CINXE.COM
Search results for: shear wave elastography
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: shear wave elastography</title> <meta name="description" content="Search results for: shear wave elastography"> <meta name="keywords" content="shear wave elastography"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="shear wave elastography" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="shear wave elastography"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2630</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: shear wave elastography</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2630</span> Achieving Shear Wave Elastography by a Three-element Probe for Wearable Human-machine Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jipeng%20Yan">Jipeng Yan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingchen%20Yang"> Xingchen Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaowei%20Zhou"> Xiaowei Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengxing%20Tang"> Mengxing Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Honghai%20Liu"> Honghai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear elastic modulus of skeletal muscles can be obtained by shear wave elastography (SWE) and has been linearly related to muscle force. However, SWE is currently implemented using array probes. Price and volumes of these probes and their driving equipment prevent SWE from being used in wearable human-machine interfaces (HMI). Moreover, beamforming processing for array probes reduces the real-time performance. To achieve SWE by wearable HMIs, a customized three-element probe is adopted in this work, with one element for acoustic radiation force generation and the others for shear wave tracking. In-phase quadrature demodulation and 2D autocorrelation are adopted to estimate velocities of tissues on the sound beams of the latter two elements. Shear wave speeds are calculated by phase shift between the tissue velocities. Three agar phantoms with different elasticities were made by changing the weights of agar. Values of the shear elastic modulus of the phantoms were measured as 8.98, 23.06 and 36.74 kPa at a depth of 7.5 mm respectively. This work verifies the feasibility of measuring shear elastic modulus by wearable devices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20elastic%20modulus" title="shear elastic modulus">shear elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20muscle" title=" skeletal muscle"> skeletal muscle</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20human-machine%20interface" title=" wearable human-machine interface"> wearable human-machine interface</a> </p> <a href="https://publications.waset.org/abstracts/127469/achieving-shear-wave-elastography-by-a-three-element-probe-for-wearable-human-machine-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2629</span> Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Mu%C3%B1oz">Rafael Muñoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Melchor"> Juan Melchor</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicia%20Valera"> Alicia Valera</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Peralta"> Laura Peralta</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Rus"> Guillermo Rus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cervix%20ripening" title="cervix ripening">cervix ripening</a>, <a href="https://publications.waset.org/abstracts/search?q=preterm%20birth" title=" preterm birth"> preterm birth</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography" title=" shear wave elastography"> shear wave elastography</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20tissue" title=" soft tissue"> soft tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20wave" title=" torsional wave"> torsional wave</a> </p> <a href="https://publications.waset.org/abstracts/41021/computational-feasibility-study-of-a-torsional-wave-transducer-for-tissue-stiffness-monitoring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2628</span> 35 MHz Coherent Plane Wave Compounding High Frequency Ultrasound Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Chung%20Huang">Chih-Chung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Po-Hsun%20Peng"> Po-Hsun Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasound transient elastography has become a valuable tool for many clinical diagnoses, such as liver diseases and breast cancer. The pathological tissue can be distinguished by elastography due to its stiffness is different from surrounding normal tissues. An ultrafast frame rate of ultrasound imaging is needed for transient elastography modality. The elastography obtained in the ultrafast system suffers from a low quality for resolution, and affects the robustness of the transient elastography. In order to overcome these problems, a coherent plane wave compounding technique has been proposed for conventional ultrasound system which the operating frequency is around 3-15 MHz. The purpose of this study is to develop a novel beamforming technique for high frequency ultrasound coherent plane-wave compounding imaging and the simulated results will provide the standards for hardware developments. Plane-wave compounding imaging produces a series of low-resolution images, which fires whole elements of an array transducer in one shot with different inclination angles and receives the echoes by conventional beamforming, and compounds them coherently. Simulations of plane-wave compounding image and focused transmit image were performed using Field II. All images were produced by point spread functions (PSFs) and cyst phantoms with a 64-element linear array working at 35MHz center frequency, 55% bandwidth, and pitch of 0.05 mm. The F number is 1.55 in all the simulations. The simulated results of PSFs and cyst phantom which were obtained using single, 17, 43 angles plane wave transmission (angle of each plane wave is separated by 0.75 degree), and focused transmission. The resolution and contrast of image were improved with the number of angles of firing plane wave. The lateral resolutions for different methods were measured by -10 dB lateral beam width. Comparison of the plane-wave compounding image and focused transmit image, both images exhibited the same lateral resolution of 70 um as 37 angles were performed. The lateral resolution can reach 55 um as the plane-wave was compounded 47 angles. All the results show the potential of using high-frequency plane-wave compound imaging for realizing the elastic properties of the microstructure tissue, such as eye, skin and vessel walls in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plane%20wave%20imaging" title="plane wave imaging">plane wave imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20ultrasound" title=" high frequency ultrasound"> high frequency ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=elastography" title=" elastography"> elastography</a>, <a href="https://publications.waset.org/abstracts/search?q=beamforming" title=" beamforming"> beamforming</a> </p> <a href="https://publications.waset.org/abstracts/26703/35-mhz-coherent-plane-wave-compounding-high-frequency-ultrasound-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26703.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2627</span> A Comparative Study between Digital Mammography, B Mode Ultrasound, Shear-Wave and Strain Elastography to Distinguish Benign and Malignant Breast Masses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arjun%20Prakash">Arjun Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Samanvitha%20H."> Samanvitha H.