CINXE.COM
An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants
<!DOCTYPE html> <!--[if IE 8]> <html class="ie ie8"> <![endif]--> <!--[if IE 9]> <html class="ie ie9"> <![endif]--> <!--[if gt IE 9]><!--> <html> <!--<![endif]--> <head> <meta charset="utf-8" /> <title>An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants</title> <!-- favicon --> <link rel="shortcut icon" type="image/ico" href="./data/ijsom/coversheet/favicon.ico" /> <!-- mobile settings --> <meta name="viewport" content="width=device-width, maximum-scale=1, initial-scale=1, user-scalable=0" /> <!--[if IE]><meta http-equiv='X-UA-Compatible' content='IE=edge,chrome=1'><![endif]--> <!-- user defined metatags --> <meta name="keywords" content="Particle swarm optimization,Taxonomy,PSO variants,Expert system,Knowledge base" /> <meta name="description" content="Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identify the most proper PSO for solving different optimization problems. Algorithms are classified according to aspects like particle, variable, process, and swarm. After integrating different acquirable information and forming the knowledge base of the ES consisting 100 rules, the system is able to logically evaluate all the algorithms and report the most appropriate PSO-based approach based on interactions with users, referral to knowledge base and necessary inferences via user interface. In order to examine the validity and efficiency of the system, a comparison is made between the system outputs against the algorithms proposed by newly published articles. The result of this comparison showed that the proposed ES can be considered as a proper tool for finding an appropriate PSO variant that matches the application under consideration." /> <meta name="title" content="An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants" /> <meta name="googlebot" content="NOODP" /> <meta name="citation_title" content="An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants" /> <meta name="citation_author" content="Masehian, Ellips" /> <meta name="citation_author_institution" content="Tarbiat Modares University, Teahran, Iran" /> <meta name="citation_author" content="Eghbal Akhlaghi, Vahid" /> <meta name="citation_author_institution" content="Middle East Technical University, Ankara, Turkey" /> <meta name="citation_author" content="Akbaripour, Hossein" /> <meta name="citation_author_institution" content="Tarbiat Modares University, Teahran, Iran" /> <meta name="citation_author" content="Sedighizadeh, Davoud" /> <meta name="citation_author_institution" content="Islamic Azad University, Saveh branch, saveh, Iran" /> <meta name="citation_abstract" content="Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identify the most proper PSO for solving different optimization problems. Algorithms are classified according to aspects like particle, variable, process, and swarm. After integrating different acquirable information and forming the knowledge base of the ES consisting 100 rules, the system is able to logically evaluate all the algorithms and report the most appropriate PSO-based approach based on interactions with users, referral to knowledge base and necessary inferences via user interface. In order to examine the validity and efficiency of the system, a comparison is made between the system outputs against the algorithms proposed by newly published articles. The result of this comparison showed that the proposed ES can be considered as a proper tool for finding an appropriate PSO variant that matches the application under consideration." /> <meta name="citation_id" content="2351" /> <meta name="citation_publication_date" content="2015/05/01" /> <meta name="citation_date" content="2015-05-01" /> <meta name="citation_journal_title" content="International Journal of Supply and Operations Management" /> <meta name="citation_issn" content="23831359" /> <meta name="citation_volume" content="2" /> <meta name="citation_issue" content="1" /> <meta name="citation_firstpage" content="569" /> <meta name="citation_lastpage" content="594" /> <meta name="citation_publisher" content="Kharazmi University" /> <meta name="citation_doi" content="10.22034/2015.1.03" /> <meta name="DC.Identifier" content="10.22034/2015.1.03" /> <meta name="citation_abstract_html_url" content="http://www.ijsom.com/article_2351.html" /> <meta name="citation_pdf_url" content="http://www.ijsom.com/article_2351_1936390fb2dce7705ee4fab3e3240681.pdf" /> <meta name="DC.Title" content="An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants" /> <meta name="DC.Source" content="International Journal of Supply and Operations Management" /> <meta name="DC.Date" content="01/05/2015" /> <meta name="DC.Date.issued" content="2015-05-01" /> <meta name="DC.Format" content="application/pdf" /> <meta name="DC.Contributor" content="Masehian, Ellips" /> <meta name="DC.Contributor" content="Eghbal Akhlaghi, Vahid" /> <meta name="DC.Contributor" content="Akbaripour, Hossein" /> <meta name="DC.Contributor" content="Sedighizadeh, Davoud" /> <meta name="og:title" content="An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants" /> <meta name="og:description" content="Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identify the most proper PSO for solving different optimization problems. Algorithms are classified according to aspects like particle, variable, process, and swarm. After integrating different acquirable information and forming the knowledge base of the ES consisting 100 rules, the system is able to logically evaluate all the algorithms and report the most appropriate PSO-based approach based on interactions with users, referral to knowledge base and necessary inferences via user interface. In order to examine the validity and efficiency of the system, a comparison is made between the system outputs against the algorithms proposed by newly published articles. The result of this comparison showed that the proposed ES can be considered as a proper tool for finding an appropriate PSO variant that matches the application under consideration." /> <meta name="og:url" content="http://www.ijsom.com/article_2351.html" /> <!-- WEB FONTS : use %7C instead of | (pipe) --> <link href="./themes/base/front/assets/css/social-icon-font.css" rel="stylesheet" type="text/css" /> <!-- CORE CSS --> <link href="./themes/base/front/assets/plugins/bootstrap/css/bootstrap.min.css?v=0.02" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/header.css?v=0.05" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/footer.css" rel="stylesheet" type="text/css" /> <link href="./inc/css/essentials.css?v=0.2" rel="stylesheet" type="text/css" /> <link href="./inc/css/cookieconsent.min.css" rel="stylesheet" type="text/css" /> <link href="./inc/css/print.css" rel="stylesheet" type="text/css" media="print"/> <!-- RTL CSS --> <link href="./themes/base/front/assets/plugins/bootstrap/css/bootstrap-ltr.min.css" rel="stylesheet" type="text/css" /> <link href=" ./themes/base/front/assets/css/gfonts-OpenSans.css" rel="stylesheet" type="text/css" /> <link href="./themes/old/front/assets/css/accordian.css" rel="stylesheet" type="text/css" /> <link href="./themes/base/front/assets/css/academicons.min.css" rel="stylesheet" type="text/css" /> <!