazakhstan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Sustainable Technologies for Decommissioning of Nuclear Facilities </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Stifi">Ahmed Stifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sascha%20Gentes"> Sascha Gentes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The German nuclear industry, while implementing the German policy, believes that the journey towards the green-field, namely phasing out of nuclear energy, should be achieved through green techniques. The most important techniques required for the wide range of decommissioning activities are decontamination techniques, cutting techniques, radioactivity measuring techniques, remote control techniques, techniques for worker and environmental protection and techniques for treating, preconditioning and conditioning nuclear waste. Many decontamination techniques are used for removing contamination from metal, concrete or other surfaces like the scales inside pipes. As the pipeline system is one of the important components of nuclear power plants, the process of decontamination in tubing is of more significance. The development of energy sectors like oil sector, gas sector and nuclear sector, since the middle of 20th century, increased the pipeline industry and the research in the decontamination of tubing in each sector is found to serve each other. The extraction of natural products and material through the pipeline can result in scale formation. These scales can be radioactively contaminated through an accumulation process especially in the petrochemical industry when oil and gas are extracted from the underground reservoir. The radioactivity measured in these scales can be significantly high and pose a great threat to people and the environment. At present, the decontamination process involves using high pressure water jets with or without abrasive material and this technology produces a high amount of secondary waste. In order to overcome it, the research team within Karlsruhe Institute of Technology developed a new sustainable method to carry out the decontamination of tubing without producing any secondary waste. This method is based on vibration technique which removes scales and also does not require any auxiliary materials. The outcome of the research project proves that the vibration technique used for decontamination of tubing is environmental friendly in other words a sustainable technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20technologies" title="sustainable technologies">sustainable technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=decontamination" title=" decontamination"> decontamination</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline" title=" pipeline"> pipeline</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20industry" title=" nuclear industry "> nuclear industry </a> </p> <a href="https://publications.waset.org/abstracts/27201/sustainable-technologies-for-decommissioning-of-nuclear-facilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Determination of Gross Alpha and Gross Beta Activity in Water Samples by iSolo Alpha/Beta Counting System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thiwanka%20Weerakkody">Thiwanka Weerakkody</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakmali%20Handagiripathira"> Lakmali Handagiripathira</a>, <a href="https://publications.waset.org/abstracts/search?q=Poshitha%20Dabare"> Poshitha Dabare</a>, <a href="https://publications.waset.org/abstracts/search?q=Thisari%20Guruge"> Thisari Guruge</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The determination of gross alpha and beta activity in water is important in a wide array of environmental studies and these parameters are considered in international legislations on the quality of water. This technique is commonly applied as screening method in radioecology, environmental monitoring, industrial applications, etc. Measuring of Gross Alpha and Beta emitters by using iSolo alpha beta counting system is an adequate nuclear technique to assess radioactivity levels in natural and waste water samples due to its simplicity and low cost compared with the other methods. Twelve water samples (Six samples of commercially available bottled drinking water and six samples of industrial waste water) were measured by standard method EPA 900.0 consisting of the gas-less, firm wear based, single sample, manual iSolo alpha beta counter (Model: SOLO300G) with solid state silicon PIPS detector. Am-241 and Sr90/ Y90 calibration standards were used to calibrate the detector. The minimum detectable activities are 2.32mBq/L and 406mBq/L, for alpha and beta activity, respectively. Each of the 2L water samples was evaporated (at low heat) to a small volume and transferred into 50mm stainless steel counting planchet evenly (for homogenization) and heated by IR lamp and the constant weighted residue was obtained. Then the samples were counted for gross alpha and beta. Sample density on the planchet area was maintained below 5mg/cm. Large quantities of solid wastes sludges and waste water are generated every year due to various industries. This water can be reused for different applications. Therefore implementation of water treatment plants and measuring water quality parameters in industrial waste water discharge is very important before releasing them into the environment. This waste may contain different types of pollutants, including radioactive substances. All these measured waste water samples having gross alpha and beta