CINXE.COM
Search results for: cowpea chlorotic mottle virus
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cowpea chlorotic mottle virus</title> <meta name="description" content="Search results for: cowpea chlorotic mottle virus"> <meta name="keywords" content="cowpea chlorotic mottle virus"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cowpea chlorotic mottle virus" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cowpea chlorotic mottle virus"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 714</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cowpea chlorotic mottle virus</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">714</span> The Optical Properties of CdS and Conjugated Cadmium Sulphide-Cowpea Chlorotic Mottle Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afiqah%20Shafify%20Amran">Afiqah Shafify Amran</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Aisyah%20Shamsudin"> Siti Aisyah Shamsudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Yuziana%20Mohd%20Yusof"> Nurul Yuziana Mohd Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cadmium Sulphide (CdS) from group II-IV quantum dots with good optical properties was successfully synthesized by using the simple colloidal method. Capping them with ligand Polyethylinamine (PEI) alters the surface defect of CdS while, thioglycolic acid (TGA) was added to the reaction as a stabilizer. Due to their cytotoxicity, we decided to conjugate them with the protein cage nanoparticles. In this research, we used capsid of Cowpea Chlorotic Mottle Virus (CCMV) to package the CdS because they have the potential to serve in drug delivery, cell targeting and imaging. Adding Sodium Hydroxide (NaOH) changes the pH of the systems hence the isoelectric charge is adjusted. We have characterized and studied the morphology and the optical properties of CdS and CdS-CCMV by transmitted electron microscopic (TEM), UV-Vis spectroscopy, photoluminescence spectroscopy, UV lamp and Fourier transform infrared spectroscopy (FTIR), respectively. The results obtained suggest that the protein cage nanoparticles do not affect the optical properties of CdS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium%20sulphide" title="cadmium sulphide">cadmium sulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus" title=" cowpea chlorotic mottle virus"> cowpea chlorotic mottle virus</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20cage%20nanoparticles" title=" protein cage nanoparticles"> protein cage nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/62282/the-optical-properties-of-cds-and-conjugated-cadmium-sulphide-cowpea-chlorotic-mottle-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">713</span> Development of Nanoparticulate Based Chimeric Drug Delivery System Using Drug Bioconjugated Plant Virus Capsid on Biocompatible Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indu%20Barwal">Indu Barwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Shloka%20Thakur"> Shloka Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhash%20C.%20Yadav"> Subhash C. Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plant virus capsid protein based nanoparticles are extensively studied for their application in biomedical research for development of nanomedicines and drug delivery systems. We have developed a chimeric drug delivery system by controlled in vitro assembly of separately bioconjugated fluorescent dye (as reporting molecule), folic acid (as receptor binding biomolecule for targeted delivery) and doxorubicin (as anticancer drug) using modified EDC NHS chemistry on heterologously overexpressed (E. coli) capsid proteins of cowpea chlorotic mottle virus (CCMV). This chimeric vehicle was further encapsidated on gold nanoparticles (20nm) coated with 5≠ thiolated DNA probe to neutralize the positive charge of capsid proteins. This facilitates the in vitro assembly of modified capsid subunits on the gold nanoparticles to develop chimeric GNPs encapsidated targeted drug delivery system. The bioconjugation of functionalities, number of functionality on capsid subunits as well as virus like nanoparticles, structural stability and in vitro assembly were confirmed by SDS PAGE, relative absorbance, MALDI TOF, ESI-MS, Circular dichroism, intrinsic tryptophan fluorescence, zeta particle size analyzer and TEM imaging. This vehicle was stable at pH 4.0 to 8.0 suitable for many organelles targeting. This in vitro assembled chimeric plant virus like particles could be suitable for ideal drug delivery vehicles for subcutaneous cancer treatment and could be further modified for other type of cancer treatment by conjugating other functionalities (targeting, drug) on capsids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chimeric%20drug%20delivery%20vehicles" title="chimeric drug delivery vehicles">chimeric drug delivery vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=bioconjugated%20plant" title=" bioconjugated plant"> bioconjugated plant</a>, <a href="https://publications.waset.org/abstracts/search?q=virus" title=" virus"> virus</a>, <a href="https://publications.waset.org/abstracts/search?q=capsid" title=" capsid"> capsid</a> </p> <a href="https://publications.waset.org/abstracts/18298/development-of-nanoparticulate-based-chimeric-drug-delivery-system-using-drug-bioconjugated-plant-virus-capsid-on-biocompatible-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">712</span> Molecular Characterization, Host Plant Resistance and Epidemiology of Bean Common Mosaic Virus Infecting Cowpea (Vigna unguiculata L. Walp)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Manjunatha">N. Manjunatha</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20T.%20Rangswamy"> K. T. Rangswamy</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Nagaraju"> N. Nagaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Prameela"> H. A. Prameela</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rudraswamy"> P. Rudraswamy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Krishnareddy"> M. Krishnareddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The identification of virus in cowpea especially potyviruses is confusing. Even though there are several studies on viruses causing diseases in cowpea, difficult to distinguish based on symptoms and serological detection. The differentiation of potyviruses considering as a constraint, the present study is initiated for molecular characterization, host plant resistance and epidemiology of the BCMV infecting cowpea. The etiological agent causing cowpea mosaic was identified as Bean Common Mosaic Virus (BCMV) on the basis of RT-PCR and electron microscopy. An approximately 750bp PCR product corresponding to coat protein (CP) region of the virus and the presence of long flexuous filamentous particles measuring about 952 nm in size typical to genus potyvirus were observed under electron microscope. The characterized virus isolate genome had 10054 nucleotides, excluding the 3’ terminal poly (A) tail. Comparison of polyprotein of the virus with other potyviruses showed similar genome organization with 9 cleavage sites resulted in 10 functional proteins. The pairwise sequence comparison of individual genes, P1 showed most divergent, but CP gene was less divergent at nucleotide and amino acid level. A phylogenetic tree constructed based on multiple sequence alignments of the polyprotein nucleotide and amino acid sequences of cowpea BCMV and potyviruses showed virus is closely related to BCMV-HB. Whereas, Soybean variant of china (KJ807806) and NL1 isolate (AY112735) showed 93.8 % (5’UTR) and 94.9 % (3’UTR) homology respectively with other BCMV isolates. This virus transmitted to different leguminous plant species and produced systemic symptoms under greenhouse conditions. Out of 100 cowpea genotypes screened, three genotypes viz., IC 8966, V 5 and IC 202806 showed immune reaction in both field and greenhouse conditions. Single marker analysis (SMA) was revealed out of 4 SSR markers linked to BCMV resistance, M135 marker explains 28.2 % of phenotypic variation (R2) and Polymorphic information content (PIC) value of these markers was ranged from 0.23 to 0.37. The correlation and regression analysis showed rainfall, and minimum temperature had significant negative impact and strong relationship with aphid population, whereas weak correlation was observed with disease incidence. Path coefficient analysis revealed most of the weather parameters exerted their indirect contributions to the aphid population and disease incidence except minimum temperature. This study helps to identify specific gaps in knowledge for researchers who may wish to further analyse the science behind complex interactions between vector-virus and host in relation to the environment. The resistant genotypes identified are could be effectively used in resistance breeding programme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cowpea" title="cowpea">cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemiology" title=" epidemiology"> epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=genotypes" title=" genotypes"> genotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=virus" title=" virus "> virus </a> </p> <a href="https://publications.waset.org/abstracts/70727/molecular-characterization-host-plant-resistance-and-epidemiology-of-bean-common-mosaic-virus-infecting-cowpea-vigna-unguiculata-l-walp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">711</span> Loss of Function of Only One of Two CPR5 Paralogs Causes Resistance Against Rice Yellow Mottle Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yugander%20Arra">Yugander Arra</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Auguy"> Florence Auguy</a>, <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Stiebner"> Melissa Stiebner</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Ch%C3%A9ron"> Sophie Chéron</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20M.