-- user defined metatags--> <meta name="google-site-verification" content="UlbWpwabckk_wTgRmzoJCVPEYKnomtCLcftujpXdou4" /> <link href="./data/ijsom/coversheet/stl_front.css?v=0.12" rel="stylesheet" type="text/css" /> <link href="./data/ijsom/coversheet/stl.css" rel="stylesheet" type="text/css" /> <!-- Feed--> <link rel="alternate" type="application/rss+xml" title="RSS feed" href="ju.rss" /> <script type="text/javascript" src="./themes/base/front/assets/plugins/jquery/jquery.min.js?v=0.5"></script> <script type="text/javascript" src="./inc/js/common.js?v=0.1"></script> <script type="text/javascript" src="./inc/js/jquery/cookieconsent.min.js"></script> <!-- Extra Style Scripts --> <!-- Extra Script Scripts --> <script src="inc/js/article.js?v=0.31" type="text/javascript" ></script> </head> <body class="ltr len"> <div class="container" id="header"> <div class="row"> <div class="col-xs-12 text-center"> <img src="./data/ijsom/coversheet/head_en.jpg" class="img-responsive text-center" style="display:-webkit-inline-box; width: 100%;" > </div> </div> </div> <div class="container"> <div class="row"> <div class="col-xs-12 col-lg-12 col-md-12 text-center"> <nav class="navbar navbar-default noborder nomargin noradius" role="navigation"> <div class="container-fluid nopadding" > <div class="navbar-header" style="background: #FFFFFF;"> <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <!-- <a class="navbar-brand" href="#">Brand</a> --> </div> <!-- Collect the nav links, forms, and other content for toggling --> <div class="collapse navbar-collapse nopadding" id="bs-example-navbar-collapse-1"> <ul class="nav navbar-nav"> <li><a href="././"> Home</a></li> <li class="dropdown"> <a href="" class="dropdown-toggle" data-toggle="dropdown">Browse <b class="caret"></b></a> <ul class="dropdown-menu"> <li><a href="./?_action=current">Current Issue</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=issue">By Issue</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=author">By Author</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./browse?_action=subject">By Subject</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./author.index">Author Index</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./keyword.index">Keyword Index</a></li> </ul> </li> <li class="dropdown"> <a href="" class="dropdown-toggle" data-toggle="dropdown">Journal Info <b class="caret"></b></a> <ul class="dropdown-menu"> <li><a href="./journal/about">About Journal</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/aim_scope">Aims and Scope</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/editorial.board">Editorial Board</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/process?ethics">Publication Ethics</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/indexing">Indexing and Abstracting</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/links">Related Links</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/faq">FAQ</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/process">Peer Review Process</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./journal/metrics">Journal Metrics</a></li> <li class="divider margin-bottom-6 margin-top-6"></li> <li><a href="./news">News</a></li> </ul> </li> <li><a href="./journal/authors.note"> Guide for Authors</a></li> <li><a href="./author"> Submit Manuscript</a></li> <li><a href="./reviewer?_action=info"> Reviewers</a></li> <li><a href="./journal/contact.us"> Contact Us</a></li> </ul> <ul class="nav navbar-nav navbar-right nomargin"> <li><a href="./contacts">Login</a></li> <li><a href="./contacts?_action=signup">Register</a></li> </ul> </div> <!-- /.navbar-collapse --> </div> <!-- /.container-fluid --> </nav> </div> </div> </div> <!-- MAIN SECTION --> <div class="container" > <div id="dv_main_cnt"> <section class="no-cover-box"> <div class="row"> <!-- CENTER --> <div class="col-lg-9 col-md-9 col-sm-8" id="dv_artcl"> <!-- Current Issue --> <div> <h1 class="margin-bottom-20 size-18 ltr"><span class="article_title bold"> An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants</span></h1> <div> <div class="margin-bottom-3"> </div> <p class="margin-bottom-3">Document Type : Research Paper</p> <p class="padding-0" style="margin:12px -2px 0 -2px"><strong>Authors</strong></p> <ul class="list-inline list-inline-seprator margin-bottom-6 ltr"> <li class="padding-3"> <a href="./?_action=article&au=109387&_au=Ellips++Masehian">Ellips Masehian</a> <sup><a href="mailto:masehian@modares.ac.ir" data-toggle="tooltip" data-placement="bottom" title="Email to Corresponding Author"><i class="fa fa-envelope-o" ></i></a></sup> <sup><a href="#aff1" >1</a></sup> </li> <li class="padding-3"> <a href="./?_action=article&au=109781&_au=Vahid++Eghbal+Akhlaghi">Vahid Eghbal Akhlaghi</a> <sup><a href="#aff2" >2</a></sup> </li> <li class="padding-3"> <a href="./?_action=article&au=109780&_au=Hossein++Akbaripour">Hossein Akbaripour</a> <sup><a href="#aff1" >1</a></sup> </li> <li class="padding-3"> <a href="./?_action=article&au=112067&_au=Davoud++Sedighizadeh">Davoud Sedighizadeh</a> <sup><a href="#aff3" >3</a></sup> </li> </ul> <p class="margin-bottom-3 ltr" id="aff1"> <sup>1</sup> Tarbiat Modares University, Teahran, Iran </p> <p class="margin-bottom-3 ltr" id="aff2"> <sup>2</sup> Middle East Technical University, Ankara, Turkey </p> <p class="margin-bottom-3 ltr" id="aff3"> <sup>3</sup> Islamic Azad University, Saveh branch, saveh, Iran </p> <div class="margin-bottom-3 ltr" id="ar_doi" title="DOI"><i class="ai ai-doi size-25 text-orange"></i> <span dir="ltr"><a href="https://dx.doi.org/10.22034/2015.1.03">10.22034/2015.1.03</a></span></div> <p style="margin:12px -2px 0 -2px"><strong>Abstract</strong></p> <div class="padding_abstract justify ltr">Regarding the large number of developed Particle Swarm Optimization (PSO) algorithms and the various applications for which PSO has been used, selecting the most suitable variant of PSO for solving a particular optimization problem is a challenge for most researchers. In this paper, using a comprehensive survey and taxonomy on different types of PSO, an Expert System (ES) is designed to identify the most proper PSO for solving different optimization problems. Algorithms are classified according to aspects like particle, variable, process, and swarm. After integrating different acquirable information and forming the knowledge base of the ES consisting 100 rules, the system is able to logically evaluate all the algorithms and report the most appropriate PSO-based approach based on interactions with users, referral to knowledge base and necessary inferences via user interface. In order to examine the validity and efficiency of the system, a comparison is made between the system outputs against the algorithms proposed by newly published articles. The result of this comparison showed that the proposed ES can be considered as a proper tool for finding an appropriate PSO variant that matches the application under consideration.