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BACKGROUND: Breast cancer is the commonest malignancy among women globally, with an estimated incidence of 2.3 million new cases as of 2020, representing 11.7% of all malignancies. As per Globocan data 2020, it accounted for 13.5% of all cancers and 10.6% of all cancer deaths in India. Early diagnosis and treatment can improve the overall morbidity and mortality, which necessitates the importance of differentiating benign from malignant breast masses. OBJECTIVE: The objective of the present study was to evaluate and compare the role of Digital Mammography (DM), B mode Ultrasound (USG), Shear Wave Elastography (SWE) and Strain Elastography (SE) in differentiating benign and malignant breast masses (ACR BI-RADS 3 - 5). Histo-Pathological Examination (HPE) was considered the Gold standard. MATERIALS & METHODS: We conducted a cross-sectional study on 53 patients with 64 breast masses over a period of 10 months. All patients underwent DM, USG, SWE and SE. These modalities were individually assessed to know their accuracy in differentiating benign and malignant masses. All Digital Mammograms were done using the Fujifilm AMULET Innovality Digital Mammography system and all Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound system equipped with 2 to 9 MHz and 3 – 16 MHz linear transducers. All masses were subjected to HPE. Independent t-test and Chi-square or Fisher’s exact test were used to assess continuous and categorical variables, respectively. ROC analysis was done to assess the accuracy of diagnostic tests. RESULTS: Of 64 lesions, 51 (79.68%) were malignant and 13 (20.31%) (p < 0.0001) were benign. SE was the most specific (100%) (p < 0.0001) and USG (98%) (p < 0.0001) was the most sensitive of all the modalities. E max, E mean, E max ratio, E mean ratio and Strain Ratio of the malignant masses significantly differed from those of the benign masses. Maximum SWE value showed the highest sensitivity (88.2%) (p < 0.0001) among the elastography parameters. A combination of USG, SE and SWE had good sensitivity (86%) (p < 0.0001). CONCLUSION: A combination of USG, SE and SWE improves overall diagnostic yield in differentiating benign and malignant breast masses. Early diagnosis and treatment of breast carcinoma will reduce patient mortality and morbidity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20mammography" title="digital mammography">digital mammography</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=elastography" title=" elastography"> elastography</a> </p> <a href="https://publications.waset.org/abstracts/167688/a-comparative-study-between-digital-mammography-b-mode-ultrasound-shear-wave-and-strain-elastography-to-distinguish-benign-and-malignant-breast-masses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2626</span> The Evaluation of Soil Liquefaction Potential Using Shear Wave Velocity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nghizaderokni">M. Nghizaderokni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Janalizadechobbasty"> A. Janalizadechobbasty</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Azizi"> M. Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naghizaderokni"> M. Naghizaderokni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The liquefaction resistance of soils can be evaluated using laboratory tests such as cyclic simple shear, cyclic triaxial, cyclic tensional shear, and field methods such as Standard Penetration Test (SPT), Cone Penetration Test (CPT), and Shear Wave Velocity (Vs). This paper outlines a great correlation between shear wave velocity and standard penetration resistance of granular soils was obtained. Using Seeds standard penetration test (SPT) based soil liquefaction charts, new charts of soil liquefaction evaluation based on shear wave velocity data were developed for various magnitude earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil" title="soil">soil</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20resistance" title=" standard penetration resistance "> standard penetration resistance </a> </p> <a href="https://publications.waset.org/abstracts/28944/the-evaluation-of-soil-liquefaction-potential-using-shear-wave-velocity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2625</span> Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiaying%20Zhang">Jiaying Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Mu"> Xin Mu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Ni"> Chang Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeff%20L.%20Zhang"> Jeff L. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20elastography" title=" magnetic resonance elastography"> magnetic resonance elastography</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20resonance%20imaging" title=" magnetic resonance imaging"> magnetic resonance imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus%20estimation" title=" shear modulus estimation"> shear modulus estimation</a> </p> <a href="https://publications.waset.org/abstracts/175628/quantification-of-magnetic-resonance-elastography-for-tissue-shear-modulus-using-u-net-trained-with-finite-differential-time-domain-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2624</span> Experimental Procedure of Identifying Ground Type by Downhole Test: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abolhassan%20Naeini">Seyed Abolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Maedeh%20Akhavan%20Tavakkoli"> Maedeh Akhavan Tavakkoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Evaluating the shear wave velocity (V_s) and primary wave velocity (Vₚ) is necessary to identify the ground type of the site. Identifying the soil type based on different codes can affect the dynamic analysis of geotechnical properties. This study aims to separate the underground layers at the project site based on the shear wave and primary wave velocity (Sₚ) in different depths and determine dynamic elastic modulus based on the shear wave velocity. Bandar Anzali is located in a tectonically very active area. Several active faults surround the study site. In this case, a field investigation of downhole testing is conducted as a geophysics method to identify the ground type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=downhole" title="downhole">downhole</a>, <a href="https://publications.waset.org/abstracts/search?q=geophysics" title=" geophysics"> geophysics</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=case-study" title=" case-study"> case-study</a> </p> <a href="https://publications.waset.org/abstracts/155639/experimental-procedure-of-identifying-ground-type-by-downhole-test-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2623</span> An Automated Bender Element System Used for S-Wave Velocity Tomography during Model Pile Installation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuxin%20Wu">Yuxin Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shing%20Wang"> Yu-Shing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zitao%20Zhang"> Zitao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high-speed and time-lapse S-wave velocity measurement system has been built up for S-wave tomography in sand. This system is based on bender elements and applied to model pile tests in a tailor-made pressurized chamber to monitor the shear wave velocity distribution during pile installation in sand. Tactile pressure sensors are used parallel together with bender elements to monitor the stress changes during the tests. Strain gages are used to monitor the shaft resistance and toe resistance of pile. Since the shear wave velocity (Vs) is determined by the shear modulus of sand and the shaft resistance of pile is also influenced by the shear modulus of sand around the pile, the purposes of this study are to time-lapse monitor the S-wave velocity distribution change at a certain horizontal section during pile installation and to correlate the S-wave velocity distribution and shaft resistance of pile in sand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bender%20element" title="bender element">bender element</a>, <a href="https://publications.waset.org/abstracts/search?q=pile" title=" pile"> pile</a>, <a href="https://publications.waset.org/abstracts/search?q=shaft%20resistance" title=" shaft resistance"> shaft resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=tomography" title=" tomography"> tomography</a> </p> <a href="https://publications.waset.org/abstracts/59285/an-automated-bender-element-system-used-for-s-wave-velocity-tomography-during-model-pile-installation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2622</span> Detailed Microzonation Studies around Denizli, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Aydin">A. Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Akyol"> E. Akyol</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Soyatik"> N. Soyatik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has been presented which is a detailed work of seismic microzonation of the city center. For seismic microzonation area of 225 km2 has been selected as the study area. MASW (Multichannel analysis of surface wave) and seismic refraction methods have been used to generate one-dimensional shear wave velocity profile at 250 locations and two-dimensional profile at 60 locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 60 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Denizli and the application and use of these results should be required and enforced by municipal authorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20microzonation" title="seismic microzonation">seismic microzonation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20use%20management" title=" land use management"> land use management</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20refraction" title=" seismic refraction"> seismic refraction</a> </p> <a href="https://publications.waset.org/abstracts/12346/detailed-microzonation-studies-around-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2621</span> Determination of Elastic Constants for Scots Pine Grown in Turkey Using Ultrasound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Guntekin">Ergun Guntekin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated elastic constants of scots pine (Pinus sylvestris L.) grown in Turkey by means of ultrasonic waves. Three Young’s modulus, three shear modulus and six Poisson ratios were determined at constant moisture content (12 %). Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° with respect to the principal axes of anisotropy were measured using EPOCH 650 ultrasonic flaw detector. The measured average longitudinal wave velocities for the sapwood in L, R, T directions were 4795, 1713 and 1117 m/s, respectively. The measured average shear wave velocities ranged from 682 to 1382 m/s. The measured quasi-shear wave velocities varied between 642 and 1280 m/s. The calculated average modulus of elasticity values for the sapwood in L, R, T directions were 11913, 1565 and 663 N/mm2, respectively. The calculated shear modulus in LR, LT and RT planes were 1031, 541, 415 N/mm2. Comparing with available literature, the predicted elastic constants are acceptable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20constants" title="elastic constants">elastic constants</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=Scots%20pine" title=" Scots pine"> Scots pine</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/50083/determination-of-elastic-constants-for-scots-pine-grown-in-turkey-using-ultrasound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2620</span> Role of Grey Scale Ultrasound Including Elastography in Grading the Severity of Carpal Tunnel Syndrome - A Comparative Cross-sectional Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arjun%20Prakash">Arjun Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinutha%20H."> Vinutha H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthik%20N."> Karthik N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> BACKGROUND: Carpal tunnel syndrome (CTS) is a common entrapment neuropathy with an estimated prevalence of 0.6 - 5.8% in the general adult population. It is caused by compression of the Median Nerve (MN) at the wrist as it passes through a narrow osteofibrous canal. Presently, the diagnosis is established by the clinical symptoms and physical examination and Nerve conduction study (NCS) is used to assess its severity. However, it is considered to be painful, time consuming and expensive, with a false-negative rate between 16 - 34%. Ultrasonography (USG) is now increasingly used as a diagnostic tool in CTS due to its non-invasive nature, increased accessibility and relatively low cost. Elastography is a newer modality in USG which helps to assess stiffness of tissues. However, there is limited available literature about its applications in peripheral nerves. OBJECTIVES: Our objectives were to measure the Cross-Sectional Area (CSA) and elasticity of MN at the carpal tunnel using Grey scale Ultrasonography (USG), Strain Elastography (SE) and Shear Wave Elastography (SWE). We also made an attempt to independently evaluate the role of Gray scale USG, SE and SWE in grading the severity of CTS, keeping NCS as the gold standard. MATERIALS AND METHODS: After approval from the Institutional Ethics Review Board, we conducted a comparative cross sectional study for a period of 18 months. The participants were divided into two groups. Group A consisted of 54 patients with clinically diagnosed CTS who underwent NCS, and Group B consisted of 50 controls without any clinical symptoms of CTS. All Ultrasound examinations were performed on SAMSUNG RS 80 EVO Ultrasound machine with 2 - 9 Mega Hertz linear probe. In both groups, CSA of the MN was measured on Grey scale USG, and its elasticity was measured at the carpal tunnel (in terms of Strain ratio and Shear Modulus). The variables were compared between both groups by using ‘Independent t test’, and subgroup analyses were performed using one-way analysis of variance. Receiver operating characteristic curves were used to evaluate the diagnostic performance of each variable. RESULTS: The mean CSA of the MN was 13.60 + 3.201 mm2 and 9.17 + 1.665 mm2 in Group A and Group B, respectively (p < 0.001). The mean SWE was 30.65 + 12.996 kPa and 17.33 + 2.919 kPa in Group A and Group B, respectively (p < 0.001), and the mean Strain ratio was 7.545 + 2.017 and 5.802 + 1.153 in Group A and Group B respectively (p < 0.001). CONCLUSION: The combined use of Gray scale USG, SE and SWE is extremely useful in grading the severity of CTS and can be used as a painless and cost-effective alternative to NCS. Early diagnosis and grading of CTS and effective treatment is essential to avoid permanent nerve damage and functional disability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carpal%20tunnel" title="carpal tunnel">carpal tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title=" ultrasound"> ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=elastography" title=" elastography"> elastography</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20conduction%20study" title=" nerve conduction study"> nerve conduction study</a> </p> <a href="https://publications.waset.org/abstracts/167632/role-of-grey-scale-ultrasound-including-elastography-in-grading-the-severity-of-carpal-tunnel-syndrome-a-comparative-cross-sectional-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2619</span> Determination of Dynamic Soil Properties Using Multichannel Analysis of Surface Wave (MASW) Techniques in Earth-Filled Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noppadon%20Sintuboon">Noppadon Sintuboon</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamas%20Sawatdipong"> Benjamas Sawatdipong</a>, <a href="https://publications.waset.org/abstracts/search?q=Anchalee%20Kongsuk"> Anchalee Kongsuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to investigate the engineering parameters: compressional wave: Vp, shear wave: Vs, and density: ρ related to the dynamically geotechnical properties of soils compaction in the core of earth-filled dam located in northern part of Thailand by using multichannel analysis of surface wave (MASW) techniques. The Vp, Vs, and ρ from MASW were 1,624 - 1,649 m/s, 301-323 m/s, and 1,829 kg/m3, respectively. Those parameters were calculated to Poison’s ratio: ν (0.48), shear modulus: G (1.66 x 108 - 1.92 x 108 kg/m2), Vp/Vs ratio (5.10 – 5.39) and Standard Penetration Test (SPT) showing the dynamic characteristics of soil deformation and stress resulting from dynamic loads. The results of this study will be useful in primary evaluating the current condition and foundation of the dam and can be compared to the data from the laboratory in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earth-filled%20dam" title="earth-filled dam">earth-filled dam</a>, <a href="https://publications.waset.org/abstracts/search?q=MASW" title=" MASW"> MASW</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20elastic%20constant" title=" dynamic elastic constant"> dynamic elastic constant</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave" title=" shear wave"> shear wave</a> </p> <a href="https://publications.waset.org/abstracts/62396/determination-of-dynamic-soil-properties-using-multichannel-analysis-of-surface-wave-masw-techniques-in-earth-filled-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2618</span> Use of Statistical Correlations for the Estimation of Shear Wave Velocity from Standard Penetration Test-N-Values: Case Study of Algiers Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumia%20Merat">Soumia Merat</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynda%20Djerbal"> Lynda Djerbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramdane%20Bahar"> Ramdane Bahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Amin%20Benbouras"> Mohammed Amin Benbouras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with shear wave, many soil parameters are associated with the standard penetration test (SPT) as a dynamic in situ experiment. Both SPT-N data and geophysical data do not often exist in the same area. Statistical analysis of correlation between these parameters is an alternate method to estimate Vₛ conveniently and without additional investigations or data acquisition. Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances, engineers opt for empirical correlations between shear wave velocity (Vₛ) and reliable static field test data like standard penetration test (SPT) N value, CPT (Cone Penetration Test) values, etc., to estimate shear wave velocity or dynamic soil parameters. The relation between Vs and SPT- N values of Algiers area is predicted using the collected data, and it is also compared with the previously suggested formulas of Vₛ determination by measuring Root Mean Square Error (RMSE) of each model. Algiers area is situated in high seismic zone (Zone III [RPA 2003: réglement parasismique algerien]), therefore the study is important for this region. The principal aim of this paper is to compare the field measurements of Down-hole test and the empirical models to show which one of these proposed formulas are applicable to predict and deduce shear wave velocity values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20models" title="empirical models">empirical models</a>, <a href="https://publications.waset.org/abstracts/search?q=RMSE" title=" RMSE"> RMSE</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20penetration%20test" title=" standard penetration test"> standard penetration test</a> </p> <a href="https://publications.waset.org/abstracts/77386/use-of-statistical-correlations-for-the-estimation-of-shear-wave-velocity-from-standard-penetration-test-n-values-case-study-of-algiers-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2617</span> Case-Wise Investigation of Body-Wave Propagation in a Cross-Anisotropic Soil Exhibiting Inhomogeneity along Depth</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumit%20Kumar%20Vishawakarma">Sumit Kumar Vishawakarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapas%20Ranjan%20%20Panihari"> Tapas Ranjan Panihari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article investigates the propagation behavior of SV-wave, SH-wave, and P-wave in a continuously inhomogeneous cross-anisotropic material, where the material properties such as Young's moduli, shear modulus, and density vary as an arbitrary continuous function of depth. In the considered model, Hook's law, strain-displacement relations along with equilibrium equations have been used to derive the governing equation. The mathematical formulation of this physical problem gives rise to an eigenvalue problem with displacement components as fundamental variables. This leads to achieving the closed-form expressions for quasi-wave velocities of SV-wave, SH-wave, and P-wave in the considered framework. These characteristics of wave propagation along with the above-stated variation have been scrutinized based on their numerical results. This parametric study reveals that wave velocity remarkably fluctuates as the magnitude of inhomogeneity parameters increases and decreases. The prominent effect has been shown depicting the dependence of wave velocity on the degree of material anisotropy. The influence of phase angle and depth of the medium has been remarkably established. The present study may facilitate the theoretical foundation and practical application in the field of earthquake source mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-anisotropic" title="cross-anisotropic">cross-anisotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=inhomogeneity" title=" inhomogeneity"> inhomogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=P-wave" title=" P-wave"> P-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=SH-wave" title=" SH-wave"> SH-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=SV-wave" title=" SV-wave"> SV-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%E2%80%99s%20modulus" title=" Young’s modulus"> Young’s modulus</a> </p> <a href="https://publications.waset.org/abstracts/121335/case-wise-investigation-of-body-wave-propagation-in-a-cross-anisotropic-soil-exhibiting-inhomogeneity-along-depth" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2616</span> Effect of Different Knee-Joint Positions on Passive Stiffness of Medial Gastrocnemius Muscle and Aponeuroses during Passive Ankle Motion </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiyao%20Shan">Xiyao Shan</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavlos%20Evangelidis"> Pavlos Evangelidis</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Kositsky"> Adam Kositsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Naoki%20Ikeda"> Naoki Ikeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuo%20Kawakami"> Yasuo Kawakami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The human triceps surae (two bi-articular gastrocnemii and one mono-articular soleus) have aponeuroses in the posterior and anterior aspects of each muscle, where the anterior aponeuroses of the gastrocnemii adjoin the posterior aponeurosis of the soleus, possibly contributing to the intermuscular force transmission between gastrocnemii and soleus. Since the mechanical behavior of these aponeuroses at different knee- and ankle-joint positions remains unclear, the purpose of this study was to clarify this through observations of the localized changes in passive stiffness of the posterior aponeuroses, muscle belly and adjoining aponeuroses of the medial gastrocnemius (MG) induced by different knee and ankle angles. Eleven healthy young males (25 ± 2 yr, 176.7 ± 4.7 cm, 71.1 ± 11.1 kg) participated in this study. Each subject took either a prone position on an isokinetic dynamometer while the knee joint was fully extended (K180) or a kneeling position while the knee joint was 90° flexed (K90), in a randomized and counterbalanced order. The ankle joint was then passively moved through a 50° range of motion (ROM) by the dynamometer from 30° of plantar flexion (PF) to 20° of dorsiflexion (DF) at 2°/s and the ultrasound shear-wave velocity was measured to obtain shear moduli of the posterior aponeurosis, MG belly, and adjoining aponeuroses. The main findings were: 1) shear modulus in K180 was significantly higher (p < 0.05) than K90 for the posterior aponeurosis (across all ankle angles, 10.2 ± 5.7 kPa-59.4 ± 28.7 kPa vs. 5.4 ± 2.2 kPa-11.6 ± 4.1 kPa), MG belly (from PF10° to DF20°, 9.7 ± 2.2 kPa-53.6 ± 18.6 kPa vs. 8.0 ± 2.7 kPa-9.5 ± 3.7 kPa), and adjoining aponeuroses (across all ankle angles, 17.3 ± 7.8 kPa-80 ± 25.7 kPa vs. 12.2 ± 4.5 kPa-52.4 ± 23.0 kPa); 2) shear modulus of the posterior aponeuroses significantly increased (p < 0.05) from PF10° to PF20° in K180, while shear modulus of MG belly significantly increased (p < 0.05) from 0° to PF20° only in K180 and shear modulus of adjoining aponeuroses significantly increased (p < 0.05) across the whole ROM of ankle both in K180 and K90. These results suggest that different knee-joint positions can affect not only the bi-articular gastrocnemius but also influence the mechanical behavior of aponeuroses. In addition, compared to the gradual stiffening of the adjoining aponeuroses across the whole ROM of ankle, the posterior aponeurosis became slack in the plantar flexed positions and then was stiffened gradually as the knee was fully extended. This suggests distinct stiffening for the posterior and adjoining aponeuroses which is joint position-dependent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aponeurosis" title="aponeurosis">aponeurosis</a>, <a href="https://publications.waset.org/abstracts/search?q=plantar%20flexion%20and%20dorsiflexion" title=" plantar flexion and dorsiflexion"> plantar flexion and dorsiflexion</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography" title=" shear wave elastography"> shear wave elastography</a> </p> <a href="https://publications.waset.org/abstracts/104429/effect-of-different-knee-joint-positions-on-passive-stiffness-of-medial-gastrocnemius-muscle-and-aponeuroses-during-passive-ankle-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104429.