CINXE.COM

Search results for: genetic algorithm (GA)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: genetic algorithm (GA)</title> <meta name="description" content="Search results for: genetic algorithm (GA)"> <meta name="keywords" content="genetic algorithm (GA)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="genetic algorithm (GA)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="genetic algorithm (GA)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4754</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: genetic algorithm (GA)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4754</span> A Review Paper on Data Mining and Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sikander%20Singh%20Cheema">Sikander Singh Cheema</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmeen%20Kaur"> Jasmeen Kaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the concept of data mining is summarized and its one of the important process i.e KDD is summarized. The data mining based on Genetic Algorithm is researched in and ways to achieve the data mining Genetic Algorithm are surveyed. This paper also conducts a formal review on the area of data mining tasks and genetic algorithm in various fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=KDD" title=" KDD"> KDD</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=descriptive%20mining" title=" descriptive mining"> descriptive mining</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20mining" title=" predictive mining"> predictive mining</a> </p> <a href="https://publications.waset.org/abstracts/43637/a-review-paper-on-data-mining-and-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">591</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4753</span> Hardware for Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Ahmadi">Fariborz Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Tati"> Reza Tati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic algorithm is a soft computing method that works on set of solutions. These solutions are called chromosome and the best one is the absolute solution of the problem. The main problem of this algorithm is that after passing through some generations, it may be produced some chromosomes that had been produced in some generations ago that causes reducing the convergence speed. From another respective, most of the genetic algorithms are implemented in software and less works have been done on hardware implementation. Our work implements genetic algorithm in hardware that doesn’t produce chromosome that have been produced in previous generations. In this work, most of genetic operators are implemented without producing iterative chromosomes and genetic diversity is preserved. Genetic diversity causes that not only do not this algorithm converge to local optimum but also reaching to global optimum. Without any doubts, proposed approach is so faster than software implementations. Evaluation results also show the proposed approach is faster than hardware ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardware" title="hardware">hardware</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20science" title=" computer science"> computer science</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering" title=" engineering"> engineering</a> </p> <a href="https://publications.waset.org/abstracts/5598/hardware-for-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4752</span> An Improved Many Worlds Quantum Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Dan">Li Dan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Junsuo"> Zhao Junsuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Wenjun"> Zhang Wenjun </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aiming at the shortcomings of the Quantum Genetic Algorithm such as the multimodal function optimization problems easily falling into the local optimum, and vulnerable to premature convergence due to no closely relationship between individuals, the paper presents an Improved Many Worlds Quantum Genetic Algorithm (IMWQGA). The paper using the concept of Many Worlds; using the derivative way of parallel worlds’ parallel evolution; putting forward the thought which updating the population according to the main body; adopting the transition methods such as parallel transition, backtracking, travel forth. In addition, the algorithm in the paper also proposes the quantum training operator and the combinatorial optimization operator as new operators of quantum genetic algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20genetic%20algorithm" title="quantum genetic algorithm">quantum genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=many%20worlds" title=" many worlds"> many worlds</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20training%20operator" title=" quantum training operator"> quantum training operator</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20optimization%20operator" title=" combinatorial optimization operator"> combinatorial optimization operator</a> </p> <a href="https://publications.waset.org/abstracts/16842/an-improved-many-worlds-quantum-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">743</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4751</span> Using Genetic Algorithms and Rough Set Based Fuzzy K-Modes to Improve Centroid Model Clustering Performance on Categorical Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Srivastav">Rishabh Srivastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Divyam%20%20Sharma"> Divyam Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose an algorithm to cluster categorical data named as ‘Genetic algorithm initialized rough set based fuzzy K-Modes for categorical data’. We propose an amalgamation of the simple K-modes algorithm, the Rough and Fuzzy set based K-modes and the Genetic Algorithm to