</div> <p class="padding-0" style="margin:12px -2px 0 -2px"><strong>Keywords</strong></p> <ul class="block list-inline list-inline-seprator margin-bottom-6 ltr"> <li class="padding-3"> <a class="tag_a" href="./?_action=article&kw=104003&_kw=Particle+swarm+optimization" >Particle swarm optimization</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&kw=6766&_kw=Taxonomy" >Taxonomy</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&kw=104004&_kw=PSO+variants" >PSO variants</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&kw=104005&_kw=Expert+system" >Expert system</a> </li> <li class="padding-3"> <a class="tag_a" href="./?_action=article&kw=104006&_kw=Knowledge+base" >Knowledge base</a> </li> </ul> <p class="padding-0" style="margin:12px -2px 0 -2px"><strong>Main Subjects</strong></p> <ul class="block list-inline list-inline-seprator margin-bottom-6"> <li class="padding-3"> <a href="./?_action=article&sb=159&_sb=artificial+intelligence+%26amp%3B+expert+system" >artificial intelligence & expert system</a> </li> </ul> </div> <hr> <div class="page_break"></div> <div class="panel"> <div class="panel-heading card-header"> <h4 class="panel-title "> <a data-toggle="collapse" data-parent="#accordions" href="#collapsesRef"><i class="fa fa-plus"></i> References</a> </h4> </div> <div id="collapsesRef" class="panel-collapse collapse"> <div class="panel-body justify"> <div class="padding-3 margin-top-3 ltr justify">Aguirre A. H., Muñoz Zavala A. E. and Diharce E. V., and Botello Rionda S. (2007). COPSO: Constraints Optimization via PSO algorithm. Comunicación Técnic, (CC/CIMAT). </div> <div class="padding-3 margin-top-3 ltr justify">Altinoz O. T., Yilmaz A. E, Weber G. W. (2012). Application of chaos embedded PSO for PID parameter tuning. International J. of Computers, Communications and Control vol. 7, no. 2, pp. 204-217. </div> <div class="padding-3 margin-top-3 ltr justify">Alviar J.-B., Peña J., and Hincapié R., (2007). Subpopulation best rotation: a modification on PSO. Revista Facultad de Ingeniería. Vol. 40, pp.118-122. </div> <div class="padding-3 margin-top-3 ltr justify">Atyabi A. and Phon-Amnuaisuk S. (2007). Particle swarm optimization with area extension (AEPSO). IEEE/CEC, pp. 1970-1976. </div> <div class="padding-3 margin-top-3 ltr justify">Behera H. S., Dash P. K. and Biswal B. (2010). Power quality time series data mining using stransform and fuzzy expert system. Appl. Soft Comput. J. Vol. 10, No. 3, pp. 945–955. </div> <div class="padding-3 margin-top-3 ltr justify">Brits R., Engelbrecht A. P., and van den Bergh F. (2002). Solving Systems of unconstrained equations using particle swarm optimization. Proc. of IEEE Conf. on Sys. Man and Cyber. (SMC), pp. 102-107. </div> <div class="padding-3 margin-top-3 ltr justify">Brits R., Engelbrecht A.P., and van den Bergh F., (2005). Niche Particle Swarm Optimization. Technical report, Department of Computer Science, University of Pretoria. </div> <div class="padding-3 margin-top-3 ltr justify">Chandrasekaran S., Ponnambalam S.G., Suresh R.K. and Vijayakumar N. (2006). A Hybrid Discrete Particle Swarm Optimization Algorithm to Solve Flow Shop Scheduling Problems. Proc. IEEE/ ICCIS, pp.1–6. </div> <div class="padding-3 margin-top-3 ltr justify">Chen C. Y., Feng H. M., and Ye F. (2007). Hybrid Recursive Particle Swarm Optimization Learning Algorithm in the Design of Radial Basis Function Networks. J. of Marine Science and Technology, Vol. 15, No. 1, pp. 31-40. </div> <div class="padding-3 margin-top-3 ltr justify">Cui Z., Zeng J. And Cai X. (2004). A guaranteed convergence dynamic double particle swarm optimizer. Fifth World Cong. on Intell., Control and Automation, Vol. 3, pp. 2184 – 2188. </div> <div class="padding-3 margin-top-3 ltr justify">Felix T. S. Chan1, Kumar, V. and Mishra, N. (2007). A CMPSO algorithm based approach to solve the multi-plant supply chain problem. Swarm Intell.: Focus on Ant and Particle Swarm Optimization, pp. 532. </div> <div class="padding-3 margin-top-3 ltr justify">Feng H.-M. (2005). Self-generation fuzzy modeling systems through hierarchical recursive-based particle swarm optimization. J. of Cyber. and Systems, Vol. 36, No. 6, pp. 623-639. </div> <div class="padding-3 margin-top-3 ltr justify">Galvez A. and Iglesias A. (2013). A new iterative mutually-coupled hybrid GA-PSO approach for curve fitting in manufacturing. Applied Soft Computing, No. 13, Vol. 3, pp. 1491–1504. </div> <div class="padding-3 margin-top-3 ltr justify">Ghamisi P., Couceiro M.S., Martins F.M.L., and Benediktsson J.A. (2013). Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization. J. of Geoscience and Remote Sensing, Vol. pp, Issue. 99, pp. 1-13, June 2013. </div> <div class="padding-3 margin-top-3 ltr justify">Gheitanchi S., Ali F. H. and Stipidis E. (2008). Trained Particle Swarm Optimization for Ad-hoc Collaborative Computing Networks. Swarm Intell. Algorithms and Applications Symp., ASIB, UK. </div> <div class="padding-3 margin-top-3 ltr justify">Giarratano J. C. and Riley G. (1998). Expert Systems: Principles and Programming. PWS Publishing Company. </div> <div class="padding-3 margin-top-3 ltr justify">He S., Wu Q.H., Wen J.Y., Saunders J.R. and Paton R.C. (2004). A particle swarm optimizer with passive congregation. J. of Biosystems, Vol.78, No.1-3, pp. 135-147. </div> <div class="padding-3 margin-top-3 ltr justify">Higashitani M., Ishigame A. and Yasuda K. (2008). Pursuit-Escape Particle Swarm Optimization. Trans. On Electrical and Electronic Eng., (IEEJ), Vol.3, No.1, pp.136–142. </div> <div class="padding-3 margin-top-3 ltr justify">Ho S.-Y., Lin H.-S., Liauh W.-H., and Ho S.-J. (2008). OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems. IEEE Trans. on Systems, Man and Cyber., Part A, Vol. 38, No., 2, pp. 288-298. </div> <div class="padding-3 margin-top-3 ltr justify">Hu X. and Eberhart R. C. (2002). Multi objective optimization using dynamic neighborhood particle swarm optimization. Proc. of the IEEE/ CEC, pp. 1677-1681. </div> <div class="padding-3 margin-top-3 ltr justify">Hui W. and Feng Q. (2007). Improved particle swarm optimizer with behavior of distance models. J. of Computer Eng. and Applications, 43 (30): 30-32. </div> <div class="padding-3 margin-top-3 ltr justify">Jang W.-S., Kang H.-I., Lee B.-H., Kim K.-I., Shin D.-I. and Kim S.-C. (2007). Optimized fuzzy clustering by predator prey particle swarm optimization. In IEEE/CEC, pp. 3232-3238. </div> <div class="padding-3 margin-top-3 ltr justify">Jarbouia B., Cheikha M., Siarryb P. and Rebaic A., (2007). Combinatorial particle swarm optimization (CPSO) for partitioned clustering problem. J. Applied Mathematics and Computation, Vol. 192, Issue 2, 15 pp. 337-345. </div> <div class="padding-3 margin-top-3 ltr justify">Ji C., Zhang Y., Gao SH., Yuan P. and Li Zh. (2004). Particle swarm optimization for mobile ad hoc networks clustering. IEEE Int. Conf. on Networking, Sensing and Control, Vol. 1, pp. 372–375. </div> <div class="padding-3 margin-top-3 ltr justify">Jie J., Zeng j. and Han C. (2006). Self-Organization Particle Swarm Optimization Based on Information Feedback. Advances in natural comput.: ( Part I-II: Second Int. conf., ICNC 2006, Xi'an, China. </div> <div class="padding-3 margin-top-3 ltr justify">Jingbo A. and Hongfei T., (2005). Cultural based Particle Swarm Optimization. Center for Science and Technology Development, Ministry of Education P. R. China. </div> <div class="padding-3 margin-top-3 ltr justify">Keedwell E., Morley M., and Croft D. (2012). Continuous Trait-Based Particle Swarm Optimisation (CTB-PSO). 