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2615</span> Relationship between Blow Count Number (N) and Shear Wave Velocity (Vs30) from the Specified Embankment Material: A Case Study on Three Selected Earthen Dams</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanapon%20Suklim">Tanapon Suklim</a>, <a href="https://publications.waset.org/abstracts/search?q=Prachaya%20Intaphrom"> Prachaya Intaphrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Noppadol%20Poomvises"> Noppadol Poomvises</a>, <a href="https://publications.waset.org/abstracts/search?q=Anchalee%20Kongsuk"> Anchalee Kongsuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between shear wave velocity (Vs30) and blow count Number from Standard Penetration Tests (NSPT) was investigated on specified embankment dam to find the solution which can be used to estimate the value of N. Shear wave velocity, Vs30 and blow count number, NSPT were performed at three specified dam sites. At each site, Vs30 measurement was recorded by using seismic survey of MASW technique and NSPT were measured by field Standard Penetration Test. Regression analysis was used to derive statistical relation. The relation is giving a final solution to applicable calculated N-value with other earthen dam. Dam engineer can use the statistical relation to convert field Vs30 to estimated N-value instead of absolute N-value from field Standard Penetration Test. It can be noted that the formulae can be applied only in the earthen dam of specified material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blow%20count%20number" title="blow count number">blow count number</a>, <a href="https://publications.waset.org/abstracts/search?q=earthen%20dam" title=" earthen dam"> earthen dam</a>, <a href="https://publications.waset.org/abstracts/search?q=embankment" title=" embankment"> embankment</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a> </p> <a href="https://publications.waset.org/abstracts/62428/relationship-between-blow-count-number-n-and-shear-wave-velocity-vs30-from-the-specified-embankment-material-a-case-study-on-three-selected-earthen-dams" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2614</span> Structural Health Monitoring of Buildings–Recorded Data and Wave Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzong-Ying%20Hao">Tzong-Ying Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20T.%20Rahmani"> Mohammad T. Rahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chile%20earthquake" title="Chile earthquake">Chile earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20response" title=" earthquake response"> earthquake response</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20response%20function" title=" impulse response function"> impulse response function</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20beam%20model" title=" shear beam model"> shear beam model</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=torre%20central%20building" title=" torre central building"> torre central building</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20method" title=" wave method"> wave method</a> </p> <a href="https://publications.waset.org/abstracts/27731/structural-health-monitoring-of-buildings-recorded-data-and-wave-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2613</span> Application of Multilinear Regression Analysis for Prediction of Synthetic Shear Wave Velocity Logs in Upper Assam Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Triveni%20Gogoi">Triveni Gogoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Chatterjee"> Rima Chatterjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shear wave velocity (Vs) estimation is an important approach in the seismic exploration and characterization of a hydrocarbon reservoir. There are varying methods for prediction of S-wave velocity, if recorded S-wave log is not available. But all the available methods for Vs prediction are empirical mathematical models. Shear wave velocity can be estimated using P-wave velocity by applying Castagna’s equation, which is the most common approach. The constants used in Castagna’s equation vary for different lithologies and geological set-ups. In this study, multiple regression analysis has been used for estimation of S-wave velocity. The EMERGE module from Hampson-Russel software has been used here for generation of S-wave log. Both single attribute and multi attributes analysis have been carried out for generation of synthetic S-wave log in Upper Assam basin. Upper Assam basin situated in North Eastern India is one of the most important petroleum provinces of India. The present study was carried out using four wells of the study area. Out of these wells, S-wave velocity was available for three wells. The main objective of the present study is a prediction of shear wave velocities for wells where S-wave velocity information is not available. The three wells having S-wave velocity were first used to test the reliability of the method and the generated S-wave log was compared with actual S-wave log. Single attribute analysis has been carried out for these three wells within the depth range 1700-2100m, which corresponds to Barail group of Oligocene age. The Barail Group is the main target zone in this study, which is the primary producing reservoir of the basin. A system generated list of attributes with varying degrees of correlation appeared and the attribute with the highest correlation was concerned for the single attribute analysis. Crossplot between the attributes shows the variation of points from line of best fit. The final result of the analysis was compared with the available S-wave log, which shows a good visual fit with a correlation of 72%. Next multi-attribute analysis has been carried out for the same data using all the wells within the same analysis window. A high correlation of 85% has been observed between the output log from the analysis and the recorded S-wave. The almost perfect fit between the synthetic S-wave and the recorded S-wave log validates the reliability of the method. For further authentication, the generated S-wave data from the wells have been tied to the seismic and correlated them. Synthetic share wave log has been generated for the well M2 where S-wave is not available and it shows a good correlation with the seismic. Neutron porosity, density, AI and P-wave velocity are proved to be the most significant variables in this statistical method for S-wave generation. Multilinear regression method thus can be considered as a reliable technique for generation of shear wave velocity log in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Castagna%27s%20equation" title="Castagna's equation">Castagna's equation</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20linear%20regression" title=" multi linear regression"> multi linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20attribute%20analysis" title=" multi attribute analysis"> multi attribute analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20logs" title=" shear wave logs"> shear wave logs</a> </p> <a href="https://publications.waset.org/abstracts/80705/application-of-multilinear-regression-analysis-for-prediction-of-synthetic-shear-wave-velocity-logs-in-upper-assam-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2612</span> Structural Health Monitoring of the 9-Story Torre Central Building Using Recorded Data and Wave Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzong-Ying%20Hao">Tzong-Ying Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20T.%20Rahmani"> Mohammad T. Rahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Torre Central building is a 9-story shear wall structure located in Santiago, Chile, and has been instrumented since 2009. Events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded, and thus the building can serve as a full-scale benchmark to evaluate the structural health monitoring method developed. The first part of this article presents an analysis of inter-story drifts, and of changes in the first system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) as baseline indicators of the occurrence of damage. During 2010 Chile earthquake the system frequencies were detected decreasing approximately 24% in the EW and 27% in NS motions. Near the end of shaking, an increase of about 17% in the EW motion was detected. The structural health monitoring (SHM) method based on changes in wave traveling time (wave method) within a layered shear beam model of structure is presented in the second part of this article. If structural damage occurs the velocity of wave propagated through the structure changes. The wave method measures the velocities of shear wave propagation from the impulse responses generated by recorded data at various locations inside the building. Our analysis and results show that the detected changes in wave velocities are consistent with the observed damages. On this basis, the wave method is proven for actual implementation in structural health monitoring systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chile%20earthquake" title="Chile earthquake">Chile earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20detection" title=" damage detection"> damage detection</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20response" title=" earthquake response"> earthquake response</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20response" title=" impulse response"> impulse response</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20shear%20beam" title=" layered shear beam"> layered shear beam</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20health%20monitoring" title=" structural