%20Wudick"> Michael M. Wudick</a>, <a href="https://publications.waset.org/abstracts/search?q=Van%20Schepler-Luu"> Van Schepler-Luu</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Cunnac"> Sébastien Cunnac</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolf%20B.%20Frommer"> Wolf B. Frommer</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurence%20Albar"> Laurence Albar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice yellow mottle virus (RYMV) is one of the most important diseases affecting rice in Africa. The most promising strategy to reduce yield losses is the use of highly resistant varieties. The resistance gene RYMV2 is homolog of the Arabidopsis constitutive expression of pathogenesis related protein-5 (AtCPR5) nucleoporin gene. Resistance alleles are originating from African cultivated rice Oryza glaberrima, rarely cultivated, and are characterized by frameshifts or early stop codons, leading to a non-functional or truncated protein. Rice possesses two paralogs of CPR5 and function of these genes are unclear. Here, we evaluated the role of the two rice candidate nucleoporin paralogs OsCPR5.1 (pathogenesis-related gene 5; RYMV2) and OsCPR5.2 by CRISPR/Cas9 genome editing. Despite striking sequence and structural similarity, only loss-of-function of OsCPR5.1 led to full resistance, while loss-of-function oscpr5.2 mutants remained susceptible. Short N-terminal deletions in OsCPR5.1 also did not lead to resistance. In contrast to Atcpr5 mutants, neither OsCPR5.1 nor OsCPR5.2 knock out mutants showed substantial growth defects. Taken together, the candidate nucleoporin OsCPR5.1, but not its close homolog OsCPR5.2, plays a specific role for the susceptibility to RYMV, possibly by impairing the import of viral RNA or protein into the nucleus. Whereas gene introgression from O. glaberrima to high yielding O. sativa varieties is impaired by strong sterility barriers and the negative impact of linkage drag, genome editing of OsCPR5.1, while maintaining OsCPR5.2 activity, thus provides a promising strategy to generate O. sativa elite lines that are resistant to RYMV. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRISPR%20Cas9" title="CRISPR Cas9">CRISPR Cas9</a>, <a href="https://publications.waset.org/abstracts/search?q=genome%20editing" title=" genome editing"> genome editing</a>, <a href="https://publications.waset.org/abstracts/search?q=knock%20out%20mutant" title=" knock out mutant"> knock out mutant</a>, <a href="https://publications.waset.org/abstracts/search?q=recessive%20resistance" title=" recessive resistance"> recessive resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20yellow%20mottle%20virus" title=" rice yellow mottle virus"> rice yellow mottle virus</a> </p> <a href="https://publications.waset.org/abstracts/155739/loss-of-function-of-only-one-of-two-cpr5-paralogs-causes-resistance-against-rice-yellow-mottle-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">710</span> Salinity Response of Some Cowpea Genotypes in Germination of Periods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meryem%20Aydin">Meryem Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Serdar%20Karadas"> Serdar Karadas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ercan%20Ceyhan"> Ercan Ceyhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research was conducted to determine effects of salt concentrations on emergence of cowpea genotypes. Trials were performed during the year of 2014 on the laboratory of Agricultural Faculty, Selcuk University. Emergency trial was set up according to “Randomized Plots Design” by two factors and four replications with three replications. Samandag, Akkiz-86, Karnikara and Sarigobek cowpea genotypes have been used as trial material in this study. Effects of the five doses of salt concentrations (control, 30 mM, 60 mM, 90 mM and 120 mM) on the ratio of emergency, speed of emergency, average time for emergency, index of sensibility were evaluated. Responses of the cowpea genotypes for salt concentrations were found different. Comparing to the control, all of the investigated characteristics on the cowpea genotypes showed significant reduction by depending on the increasing salt application. According to the effects of salt application, the cowpea genotypes Samandag and Karnikara were the most tolerant in respect to index of sensibility while the Sarigobek genotypes was the most sensitive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cowpea" title="cowpea">cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=Vigna%20sinensis" title=" Vigna sinensis"> Vigna sinensis</a>, <a href="https://publications.waset.org/abstracts/search?q=emergence" title=" emergence"> emergence</a>, <a href="https://publications.waset.org/abstracts/search?q=salt%20tolerant" title=" salt tolerant"> salt tolerant</a> </p> <a href="https://publications.waset.org/abstracts/41888/salinity-response-of-some-cowpea-genotypes-in-germination-of-periods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">709</span> Physicochemical Characterization of Peptides Isolated from Vigna unguiculata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonaal%20Ramsookmohan">Sonaal Ramsookmohan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legume seeds are common foods in human diet and have been identied as a valuable source of human nutritonn Since they are useful sources of protein; legume proteins are used in many food applicatonsn Critcal functonal propertes are recognized to impact the quality of foodn Cowpea (Vigna unguiculata), has been well documented for its immense potental in contributng to food security forming part of daily staple diets in most developing countriesn. In this study, cowpea seeds were used to prepare cowpea four, protein isolates by the salt extractonndialysis method and peptdes by enzymatc hydrolysis using Alcalase and Flavourzymen Functonal analyses such as water absorpton capacity, oil absorpton capacity, emulsifying and foaming propertes were conducted on the cowpea peptdesn The physicochemical propertes determine their potental applicaton in food industries as functonal ingredientsn Cowpea peptdes could increase the value of cowpea by expanding its use, as well as contribute to the legume grain sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title="physicochemical">physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=peptides" title=" peptides"> peptides</a>, <a href="https://publications.waset.org/abstracts/search?q=Cowpea" title=" Cowpea"> Cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=alcalase" title=" alcalase"> alcalase</a>, <a href="https://publications.waset.org/abstracts/search?q=flavourzyme" title=" flavourzyme"> flavourzyme</a> </p> <a href="https://publications.waset.org/abstracts/173925/physicochemical-characterization-of-peptides-isolated-from-vigna-unguiculata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">708</span> Proximate Composition, Colour and Sensory Properties of Akara egbe Prepared from Bambara Groundnut (Vigna subterranea)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samson%20A.%20Oyeyinka">Samson A. Oyeyinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Taiwo%20Tijani"> Taiwo Tijani</a>, <a href="https://publications.waset.org/abstracts/search?q=Adewumi%20T.%20Oyeyinka"> Adewumi T. Oyeyinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mutiat%20A.%20Balogun"> Mutiat A. Balogun</a>, <a href="https://publications.waset.org/abstracts/search?q=Fausat%20L.%20Kolawole"> Fausat L. Kolawole</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20K.%20Joseph"> John K. Joseph</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bambara groundnut is an underutilised leguminous crop that has a similar composition to cowpea. Hence, it could be used in making traditional snack usually produced from cowpea paste. In this study, akara egbe, a traditional snack was prepared from Bambara groundnut flour or paste. Cowpea was included as the reference sample. The proximate composition and functional properties of the flours were studies as well as the proximate composition and sensory properties of the resulting akara egbe. Protein and carbohydrate were the main components of Bambara groundnut and cowpea grains. Ash, fat and fiber contents were low. Bambara groundnut flour had higher protein content (23.71%) than cowpea (19.47%). In terms of functional properties, the oil absorption capacity (0.75 g oil/g flour) of Bambara groundnut flour was significantly (p ≤ 0.05) lower than that of the cowpea (0.92 g oil/g flour), whereas, Cowpea flour absorbed more water (1.59 g water/g flour) than Bambara groundnut flour (1.12 g/g). The packed bulk density (0.92 g/mL) of Bambara groundnut was significantly (p ≤ 0.05) higher than cowpea flour (0.82 g/mL). Akara egbe prepared from Bambara groundnut flour showed significantly (p ≤ 0.05) higher protein content (23.41%) than the sample made from Bambara groundnut paste (19.35%). Akara egbe prepared from cowpea paste had higher ratings in aroma, colour, taste, crunchiness and overall acceptability than those made from cowpea flour or Bambara groundnut paste or flour. Bambara groundnut can produce akara egbe with comparable nutritional and sensory properties to that made from cowpea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bambara%20groundnut" title="Bambara groundnut">Bambara groundnut</a>, <a href="https://publications.waset.org/abstracts/search?q=Cowpea" title=" Cowpea"> Cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=Snack" title=" Snack"> Snack</a>, <a href="https://publications.waset.org/abstracts/search?q=Sensory%20properties" title=" Sensory properties"> Sensory properties</a> </p> <a href="https://publications.waset.org/abstracts/78671/proximate-composition-colour-and-sensory-properties-of-akara-egbe-prepared-from-bambara-groundnut-vigna-subterranea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">707</span> Insect Infestation of Two Varieties of Cowpea Seeds (Vigna Unguiculata L.Walp) Stored at Sokoto Central Market Grainaries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Jatau">A. Jatau</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Bandiya"> H. M. Bandiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20Majeed"> Q. Majeed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Yahaya"> M. A. Yahaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation on the insect infestation of stored seeds of cowpea seeds varieties (Sokoto Loacal and Kanannado) was carried out in Sokoto central market, Sokoto. Two insects' species, Callosobrunchus maculatus and Callosobrunchus chinensis were found on the stored seeds with C. maculutus found to be the most prevalent. The rate of infestation of the cowpea seeds by the two insect species were significantly (P< 0.05) higher in Sokoto local than in Kanannado variety. The result shows that kanannado variety is more resistance to cowpea seeds weevils, hence should be used for long storage in Sokoto. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insect" title="insect">insect</a>, <a href="https://publications.waset.org/abstracts/search?q=infestation" title=" infestation"> infestation</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea%20seeds" title=" cowpea seeds"> cowpea seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=grainaries" title=" grainaries"> grainaries</a> </p> <a href="https://publications.waset.org/abstracts/11661/insect-infestation-of-two-varieties-of-cowpea-seeds-vigna-unguiculata-lwalp-stored-at-sokoto-central-market-grainaries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">706</span> Economic Analysis of Cowpea (Unguiculata spp) Production in Northern Nigeria: A Case Study of Kano Katsina and Jigawa States</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yakubu%20Suleiman">Yakubu Suleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Musa"> S. A. Musa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigeria is the largest cowpea producer in the world, accounting for about 45%, followed by Brazil with about 17%. Cowpea is grown in Kano, Bauchi, Katsina, Borno in the north, Oyo in the west, and to the lesser extent in Enugu in the east. This study was conducted to determine the input–output relationship of Cowpea production in Kano, Katsina, and Jigawa states of Nigeria. The data were collected with the aid of 1000 structured questionnaires that were randomly distributed to Cowpea farmers in the three states mentioned above of the study area. The data collected were analyzed using regression analysis (Cobb–Douglass production function model). The result of the regression analysis revealed the coefficient of multiple determinations, R2, to be 72.5% and the F ration to be 106.20 and was found to be significant (P < 0.01). The regression coefficient of constant is 0.5382 and is significant (P < 0.01). The regression coefficient with respect to labor and seeds were 0.65554 and 0.4336, respectively, and they are highly significant (P < 0.01). The regression coefficient with respect to fertilizer is 0.26341 which is significant (P < 0.05). This implies that a unit increase of any one of the variable inputs used while holding all other variables inputs constants, will significantly increase the total Cowpea output by their corresponding coefficient. This indicated that farmers in the study area are operating in stage II of the production function. The result revealed that Cowpea farmer in Kano, Jigawa and Katsina States realized a profit of N15,997, N34,016 and N19,788 per hectare respectively. It is hereby recommended that more attention should be given to Cowpea production by government and research institutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coefficient" title="coefficient">coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=constant" title=" constant"> constant</a>, <a href="https://publications.waset.org/abstracts/search?q=inputs" title=" inputs"> inputs</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/34212/economic-analysis-of-cowpea-unguiculata-spp-production-in-northern-nigeria-a-case-study-of-kano-katsina-and-jigawa-states" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">705</span> Potential of Intercropping Corn and Cowpea to Ratooned Sugarcane for Food and Forage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maricon%20E.%20Gepolani">Maricon E. Gepolani</a>, <a href="https://publications.waset.org/abstracts/search?q=Edna%20A.%20Aguilar"> Edna A. Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pearl%20B.%20Sanchez"> Pearl B. Sanchez</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrico%20P.%20Supangco"> Enrico P. Supangco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intercropping farming system and biofertilizer application are sustainable agricultural practices that increase farm productivity by improving the yield performance of the components involved in the production system. Thus, this on-farm trial determined the yield and forage quality of corn and cowpea with and without biofertilizer application when intercropped with ratooned sugarcane. Intercropping corn and cowpea without biofertilizer application had no negative effect on the vegetative growth of sugarcane. However, application of biofertilizer on intercrops decreased tiller production at 117 days after stubble shaving (DASS), consequently reducing the estimated tonnage yield of sugarcane. The yield of intercrops and forage production of Cp3 cowpea variety increased when intercropped to ratooned sugarcane. In contrast, intercropping PSB 97-92 corn variety to ratooned sugarcane reduced its forage production, but when biofertilizer was applied to intercropped Cp5 cowpea variety, the forage production increased. Profitability (income equivalent ratio) of intercropping for both corn and cowpea are higher than monocropping and are thus suitable intercrops to ratooned sugarcane. Unaffected tiller count (a determinant of sugarcane tonnage yield) when biofertilizer was not applied to intercrops and a reduced tiller count with biofertilizer application to intercrops implies the need to develop a nutrient management practices specific for intercropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofertilizer" title="biofertilizer">biofertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=corn" title=" corn"> corn</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea" title=" cowpea"> cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping%20system" title=" intercropping system"> intercropping system</a>, <a href="https://publications.waset.org/abstracts/search?q=ratooned%20sugarcane" title=" ratooned sugarcane"> ratooned sugarcane</a> </p> <a href="https://publications.waset.org/abstracts/111804/potential-of-intercropping-corn-and-cowpea-to-ratooned-sugarcane-for-food-and-forage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">704</span> Identification of Superior Cowpea Mutant Genotypes, Their Adaptability, and Stability Under South African Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ntswane">M. Ntswane</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Mbuma"> N. Mbuma</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Labuschagne"> M. Labuschagne</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mofokeng"> A. Mofokeng</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rantso"> M. Rantso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cowpea is an essential legume for the nutrition and health of millions of people in different regions. The production and productivity of the crop are very limited in South Africa due to a lack of adapted and stable genotypes. The improvement of nutritional quality is made possible by manipulating the genes of diverse cowpea genotypes available around the world. Assessing the adaptability and stability of the cowpea mutant genotypes for yield and nutritional quality requires examining them in different environments. The objective of the study was to determine the adaptability and stability of cowpea mutant genotypes under South African conditions and to identify the superior genotypes that combine grain yield components, antioxidants, and nutritional quality. Thirty-one cowpea genotypes were obtained from the Agricultural Research Council grain crops (ARC-GC) and were planted in Glen, Mafikeng, Polokwane, Potchefstroom, Taung, and Vaalharts during the 2021/22 summer cropping season. Significant genotype by location interactions indicated the possibility of genetic improvement of these traits. The genotype plus genotype by environment indicated broad adaptability and stability of mutant genotypes. The principal component analysis identified the association of the genotypes with the traits. Phenotypic correlation analysis showed that Zn and protein content were significant and positively correlated and suggested the possibility of indirect selection of these traits. Results from this study could be used to help plant breeders in making informed decisions and developing nutritionally improved cowpea genotypes with the aim of addressing the challenges of poor nutritional quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cowpea%20seeds" title="cowpea seeds">cowpea seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptability" title=" adaptability"> adaptability</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20elements" title=" mineral elements"> mineral elements</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20content" title=" protein content"> protein content</a> </p> <a href="https://publications.waset.org/abstracts/152227/identification-of-superior-cowpea-mutant-genotypes-their-adaptability-and-stability-under-south-african-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">703</span> Virus Diseases of Edible Seed Squash (Cucurbita pepo L.) in Aksaray Province</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Yesil">Serkan Yesil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cucurbits (the Cucurbitaceae family) include 119 genera and 825 species distributed primarily in tropical and subtropical regions of the world. The major cultivated cucurbit species such as melon (Cucumis melo L.), cucumber (Cucumis sativus L.), squash (Cucurbita pepo L.), and watermelon (Citrullus lanatus (Thunb) Matsum.