8th International Conference, Brussels, Belgium, Vol. 7461, pp 342343 Sept. </div> <div class="padding-3 margin-top-3 ltr justify">Kennedy J. and Eberhart R. C. (1995). Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, Vol. IV, pp. 1942-1948. </div> <div class="padding-3 margin-top-3 ltr justify">Kennedy J. and Eberhart R. C. (2001). Swarm Intelligence. Morgan Kaufmann, San Francisco, CA. </div> <div class="padding-3 margin-top-3 ltr justify">Kennedy J. and Eberhart R.C. (1997). A discrete binary version of the particle swarm algorithm. Int. IEEE Conf. on Systems, Man, and Cyber. Vol.5, pp.4104–4108. </div> <div class="padding-3 margin-top-3 ltr justify">Koh B-Il, Fregly B.-J., George A.-D. and Haftka R.-T. (2005). Parallel asynchronous particles swarm for global biomechanical. Int J Number Methods Eng., Vol. 67(4), pp. 578–595. </div> <div class="padding-3 margin-top-3 ltr justify">Krink T. Vesterstrom J.S. and Riget J. (2002). Particle swarm optimization with spatial particle extension. Proc. of Cong. on Evolutionary Computation, (CEC’02), Vol. 2, pp. 1474-1479. </div> <div class="padding-3 margin-top-3 ltr justify">Kulkarni R.V. and Venayagamoorthy G.K. (2007). An Estimation of Distribution Improved Particle Swarm Optimization Algorithm. Proc. IEEE/ ISSNIP, pp. 539-544. </div> <div class="padding-3 margin-top-3 ltr justify">Lam H. T., Nikolaevna P. N., and Quan N. T. M. (2007). The Heuristic Particle Swarm Optimization. Proc. of annual Conf. on Genetic and evolutionary computation in Ant colony optimization, swarm Intell. and artificial immune systems,”GECCO’07”, pp.174–174. </div> <div class="padding-3 margin-top-3 ltr justify">Lee C. H., Lee Y. C., and Chang F. Y. (2010). A Dynamic Fuzzy Neural System Design via Hybridization of EM and PSO Algorithms. IAENG International J. of Computer Science, 37:3. </div> <div class="padding-3 margin-top-3 ltr justify">Lee K. H., Baek S. W. and Kim K. W. (2008). Inverse radiation analysis using repulsive particle swarm optimization algorithm. International Journal of Heat and Mass Transfer; Vol. 51(11-12), pp. 2772– 2783. </div> <div class="padding-3 margin-top-3 ltr justify">Lee, T. Y. (2007). Optimal Spinning Reserve for a Wind-Thermal Power System Using EIPSO. IEEE/ TPWRS, Vol. 22(4), pp. 1612–1621. </div> <div class="padding-3 margin-top-3 ltr justify">Li H. Q. and Li L. (2007). A novel hybrid particle swarm optimization algorithm combined with harmony search for high dimensional optimization problems. International Conference on Intelligent Pervasive Computing, Jeju Island, Korea. </div> <div class="padding-3 margin-top-3 ltr justify">Li H.-Q. and Li L. (2007). A Novel Hybrid Particle Swarm Optimization Algorithm Combined with Harmony Search for High Dimensional Optimization Problems. Proc. IEEE/IPC, pp. 94-97. </div> <div class="padding-3 margin-top-3 ltr justify">Li T., Lai X. and Wu M. (2006). An Improved Two-Swarm Based Particle Swarm Optimization Algorithm. Proc. IEEE/ WCICA, Vol. 1, pp. 3129-3133. </div> <div class="padding-3 margin-top-3 ltr justify">Li X. (2004). Adaptively Choosing Neighborhood Bests using Species in a Particle Swarm Optimizer for Multimodal Function Optimization. Proc. of GECCO LNCS 3102, pp.105-116. </div> <div class="padding-3 margin-top-3 ltr justify">Liang J. J., Qin A. K. and Baskar S. (2006). Comprehensive Learning Particle Swarm Optimizer for Global Optimization of multimodal Functions. IEEE Trans. Evolutionary Computation, Vol. 10, No. 3. </div> <div class="padding-3 margin-top-3 ltr justify">Liao c.y., Lee W. P. and Chen X. (2007). Dynamic and adjustable particle swarm optimization, Proc. of the 8th Conf. on 8th WSEAS Int. Conf. on Evolutionary Computing, Vol. 8. </div> <div class="padding-3 margin-top-3 ltr justify">Lin C., Liu Y. and Lee C. (2008). An efficient neural fuzzy network based on immune particle swarm optimization for prediction and control applications. J. of Innovative Computing, Information and Control, Vol. 4(7), pp.1711-1722. </div> <div class="padding-3 margin-top-3 ltr justify">Lu H. and Chen W. (2006). Dynamic-objective particle swarm optimization for constrained optimization problems. J. of Combinatorial Optimization, Vol. 12(4), PP. 409-419. </div> <div class="padding-3 margin-top-3 ltr justify">Lu H. and Chen W. (2008). Self-adaptive velocity particle swarm optimization for solving constrained optimization problems. J. of Global Optimization, Vol.41(3), pp. 427-445. </div> <div class="padding-3 margin-top-3 ltr justify">M. Neethling, and A. Engelbrecht. (2006). Determining RNA Secondary Structure using Setbased Particle Swarm Optimization. In Proc. IEEE Cong. on Evolutionary Computation, Vancouver, pp. 1670-1677. </div> <div class="padding-3 margin-top-3 ltr justify">Madar J., Abonyi J. and Szeifert F. (2005). Interactive particle swarm optimization. Proc. Int. IEEE conf. On Intelligent Systems Design and Applications (IEEE/ ISDA), Vol.8(10), pp.314 – 319. </div> <div class="padding-3 margin-top-3 ltr justify">McNabb A. W., Monson C. K. and Seppi K. D. (2007). MRPSO: Map Reduce particle swarm optimization. Proc. of the 9th annual Conf. on Genetic and evolutionary Comput., pp. 177–177. </div> <div class="padding-3 margin-top-3 ltr justify">Medeiros D. J., Swenson E. and DeFlitch C. (2008). Improving Patient Flow in a Hospital Emergency Department. Proc. Winter Simulation Conf. Austin, TX, pp.1526-1531. </div> <div class="padding-3 margin-top-3 ltr justify">Meissner M., Schmuker M. and Schneider G. (2006). Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training. BMC Bioinformatics, Vol. 7, pp. 125. </div> <div class="padding-3 margin-top-3 ltr justify">Miranda V. and Fonseca N. EPSO – Best-of-two-worlds Meta-heuristic Applied to Power System problems. In Proc. of the IEEE Congress on Evolutionary Computation, Honolulu, Vol. 2, pp. 1080-1085. </div> <div class="padding-3 margin-top-3 ltr justify">Mo Y., Chen D. and Hu S. (2006). Chaos particle swarm optimization algorithm and its application in biochemical process dynamic optimization, J. Chem. Ind. Eng. (China), Vol. 57(9), pp. 2123–2127. </div> <div class="padding-3 margin-top-3 ltr justify">Monson C. K. and Seppi K. D. (2005). Linear Equality Constraints and Homomorphous Mappings in PSO. IEEE Congress on Evolutionary Computation (CEC’2005), Vol. 1, IEEE Service Center, Edinburgh, Scotland, pp. 73–80. </div> <div class="padding-3 margin-top-3 ltr justify">Moore P.W. and Venayagamoorthy G.K. (2006). Empirical Study of an Unconstrained Modified Particle Swarm Optimization. IEEE/CEC, pp. 1477-1482. </div> <div class="padding-3 margin-top-3 ltr justify">Moraglio A., Di Chio C., Togelius J. and Poli R. (2008). Geometric Particle Swarm Optimization. J. of Artificial Evolution and Applications. <br />Moraglio A., Di Chio C., Togelius J. and Poli, R. (2008). Geometric Particle Swarm Optimization. J. of Artificial Evolution and Applications. <br />Neethling M. and Engelbrecht A. P. (2006). Determining rna secondary structure using set-based particle swarm optimization. In IEEE Congress on Evolutionary Computation. CEC 2006., pages 1670–1677. </div> <div class="padding-3 margin-top-3 ltr justify">Noel M.M. and Jannett T.C. (2004). Simulation of a new hybrid particle swarm optimization algorithm. Proc., Of the IEEE Symp. On System Theory, pp. 150–153. </div> <div class="padding-3 margin-top-3 ltr justify">Omkar S. N., Mudigere D., Narayana Naik G., and Gopalakrishnan S. (2008). Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structures. J. Computers and Structures, Vol. 86, No(1-2), pp .1-14. </div> <div class="padding-3 margin-top-3 ltr justify">Özcan E. and Y谋lmaz M. (2006). Particle Swarms for Multimodal Optimization. Lecture Notes In Computer Science; Vol. 4431, Proc. of the 8th int. conf. on Adaptive and Natural Computing Algorithms, Part I. pp. 366–375. </div> <div class="padding-3 margin-top-3 ltr justify">Pampara G., Franken N. and Engelbrecht A.P. (2005). Combining particle swarm optimization with angle modulation to solve binary problems. The IEEE Cong. on Evolutionary Comput., Vol. 1, pp. 89-96. </div> <div class="padding-3 margin-top-3 ltr justify">Pant M., Radha T. and Singh V.P. (2007). A New Particle Swarm Optimization with Quadratic Interpolation. Int. IEEE Conf. on Computational Intell. and Multimedia Applications, Vol.1, pp. 55-60. </div> <div class="padding-3 margin-top-3 ltr justify">Pant, M., Thangaraj, R. and Abraham, A. (2008). Particle Swarm Optimization Using Adaptive Mutation. IEEE/DEXA'08, pp. 519-523. </div> <div class="padding-3 margin-top-3 ltr justify">Parsopoulos K. E. and Vrahatis M. N. (2004). UPSO: A Unified Particle Swarm Optimization Scheme. Proc. of the Int. Conf. of Computational Methods in Sci. and Eng., Vol. 1, pp. 868-873. </div> <div class="padding-3 margin-top-3 ltr justify">Pasupuleti S. and Battiti R. (2006). The Gregarious Particle Swarm Optimizer (GPSO). GECCO’06. </div> <div class="padding-3 margin-top-3 ltr justify">Poli R., Langdon W. B., and Holland O. (2005). Extending particle swarm optimization via genetic programming. In M. </div> <div class="padding-3 margin-top-3 ltr justify">Keijzer et al. (Eds.), Lecture notes in computer science: Vol. 3447. Proc. of the 8th European conf. on genetic programming, pp. 291–300, Springer. </div> <div class="padding-3 margin-top-3 ltr justify">Rezaee Jordehi A., Jasni J., Abd Wahab N., Kadir M.Z., Javadi M.S. (2015). Enhanced leader PSO (ELPSO): a new algorithm for allocating distributed TCSC’s in power systems. Int. J. Electr. Power Energy Syst, Vol. 64, pp. 771-784. </div> <div class="padding-3 margin-top-3 ltr justify">Riget J. and Vesterstroem J. S. (2002). A diversity-guided particle swarms optimizer - the ARPSO. Technical Report No. 2002-02. Dept. of Computer Science, University of Aarhus, EVALife. </div> <div class="padding-3 margin-top-3 ltr justify">Roy R. and Ghoshal S.P. (2006). Evolutionary computation based optimization in fuzzy </div> <div class="padding-3 margin-top-3 ltr justify">automatic generation control. IEEE/ POWERI, pp.7. <br /> <br />Sadri J. and Suen C.Y. (2006). A Genetic Binary Particle Swarm Optimization Model. Proc. IEEE/CEC, pp.656 – 663. <br />Schoeman I. L. and Engelbrecht A. P. (2004). Using Vector Operations to Identify Niches for Particle Swarm Optimization. In Proc. of the IEEE Conf. on Cyber. and Intelligent Sys. PP. 361366. </div> <div class="padding-3 margin-top-3 ltr justify">Schoeman I. L. and Engelbrecht A. P. (2004). Using vector operations to identify niches for particle swarm optimization. in Proceedings of IEEE Conference on Cybernetics and Intelligent Systems (CCIS), Vol. 1, pp. 361–366, Singapore. </div> <div class="padding-3 margin-top-3 ltr justify">Secrest B.R. and Lamont G.B. (2003). Visualizing particle swarm optimization – Gaussian particle swarm optimization. Proc. Of Swarm Intell. Symp. (IEEE/SIS), pp. 198-204. </div> <div class="padding-3 margin-top-3 ltr justify">Sedighizadeh D. and Masehian E. (2009a). A New Taxonomy for Particle Swarm Optimization (PSO). Proc. 10th Int. Conf. on Automation Technology, pp. 317-322. </div> <div class="padding-3 margin-top-3 ltr justify">Sedighizadeh D. and Masehian E. (2009b). Particle Swarm Optimization Methods, Taxonomy and Applications. International Journal of Computer Theory and Engineering, Vol.1, pp.486-502. </div> <div class="padding-3 margin-top-3 ltr justify">Sedlaczek K. and Eberhard P. (2006). Using Augmented Lagrangian Particle Swarm Optimization for Constrained Problems in Engineering. J. of Structural and Multidisciplinary Optimization, Vol. 32, No. 4, pp. 277-286. </div> <div class="padding-3 margin-top-3 ltr justify">Shen X., Wei K., Wu D., Tong Y. and Li Y. (2007). A Dynamic Adaptive Dissipative Particle Swarm Optimization with Mutation Operation. Proc. IEEE/ ICCA, pp. 586-589. </div> <div class="padding-3 margin-top-3 ltr justify">Shi Y. and Eberhart R. (2001). Fuzzy Adaptive Particle Swarm Optimization. Proc. IEEE / Cong. on Evolutionary Computation. Seoul, vol. 1, pp. 101-106. </div> <div class="padding-3 margin-top-3 ltr justify">Shi Y., and Krohling R. A. (2002). Co-evolutionary particle swarm optimization to solve minmax problems. in Proc. Cong. on Evolutionary Comput., Vol. 2, pp. 1682-1687. </div> <div class="padding-3 margin-top-3 ltr justify">Subrarnanyam V. Srinivasan D. and Oniganti R. (2007). Dual layered PSO Algorithm for evolving an Artificial Neural Network controller. IEEE/CEC, pp. 2350-2357. </div> <div class="padding-3 margin-top-3 ltr justify">Sun J., Feng B. and Xu W. (2004). Particle swarm optimization with particles having quantum behavior. Proc. IEEE/CEC, Vol. 1, pp. 325–331. </div> <div class="padding-3 margin-top-3 ltr justify">Tao Q., Chang H. Y., Yi Y., Gu C. Q., and Yu Y. Qo S. (2009). constrained grid workflow scheduling optimization based on a novel PSO algorithm. in 8th International Conference on Grid and Cooperative Computing, Guangzhou, China, pp. 153-159. </div> <div class="padding-3 margin-top-3 ltr justify">Voss M.S. (2005). Principal component particle swarm optimization (PCPSO). Proc., Of the IEEE Symp. On swarm Intell., pp. 401–404. </div> <div class="padding-3 margin-top-3 ltr justify">Wang H., and Qian F. (2007). An improved particle swarm optimizer with shuffled sub-swarms </div> <div class="padding-3 margin-top-3 ltr justify">and its application in soft-sensor of gasoline endpoint. Proc. Advances in Intelligent Systems Research. <br /> <br />Wang H., and Qian F. (2007). An improved particle swarm optimizer with shuffled sub-swarms and its application in soft-sensor of gasoline endpoint. Proc. Advances in Intelligent Systems Research. </div> <div class="padding-3 margin-top-3 ltr justify">Wang X. H. and Li J.