form a new algorithm,which we hypothesise, will provide better Centroid Model clustering results, than existing standard algorithms. In the proposed algorithm, the initialization and updation of modes is done by the use of genetic algorithms while the membership values are calculated using the rough set and fuzzy logic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=categorical%20data" title="categorical data">categorical data</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=K%20modes%20clustering" title=" K modes clustering"> K modes clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20sets" title=" rough sets"> rough sets</a> </p> <a href="https://publications.waset.org/abstracts/128558/using-genetic-algorithms-and-rough-set-based-fuzzy-k-modes-to-improve-centroid-model-clustering-performance-on-categorical-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4750</span> An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhwan%20Yousif%20Sedik%20Al-Jawadi">Radhwan Yousif Sedik Al-Jawadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromosome%20injection" title="chromosome injection">chromosome injection</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20schema" title=" dynamic schema"> dynamic schema</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20and%20dissimilarity" title=" similarity and dissimilarity"> similarity and dissimilarity</a> </p> <a href="https://publications.waset.org/abstracts/54193/an-optimization-algorithm-based-on-dynamic-schema-with-dissimilarities-and-similarities-of-chromosomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4749</span> Genetic Algorithm for Bi-Objective Hub Covering Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Mirakhorli">Abbas Mirakhorli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hub covering problem is a type of hub location problem that tries to maximize the coverage area with the least amount of installed hubs. There have not been many studies in the literature about multi-objective hubs covering location problems. Thus, in this paper, a bi-objective model for the hub covering problem is presented. The two objectives that are considered in this paper are the minimization of total transportation costs and the maximization of coverage of origin-destination nodes. A genetic algorithm is presented to solve the model when the number of nodes is increased. The genetic algorithm is capable of solving the model when the number of nodes increases by more than 20. Moreover, the genetic algorithm solves the model in less amount of time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facility%20location" title="facility location">facility location</a>, <a href="https://publications.waset.org/abstracts/search?q=hub%20covering" title=" hub covering"> hub covering</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/181401/genetic-algorithm-for-bi-objective-hub-covering-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4748</span> Robotic Arm Control with Neural Networks Using Genetic Algorithm Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arbnor%20Pajaziti">Arbnor Pajaziti</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Cana"> Hasan Cana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the structural genetic algorithm is used to optimize the neural network to control the joint movements of robotic arm. The robotic arm has also been modeled in 3D and simulated in real-time in MATLAB. It is found that Neural Networks provide a simple and effective way to control the robot tasks. Computer simulation examples are given to illustrate the significance of this method. By combining Genetic Algorithm optimization method and Neural Networks for the given robotic arm with 5 D.O.F. the obtained the results shown that the base joint movements overshooting time without controller was about 0.5 seconds, while with Neural Network controller (optimized with Genetic Algorithm) was about 0.2 seconds, and the population size of 150 gave best results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robotic%20arm" title="robotic arm">robotic arm</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/7408/robotic-arm-control-with-neural-networks-using-genetic-algorithm-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4747</span> A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Kaabi">J. Kaabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Harrath"> Y. Harrath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20shop%20scheduling" title="flow shop scheduling">flow shop scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=priority%20rules" title=" priority rules"> priority rules</a> </p> <a href="https://publications.waset.org/abstracts/38002/a-genetic-algorithm-to-schedule-the-flow-shop-problem-under-preventive-maintenance-activities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4746</span> Genetic Algorithm to Construct and Enumerate 4×4 Pan-Magic Squares</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Younis%20R.