health monitoring"> structural health monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=Torre%20Central%20building" title=" Torre Central building"> Torre Central building</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20method" title=" wave method"> wave method</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20travel%20time" title=" wave travel time"> wave travel time</a> </p> <a href="https://publications.waset.org/abstracts/26369/structural-health-monitoring-of-the-9-story-torre-central-building-using-recorded-data-and-wave-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2611</span> The Relations between Seismic Results and Groundwater near the Gokpinar Damp Area, Denizli, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmud%20Gungor">Mahmud Gungor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Aydin"> Ali Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdal%20Akyol"> Erdal Akyol</a>, <a href="https://publications.waset.org/abstracts/search?q=Suat%20Tasdelen"> Suat Tasdelen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of geotechnical characteristics of near-surface material and the effects of the groundwater is very important problem in such as site studies. For showing the relations between seismic data and groundwater we selected about 25 km2 as the study area. It has been presented which is a detailed work of seismic data and groundwater depths of Gokpinar Damp area. Seismic waves velocity (Vp and Vs) are very important parameters showing the soil properties. The seismic records were used the method of the multichannel analysis of surface waves near area of Gokpinar Damp area. Sixty sites in this area have been investigated with survey lines about 60 m in length. MASW (Multichannel analysis of surface wave) method has been used to generate one-dimensional shear wave velocity profile at locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 45 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Gokpinar Damp area, Denizli and the application and use of these results should be required and enforced by municipal authorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20data" title="seismic data">seismic data</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokpinar%20Damp" title=" Gokpinar Damp"> Gokpinar Damp</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=Denizli" title=" Denizli"> Denizli</a> </p> <a href="https://publications.waset.org/abstracts/37756/the-relations-between-seismic-results-and-groundwater-near-the-gokpinar-damp-area-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2610</span> Estimation of Shear Wave Velocity from Cone Penetration Test for Structured Busan Clays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinod%20K.%20Singh">Vinod K. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20G.%20Chung"> S. G. Chung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The degree of structuration of Busan clays at the mouth of Nakdong River mouth was highly influenced by the depositional environment, i.e., flow of the river stream, marine regression, and transgression during the sedimentation process. As a result, the geotechnical properties also varies along the depth with change in degree of structuration. Thus, the in-situ tests such as cone penetration test (CPT) could not be used to predict various geotechnical properties properly by using the conventional empirical methods. In this paper, the shear wave velocity (Vs) was measured from the field using the seismic dilatometer. The Vs was also measured in the laboratory from high quality undisturbed and remolded samples using bender element method to evaluate the degree of structuration. The degree of structuration was quantitatively defined by the modulus ratio of undisturbed to remolded soil samples which is found well correlated with the normalized void ratio (e0/eL) where eL is the void ratio at the liquid limit. It is revealed that the empirical method based on laboratory results incorporating e0/eL can predict Vs from the field more accurately. Thereafter, the CPT based empirical method was developed to estimate the shear wave velocity taking the effect of structuration in the consideration. The developed method was found to predict shear wave velocity reasonably for Busan clays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20of%20structuration" title="level of structuration">level of structuration</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20modulus" title=" normalized modulus"> normalized modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=normalized%20void%20ratio" title=" normalized void ratio"> normalized void ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=site%20characterization" title=" site characterization"> site characterization</a> </p> <a href="https://publications.waset.org/abstracts/80527/estimation-of-shear-wave-velocity-from-cone-penetration-test-for-structured-busan-clays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80527.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2609</span> Acoustic Radiation Force Impulse Elastography of the Hepatic Tissue of Canine Brachycephalic Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Facin">A. C. Facin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Maronezi"> M. C. Maronezi </a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Menezes"> M. P. Menezes</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Montanhim"> G. L. Montanhim</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Pavan"> L. Pavan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20R.%20Feliciano"> M. A. R. Feliciano</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Nociti"> R. P. Nociti</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20R.%20Uscategui"> R. A. R. Uscategui</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20C.%20Moraes"> P. C. Moraes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The incidence of brachycephalic syndrome (BS) in the clinical routine of small animals has increased significantly giving the higher proportion of brachycephalic pets in the last years and has been considered as an animal welfare problem. The treatment of BS is surgical and the clinical signs related can be considerably attenuated. Nevertheless, the systemic effects of the BS are still poorly reported and little is known about these when the surgical correction is not performed early. Affected dogs are more likely to develop cardiopulmonary, gastrointestinal and sleep disorders in which the chronic hypoxemia plays a major role. This syndrome is compared with the obstructive sleep apnea (OSA) in humans, both considered as causes of systemic and metabolic dysfunction. Among the several consequences of the BS little is known if the syndrome also affects the hepatic tissue of brachycephalic patients. Elastography is a promising ultrasound technique that evaluates tissue elasticity and has been recently used with the purpose of diagnosis of liver fibrosis. In medicine, it is a growing concern regarding the hepatic injury of patients affected by OSA. This prospective study hypothesizes if there is any consequence of BS in the hepatic parenchyma of brachycephalic dogs that don’t receive any surgical treatment. This study was conducted following the approval of the Animal Ethics and Welfare Committee of the Faculdade de Ciências Agrárias e Veterinárias, UNESP, Campus Jaboticabal, Brazil (protocol no 17944/2017) and funded by Sao Paulo Research Foundation (FAPESP, process no 2017/24809-4). The methodology was based in ARFI elastography using the ACUSON S2000/SIEMENS device, with convex multifrequential transducer and specific software as well as clinical evaluation of the syndrome, in order to determine if they can be used as a prognostic non-invasive tool. On quantitative elastography, it was collected three measures of shear wave velocity (meters per second) and depth in centimeters in the left lateral, left medial, right lateral, right medial and caudate lobe of the liver. The brachycephalic patients, 16 pugs and 30 french bulldogs, were classified using a previously established 4-point functional grading system based on clinical evaluation before and after a 3-minute exercise tolerance test already established and validated. The control group was based on the same features collected in 22 beagles. The software R version 3.3.0 was used for the analysis and the significance level was set at 0.05. The data were analysed for normality of residuals and homogeneity of variances by Shapiro-Wilks test. Comparisons of parametric continuous variables between breeds were performed by using ANOVA with a post hoc test for pair wise comparison. The preliminary results