-J. (2004). Hybrid particle swarm optimization with simulated annealing. Proc., Of the IEEE Int. Conf. on Machine Learning and Cyber., Vol. 4, pp. 2402–2405. </div> <div class="padding-3 margin-top-3 ltr justify">Waterman D. A. (1986). A guide to expert systems, illustrated, reprint ed. California, USA: Addison-Wesley. <br />Wei C., He Z., Zhang Y. and Pei W. (2002). Swarm directions embedded in fast evolutionary programming . In Proc. of the IEEE/CEC, pp. 1278–1283. </div> <div class="padding-3 margin-top-3 ltr justify">Wei K., Zhang T., Shen X. and Liu J. (2007). An Improved Threshold Selection Algorithm Based on Particle Swarm Optimization for Image Segmentation. Proc. IEEE/ICNC. </div> <div class="padding-3 margin-top-3 ltr justify">Xiao-ping X., QIAN F. C. and Feng W. (2008). Research on new method of system identification based on velocity mutation Particle Swarm Optimization. (In Chinese), 44 (1) pp. 31-34. </div> <div class="padding-3 margin-top-3 ltr justify">Xie X.-F., Zhang W.-J. and Yang Z.-L. (2002a). Adaptive Particle Swarm Optimization on Individual Level. Int. Conf. On Signal Processing (ICSP), pp. 1215-1218. </div> <div class="padding-3 margin-top-3 ltr justify">Xie X.-F., Zhang W.-J., and Yang Z.-L. (2002b). A Dissipative Particle Swarm Optimization. Cong. on Evolutionary Comput. (CEC), pp. 1456-1461. </div> <div class="padding-3 margin-top-3 ltr justify">Xu F. and Chen W. (2006). Stochastic Portfolio Selection Based on Velocity Limited Particle Swarm Optimization. Proc. IEEE/ WCICA, Vol. 1, pp. 3599-3603. </div> <div class="padding-3 margin-top-3 ltr justify">Yang C. and Simon D. (2005). A New Particle Swarm Optimization Technique. Proc. Of the Int. Conf. on systems Eng., (IEEE/ISEng’05). </div> <div class="padding-3 margin-top-3 ltr justify">Yang S., Wang M. and Jiao L. (2004). A Quantum Particle Swarm Optimization. In Proceedings of Congress on Evolutionary Computation CEC2004, vol.1. pp. 320-324. </div> <div class="padding-3 margin-top-3 ltr justify">Yang W.-P. (2007). Vertical Particle Swarm Optimization Algorithm and its Application in SoftSensor Modeling. Int. Conf. on Machine Learning and Cyber. (IEEE/ ICMLC), Vol.4, pp. 1985-1988. </div> <div class="padding-3 margin-top-3 ltr justify">Yao X. (2008). Cooperatively Coevolving Particle Swarms for Large Scale Optimization. Conf. of EPSRC, Artificial Intell. Technologies New and Emerging Computer Paradigms. </div> <div class="padding-3 margin-top-3 ltr justify">Yin P. Y. (2006). Genetic particle swarm optimization for polygonal approximation of digital curves. J. of Pattern Recognition and Image Analysis. Vol. 16(2), pp. 223-233. </div> <div class="padding-3 margin-top-3 ltr justify">Yuan L. and Zhao Z.-D. (2007). A Modified Binary Particle Swarm Optimization Algorithm for Permutation Flow Shop Problem. IEEE/ICMLC, Vol.2, pp. 902-907. </div> <div class="padding-3 margin-top-3 ltr justify">Yuan Z., Jin R., Geng J., Fan Y., Lao J., Li J., Rui X., Fang Z. and Sun J. (2005). A perturbation particle swarm optimization for the synthesis of the radiation pattern of antenna array. Proc. IEEE Conf. on Asia-Pacific, Vol.3, No, 4-7. </div> <div class="padding-3 margin-top-3 ltr justify">Zeng J., Hu J. and Jie J. (2006). Adaptive Particle Swarm Optimization Guided by Acceleration Information. Proc. IEEE/ ICCIAS, Vol.1, pp. 351-355. </div> <div class="padding-3 margin-top-3 ltr justify">Zhang Q. and Mahfouf M. (2006). A New Structure for Particle Swarm Optimization (nPSO) Applicable to Single Objective and Multi objective Problems. Int. IEEE Conf. on Intelligent Systems, pp.176–181. </div> <div class="padding-3 margin-top-3 ltr justify">Zhang X., Hu W., Maybank S., Li X. and Zhu M. (2008). Sequential particle swarm optimization for visual tracking. IEEE/CVPR, pp. 1-8. </div> <div class="padding-3 margin-top-3 ltr justify">Zhang Y.-N., Hu Q.-N. and Teng H.-F. (2008). Active target particle swarm optimization: Research Articles. J. of Concurrency and Computation: Practice & Experience, Vol.20, No.1, pp. 29–40. </div> <div class="padding-3 margin-top-3 ltr justify">Zhao B. (2006). An Improved Particle Swarm Optimization Algorithm for Global Numerical Optimization. Int. Conf. on Comput. Science N6, Reading, (Royaume-uni), Vol. 3994, pp. 657-664. </div> <div class="padding-3 margin-top-3 ltr justify">Zhiming L., Cheng W. and Jian L. (2008). Solving constrained optimization via a modified genetic particle swarm optimization. Proc. of Int. Conf. On Forensic applications and techniques in telecommunications, information, and multimedia and workshop, No. 49.</div> </div> </div> </div> </div> </div> <!-- /CENTER --> <!-- LEFT --> <div class="col-lg-3 col-md-3 col-sm-4"> <div class="panel panel-default my_panel-default margin-bottom-10"> <div class="panel-body ar_info_pnl" id="ar_info_pnl_cover"> <div id="pnl_cover"> <div class="row" > <div class="col-xs-6 col-md-6 nomargin-bottom"> <a href="javascript:loadModal('International Journal of Supply and Operations Management', './data/ijsom/coversheet/cover_en.jpg')"> <img src="data/ijsom/coversheet/cover_en.jpg" alt="International Journal of Supply and Operations Management" style="width: 100%;"> </a> </div> <div class="col-xs-6 col-md-6 nomargin-bottom"> <h6><a href="./issue_460_461.html">Volume 2, Issue 1 - Serial Number 1</a><br/>May 2015<div id="sp_ar_pages">Pages <span dir="ltr">569-594</span></div></h6> </div> </div> </div> </div> </div> <!-- Download Files --> <div class="panel panel-default my_panel-default margin-bottom-10 panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_fl"><i class="fa fa-files-o"></i> Files</a></h3> </div> <div id="ar_info_pnl_fl" class="panel-collapse collapse in"> <div class="panel-body ar_info_pnl padding-6"> <ul class="list-group list-group-bordered list-group-noicon nomargin"> <li class="list-group-item"><a href="./?_action=xml&article=2351" target="_blank" class="tag_a pdf_link"><i class="fa fa-file-code-o text-orange" ></i> XML</a></li> <li class="list-group-item"><a href="./article_2351_1936390fb2dce7705ee4fab3e3240681.pdf" target="_blank" class="tag_a pdf_link"><i class="fa fa-file-pdf-o text-red" ></i> PDF 1.1 MB</a></li> <!-- Suplement Files --> </ul> </div> </div> </div> <div class="panel panel-default my_panel-default margin-bottom-10"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_share"><i class="fa fa-share-square-o" aria-hidden="true"></i> Share</a></h3> </div> <div id="ar_info_pnl_share" class="panel-collapse collapse"> <div class="panel-body ar_info_pnl padding-10 text-center"> <a id="share_facebook" href="https://www.facebook.com/sharer.php?u=http://www.ijsom.com/article_2351.html" target="_blank" class="social-icon social-icon-sm social-facebook" data-toggle="tooltip" data-placement="top" title="Facebook"> <i class="icon-facebook"></i> <i class="icon-facebook"></i> </a> <a id="share_linkedin" href="https://www.linkedin.com/shareArticle?mini=true&url=http://www.ijsom.com/article_2351.html" target="_blank" class="social-icon social-icon-sm social-linkedin" data-toggle="tooltip" data-placement="top" title="Linkedin"> <i class="icon-linkedin"></i> <i class="icon-linkedin"></i> </a> <a id="share_mendeley" href="https://www.mendeley.com/import/?url=http://www.ijsom.com/article_2351.html" target="_blank" class="social-icon