%20Elhaddad">Younis R. Elhaddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Alshaari"> Mohamed A. Alshaari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since 2700 B.C the problem of constructing magic squares attracts many researchers. Magic squares one of most difficult challenges for mathematicians. In this work, we describe how to construct and enumerate Pan- magic squares using genetic algorithm, using new chromosome encoding technique. The results were promising within reasonable time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=magic%20square" title=" magic square"> magic square</a>, <a href="https://publications.waset.org/abstracts/search?q=pan-magic%20square" title=" pan-magic square"> pan-magic square</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20intelligence" title=" computational intelligence"> computational intelligence</a> </p> <a href="https://publications.waset.org/abstracts/2917/genetic-algorithm-to-construct-and-enumerate-44-pan-magic-squares" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4745</span> Genetic Algorithm Optimization of Microcantilever Based Resonator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjula%20Sutagundar">Manjula Sutagundar</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Sheeparamatti"> B. G. Sheeparamatti</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Jangamshetti"> D. S. Jangamshetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Micro Electro Mechanical Systems (MEMS) resonators have shown the potential of replacing quartz crystal technology for sensing and high frequency signal processing applications because of inherent advantages like small size, high quality factor, low cost, compatibility with integrated circuit chips. This paper presents the optimization and modelling and simulation of the optimized micro cantilever resonator. The objective of the work is to optimize the dimensions of a micro cantilever resonator for a specified range of resonant frequency and specific quality factor. Optimization is carried out using genetic algorithm. The genetic algorithm is implemented using MATLAB. The micro cantilever resonator is modelled in CoventorWare using the optimized dimensions obtained from genetic algorithm. The modeled cantilever is analysed for resonance frequency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS%20resonator" title="MEMS resonator">MEMS resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20and%20simulation" title=" modelling and simulation"> modelling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/2591/genetic-algorithm-optimization-of-microcantilever-based-resonator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4744</span> A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tayfun%20%C3%87ay">Tayfun Çay</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasar%20%C4%B0nceyol"> Yasar İnceyol</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahman%20%C3%96zbeyaz"> Abdurrahman Özbeyaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=land%20consolidation" title="land consolidation">land consolidation</a>, <a href="https://publications.waset.org/abstracts/search?q=landholding" title=" landholding"> landholding</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20reallocation" title=" land reallocation"> land reallocation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/28036/a-preliminary-study-for-design-of-automatic-block-reallocation-algorithm-with-genetic-algorithm-method-in-the-land-consolidation-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4743</span> Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doru%20Anastasiu%20Popescu">Doru Anastasiu Popescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20R%C4%83dulescu"> Dan Rădulescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tag" title="Tag">Tag</a>, <a href="https://publications.waset.org/abstracts/search?q=HTML" title=" HTML"> HTML</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20page" title=" web page"> web page</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=similarity%20value" title=" similarity value"> similarity value</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20tree" title=" binary tree"> binary tree</a> </p> <a href="https://publications.waset.org/abstracts/50460/approximately-similarity-measurement-of-web-sites-using-genetic-algorithms-and-binary-trees" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4742</span> A Genetic Based Algorithm to Generate Random Simple Polygons Using a New Polygon Merge Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Nourollah">Ali Nourollah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Movahedinejad"> Mohsen Movahedinejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a new algorithm to generate random simple polygons from a given set of points in a two dimensional plane is designed. The proposed algorithm uses a genetic algorithm to generate polygons with few vertices. A new merge algorithm is presented which converts any two polygons into a simple polygon. This algorithm at first changes two polygons into a polygonal chain and then the polygonal chain is converted into a simple polygon. The process of converting a polygonal chain into a simple polygon is based on the removal of intersecting edges. The merge algorithm has the time complexity of O ((r+s) *l) where r and s are the size of merging polygons and l shows the number of intersecting edges removed from the polygonal chain. It will be shown that 1 < l < r+s. The experiments results show that the proposed algorithm has the ability to generate a great number of different simple polygons and has better performance in comparison to celebrated algorithms such as space partitioning and steady growth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divide%20and%20conquer" title="Divide and conquer">Divide and conquer</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=merge%20polygons" title=" merge polygons"> merge polygons</a>, <a href="https://publications.waset.org/abstracts/search?q=Random%20simple%20polygon%20generation." title=" Random simple polygon generation. "> Random simple polygon generation. </a> </p> <a href="https://publications.waset.org/abstracts/21488/a-genetic-based-algorithm-to-generate-random-simple-polygons-using-a-new-polygon-merge-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4741</span> A Hybrid ICA-GA Algorithm for Solving Multiobjective Optimization of Production Planning Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Ramzi%20Jasim">Omar Ramzi Jasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Sultan%20Ashour"> Jalal Sultan Ashour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production Planning or Master