&Nakai) are important vegetable crops worldwide. Squash is grown for fresh consuming, as well as its seeds are used as a snack in Turkey like some Mediterranean countries and Germany, Hungary, Austria and China. Virus diseases are one of the most destructive diseases on squash which is grown for seeds in Aksaray province. In this study, it was aimed to determine the virus infections in major squash growing areas in Aksaray province. Totally 153 plant samples with common virus symptoms like mosaic, curling, blistering, mottling, distortion, shoestring, stunting and vine decline were collected from squash plants during 2014. In this study, DAS-ELISA method is used for identifying the virus infections on the plant samples. According to the results of the DAS-ELISA 84.96 % of plant samples were infected with Zucchini yellow mosaic Potyvirus (ZYMV), Watermelon mosaic Potyvirus-2 (WMV-2), Cucumber mosaic Cucumovirus (CMV), Papaya ringspot Potyvirus-watermelon strain (PRSV-W) and Squash mosaic Comovirus (SqMV). ZYMV was predominant in the research area with the ratio of 66.01 %. WMV-2 was the second important virus disease in the survey area, it was detected on the samples at the ratio of 57.51 %. Also, mixed infections of those virus infections were detected commonly in squash. Especially, ZYMV+WMV-2 mixed infections were common. Cucumber green mottle mosaic Tobamovirus (CGMMV) was not present in the research area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aksaray" title="Aksaray">Aksaray</a>, <a href="https://publications.waset.org/abstracts/search?q=DAS-ELISA" title=" DAS-ELISA"> DAS-ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20seed%20squash" title=" edible seed squash"> edible seed squash</a>, <a href="https://publications.waset.org/abstracts/search?q=WMV-2" title=" WMV-2"> WMV-2</a>, <a href="https://publications.waset.org/abstracts/search?q=ZYMV" title=" ZYMV"> ZYMV</a> </p> <a href="https://publications.waset.org/abstracts/80138/virus-diseases-of-edible-seed-squash-cucurbita-pepo-l-in-aksaray-province" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">702</span> Evaluation of Different Cowpea Genotypes Using Grain Yield and Canning Quality Traits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdeline%20Pakeng%20Mohlala">Magdeline Pakeng Mohlala</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20L.%20Molatudi"> R. L. Molatudi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Mofokeng"> M. A. Mofokeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cowpea (Vigna unguiculata (L.) Walp) is an important annual leguminous crop in semi-arid and tropics. Most of cowpea grain production in South Africa is mainly used for domestic consumption, as seed planting and little or none gets to be used in industrial processing; thus, there is a need to expand the utilization of cowpea through industrial processing. Agronomic traits contribute to the understanding of the association between yield and its component traits to facilitate effective selection for yield improvement. The aim of this study was to evaluate cowpea genotypes using grain yield and canning quality traits. The field experiment was conducted in two locations in Limpopo Province, namely Syferkuil Agricultural Experimental farm and Ga-Molepo village during 2017/2018 growing season and canning took place at ARC-Grain Crops Potchefstroom. The experiment comprised of 100 cowpea genotypes laid out in a Randomized Complete Block Designs (RCBD). The grain yield, yield components, and canning quality traits were analysed using Genstat software. About 62 genotypes were suitable for canning, 38 were not due to their seed coat texture, and water uptake was less than 80% resulting in too soft (mushy) seeds. Grain yield for RV115, 99k-494-6, ITOOK1263, RV111, RV353 and 53 other genotypes recorded high positive association with number of branches, pods per plant, and number of seeds per pod, unshelled weight and shelled weight for Syferkuil than at Ga-Molepo are therefore recommended for canning quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agronomic%20traits" title="agronomic traits">agronomic traits</a>, <a href="https://publications.waset.org/abstracts/search?q=canning%20quality" title=" canning quality"> canning quality</a>, <a href="https://publications.waset.org/abstracts/search?q=genotypes" title=" genotypes"> genotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/111192/evaluation-of-different-cowpea-genotypes-using-grain-yield-and-canning-quality-traits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">701</span> Bio–efficacy of Selected Plant extracts and Cypermethrin on Growth and Yield of Cowpea (Vigna unguiculata L.).</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akanji%20Kayode%20Ayanwusi.">Akanji Kayode Ayanwusi.</a>, <a href="https://publications.waset.org/abstracts/search?q=Akanji%20Elizabeth%20Nike"> Akanji Elizabeth Nike</a>, <a href="https://publications.waset.org/abstracts/search?q=Bidmos%20Fuad%20Adetunji"> Bidmos Fuad Adetunji</a>, <a href="https://publications.waset.org/abstracts/search?q=Oladapo%20Olufemi%20Stephen"> Oladapo Olufemi Stephen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was conducted in Igboora, southwest Nigeria during the year 2022 planting season to determine the bio-efficacy of plant extracts (Jatropha curcas and Petiveria alliacea) and synthetic (Cypermethrin) insecticides against the insect pest of cowpea (Vigna unguiculata L.) and to determine its effect on the growth and yield of cowpea in the study area. Cowpea is one of the most important food and forage legumes in the semi-arid tropics. It is grown in 45 countries worldwide, including parts of Africa, Asia, Southern Europe, the Southern United States, and Central and South America. Cowpea production is considered too risky an enterprise by many growers because of its numerous pest problems. The treatments for the experiment consisted of two aqueous plant extracts (J.curcas and P. alliacea) at 50 /0 w/v and Cypermethrin 400 EC replicated three times including control in a randomized complete block design. Each plot measured 2.0 m by 2.0 m with 1.0 m inter-spaced per adjacent plot. The results from the study showed that different insect pests attack cowpea at different stages of growth. The insects observed were Bemisa tabaci, Callosobruchus maculatus, Megalurothrips sjostedti, and Maruca vitrata. High yields were obtained from plots treated with P. alliacea and synthetic insecticide (cypermethrin). J. curcas also produced optimum yield but lower than P. alliacea also P. alliacea treated plots had the least damaged pods while the untreated plots had the highest damaged pods, the plants extracts exhibited high insecticidal activities in this study, therefore P. alliacea leaves formulated as an insecticide is recommended for the control of insect pests of cowpea in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title="plant extracts">plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=cypermethrin." title=" cypermethrin."> cypermethrin.</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea" title=" cowpea"> cowpea</a> </p> <a href="https://publications.waset.org/abstracts/170177/bio-efficacy-of-selected-plant-extracts-and-cypermethrin-on-growth-and-yield-of-cowpea-vigna-unguiculata-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">700</span> Productivity of Grain Sorghum-Cowpea Intercropping System: Climate-Smart Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mogale%20T.%20E.">Mogale T. E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayisi%20K.%20K."> Ayisi K. K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Munjonji%20L."> Munjonji L.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kifle%20Y.%20G."> Kifle Y. G.