social-icon-sm social-youtube" data-toggle="tooltip" data-placement="top" title="Mendeley"> <i class="icon-mendeley"></i> <i class="icon-mendeley"></i> </a> <a id="share_refworks" href="https://www.refworks.com/express/ExpressImport.asp?url=http://www.ijsom.com/article_2351.html" target="_blank" class="social-icon social-icon-sm social-disqus" data-toggle="tooltip" data-placement="top" title="Refworks"> <i class="icon-refworks"><span class="path1"></span><span class="path2"></span><span class="path3"></span><span class="path4"></span><span class="path5"></span><span class="path6"></span><span class="path7"></span><span class="path8"></span><span class="path9"></span><span class="path10"></span></i> <i class="icon-refworks"><span class="path1"></span><span class="path2"></span><span class="path3"></span><span class="path4"></span><span class="path5"></span><span class="path6"></span><span class="path7"></span><span class="path8"></span><span class="path9"></span><span class="path10"></span></i> </a> <a id="share_instagram" href="https://www.instagram.com/?url=http://www.ijsom.com/article_2351.html" target="_blank" class="social-icon social-icon-sm social-instagram" data-toggle="tooltip" data-placement="top" title="Instagram"> <i class="icon-instagram"></i> <i class="icon-instagram"></i> </a> <a id="share_twitter" href="https://twitter.com/share?url=http://www.ijsom.com/article_2351.html&text=An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants" target="_blank" class="social-icon social-icon-sm social-twitter" data-toggle="tooltip" data-placement="top" title="Twitter"> <i class="icon-twitter"></i> <i class="icon-twitter"></i> </a> <a id="share_email" href="javascript:act('email')" class="social-icon social-icon-sm social-email3 " data-toggle="tooltip" data-placement="top" title="Email"> <i class="icon-email3"></i> <i class="icon-email3"></i> </a> <a id="share_print" href="javascript:printDiv('dv_artcl')" class="social-icon social-icon-sm social-print" data-toggle="tooltip" data-placement="top" title="Print"> <i class="icon-print"></i> <i class="icon-print"></i> </a> <a id="share_stumble" href="https://mix.com/mixit?su=submit&url=http://www.ijsom.com/article_2351.html" target="_blank" class="social-icon social-icon-sm social-stumbleupon" data-toggle="tooltip" data-placement="top" title="StumbleUpon"> <i class="icon-stumbleupon"></i> <i class="icon-stumbleupon"></i> </a> <a id="share_acedemia" href="https://www.academia.edu/" target="_blank" class="social-icon social-icon-sm social-academia" data-toggle="tooltip" data-placement="top" title="Academia"> <i class="ai ai-academia"></i> <i class="ai ai-academia"></i> </a> <a id="share_sems" href="https://www.semanticscholar.org/" target="_blank" class="social-icon social-icon-sm social-forrst" data-toggle="tooltip" data-placement="top" title="Semantic scholar"> <i class="ai ai-semantic-scholar"></i> <i class="ai ai-semantic-scholar"></i> </a> <a id="share_reddit" href="https://www.reddit.com/submit?url=http://www.ijsom.com/article_2351.html" target="_blank" class="social-icon social-icon-sm social-dwolla" data-toggle="tooltip" data-placement="top" title="Reddit"> <i class="icon-reddit"></i> <i class="icon-reddit"></i> </a> <a id="share_rg" href="https://www.researchgate.net/" target="_blank" class="social-icon social-icon-sm social-researchgate" data-toggle="tooltip" data-placement="top" title="Research Gate"> <i class="ai ai-researchgate"></i> <i class="ai ai-researchgate"></i> </a> <a id="share_blogger" href="https://www.blogger.com/blog-this.g?u=http://www.ijsom.com/article_2351.html" target="_blank" class="social-icon social-icon-sm social-blogger" data-toggle="tooltip" data-placement="top" title="Blogger"> <i class="icon-blogger"></i> <i class="icon-blogger"></i> </a> <a id="share_pinterest" href="https://pinterest.com/pin/create/bookmarklet/?media=&url=http://www.ijsom.com/article_2351.html" target="_blank" class="social-icon social-icon-sm social-pinterest" data-toggle="tooltip" data-placement="top" title="Pinterest"> <i class="icon-pinterest"></i> <i class="icon-pinterest"></i> </a> <a id="share_digg" href="https://www.digg.com/submit?http://www.ijsom.com/article_2351.html&title=An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants" target="_blank" class="social-icon social-icon-sm social-digg" data-toggle="tooltip" data-placement="top" title="Digg"> <i class="icon-digg"></i> <i class="icon-digg"></i> </a> <a id="share_delicious" href="https://del.icio.us/post?url=http://www.ijsom.com/article_2351.html" target="_blank" class="social-icon social-icon-sm social-delicious" data-toggle="tooltip" data-placement="top" title="Delicious"> <i class="icon-delicious"></i> <i class="icon-delicious"></i> </a> <a id="share_skype" href="https://web.skype.com/share?url=http://www.ijsom.com/article_2351.html" target="_blank" class="social-icon social-icon-sm social-skype" data-toggle="tooltip" data-placement="top" title="Skype"> <i class="icon-skype"></i> <i class="icon-skype"></i> </a> </div> </div> </div> <!-- Cite This Article --> <div class="panel panel-default my_panel-default margin-bottom-10 panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_cite"><i class=" fa fa-external-link"></i> How to cite</a></h3> </div> <div id="ar_info_pnl_cite" class="panel-collapse collapse "> <div class="panel-body ar_info_pnl"> <ul class="list-group list-group-bordered list-group-noicon" style="display:block !important;max-height:9999px"> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=ris&rc=2351">RIS</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=enw&rc=2351">EndNote</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=ris&rc=2351">Mendeley</a></li> <li class="list-group-item ltr"><a class="tag_a" href="./?_action=export&rf=bibtex&rc=2351">BibTeX</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-apa">APA</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-mla">MLA</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-harvard">HARVARD</a></li> <li class="list-group-item ltr"><a class="tag_a" href="javascript:void(0)" data-toggle="modal" data-target="#cite-vancouver">VANCOUVER</a></li> </ul> </div> </div> </div> <!-- Article Statastic --> <div class="panel panel-default my_panel-default panel-lists"> <div class="panel-heading"> <h3 class="panel-title"><a data-toggle="collapse" data-parent="#accordion" href="#ar_info_pnl_st"><i class="fa fa-bar-chart" aria-hidden="true"></i> Statistics</a></h3> </div> <div id="ar_info_pnl_st" class="panel-collapse collapse in"> <div class="panel-body ar_info_pnl"> <ul class="list-group list-group-bordered list-group-noicon" style="display:block !important;max-height:9999px"> <li class="list-group-item"><a class="tag_a">Article View: <i>5,241</i></a></li> <li class="list-group-item"><a class="tag_a">PDF Download: <i>2,763</i></a></li> </ul> </div> </div> </div> </div> <!