Production Schedule (MPS) is a key interface between marketing and manufacturing, since it links customer service directly to efficient use of production resources. Mismanagement of the MPS is considered as one of fundamental problems in operation and it can potentially lead to poor customer satisfaction. In this paper, a hybrid evolutionary algorithm (ICA-GA) is presented, which integrates the merits of both imperialist competitive algorithm (ICA) and genetic algorithm (GA) for solving multi-objective MPS problems. In the presented algorithm, the colonies in each empire has be represented a small population and communicate with each other using genetic operators. By testing on 5 production scenarios, the numerical results of ICA-GA algorithm show the efficiency and capabilities of the hybrid algorithm in finding the optimum solutions. The ICA-GA solutions yield the lower inventory level and keep customer satisfaction high and the required overtime is also lower, compared with results of GA and SA in all production scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=master%20production%20scheduling" title="master production scheduling">master production scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=imperialist%20competitive%20algorithm" title=" imperialist competitive algorithm"> imperialist competitive algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm" title=" hybrid algorithm"> hybrid algorithm</a> </p> <a href="https://publications.waset.org/abstracts/46493/a-hybrid-ica-ga-algorithm-for-solving-multiobjective-optimization-of-production-planning-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4740</span> A Novel Algorithm for Production Scheduling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Mohammadi%20Bolban%20Abad">Ali Mohammadi Bolban Abad</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariborz%20Ahmadi"> Fariborz Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimization in manufacture is a method to use limited resources to obtain the best performance and reduce waste. In this paper a new algorithm based on eurygaster life is introduced to obtain a plane in which task order and completion time of resources are defined. Evaluation results show our approach has less make span when the resources are allocated with some products in comparison to genetic algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20computation" title="evolutionary computation">evolutionary computation</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=NP-Hard%20problems" title=" NP-Hard problems"> NP-Hard problems</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20scheduling" title=" production scheduling"> production scheduling</a> </p> <a href="https://publications.waset.org/abstracts/23914/a-novel-algorithm-for-production-scheduling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4739</span> A Multi-Objective Evolutionary Algorithm of Neural Network for Medical Diseases Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Noman%20Qasem">Sultan Noman Qasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an evolutionary algorithm for solving multi-objective optimization problems-based artificial neural network (ANN). The multi-objective evolutionary algorithm used in this study is genetic algorithm while ANN used is radial basis function network (RBFN). The proposed algorithm named memetic elitist Pareto non-dominated sorting genetic algorithm-based RBFNN (MEPGAN). The proposed algorithm is implemented on medical diseases problems. The experimental results indicate that the proposed algorithm is viable, and provides an effective means to design multi-objective RBFNs with good generalization capability and compact network structure. This study shows that MEPGAN generates RBFNs coming with an appropriate balance between accuracy and simplicity, comparing to the other algorithms found in literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function%20network" title="radial basis function network">radial basis function network</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20learning" title=" hybrid learning"> hybrid learning</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/15843/a-multi-objective-evolutionary-algorithm-of-neural-network-for-medical-diseases-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15843.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4738</span> An Improved Genetic Algorithm for Traveling Salesman Problem with Precedence Constraint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20F.%20Ab%20Rashid">M. F. F. Ab Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Mohd%20Rose"> A. N. Mohd Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Z.%20Nik%20Mohamed"> N. M. Z. Nik Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Wan%20Harun"> W. S. Wan Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Che%20Ghani"> S. A. Che Ghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traveling salesman problem with precedence constraint (TSPPC) is one of the most complex problems in combinatorial optimization. The existing algorithms to solve TSPPC cost large computational time to find the optimal solution. The purpose of this paper is to present an efficient genetic algorithm that guarantees optimal solution with less number of generations and iterations time. Unlike the existing algorithm that generates priority factor as chromosome, the proposed algorithm directly generates sequence of solution as chromosome. As a result, the proposed algorithm is capable of generating optimal solution with smaller number of generations and iteration time compare to existing algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title="traveling salesman problem">traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing"> sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=precedence%20constraint" title=" precedence