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grain sorghum and cowpea are important staple crops in many areas of South Africa, particularly the Limpopo Province. The two crops are produced under a wide range of unsustainable conventional methods, which reduces productivity in the long run. Climate-smart traditional methods such as intercropping can be adopted to ensure sustainable production of these important two crops in the province. A no-tillage field experiment was laid out in a randomised complete block design (RCBD) with four replications over two seasons in two distinct agro-ecological zones, Syferkuil and Ofcolacoin, the province to assess the productivity of sorghum-cowpea intercropped under two cowpea densities.LCi Ultra compact photosynthesis machine was used to collect photosynthetic rate data biweekly between 11h00 and 13h00 until physiological maturity. Biomass and grain yield of the component crops in binary and sole cultures were determined at harvest maturity from middle rows of 2.7 m2 area. The biomass was oven dried in the laboratory at 65oC till constant weight. To obtain grain yield, harvested sorghum heads and cowpea pods were threshed, cleaned, and weighed. Harvest index (HI) and land equivalent ratio (LER) of the two crops were calculated to assess intercrop productivity relative to sole cultures. Data was analysed using the statistical analysis software system (SAS) 9.4 version, followed by mean separation using the least significant difference method. The photosyntheticrate of sorghum-cowpea intercrop was influenced by cowpea density and sorghum cultivar. Photosynthetic rate under low density was higher compared to high density, but this was dependent on the growing conditions. Dry biomass accumulation, grain yield, and harvest index differed among the sorghum cultivars and cowpea in both binary and sole cultures at the two test locations during the 2018/19 and 2020/21 growing seasons. Cowpea grain and dry biomass yields werein excess of 60% under high density compared to low density in both binary and sole cultures. The results revealed that grain yield accumulation of sorghum cultivars was influenced by the density of the companion cowpea crop as well as the production season. For instant, at Syferkuil, Enforcer and Ns5511 accumulated high yield under low density, whereas, at Ofcolaco, the higher yield was recorded under high density. Generally, under low cowpea density, cultivar Enforcer produced relatively higher grain yield whereas, under higher density, Titan yield was superior. The partial and total LER varied with growing season and the treatments studied. The total LERs exceeded 1.0 at the two locations across seasons, ranging from 1.3 to 1.8. From the results, it can be concluded that resources were used more efficiently in sorghum-cowpea intercrop at both Syferkuil and Ofcolaco. Furthermore, intercropping system improved photosynthetic rate, grain yield, and dry matter accumulation of sorghum and cowpea depending on growing conditions and density of cowpea. Hence, the sorghum-cowpea intercropping system can be adopted as a climate-smart practice for sustainable production in the Limpopo province. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cowpea" title="cowpea">cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=climate-smart" title=" climate-smart"> climate-smart</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20sorghum" title=" grain sorghum"> grain sorghum</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping" title=" intercropping"> intercropping</a> </p> <a href="https://publications.waset.org/abstracts/142362/productivity-of-grain-sorghum-cowpea-intercropping-system-climate-smart-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">699</span> Diffraction-Based Immunosensor for Dengue NS1 Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harriet%20Jane%20R.%20Caleja">Harriet Jane R. Caleja</a>, <a href="https://publications.waset.org/abstracts/search?q=Joel%20I.%20Ballesteros"> Joel I. Ballesteros</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20R.%20Del%20Mundo"> Florian R. Del Mundo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dengue fever belongs to the world’s major cause of death, especially in the tropical areas. In the Philippines, the number of dengue cases during the first half of 2015 amounted to more than 50,000. In 2012, the total number of cases of dengue infection reached 132,046 of which 701 patients died. Dengue Nonstructural 1 virus (Dengue NS1 virus) is a recently discovered biomarker for the early detection of dengue virus. It is present in the serum of the dengue virus infected patients even during the earliest stages prior to the formation of dengue virus antibodies. A biosensor for the dengue detection using NS1 virus was developed for faster and accurate diagnostic tool. Biotinylated anti-dengue virus NS1 was used as the receptor for dengue virus NS1. Using the Diffractive Optics Technology (dotTM) technique, real time binding of the NS1 virus to the biotinylated anti-NS1 antibody is observed. The dot®-Avidin sensor recognizes the biotinylated anti-NS1 and this served as the capture molecule to the analyte, NS1 virus. The increase in the signal of the diffractive intensity signifies the binding of the capture and the analyte. The LOD was found to be 3.87 ng/mL while the LOQ is 12.9 ng/mL. The developed biosensor was also found to be specific for the NS1 virus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=avidin-biotin" title="avidin-biotin">avidin-biotin</a>, <a href="https://publications.waset.org/abstracts/search?q=diffractive%20optics%20technology" title=" diffractive optics technology"> diffractive optics technology</a>, <a href="https://publications.waset.org/abstracts/search?q=immunosensor" title=" immunosensor"> immunosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=NS1" title=" NS1"> NS1</a> </p> <a href="https://publications.waset.org/abstracts/38525/diffraction-based-immunosensor-for-dengue-ns1-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">698</span> Response of Local Cowpea to Intra Row Spacing and Weeding Regimes in Yobe State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Gashua">A. G. Gashua</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20T.%20Bello"> T. T. Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Alhassan"> I. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Gwiokura"> K. K. Gwiokura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weeds are known to interfere seriously with crop growth, thereby affecting the productivity and quality of crops. Crops are also known to compete for natural growth resources if they are not adequately spaced, also affecting the performance of the growing crop. Farmers grow cowpea in mixtures with cereals and this is known to affect its yield. For this reason, a field experiment was conducted at Yobe State College of Agriculture Gujba, Damaturu station in the 2014 and 2015 rainy seasons to determine the appropriate intra row spacing and weeding regime for optimum growth and yield of cowpea (<em>Vigna unguiculata </em>L.) in pure stand in Sudan Savanna ecology. The treatments consist of three levels of spacing within rows (20 cm, 30 cm and 40 cm) and four weeding regimes (none, once at 3 weeks after sowing (WAS), twice at 3 and 6WAS, thrice at 3WAS, 6WAS and 9WAS); arranged in a Randomized Complete Block Design (RCBD) and replicated three times. The variety used was the local cowpea variety (white, early and spreading) commonly grown by farmers. The growth and yield data were collected and subjected to analysis of variance using SAS software, and the significant means were ranked by Students Newman Keul’s test (SNK). The findings of this study revealed better crop performance in 2015 than in 2014 despite poor soil condition. Intra row spacing significantly influenced vegetative growth especially the number of main branches, leaves and canopy spread at 6WAS and 9WAS with the highest values obtained at wider spacing (40 cm). The values obtained in 2015 doubled those obtained in 2014 in most cases. Spacing also significantly affected the number of pods in 2015, seed weight in both years and grain yield in 2014 with the highest values obtained when the crop was spaced at 30-40 cm. Similarly, weeding regime significantly influenced almost all the growth attributes of cowpea with higher values obtained from where cowpea was weeded three times at 3-week intervals, though statistically similar results were obtained even from where cowpea was weeded twice. Weeding also affected the entire yield and yield components in 2015 with the highest values obtained with increase weeding. Based on these findings, it is recommended that spreading cowpea varieties should be grown at 40 cm (or wider spacing) within rows and be weeded twice at three-week intervals for better crop performance in related ecologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intra-row%20spacing" title="intra-row spacing">intra-row spacing</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20cowpea" title=" local cowpea"> local cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=weeding" title=" weeding"> weeding</a> </p> <a href="https://publications.waset.org/abstracts/58675/response-of-local-cowpea-to-intra-row-spacing-and-weeding-regimes-in-yobe-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">697</span> Estimation of the Nutritive Value of Local Forage Cowpea Cultivars in Different Environments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salem%20Alghamdi">Salem Alghamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genotypes collected from farmers at a different region of Saudi Arabia as well as from Egyptian cultivar and a new line from Yamen. Seeds of these genotypes were grown in Dirab Agriculture Research Station, (Middle Region) and Al-Ahsa Palms and Dates Research Center (East region), during summer of 2015. Field experiments were laid out in randomized complete block design on the first week of June with three replications. Each experiment plot contained 6 rows 3m in length. Inter- and intra-row spacing was 60 and 25cm, respectively. Seed yield and its components were estimated in addition to qualitative characters on cowpea plants grown only in Dirab using cowpea descriptor from IPGRI, 1982. Seeds for chemical composite and antioxidant contents were analyzed. Highly significant differences were detected between genotypes in both locations and the combined of two locations for seed yield and its components. Mean data clearly show exceeded determine genotypes in seed yield while indeterminate genotypes had higher biological yield that divided cowpea genotypes to two main groups 1- forage genotypes (KSU-CO98, KSU-CO99, KSU-CO100, and KSU-CO104) that were taller and produce higher branches, biological yield