-- /LEFT --> </div> </section> <div id="cite-apa" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> <h4 class="modal-title" id="myModalLabel">APA</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>Masehian, E., Eghbal Akhlaghi, V., Akbaripour, H., & Sedighizadeh, D. (2015). An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants. <em>International Journal of Supply and Operations Management</em>, 2(1), 569-594. doi: 10.22034/2015.1.03</p> </div> </div> </div> </div> <div id="cite-mla" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> <h4 class="modal-title" id="myModalLabel">MLA</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>Ellips Masehian; Vahid Eghbal Akhlaghi; Hossein Akbaripour; Davoud Sedighizadeh. "An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants". <em>International Journal of Supply and Operations Management</em>, 2, 1, 2015, 569-594. doi: 10.22034/2015.1.03</p> </div> </div> </div> </div> <div id="cite-harvard" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> <h4 class="modal-title" id="myModalLabel">HARVARD</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>Masehian, E., Eghbal Akhlaghi, V., Akbaripour, H., Sedighizadeh, D. (2015). 'An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants', <em>International Journal of Supply and Operations Management</em>, 2(1), pp. 569-594. doi: 10.22034/2015.1.03</p> </div> </div> </div> </div> <div id="cite-vancouver" class="modal fade" tabindex="-1" role="dialog" aria-labelledby="myModalLabel" aria-hidden="true"> <div class="modal-dialog"> <div class="modal-content"> <!-- Modal Header --> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> <h4 class="modal-title" id="myModalLabel">VANCOUVER</h4> </div> <!-- Modal Body --> <div class="modal-body"> <p>Masehian, E., Eghbal Akhlaghi, V., Akbaripour, H., Sedighizadeh, D. An Expert System for Intelligent Selection of Proper Particle Swarm Optimization Variants. <em>International Journal of Supply and Operations Management</em>, 2015; 2(1): 569-594. doi: 10.22034/2015.1.03</p> </div> </div> </div> </div> </div> </div> <!-- /MAIN CONTENT --> <!-- Subscribe --> <section class="alternate padding-xxs"> </section> <!-- /Subscribe --> <!-- FOOTER --> <div class="container"> <footer id="footer"> <div class="scrollup" id="scroll" href="#"><span></span></div> <div class="row"> <div class="col-md-2"> <!-- Links --> <h4 class="">Explore Journal</h4> <ul class="footer-links list-unstyled"> <li id="fli_home"><a href="./">Home</a></li> <li id="fli_about"><a href="./journal/about">About Journal</a></li> <li id="fli_Edb"><a href="./journal/editorial.board">Editorial Board</a></li> <li id="fli_submit"><a href="./author">Submit Manuscript</a></li> <li id="fli_contactus"><a href="./journal/contact.us">Contact Us</a></li> <li id="fli_glossary"><a href="./journal/glossary">Glossary</a></li> <li id="fli_order_hrdj"><a href="./journal/subscription.form">Hard Copy Subscription</a></li> <li id="fli_sitemap"><a href="./sitemap.xml?usr">Sitemap</a></li> </ul> <!-- /Links --> </div> <div class="col-md-3"> <!-- Latest News --> <h4 class="">Latest News</h4> <ul class="footer-posts list-unstyled"> <li> <a href="./news?newsCode=173">SD of ISC: Sustainable Development of Intelligent Supply Chains based on Trends and Future Directions: Application of Novel Solution Techniques</a> <small class="ltr">2023-03-05</small> </li> </ul> <!-- /Latest News --> </div> <div class="col-md-3"> <!-- Footer Note --> <div><p><a title="Linkedin" href="http://www.linkedin.com/company/ijsom?trk=eml-cp_mktg-btn-welcome-20120607%2F"><img src="images/linkedin.jpg" alt="linkedin" /></a></p></div> <!-- /Footer Note --> </div> <div class="col-md-4"> <!-- Newsletter Form --> <h4 class="">Newsletter Subscription</h4> <p>Subscribe to the journal newsletter and receive the latest news and updates</p> <form class="validate" action="" method="post" data-success="Subscription saved successfully." data-toastr-position="bottom-right"> <input type="hidden" name="_token" value="77b39e40a2cc0ee9fdfcde39084556acb8f3d220019406be"/> <div class="input-group"> <span class="input-group-addon"><i class="fa fa-envelope"></i></span> <input type="email" id="email" name="email" required="required" class="form-control required sbs_email" placeholder="Enter your Email" oninvalid="this.setCustomValidity('Enter a valid email address.')" oninput="this.setCustomValidity('')"> <span class="input-group-btn"> <button class="btn btn-primary mybtn" type="submit">Subscribe</button> </span> </div> </form> <!-- /Newsletter Form --> <!-- Social Icons --> <div class="margin-top-20"> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Facebook"> <i class="fa fa-facebook-square" aria-hidden="true"></i> </a> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Twitter"> <i class="fa fa-twitter-square" aria-hidden="true"></i> </a> <a class="noborder" href="" target="_blank" class="social-icon social-icon-border social-facebook pull-left block" data-toggle="tooltip" data-placement="top" title="Linkedin"> <i class="fa fa-linkedin-square" aria-hidden="true"></i> </a> <a class="noborder" href="./ju.rss" class="social-icon social-icon-border social-rss pull-left block" data-toggle="tooltip" data-placement="top" title="Rss"><i class="fa fa-rss-square" aria-hidden="true"></i></a> </div> </div> </div> <div class="copyright" style="position: relative"> <ul class="nomargin list-inline mobile-block"> <li>© Journal Management System. <span id='sp_crt'>Powered by <a target='_blank' href='https://www.sinaweb.net/'>Sinaweb</a></span></li> </ul> </div> </footer> </div> <!-- /FOOTER --> </div> <!-- /wrapper --> <!-- SCROLL TO TOP --> <a href="#" id="toTop_old"></a> <!-- PRELOADER --> <div id="preloader"> <div class="inner"> <span class="loader"></span> </div> </div><!-- /PRELOADER --> <!-- JAVASCRIPT FILES --> <script type="text/javascript">var plugin_path = './themes/base/front/assets/plugins/';</script> <script type="text/javascript" src="./themes/base/front/assets/js/scripts.js?v=0.02"></script> <!-- user defined scripts--> <!-- Extra Script Scripts --> <script type="text/javascript"> $('ul.nav li.dropdown').hover(function() { if (window.matchMedia('(max-width: 767px)').matches) return; $(this).find('.dropdown-menu').stop(true, true).delay(200).fadeIn(500); }, function() { if (window.matchMedia('(max-width: 767px)').matches) return; $(this).find('.dropdown-menu').stop(true, true).delay(200).fadeOut(500); }); var btn = $('#toTop_old'); $(window).scroll(function() { if ($(window).scrollTop() > 300) { btn.addClass('show'); } else { btn.removeClass('show'); } }); btn.on('click', function(e) { e.preventDefault(); $('html, body').animate({scrollTop:0}, '300'); }); window.cookieconsent.initialise({ "palette": { "popup": { "background": "#222" }, "button": { "background": "#f1d600" } }, "content": { "message": "This website uses cookies to ensure you get the best experience on our website.", "dismiss": "Got it!", "link": "" } }); </script> </body> </html><div id="actn_modal" class="modal fade" tabindex="-1"> <div id="" class="modal-dialog modal-dialog madal-aw"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close pull-right" data-dismiss="modal" aria-hidden="true" href="#lost">×</button> <h5 class="modal-title"></h5> </div> <div class="modal-body"></div> <div class="modal-footer"></div> </div> </div> </div>