constraint"> precedence constraint</a> </p> <a href="https://publications.waset.org/abstracts/15486/an-improved-genetic-algorithm-for-traveling-salesman-problem-with-precedence-constraint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4737</span> Dual Band Antenna Design with Compact Radiator for 2.5/5.2/5.8 Ghz Wlan Application Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramnath%20Narhete">Ramnath Narhete</a>, <a href="https://publications.waset.org/abstracts/search?q=Saket%20Pandey"> Saket Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Puran%20Gour"> Puran Gour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents of dual-band planner antenna with a compact radiator for 2.4/5.2/5.8 proposed by optimizing its resonant frequency, Bandwidth of operation and radiation frequency using the genetic algorithm. The antenna consists L-shaped and E-shaped radiating element to generate two resonant modes for dual band operation. The above techniques have been successfully used in many applications. Dual band antenna with the compact radiator for 2.4/5.2/5.8 GHz WLAN application design and radiator size only width 8mm and a length is 11.3 mm. The antenna can we used for various application in the field of communication. Genetic algorithm will be used to design the antenna and impedance matching network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-band%20E" title=" dual-band E"> dual-band E</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-band%20L" title=" dual-band L"> dual-band L</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a>, <a href="https://publications.waset.org/abstracts/search?q=compact%20radiator" title=" compact radiator"> compact radiator</a> </p> <a href="https://publications.waset.org/abstracts/28512/dual-band-antenna-design-with-compact-radiator-for-255258-ghz-wlan-application-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">579</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4736</span> Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Alesaadi">Alireza Alesaadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20genetic%20algorithm" title=" adaptive genetic algorithm"> adaptive genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20network" title=" electrical network"> electrical network</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20engineering" title=" communication engineering"> communication engineering</a> </p> <a href="https://publications.waset.org/abstracts/6512/reliability-improvement-of-power-system-networks-using-adaptive-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4735</span> Multi-Subpopulation Genetic Algorithm with Estimation of Distribution Algorithm for Textile Batch Dyeing Scheduling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nhat-To%20Huynh">Nhat-To Huynh</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Fu%20Chien"> Chen-Fu Chien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Textile batch dyeing scheduling problem is complicated which includes batch formation, batch assignment on machines, batch sequencing with sequence-dependent setup time. Most manufacturers schedule their orders manually that are time consuming and inefficient. More power methods are needed to improve the solution. Motivated by the real needs, this study aims to propose approaches in which genetic algorithm is developed with multi-subpopulation and hybridised with estimation of distribution algorithm to solve the constructed problem for minimising the makespan. A heuristic algorithm is designed and embedded into the proposed algorithms to improve the ability to get out of the local optima. In addition, an empirical study is conducted in a textile company in Taiwan to validate the proposed approaches. The results have showed that proposed approaches are more efficient than simulated annealing algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation%20of%20distribution%20algorithm" title="estimation of distribution algorithm">estimation of distribution algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-subpopulation" title=" multi-subpopulation"> multi-subpopulation</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20dyeing" title=" textile dyeing"> textile dyeing</a> </p> <a href="https://publications.waset.org/abstracts/66139/multi-subpopulation-genetic-algorithm-with-estimation-of-distribution-algorithm-for-textile-batch-dyeing-scheduling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4734</span> Seismic Retrofitting of Structures Using Steel Plate Slit Dampers Based on Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Noureldin">Mohamed Noureldin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a genetic algorithm was used to find out the optimum locations of the slit dampers satisfying a target displacement. A seismic retrofit scheme for a building structure was presented using steel plate slit dampers. A cyclic loading test was used to verify the energy dissipation capacity of the slit damper. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. The capacity spectrum method was used to propose a simple damper distribution scheme proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of the genetic algorithm. It was observed that the proposed simple damper distribution pattern was in a good agreement with the optimum distribution obtained from the genetic algorithm. Acknowledgment: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03032809). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slit%20dampers" title="slit dampers">slit dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title=" seismic retrofit"> seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20design" title=" optimum design"> optimum design</a> </p> <a href="https://publications.waset.org/abstracts/86061/seismic-retrofitting-of-structures-using-steel-plate-slit-dampers-based-on-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4733</span> Evolutionary Methods in Cryptography </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wafa%20Slaibi%20Alsharafat">Wafa Slaibi Alsharafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic algorithms (GA) are random algorithms as random numbers that are generated during the operation of the algorithm determine what happens. This means that if GA is applied twice to optimize exactly the same problem it might produces two different answers. In this project, we propose an evolutionary algorithm and Genetic Algorithm (GA) to be implemented in symmetric encryption and decryption. Here, user's message and user secret information (key) which represent plain text to be transferred into cipher text. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GA" title="GA">GA</a>, <a href="https://publications.waset.org/abstracts/search?q=encryption" title=" encryption"> encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=decryption" title=" decryption"> decryption</a>, <a href="https://publications.waset.org/abstracts/search?q=crossover" title=" crossover"> crossover</a> </p> <a href="https://publications.waset.org/abstracts/21507/evolutionary-methods-in-cryptography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4732</span> Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding: Genetic Algorithm Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Nagesh">D. S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Datta"> G. L. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases, design of experiments technique to postulate multiple linear regression equations have been used. Nowadays, Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smaw" title="smaw">smaw</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%2Finverse%20mapping" title=" optimization/inverse mapping"> optimization/inverse mapping</a> </p> <a href="https://publications.waset.org/abstracts/30261/inverse-mapping-of-weld-bead-geometry-in-shielded-metal-arc-welding-genetic-algorithm-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4731</span> Genetic Algorithm Approach for Inverse Mapping of Weld Bead Geometry in Shielded Metal Arc-Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20S.%20Nagesh">D. S. Nagesh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20L.%20Datta"> G. L. Datta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the field of welding, various studies had been made by some of the previous investigators to predict as well as optimize weld bead geometric descriptors. Modeling of weld bead shape is important for predicting the quality of welds. In most of the cases design of experiments technique to postulate multiple linear regression equations have been used. Nowadays Genetic Algorithm (GA) an intelligent information treatment system with the characteristics of treating complex relationships as seen in welding processes used as a tool for inverse mapping/optimization of the process is attempted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SMAW" title="SMAW">SMAW</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%2Finverse%20mapping" title=" optimization/inverse mapping"> optimization/inverse mapping</a> </p> <a href="https://publications.waset.org/abstracts/30262/genetic-algorithm-approach-for-inverse-mapping-of-weld-bead-geometry-in-shielded-metal-arc-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4730</span> Maximum Efficiency of the Photovoltaic Cells Using a Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Latifa%20Sabri">Latifa Sabri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Benzirar"> Mohammed Benzirar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mimoun%20Zazoui"> Mimoun Zazoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The installation of photovoltaic systems is one of future sources to generate electricity without emitting pollutants. The photovoltaic cells used in these systems have demonstrated enormous efficiencies and advantages. Several researches have discussed the maximum efficiency of these technologies, but only a few experiences have succeeded to right weather conditions to get these results. In this paper, two types of cells were selected: crystalline and amorphous silicon. Using the method of genetic algorithm, the results show that for an ambient temperature of 25°C and direct irradiation of 625 W/m², the efficiency of crystalline silicon is 12% and 5% for amorphous silicon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV" title="PV">PV</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20efficiency" title=" maximum efficiency"> maximum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cell" title=" solar cell"> solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/43781/maximum-efficiency-of-the-photovoltaic-cells-using-a-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4729</span> Comparison of Crossover Types to Obtain Optimal Queries Using Adaptive Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wafa%E2%80%99%20Alma%27Aitah">Wafa’ Alma&#039;Aitah</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Almakadmeh"> Khaled Almakadmeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> this study presents an information retrieval system of using genetic algorithm to increase information retrieval efficiency. Using vector space model, information retrieval is based on the similarity measurement between query and documents. Documents with high similarity to query are judge more relevant to the query and should be retrieved first. Using genetic algorithms, each query is represented by a chromosome; these chromosomes are fed into genetic operator process: selection, crossover, and mutation until an optimized query chromosome is obtained for document retrieval. Results show that information retrieval with adaptive crossover