and these are suitable to feed on haulm 2- food genotypes (KSU-CO101, KSU-CO102, and KSU-CO103) that produce higher seed yield with lower haulm and also these genotypes characters by high seed index and light seed color. Highly significant differences were recorded for locations in all studied characters except the number of branches, seed index, and biological yield, however, the interaction of genotype x location was significant only for plant height, the number of pods and seed yield per plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cowpea" title="Cowpea">Cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=genotypes" title=" genotypes"> genotypes</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20contents" title=" antioxidant contents"> antioxidant contents</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/51143/estimation-of-the-nutritive-value-of-local-forage-cowpea-cultivars-in-different-environments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">696</span> Impact of Organic Fertilizer, Inorganic Fertilizer and Soil Conditioner on Growth and Yield of Cowpea (Vigna unguiculata L. Walp) in Sudan Savannah, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Bello%20Sokoto">Mohammed Bello Sokoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Adewumi%20Babatunde%20Adebayo"> Adewumi Babatunde Adebayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20Singh"> Ajit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The field experiment was conducted at the dry land Teaching and Research Farm of Usmanu Danfodiyo University, Sokoto, during the 2023 rainy season to determine the effects of organic, inorganic, soil conditioner and integrated use of soil conditioners (Agzyme) with organic (super gro) and inorganic fertilizers on the growth and yield of cowpea varieties. The research consisted of two cowpea varieties (SAMPEA-20-T and ex-GidanYunfa) and six combinations of organic and inorganic fertilizers and soil conditioners factorially combined and laid out in a Randomized Complete Block Design (RCBD) replicated three times. Data were collected on plant height, leaf area index, number of pods per plant, number of seeds per pod, days to 50% flowering, grain yield, and 100 seed weight. Results indicated that the 100% inorganic fertilizer had a significantly increased growth parameter such as plant height and number of leaves, while combined application of the organic fertilizer and soil conditioner resulted in a significant increase in yield parameters such as number of pods per plant, number of seeds per pod, 100 seed weight and grain yield. The study observed that the use of soil conditioner in combination with fertilizers supports sustainable cowpea production. Application of 50% recommended inorganic + 50% soil conditioner or 50% liquid organic + 50% soil conditioner was better in increasing the number of pods/plant, seeds/pod, 100 seed weight and grain yield. The ex-Gidan Yunfa cowpea variety generally performed better in most parameters measured, such as plant height, days to 50% flowering, number of pods per plant, number of seeds per pod, 100 seed weight and grain yield. Therefore, the combined application of 50% recommended inorganic + 50% soil conditioner or 50% liquid organic + 50% soil conditioner is effective for the sustainable production of cowpeas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated" title="integrated">integrated</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizers" title=" fertilizers"> fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea" title=" cowpea"> cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudan%20Savannah" title=" Sudan Savannah"> Sudan Savannah</a> </p> <a href="https://publications.waset.org/abstracts/186529/impact-of-organic-fertilizer-inorganic-fertilizer-and-soil-conditioner-on-growth-and-yield-of-cowpea-vigna-unguiculata-l-walp-in-sudan-savannah-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">695</span> Genetic Variability Studies of Some Quantitative Traits in Cowpea (Vigna unguiculata L. [Walp.] ) under Water Stress </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Auwal%20Ibrahim%20Magashi">Auwal Ibrahim Magashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Dan%20Larai%20Fagwalawa"> Lawan Dan Larai Fagwalawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Bello%20Ibrahim"> Muhammad Bello Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A research was conducted to study genetic variability of some quantitative traits in varieties of cowpea (Vigna unguiculata L. [Walp]) under water stressed from Zaria, Nigeria. Seeds of seven varieties of cowpea (Sampea 1, Sampea 2, IAR1074, Sampea 7, Sampea 8, Sampea 10 and Sampea 12) collected from Institute for Agricultural Research (IAR), Samaru, Zaria were screened for water stressed tolerance. The seeds were then sown in poly bags containing sandy-loam arranged in Completely Randomized Design with three replications for quantitative traits evaluation. The nutritional composition of the seeds obtained from the water stress tolerant varieties of cowpea were analyzed. The result obtained revealed highly significant difference (P ≤ 0.01) in the effects of water stress on the number of wilted and dead plants at 40 days after sowing (DAS) and significant (P ≤ 0.05) 34 DAS. However, sampea 10 has the highest mean performance in terms of number of wilted plants at 34 DAS while sampea 2 and IAR 1074 has the lowest mean performance. However, sampea 7 was found to have the highest mean performance for the number of wilted plants at 40 DAS and sampea 2 is lowest. The result for quantitative traits study indicated highly significant difference (P ≤ 0.01) in the plant height, number of days to 50% flowering, number of days to maturity, number of pods per plant, pod length, number of seeds per plant and 100 seed weight; and significant (P ≤ 0.05) at seedling height and number of branches per plant. Similarly, IAR1074 was found to have high performance in terms of most of the quantitative traits under study. However, sampea 8 has the highest mean performance at nutritional level. It was therefore concluded that, all the seven cowpea genotypes were water stress tolerant and produced considerable yield that contained significant nutrients. It was recommended that IAR1074 should be grown for yield while sampea 8 should be grown for protein supplements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cowpea" title="cowpea">cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20variability" title=" genetic variability"> genetic variability</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20traits" title=" quantitative traits"> quantitative traits</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a> </p> <a href="https://publications.waset.org/abstracts/88668/genetic-variability-studies-of-some-quantitative-traits-in-cowpea-vigna-unguiculata-l-walp-under-water-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">694</span> Response of Different Mulch Materials on Cowpea (Vigna unguiculata ) Growth and Yield in Tolon District</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adu%20Micheal%20Kwaku">Adu Micheal Kwaku</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamptey%20Shirley"> Lamptey Shirley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cowpea (Vigna unguiculata (L.) Walpis) is a major food grain legume in Ghana and plays a significant role in consumer diets. Drought in rain-fed crop production is known to cause substantial crop yield reduction due to their negative impacts on plant growth, physiology, and reproduction. There are various ways of reducing the effect of drought or addressing the problem of drought stress, including irrigation, breeding, and mulching. Among these three ways of reducing the effect of drought stress, the cheapest and quickest method is mulching. The broad objective of this project is to determine the influence of mulching on the performance of cowpea. The experiment was conducted at Planting for future garden located at Nyankpala Campus of the University for Development Studies (UDS), comprising five treatments (black plastic, rice hull, groundnut hull, dry grass mulch, and control). The treatments were evaluated in a Randomized Complete Block Design (RCBD) with three replications. The result shows that black plastic mulch increased soil moisture by 1, 8, 15, and 24% compared to rice hull, groundnut hull, dry grass, and control, respectively. Increased soil moisture translated into black plastic mulch increasing grain yield by 8, 25, 39, and 46% compared to groundnut hull, rice hull, dry grass and control, respectively. However, black plastic mulch increased the cost of production, resulting in decreased net returns compared to the other treatment. This study recommends the use of rice and groundnut hull as mulching material to improve soil moisture, grain yield, and profit of smallholder cowpea farmers and also because they are almost free and available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mulch" title="mulch">mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20mulch" title=" plastic mulch"> plastic mulch</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea" title=" cowpea"> cowpea</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20response" title=" growth response"> growth response</a> </p> <a href="https://publications.waset.org/abstracts/160313/response-of-different-mulch-materials-on-cowpea-vigna-unguiculata-growth-and-yield-in-tolon-district" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">693</span> A Comparative Study of Virus Detection Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sulaiman%20Al%20amro">Sulaiman Al amro</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alkhalifah"> Ali