activities, lower than the maximum tolerance limits for industrial waste water discharge of industrial waste in to inland surface water, that is 10-9µCi/mL and 10-8µCi/mL for gross alpha and beta respectively (National Environmental Act, No. 47 of 1980). This is according to extraordinary gazette of the democratic socialist republic of Sri Lanka in February 2008. The measured water samples were below the recommended radioactivity levels and do not pose any radiological hazard when releasing the environment. Drinking water is an essential requirement of life. All the drinking water samples were below the permissible levels of 0.5Bq/L for gross alpha activity and 1Bq/L for gross beta activity. The values have been proposed by World Health Organization in 2011; therefore the water is acceptable for consumption of humans without any further clarification with respect to their radioactivity. As these screening levels are very low, the individual dose criterion (IDC) would usually not be exceeded (0.1mSv y⁻¹). IDC is a criterion for evaluating health risks from long term exposure to radionuclides in drinking water. Recommended level of 0.1mSv/y expressed a very low level of health risk. This monitoring work will be continued further for environmental protection purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title="drinking water">drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20alpha" title=" gross alpha"> gross alpha</a>, <a href="https://publications.waset.org/abstracts/search?q=gross%20beta" title=" gross beta"> gross beta</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a> </p> <a href="https://publications.waset.org/abstracts/126885/determination-of-gross-alpha-and-gross-beta-activity-in-water-samples-by-isolo-alphabeta-counting-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Burakowska">A. Burakowska</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Piotrowski"> M. Piotrowski</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kubicki"> M. Kubicki</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Trzaskowska"> H. Trzaskowska</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Sosnowiec"> R. Sosnowiec</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Myslek-Laurikainen"> B. Myslek-Laurikainen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20filters" title=" air filters"> air filters</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20beryllium" title=" atmospheric beryllium"> atmospheric beryllium</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20radionuclides" title=" environmental radionuclides"> environmental radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20spectroscopy" title=" gamma spectroscopy"> gamma spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=mid-latitude%20regions%20radionuclides" title=" mid-latitude regions radionuclides"> mid-latitude regions radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=polar%20regions%20radionuclides" title=" polar regions radionuclides"> polar regions radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cycles" title=" solar cycles"> solar cycles</a> </p> <a href="https://publications.waset.org/abstracts/108340/the-concentration-of-selected-cosmogenic-and-anthropogenic-radionuclides-in-the-ground-layer-of-the-atmosphere-polar-and-mid-latitudes-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Laser Beam Bending via Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yildirim">Remzi Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih.%20V.%20%C3%87elebi"> Fatih. V. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haldun%20G%C3%B6kta%C5%9F"> H. Haldun Göktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Behzat%20%C5%9Eahin"> A. Behzat Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a> </p> <a href="https://publications.waset.org/abstracts/22254/laser-beam-bending-via-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Laser Light Bending via Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yildirim">Remzi Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20V.%20%C3%87elebi"> Fatih V. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haldun%20G%C3%B6kta%C5%9F"> H. Haldun Göktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Behzat%20%C5%9Eahin"> A. Behzat Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a> </p> <a href="https://publications.waset.org/abstracts/22251/laser-light-bending-via-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">702</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Monte Carlo Simulation of Thyroid Phantom Imaging Using Geant4-GATE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parimalah%20Velo">Parimalah Velo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Zakaria"> Ahmad Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Monte Carlo simulations of preclinical imaging systems allow opportunity to enable new research that could range from designing hardware up to discovery of new imaging application. The simulation system which could accurately model an imaging modality provides a platform for imaging developments that might be inconvenient in physical experiment systems due to the expense, unnecessary radiation exposures and technological difficulties. The aim of present study is to validate the Monte Carlo simulation of thyroid phantom imaging using Geant4-GATE for Siemen’s e-cam single head gamma camera. Upon the validation of the gamma camera simulation model by comparing physical characteristic such as energy resolution, spatial resolution, sensitivity, and dead time, the GATE simulation