probability and single point type crossover and roulette wheel as selection type give the highest recall. The proposed approach is verified using (242) proceedings abstracts collected from the Saudi Arabian national conference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20retrieval" title=" information retrieval"> information retrieval</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20queries" title=" optimal queries"> optimal queries</a>, <a href="https://publications.waset.org/abstracts/search?q=crossover" title=" crossover"> crossover</a> </p> <a href="https://publications.waset.org/abstracts/59109/comparison-of-crossover-types-to-obtain-optimal-queries-using-adaptive-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4728</span> Modeling and Optimization of Micro-Grid Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Rezaei">Mehrdad Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Haghmaram"> Reza Haghmaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Nima%20Amjadi"> Nima Amjadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an operating and cost optimization model for micro-grid (MG). This model takes into account emission costs of NOx, SO2, and CO2, together with the operation and maintenance costs. Wind turbines (WT), photovoltaic (PV) arrays, micro turbines (MT), fuel cells (FC), diesel engine generators (DEG) with different capacities are considered in this model. The aim of the optimization is minimizing operation cost according to constraints, supply demand and safety of the system. The proposed genetic algorithm (GA), with the ability to fine-tune its own settings, is used to optimize the micro-grid operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-grid" title="micro-grid">micro-grid</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=MG" title=" MG"> MG</a> </p> <a href="https://publications.waset.org/abstracts/10259/modeling-and-optimization-of-micro-grid-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4727</span> Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Behmanesh">E. Behmanesh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pannek"> J. Pannek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20logistics%20network" title="integrated logistics network">integrated logistics network</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20path" title=" flexible path"> flexible path</a>, <a href="https://publications.waset.org/abstracts/search?q=memetic%20algorithm" title=" memetic algorithm"> memetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/81478/assessment-of-memetic-and-genetic-algorithm-for-a-flexible-integrated-logistics-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4726</span> Identification of the Parameters of a AC Servomotor Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20G.%20Batista">J. G. Batista</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Sousa"> K. N. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=%C2%ACJ.%20L.%20Nunes"> ¬J. L. Nunes</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20L.%20S.%20Sousa"> R. L. S. Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20P.%20Th%C3%A9"> G. A. P. Thé</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measured and/or expected values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20servomotor" title=" AC servomotor"> AC servomotor</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20magnet%20synchronous%20motor-PMSM" title=" permanent magnet synchronous motor-PMSM"> permanent magnet synchronous motor-PMSM</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20control" title=" vector control"> vector control</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20manipulator" title=" robotic manipulator"> robotic manipulator</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a> </p> <a href="https://publications.waset.org/abstracts/8166/identification-of-the-parameters-of-a-ac-servomotor-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4725</span> Optimization of Steel Moment Frame Structures Using Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Befkin">Mohammad Befkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Momtaz"> Alireza Momtaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural design is the challenging aspect of every project due to limitations in dimensions, functionality of the structure, and more importantly, the allocated budget for construction. This research study aims to investigate the optimized design for three steel moment frame buildings with different number of stories using genetic algorithm code. The number and length of spans, and height of each floor were constant in all three buildings. The design of structures are carried out according to AISC code within the provisions of plastic design with allowable stress values. Genetic code for optimization is produced using MATLAB program, while buildings modeled in Opensees program and connected to the MATLAB code to perform iterations in optimization steps. In the end designs resulted from genetic algorithm code were compared with the analysis of buildings in ETABS program. The results demonstrated that suggested structural elements by the code utilize their full capacity, indicating the desirable efficiency of produced code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20moment%20frame" title=" steel moment frame"> steel moment frame</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20design" title=" structural design"> structural design</a> </p> <a href="https://publications.waset.org/abstracts/166927/optimization-of-steel-moment-frame-structures-using-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=158">158</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=159">159</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm%20%28GA%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10