Alkhalifah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing number of computer viruses and the detection of zero day malware have been the concern for security researchers for a large period of time. Existing antivirus products (AVs) rely on detecting virus signatures which do not provide a full solution to the problems associated with these viruses. The use of logic formulae to model the behaviour of viruses is one of the most encouraging recent developments in virus research, which provides alternatives to classic virus detection methods. In this paper, we proposed a comparative study about different virus detection techniques. This paper provides the advantages and drawbacks of different detection techniques. Different techniques will be used in this paper to provide a discussion about what technique is more effective to detect computer viruses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20viruses" title="computer viruses">computer viruses</a>, <a href="https://publications.waset.org/abstracts/search?q=virus%20detection" title=" virus detection"> virus detection</a>, <a href="https://publications.waset.org/abstracts/search?q=signature-based" title=" signature-based"> signature-based</a>, <a href="https://publications.waset.org/abstracts/search?q=behaviour-based" title=" behaviour-based"> behaviour-based</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic-based" title=" heuristic-based "> heuristic-based </a> </p> <a href="https://publications.waset.org/abstracts/28688/a-comparative-study-of-virus-detection-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">484</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">692</span> Analysis of Weather Variability Impact on Yields of Some Crops in Southwest, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olumuyiwa%20Idowu%20Ojo">Olumuyiwa Idowu Ojo</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatobi%20Peter%20Olowo"> Oluwatobi Peter Olowo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study developed a Geographical Information Systems (GIS) database and mapped inter-annual changes in crop yields of cassava, cowpea, maize, rice, melon and yam as a response to inter-annual rainfall and temperature variability in Southwest, Nigeria. The aim of this project is to study the comparative analysis of the weather variability impact of six crops yield (Rice, melon, yam, cassava, Maize and cowpea) in South Western States of Nigeria (Oyo, Osun, Ekiti, Ondo, Ogun and Lagos) from 1991 – 2007. The data was imported and analysed in the Arch GIS 9 – 3 software environment. The various parameters (temperature, rainfall, crop yields) were interpolated using the kriging method. The results generated through interpolation were clipped to the study area. Geographically weighted regression was chosen from the spatial statistics toolbox in Arch GIS 9.3 software to analyse and predict the relationship between temperature, rainfall and the different crops (Cowpea, maize, rice, melon, yam, and cassava). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20yields" title=" crop yields"> crop yields</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20variability" title=" weather variability"> weather variability</a> </p> <a href="https://publications.waset.org/abstracts/35458/analysis-of-weather-variability-impact-on-yields-of-some-crops-in-southwest-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">691</span> Comparative Efficacy of Benomyl and Three Plant Extracts in the Control of Cowpea Anthracnose Caused by Colletotrichum lindemuthianum Sensu Lato</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Falade">M. J. Falade </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Field experiment was conducted to compare the efficacy of hot water extracts of three plants (Ricinus communis, Jatropha gossypifolia and Datura stramonium) with benomyl in the control of cowpea anthracnose disease. Three concentrations of the extracts (65, 50 and 30%) were used in the study. Result from the experiment shows that all the extracts at the tested concentration reduced the incidence and severity of the disease. D. stramonium at 65% concentration compares favourably with that of benomyl fungicide in reducing incidence and severity of infection. At 65% concentration of D. stramonium, incidence of the disease was 22% on pooled mean basis, and this was not significantly different from that of benomyl (21%). Similarly, the percentage of normal seeds recorded at this same concentration of the extract was 85% and was not significantly different from that of benomyl (86%). In terms of disease severity trace infections were observed on the cowpea plants at this concentration of the extract and that of benomyl. However, at lower concentrations of all the extracts, significant variations were observed on incidence of disease and percentage of normal seeds such that values obtained from use of benomyl were higher than those obtained from the use of the extracts. The study, therefore, shows that extracts of these indigenous plants can be used as a substitute for the benomyl fungicide in the management of anthracnose disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benomyl" title="benomyl">benomyl</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20lindemuthianum" title=" C. lindemuthianum"> C. lindemuthianum</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20incidence" title=" disease incidence"> disease incidence</a>, <a href="https://publications.waset.org/abstracts/search?q=disease%20severity" title=" disease severity"> disease severity</a> </p> <a href="https://publications.waset.org/abstracts/77075/comparative-efficacy-of-benomyl-and-three-plant-extracts-in-the-control-of-cowpea-anthracnose-caused-by-colletotrichum-lindemuthianum-sensu-lato" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">690</span> Adoption of Inorganic Insecticides and Resistant Varieties among Cowpea Producers in Mubi Zone, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabo%20Elizabeth">Sabo Elizabeth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cowpea production is presently mainly done with inorganic insecticides, but the growing environmental problems linked with their use and the rising costs of the chemicals are stimulating all categories of stakeholders towards the adoption of less impacting practices. 611 respondents were interviewed between 2008 and 2009. Respondents are young adults and are fairly educated. Awareness is high about insecticide use, but is low for bio-pesticides and resistant varieties. Adoption of inorganic insecticides is related to age, educational level, and contacts with dealers. Low adoption rate for resistant varieties is associated with inadequate information and poor extension service. To adopt IPM techniques with limited health hazards and compatible with the environment, a properly designed extension program is consequently needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vigna%20unguiculata" title="Vigna unguiculata">Vigna unguiculata</a>, <a href="https://publications.waset.org/abstracts/search?q=IPM" title=" IPM"> IPM</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-pesticides" title=" bio-pesticides"> bio-pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=resistant%20varieties" title=" resistant varieties"> resistant varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=extension" title=" extension"> extension</a> </p> <a href="https://publications.waset.org/abstracts/29754/adoption-of-inorganic-insecticides-and-resistant-varieties-among-cowpea-producers-in-mubi-zone-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">689</span> Zika Virus NS5 Protein Potential Inhibitors: An Enhanced in silico Approach in Drug Discovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pritika%20Ramharack">Pritika Ramharack</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20E.%20S.%20Soliman"> Mahmoud E. S. Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The re-emerging Zika virus is an arthropod-borne virus that has been described to have explosive potential as a worldwide pandemic. The initial transmission of the virus was through a mosquito vector, however, evolving modes of transmission has allowed the spread of the disease over continents. The virus already been linked to irreversible chronic central nervous system (CNS) conditions. The concerns of the scientific and clinical community are the consequences of Zika viral mutations, thus suggesting the urgent need for viral inhibitors. There have been large strides in vaccine development against the virus but there are still no FDA-approved drugs available. Rapid rational drug design and discovery research is fundamental in the production of potent inhibitors against the virus that will not just mask the virus, but destroy it completely. In silico drug design allows for this prompt screening of potential leads, thus decreasing the consumption of precious time and resources. This study demonstrates an optimized and proven screening technique in the discovery of two potential small molecule inhibitors of Zika virus Methyltransferase and RNA-dependent RNA polymerase. This in silico “per-residue energy decomposition pharmacophore” virtual screening approach will be critical in aiding scientists in the discovery of not only effective inhibitors of Zika viral targets, but also a wide range of anti-viral agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NS5%20protein%20inhibitors" title="NS5 protein inhibitors">NS5 protein inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=per-residue%20decomposition" title=" per-residue decomposition"> per-residue decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=pharmacophore%20model" title=" pharmacophore