of thyroid phantom imaging is carried out. Methods: A thyroid phantom is defined geometrically which comprises of 2 lobes with 80mm in diameter, 1 hot spot, and 3 cold spots. This geometry accurately resembling the actual dimensions of thyroid phantom. A planar image of 500k counts with 128x128 matrix size was acquired using simulation model and in actual experimental setup. Upon image acquisition, quantitative image analysis was performed by investigating the total number of counts in image, the contrast of the image, radioactivity distributions on image and the dimension of hot spot. Algorithm for each quantification is described in detail. The difference in estimated and actual values for both simulation and experimental setup is analyzed for radioactivity distribution and dimension of hot spot. Results: The results show that the difference between contrast level of simulation image and experimental image is within 2%. The difference in the total count between simulation and actual study is 0.4%. The results of activity estimation show that the relative difference between estimated and actual activity for experimental and simulation is 4.62% and 3.03% respectively. The deviation in estimated diameter of hot spot for both simulation and experimental study are similar which is 0.5 pixel. In conclusion, the comparisons show good agreement between the simulation and experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20camera" title="gamma camera">gamma camera</a>, <a href="https://publications.waset.org/abstracts/search?q=Geant4%20application%20of%20tomographic%20emission%20%28GATE%29" title=" Geant4 application of tomographic emission (GATE)"> Geant4 application of tomographic emission (GATE)</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo" title=" Monte Carlo"> Monte Carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=thyroid%20imaging" title=" thyroid imaging"> thyroid imaging</a> </p> <a href="https://publications.waset.org/abstracts/67186/monte-carlo-simulation-of-thyroid-phantom-imaging-using-geant4-gate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Real-Time Radiological Monitoring of the Atmosphere Using an Autonomous Aerosol Sampler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miroslav%20Hyza">Miroslav Hyza</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Rulik"> Petr Rulik</a>, <a href="https://publications.waset.org/abstracts/search?q=Vojtech%20Bednar"> Vojtech Bednar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Sury"> Jan Sury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An early and reliable detection of an increased radioactivity level in the atmosphere is one of the key aspects of atmospheric radiological monitoring. Although the standard laboratory procedures provide detection limits as low as few µBq/m³, their major drawback is the delayed result reporting: typically a few days. This issue is the main objective of the HAMRAD project, which gave rise to a prototype of an autonomous monitoring device. It is based on the idea of sequential aerosol sampling using a carrousel sample changer combined with a gamma-ray spectrometer. In our hardware configuration, the air is drawn through a filter positioned on the carrousel so that it could be rotated into the measuring position after a preset sampling interval. Filter analysis is performed via a 50% HPGe detector inside an 8.5cm lead shielding. The spectrometer output signal is then analyzed using DSP electronics and Gamwin software with preset nuclide libraries and other analysis parameters. After the counting, the filter is placed into a storage bin with a capacity of 250 filters so that the device can run autonomously for several months depending on the preset sampling frequency. The device is connected to a central server via GPRS/GSM where the user can view monitoring data including raw spectra and technological data describing the state of the device. All operating parameters can be remotely adjusted through a simple GUI. The flow rate is continuously adjustable up to 10 m³/h. The main challenge in spectrum analysis is the natural background subtraction. As detection limits are heavily influenced by the deposited activity of radon decay products and the measurement time is fixed, there must exist an optimal sample decay time (delayed spectrum acquisition). To solve this problem, we adopted a simple procedure based on sequential spectrum acquisition and optimal partial spectral sum with respect to the detection limits for a particular radionuclide. The prototyped device proved to be able to detect atmospheric contamination at the level of mBq/m³ per an 8h sampling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerosols" title="aerosols">aerosols</a>, <a href="https://publications.waset.org/abstracts/search?q=atmosphere" title=" atmosphere"> atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20radioactivity%20monitoring" title=" atmospheric radioactivity monitoring"> atmospheric radioactivity monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20sampler" title=" autonomous sampler"> autonomous sampler</a> </p> <a href="https://publications.waset.org/abstracts/94234/real-time-radiological-monitoring-of-the-atmosphere-using-an-autonomous-aerosol-sampler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Application of Thermal Dimensioning Tools to Consider Different Strategies for the Disposal of High-Heat-Generating Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Holton">David Holton</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Dickinson"> Michelle Dickinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovanni%20Carta"> Giovanni Carta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principle of geological disposal is to isolate higher-activity radioactive wastes deep inside a suitable rock formation to ensure that no harmful quantities of radioactivity reach the surface environment. To achieve this, wastes will be placed in an engineered underground containment facility – the geological disposal facility (GDF) – which will be designed so that natural and man-made barriers work together to minimise the escape of radioactivity. Internationally, various multi-barrier concepts have been developed for the disposal of higher-activity radioactive wastes. High-heat-generating wastes (HLW, spent fuel and Pu) provide a number of different technical challenges to those associated with the disposal of low-heat-generating waste. Thermal management of the disposal system must be taken into consideration in GDF design; temperature constraints might apply to the wasteform, container, buffer and host rock. Of these, the temperature limit placed on the buffer component of the engineered barrier system (EBS) can be the most constraining factor. The heat must therefore be managed such that the properties of the buffer are not compromised to the extent that it cannot deliver the required level of safety. The maximum temperature of a buffer surrounding a container at the centre of a fixed array of heat-generating sources, arises due to heat diffusing from neighbouring heat-generating wastes, incrementally contributing to the temperature of the EBS. A range of strategies can be employed for managing heat in a GDF, including the spatial arrangements or patterns of those containers; different geometrical configurations can influence the overall thermal density in a disposal facility (or area within a facility) and therefore the maximum buffer temperature. A semi-analytical thermal dimensioning tool and methodology have been applied at a generic stage to explore a range of strategies to manage the disposal of high-heat-generating waste. A number of examples, including different geometrical layouts and chequer-boarding, have been illustrated to demonstrate how these tools can be used to consider safety margins and inform strategic disposal options when faced with uncertainty, at a generic stage of the development of a GDF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buffer" title="buffer">buffer</a>, <a href="https://publications.waset.org/abstracts/search?q=geological%20disposal%20facility" title=" geological disposal facility"> geological disposal facility</a>, <a href="https://publications.waset.org/abstracts/search?q=high-heat-generating%20waste" title=" high-heat-generating waste"> high-heat-generating waste</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel" title=" spent fuel"> spent fuel</a> </p> <a href="https://publications.waset.org/abstracts/53467/application-of-thermal-dimensioning-tools-to-consider-different-strategies-for-the-disposal-of-high-heat-generating-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Status of the European Atlas of Natural Radiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Cinelli">G. Cinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Tollefsen"> T. Tollefsen</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Bossew"> P. Bossew</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Gruber"> V. Gruber</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Braga"> R. Braga</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Hern%C3%A1ndez-Ceballos"> M. A. Hernández-Ceballos</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20De%20Cort"> M. De Cort</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2006, the Joint Research Centre (JRC) of the European Commission started the project of the 'European Atlas of Natural Radiation'. The Atlas aims at preparing a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources (indoor and outdoor radon, cosmic radiation, terrestrial radionuclides, terrestrial gamma radiation, etc). The overall goal of the project is to estimate, in geographical resolution, the annual dose that the public may receive from natural radioactivity, combining all the information from the different radiation components. The first map which has been developed is the European map of indoor radon (Rn) since in most cases Rn is the most important contribution to exposure. New versions of the map are realised when new countries join the project or when already participating countries send new data. We show the latest status of this map which currently includes 25 European countries. Second, the JRC has undertaken to map a variable which measures 'what earth delivers' in terms of Rn. The corresponding quantity is called geogenic radon potential (RP). Due to the heterogeneity of data sources across the Europe there is need to develop a harmonized quantity which at the one hand adequately measures or classifies the RP, and on the other hand is suited to accommodate the variety of input data used to estimate this target quantity. Candidates for input quantities which may serve as predictors of the RP, and for which data are available across Europe, to different extent, are Uranium (U) concentration in rocks and soils, soil gas radon and soil permeability, terrestrial gamma dose rate, geological information and indoor data from ground floor. The European Geogenic Radon Map gives the possibility to characterize areas, on European geographical scale, for radon