show significant statistic differences between the brachycephalic groups and the control group in all lobes analysed (p ≤ 0,05), with higher values of shear wave velocities in the hepatic tissue of brachycephalic dogs. In this context, the results obtained in this study contributes to the understanding of BS as well as its consequences in our patients, reflecting in evidence that one more systemic consequence of the syndrome may occur in brachycephalic patients, which was not related in the veterinary literature yet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airway%20obstruction" title="airway obstruction">airway obstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=brachycephalic%20airway%20obstructive%20syndrome" title=" brachycephalic airway obstructive syndrome"> brachycephalic airway obstructive syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatic%20injury" title=" hepatic injury"> hepatic injury</a>, <a href="https://publications.waset.org/abstracts/search?q=obstructive%20sleep%20apnea" title=" obstructive sleep apnea"> obstructive sleep apnea</a> </p> <a href="https://publications.waset.org/abstracts/108736/acoustic-radiation-force-impulse-elastography-of-the-hepatic-tissue-of-canine-brachycephalic-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2608</span> Determination of the Local Elastic Moduli of Shungite by Laser Ultrasonic Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20B.%20Cherepetskaya">Elena B. Cherepetskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20A.Karabutov"> Alexander A.Karabutov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Makarov"> Vladimir A. Makarov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20A.%20Mironova"> Elena A. Mironova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20A.%20Shibaev"> Ivan A. Shibaev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In our study, the object of laser ultrasonic testing was plane-parallel plate of shungit (length 41 mm, width 31 mm, height 15 mm, medium exchange density 2247 kg/m3). We used laser-ultrasonic defectoscope with wideband opto-acoustic transducer in our investigation of the velocities of longitudinal and shear elastic ultrasound waves. The duration of arising elastic pulses was less than 100 ns. Under known material thickness, the values of the velocities were determined by the time delay of the pulses reflected from the bottom surface of the sample with respect to reference pulses. The accuracy of measurement was 0.3% in the case of longitudinal wave velocity and 0.5% in the case of shear wave velocity (scanning pitch along the surface was 2 mm). On the base of found velocities of elastic waves, local elastic moduli of shungit (Young modulus, shear modulus and Poisson's ratio) were uniquely determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20ultrasonic%20testing" title="laser ultrasonic testing ">laser ultrasonic testing </a>, <a href="https://publications.waset.org/abstracts/search?q=local%20elastic%20moduli" title=" local elastic moduli"> local elastic moduli</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=shungit" title=" shungit"> shungit</a> </p> <a href="https://publications.waset.org/abstracts/54585/determination-of-the-local-elastic-moduli-of-shungite-by-laser-ultrasonic-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2607</span> Investigation of Stoneley Waves in Multilayered Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%20Li">Bing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Lu"> Tong Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Qiang"> Lei Qiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20equation" title="characteristic equation">characteristic equation</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20waves" title=" interface waves"> interface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20function" title=" potential function"> potential function</a>, <a href="https://publications.waset.org/abstracts/search?q=Stoneley%20waves" title=" Stoneley waves"> Stoneley waves</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20structure" title=" wave structure"> wave structure</a> </p> <a href="https://publications.waset.org/abstracts/45214/investigation-of-stoneley-waves-in-multilayered-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2606</span> Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Ghazaryan">K. B. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Ghazaryan"> R. A. Ghazaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20elastic%20waves" title="shear elastic waves">shear elastic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=monoclinic%20anisotropic%20media" title=" monoclinic anisotropic media"> monoclinic anisotropic media</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20structure" title=" periodic structure"> periodic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=disordered%20multilayer%20laminae" title=" disordered multilayer laminae"> disordered multilayer laminae</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layered%20waveguide" title=" multi-layered waveguide"> multi-layered waveguide</a> </p> <a href="https://publications.waset.org/abstracts/48365/shear-elastic-waves-in-disordered-anisotropic-multi-layered-periodic-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2605</span> Comparison and Improvement of the Existing Cone Penetration Test Results: Shear Wave Velocity Correlations for Hungarian Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%81kos%20Wolf">Ákos Wolf</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20P.%20Ray"> Richard P. Ray</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the introduction of Eurocode 8, the structural design for seismic and dynamic effects has become more significant in Hungary. This has emphasized the need for more effort to describe the behavior of structures under these conditions. Soil conditions have a significant effect on the response of structures by modifying the stiffness and damping of the soil-structural system and by modifying the seismic action as it reaches the ground surface. Shear modulus (<em>G</em>) and shear wave velocity (<em>v<sub>s</sub></em>), which are often measured in the field, are the fundamental dynamic soil properties for foundation vibration problems, liquefaction potential and earthquake site response analysis. There are several laboratory and in-situ measurement techniques to evaluate dynamic soil properties, but unfortunately, they are often too expensive for general design practice. However, a significant number of correlations have been proposed to determine shear wave velocity or shear modulus from Cone Penetration Tests (CPT), which are used more and more in geotechnical design practice in Hungary. This allows the designer to analyze and compare CPT and seismic test result in order to select the best correlation equations for Hungarian soils and to improve the recommendations for the Hungarian geologic conditions. Based on a literature review, as well as research experience in Hungary, the influence of various parameters on the accuracy of results will be shown. This study can serve as a basis for selecting and modifying correlation equations for Hungarian soils. Test data are taken from seven locations in Hungary with similar geologic conditions. The shear wave velocity values were measured by seismic CPT. Several factors are analyzed including soil type, behavior index, measurement depth, geologic age etc. for their effect on the accuracy of predictions. The final results show an improved prediction method for Hungarian soils <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CPT%20correlation" title="CPT correlation">CPT correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20soil%20properties" title=" dynamic soil properties"> dynamic soil properties</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20CPT" title=" seismic CPT"> seismic CPT</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a> </p> <a href="https://publications.waset.org/abstracts/67782/comparison-and-improvement-of-the-existing-cone-penetration-test-results-shear-wave-velocity-correlations-for-hungarian-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2604</span> Time Varying Crustal Anisotropy at Whakaari/White Island Volcano</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Dagim%20Yoseph">M. Dagim Yoseph</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Savage"> M. K. Savage</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Jolly"> A. D. Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Ebinger"> C. J. Ebinger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whakaari/White Island has been the most active New Zealand volcano in the 21st century, producing small phreatic and phreatomagmatic eruptions, which are hard to predict. The most recent eruption occurred in 2019, tragically claiming the lives of 22 individuals and causing numerous injuries. We employed shear-wave splitting analyses to investigate variations in anisotropy between 2018 and 2020, during quiescence, unrest, and the eruption. We examined spatial and temporal variations in 3499 shear-wave splitting and 2656 V_p/V_s ratio measurements. Comparing shear-wave splitting parameters from similar earthquake paths across different times indicates that the observed temporal changes are unlikely to result from variations in earthquake paths through media with spatial variability. Instead, these changes may stem from variations in anisotropy over time, likely caused by changes in crack alignment due to stress or varying fluid content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=background%20seismic%20waves" title="background seismic waves">background seismic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20orientations" title=" fast orientations"> fast orientations</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20anisotropy" title=" seismic anisotropy"> seismic anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=V_p%2FV_s%20ratio" title=" V_p/V_s ratio"> V_p/V_s ratio</a> </p> <a href="https://publications.waset.org/abstracts/185200/time-varying-crustal-anisotropy-at-whakaariwhite-island-volcano" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2603</span> Multichannel Analysis of the Surface Waves of Earth Materials in Some Parts of Lagos State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Adegbola">R. B. Adegbola</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20F.%20Oyedele"> K. F. Oyedele</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Adeoti"> L. Adeoti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a method that utilizes Multi-channel Analysis of Surface Waves, which was used to measure shear wave velocities with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some Local Government Area, Lagos, Nigeria. Multi channel Analysis of Surface waves (MASW) data were acquired using 24-channel seismograph. The acquired data were processed and transformed into two-dimensional (2-D) structure reflective of depth and surface wave velocity distribution within a depth of 0–15m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/borehole data that were acquired along the same profile. The comparison and correlation illustrates the accuracy and consistency of MASW derived-shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/very low velocity are reflective of organic clay/peat materials and thus likely responsible for the failed, subsidence/weakening of structures within the study areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismograph" title="seismograph">seismograph</a>, <a href="https://publications.waset.org/abstracts/search?q=road%20failure" title=" road failure"> road failure</a>, <a href="https://publications.waset.org/abstracts/search?q=rigidity%20modulus" title=" rigidity modulus"> rigidity modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=N-value" title=" N-value"> N-value</a>, <a href="https://publications.waset.org/abstracts/search?q=subsidence" title=" subsidence"> subsidence</a> </p> <a href="https://publications.waset.org/abstracts/16808/multichannel-analysis-of-the-surface-waves-of-earth-materials-in-some-parts-of-lagos-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2602</span> Ground Response Analysis at the Rukni Irrigation Project Site Located in Assam, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tauhidur%20Rahman">Tauhidur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasturi%20Bhuyan"> Kasturi Bhuyan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present paper, Ground Response Analysis at the Rukni irrigation project has been thoroughly investigated. Surface level seismic hazard is mainly used by the practical Engineers for designing the important structures. Surface level seismic hazard can be obtained accounting the soil factor. Structures on soft soil will show more ground shaking than the structure located on a hard soil. The Surface level ground motion depends on the type of soil. Density and shear wave velocity is different for different types of soil. The intensity of the soil amplification depends on the density and shear wave velocity of the soil. Rukni irrigation project is located in the North Eastern region of India, near the Dauki fault (550 Km length) which has already produced earthquakes of magnitude (Mw= 8.5) in the past. There is a probability of a similar type of earthquake occuring in the future. There are several faults also located around the project site. There are 765 recorded strong ground motion time histories available for the region. These data are used to determine the soil amplification factor by incorporation of the engineering properties of soil. With this in view, three of soil bore holes have been studied at the project site up to a depth of 30 m. It has been observed that in Soil bore hole 1, the shear wave velocity vary from 99.44 m/s to 239.28 m/s. For Soil Bore Hole No 2 and 3, shear wave velocity vary from 93.24 m/s to 241.39 m/s and 93.24m/s to 243.01 m/s. In the present work, surface level seismic hazard at the project site has been calculated based on the Probabilistic seismic hazard approach accounting the soil factor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ground%20Response%20Analysis" title="Ground Response Analysis">Ground Response Analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20wave%20velocity" title=" shear wave velocity"> shear wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20amplification" title=" soil amplification"> soil amplification</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20level%20seismic%20hazard" title=" surface level seismic hazard"> surface level seismic hazard</a> </p> <a href="https://publications.waset.org/abstracts/26185/ground-response-analysis-at-the-rukni-irrigation-project-site-located-in-assam-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26185.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2601</span> The Evaluation of Shear Modulus (Go) Consistency State of Consolidation Cohesive Soils and Seismic Reflection Survey Using Degree of Soil Consolidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Halim%20Abdul">Abdul Halim Abdul</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Ismail%20Wan%20Yusoff"> Wan Ismail Wan Yusoff</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The geological formation at Limau Manis Besar area, are consist of low grade metamorphic rock and undulating mountaineers, rugged terrain and the quite steeply 45 degree slope gradient. The objectives of this paper are present the methods and devices used in measurement of P-wave velocity to estimate the initial Shear Modulus (Go) in steady state and critical state soil consolidation. The relationship between SPT-N values and the Shear Modulus (Go) at very small strain is widely considered to be evaluated. Based on the seismic reflection survey, the constant (K) poroelastic theory, mean effectives stress and primer wave velocity (Vs) increase as the soil depth increase. The steady state and critical state, Degree of Soil Consolidation(U) concept is used to interpret the behavior of Shear Modulus (Go). The relationship between Consolidation Test and Seismic Reflection Survey is also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geological%20setting" title="geological setting">geological setting</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20modulus" title=" shear modulus"> shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=poroelastic%20theory" title=" poroelastic theory"> poroelastic theory</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state%20and%20none%20steady%20state%20degree%20of%20soil%20consolidation" title=" steady state and none steady state degree of soil consolidation"> steady state and none steady state degree of soil consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation%20test" title=" consolidation test"> consolidation test</a> </p> <a href="https://publications.waset.org/abstracts/11415/the-evaluation-of-shear-modulus-go-consistency-state-of-consolidation-cohesive-soils-and-seismic-reflection-survey-using-degree-of-soil-consolidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=87">87</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=88">88</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=shear%20wave%20elastography&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>