model"> pharmacophore model</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20screening" title=" virtual screening"> virtual screening</a>, <a href="https://publications.waset.org/abstracts/search?q=Zika%20virus" title=" Zika virus"> Zika virus</a> </p> <a href="https://publications.waset.org/abstracts/59456/zika-virus-ns5-protein-potential-inhibitors-an-enhanced-in-silico-approach-in-drug-discovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">688</span> Biopsy Proven Polyoma (BK) Virus in Saudi Kidney Recipients – Prevalence, Clinicopathological Features and Clinico-Pathological Correlations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Hamdan%20Al-Jahdali">Sarah Hamdan Al-Jahdali</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Alsaad"> Khaled Alsaad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Al-Sayyari"> Abdullah Al-Sayyari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: To study the prevalence, clinicopathological features, risk factors and outcome of biopsy proven polyoma (BK) virus infection among Saudi kidney transplant recipients and compare them to negative BK virus group. Methods: We retrospectively reviewed the charts of all the patients with biopsy-proven polyoma (BK) virus infection in King Abdulaziz Medical City in Riyadh between 2005 and 2011. The details of clinical presentation, the indication for kidney biopsy, the laboratory findings at presentation, the natural history of the disease, thepathological findings, the prognosis as well as the response to therapy were all recorded. Results: Kidney biopsy was performed in 37 cases of unexplained graft dysfunction. BK virus was found in 10 (27%). Out of those 10, 3 (30%) ended with graft failure. BK virus occurred in all patients who received ATG induction therapy 100% versus 59.3% in the non BK virus patients (p=0.06). Furthermore, the risk of BK virus was much less in those who received acyclovir as an anti-viral prophylaxis as compared to those who did not receive it (p=0.01). Also, patients with BK virus weighed much less (mean 46.7±20.6 Kgs) than those without BK virus at time of transplantation (mean 64.3±12.1). Graft survival was better among deceased donor kidneys compared to living ones (P=0.016) and with older age (P=0.005). Conclusion: Our findings suggest the involvement of ATG induction therapy, the lack of antiviral prophylaxis therapy and lower weight at transplant as significant risk factors for the development of BK virus infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BKVAN" title="BKVAN">BKVAN</a>, <a href="https://publications.waset.org/abstracts/search?q=BKV" title=" BKV"> BKV</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney%20transpant" title=" kidney transpant"> kidney transpant</a>, <a href="https://publications.waset.org/abstracts/search?q=Saudi%20Arabia" title=" Saudi Arabia"> Saudi Arabia</a> </p> <a href="https://publications.waset.org/abstracts/30336/biopsy-proven-polyoma-bk-virus-in-saudi-kidney-recipients-prevalence-clinicopathological-features-and-clinico-pathological-correlations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">687</span> Household Low Temperature MS2 (ATCC15597-B1) Virus Inactivation Using a Hot Bubble Column Evaporator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Garrido%20Sanchis">Adrian Garrido Sanchis</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Pashley"> Richard Pashley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses when using a hot air bubble column evaporator (HBCE) system in the treatment of household wastewater. In this study, we have combined MS2 virus surface charging properties with thermal inactivation rates, using an improved double layer plaque assay technique, in order to assess the efficiency of the HBCE process for virus removal in water. When bubbling a continuous flow of dry air, at 200°C, only heats the aqueous solution in the bubble column to about 50°C. Viruses are not inactivated by this solution temperature, as confirmed separately from water bath heating experiments. Hence, the efficiency of the HBCE process for virus removal in water appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. This new energy efficient treatment for water reuse applications can reduce the thermal energy required to only 25% (about 113.7 kJ/L) of that required for boiling (about 450 kJ/L). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MS2%20virus%20inactivation" title="MS2 virus inactivation">MS2 virus inactivation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reuse" title=" water reuse"> water reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20bubble%20column%20evaporator" title=" hot bubble column evaporator"> hot bubble column evaporator</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/84622/household-low-temperature-ms2-atcc15597-b1-virus-inactivation-using-a-hot-bubble-column-evaporator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">686</span> Survey of Potato Viral Infection Using Das-Elisa Method in Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maia%20Kukhaleishvili">Maia Kukhaleishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterine%20Bulauri"> Ekaterine Bulauri</a>, <a href="https://publications.waset.org/abstracts/search?q=Iveta%20Megrelishvili"> Iveta Megrelishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Shamatava"> Tamar Shamatava</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamar%20Chipashvili"> Tamar Chipashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant viruses can cause loss of yield and quality in a lot of important crops. Symptoms of pathogens are variable depending on the cultivars and virus strain. Selection of resistant potato varieties would reduce the risk of virus transmission and significant economic impact. Other way to avoid reduced harvest yields is regular potato seed production sampling and testing for viral infection. The aim of this study was to determine the occurrence and distribution of viral diseases according potato cultivars for further selection of virus-free material in Georgia. During the summer 2015- 2016, 5 potato cultivars (Sante, Laura, Jelly, Red Sonia, Anushka) at 5 different farms located in Akhalkalaki were tested for 6 different potato viruses: Potato virus A (PVA), Potato virus M (PVM), Potato virus S (PVS), Potato virus X (PVX), Potato virus Y (PVY) and potato leaf roll virus (PLRV). A serological method, Double Antibody Sandwich-Enzyme linked Immunosorbent Assay (DASELISA) was used at the laboratory to analyze the results. The result showed that PVY (21.4%) and PLRV (19.7%) virus presence in collected samples was relatively high compared to others. Researched potato cultivars except Jelly and Laura were infected by PVY with different concentrations. PLRV was found only in three potato cultivars (Sante, Jelly, Red Sonia) and PVM virus (3.12%) was characterized with low prevalence. PVX, PVA and PVS virus infection was not reported. It would be noted that 7.9% of samples were containing PVY/PLRV mix infection. Based on the results it can be concluded that PVY and PLRV infections are dominant in all research cultivars. Therefore significant yield losses are expected. Systematic, long-term control of potato viral infection, especially seed-potatoes, must be regarded as the most important factor to increase seed productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=virus" title="virus">virus</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=infection" title=" infection"> infection</a>, <a href="https://publications.waset.org/abstracts/search?q=diseases" title=" diseases"> diseases</a> </p> <a href="https://publications.waset.org/abstracts/100087/survey-of-potato-viral-infection-using-das-elisa-method-in-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">685</span> Eradication of Apple mosaic virus from Corylus avellana L. via Cryotherapy and Confirmation of Virus-Free Plants via Reverse Transcriptase Polymerase Chain Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ergun%20Kaya">Ergun Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Apple mosaic virus (ApMV) is an ilarvirus causing harmful damages and product loses in many plant species. Because of xylem and phloem vessels absence, plant meristem tissues used for meristem cultures are virus-free, but sometimes only meristem cultures are not sufficient for virus elimination. Cryotherapy, a new method based on cryogenic techniques, is used for virus elimination. In this technique, 0.1-0.3mm meristems are excised from organized shoot apex of a selected in vitro donor plant and these meristems are frozen in liquid nitrogen (-196 °C) using suitable cryogenic technique. The aim of this work was to develop an efficient procedure for ApMV-free hazelnut via cryotherapy technique and confirmation of virus-free plants using Reverse Transcriptase-PCR technique. 100% virus free plantlets were obtained using droplet-vitrification method involved cold hardening in vitro cultures of hazelnut, 24 hours sucrose preculture of meristems on MS medium supplemented with 0.4M sucrose, and a 90 min PVS2 treatment in droplets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet%20vitrification" title="droplet vitrification">droplet vitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=hazelnut" title=" hazelnut"> hazelnut</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20nitrogen" title=" liquid nitrogen"> liquid nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=PVS2" title=" PVS2"> PVS2</a> </p> <a href="https://publications.waset.org/abstracts/89231/eradication-of-apple-mosaic-virus-from-corylus-avellana-l-via-cryotherapy-and-confirmation-of-virus-free-plants-via-reverse-transcriptase-polymerase-chain-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>