hazard where indoor radon measurements are not available. Parallel to ongoing work on the European Indoor Radon, Geogenic Radon and Cosmic Radiation Maps, we made progress in the development of maps of terrestrial gamma radiation and U, Th and K concentrations in soil and bedrock. We show the first, preliminary map of the terrestrial gamma dose rate, estimated using the data of ambient dose equivalent rate available from the EURDEP system (about 5000 fixed monitoring stations across Europe). Also, the first maps of U, Th, and K concentrations in soil and bedrock are shown in the present work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Europe" title="Europe">Europe</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20radiation" title=" natural radiation"> natural radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20radon" title=" indoor radon"> indoor radon</a> </p> <a href="https://publications.waset.org/abstracts/36326/status-of-the-european-atlas-of-natural-radiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Time Dependent Biodistribution Modeling of 177Lu-DOTATOC Using Compartmental Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mousavi-Daramoroudi">M. Mousavi-Daramoroudi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Yousefnia"> H. Yousefnia</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Abbasi-Davani"> F. Abbasi-Davani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, <sup>177</sup>Lu-DOTATOC was prepared under optimized conditions (radiochemical purity: &gt; 99%, radionuclidic purity: &gt; 99%). The percentage of injected dose per gram (%ID/g) was calculated for organs up to 168 h post injection. Compartmental model was applied to mathematical description of the drug behaviour in tissue at different times. The biodistribution data showed the significant excretion of the radioactivity from the kidneys. The adrenal and pancreas, as major expression sites for somatostatin receptor (SSTR), had significant uptake. A pharmacokinetic model of <sup>177</sup>Lu-DOTATOC was presented by compartmental analysis which demonstrates the behavior of the complex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodistribution" title="biodistribution">biodistribution</a>, <a href="https://publications.waset.org/abstracts/search?q=compartmental%20modeling" title=" compartmental modeling"> compartmental modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%B9%E2%81%B7%E2%81%B7Lu" title=" ¹⁷⁷Lu"> ¹⁷⁷Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Octreotide" title=" Octreotide"> Octreotide</a> </p> <a href="https://publications.waset.org/abstracts/93824/time-dependent-biodistribution-modeling-of-177lu-dotatoc-using-compartmental-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Design Optimization of the Primary Containment Building of a Pressurized Water Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hossain">M. Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Khan"> A. H. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20R.%20Sarkar"> M. A. R. Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Primary containment structure is one of the five safety layers of a nuclear facility which is needed to be designed in such a manner that it can withstand the pressure and excessive radioactivity during accidental situations. It is also necessary to ensure minimization of cost with maximum possible safety in order to make the design economically feasible and attractive. This paper attempts to identify the optimum design conditions for primary containment structure considering both mechanical and radiation safety keeping the economic aspects in mind. This work takes advantage of commercial simulation software to identify the suitable conditions without the requirement of costly experiments. Generated data may be helpful for further studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PWR" title="PWR">PWR</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20containment" title=" concrete containment"> concrete containment</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20approach" title=" finite element approach"> finite element approach</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20attenuation" title=" neutron attenuation"> neutron attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=Von%20Mises%20stress" title=" Von Mises stress"> Von Mises stress</a> </p> <a href="https://publications.waset.org/abstracts/89789/design-optimization-of-the-primary-containment-building-of-a-pressurized-water-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Modeling of Physico-Chemical Characteristics of Concrete for Filling Trenches in Radioactive Waste Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilija%20Plecas">Ilija Plecas</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalibor%20Arbutina"> Dalibor Arbutina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The leaching rate of 60Co from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source, an equation for diffusion coupled to a first order equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement" title="cement">cement</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=radioactivity" title=" radioactivity"> radioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/14368/modeling-of-physico-chemical-characteristics-of-concrete-for-filling-trenches-in-radioactive-waste-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Radioactivity&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Radioactivity&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10