CINXE.COM

DLMF: Index

<!DOCTYPE html><html lang="en"> <head> <meta http-equiv="content-type" content="text/html; charset=UTF-8"> <title>DLMF: Index</title> <link rel="shortcut icon" href=".././style/DLMF-16.png" type="image/png"> <script type="text/javascript"><!-- var PATH="DLMF:/idx/"; var ROOT=".././"; //--></script> <script type="text/javascript" src=".././style/jquery.js"><!-- non-empty so ie6 will accept it --></script> <script type="text/javascript" src=".././style/jquery.leaveNotice.js"><!-- non-empty so ie6 will accept it --></script> <script type="text/javascript" src=".././style/DLMF.js"><!-- non-empty so ie6 will accept it --></script> <script async="" type="text/javascript" id="_fed_an_ua_tag" src="https://dap.digitalgov.gov/Universal-Federated-Analytics-Min.js?agency=DOC&amp;subagency=NIST&amp;pua=UA-37115410-44&amp;yt=true&amp;exts=ppsx,pps,f90,sch,rtf,wrl,txz,m1v,xlsm,msi,xsd,f,tif,eps,mpg,xml,pl,xlt,c"><!-- non-empty so ie6 will accept it --></script><script async="" src="https://www.googletagmanager.com/gtag/js?id=G-BZB64W4M0L"></script><script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-BZB64W4M0L'); </script> <link rel="stylesheet" type="text/css" href=".././style/LaTeXML.css"> <link rel="stylesheet" type="text/css" href=".././style/DLMF.css"> <link rel="stylesheet" type="text/css" href=".././style/print.css" media="print"> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="top" href=".././" title="DLMF"> <link rel="copyright" href=".././about/notices" title="Copyright"> <link rel="search" href=".././search/search" title="Search"> <link rel="help" class="ltx_help" href=".././help/" title="Help"> <link rel="start" href=".././" title=""> <link rel="prev" href=".././bib/Z" title="Bibliography Z ‣ Bibliography"> <link rel="next" href=".././idx/B" title="Index B ‣ Index"> <link rel="document" href=".././front/foreword" title="Foreword"> <link rel="document" href=".././front/preface" title="Preface"> <link rel="document" href=".././front/introduction" title="Mathematical Introduction"> <link rel="chapter" href=".././1" title="Chapter 1 Algebraic and Analytic Methods"> <link rel="chapter" href=".././2" title="Chapter 2 Asymptotic Approximations"> <link rel="chapter" href=".././3" title="Chapter 3 Numerical Methods"> <link rel="chapter" href=".././4" title="Chapter 4 Elementary Functions"> <link rel="chapter" href=".././5" title="Chapter 5 Gamma Function"> <link rel="chapter" href=".././6" title="Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals"> <link rel="chapter" href=".././7" title="Chapter 7 Error Functions, Dawson’s and Fresnel Integrals"> <link rel="chapter" href=".././8" title="Chapter 8 Incomplete Gamma and Related Functions"> <link rel="chapter" href=".././9" title="Chapter 9 Airy and Related Functions"> <link rel="chapter" href=".././10" title="Chapter 10 Bessel Functions"> <link rel="chapter" href=".././11" title="Chapter 11 Struve and Related Functions"> <link rel="chapter" href=".././12" title="Chapter 12 Parabolic Cylinder Functions"> <link rel="chapter" href=".././13" title="Chapter 13 Confluent Hypergeometric Functions"> <link rel="chapter" href=".././14" title="Chapter 14 Legendre and Related Functions"> <link rel="chapter" href=".././15" title="Chapter 15 Hypergeometric Function"> <link rel="chapter" href=".././16" title="Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function"> <link rel="chapter" href=".././17" title="Chapter 17 𝑞-Hypergeometric and Related Functions"> <link rel="chapter" href=".././18" title="Chapter 18 Orthogonal Polynomials"> <link rel="chapter" href=".././19" title="Chapter 19 Elliptic Integrals"> <link rel="chapter" href=".././20" title="Chapter 20 Theta Functions"> <link rel="chapter" href=".././21" title="Chapter 21 Multidimensional Theta Functions"> <link rel="chapter" href=".././22" title="Chapter 22 Jacobian Elliptic Functions"> <link rel="chapter" href=".././23" title="Chapter 23 Weierstrass Elliptic and Modular Functions"> <link rel="chapter" href=".././24" title="Chapter 24 Bernoulli and Euler Polynomials"> <link rel="chapter" href=".././25" title="Chapter 25 Zeta and Related Functions"> <link rel="chapter" href=".././26" title="Chapter 26 Combinatorial Analysis"> <link rel="chapter" href=".././27" title="Chapter 27 Functions of Number Theory"> <link rel="chapter" href=".././28" title="Chapter 28 Mathieu Functions and Hill’s Equation"> <link rel="chapter" href=".././29" title="Chapter 29 Lamé Functions"> <link rel="chapter" href=".././30" title="Chapter 30 Spheroidal Wave Functions"> <link rel="chapter" href=".././31" title="Chapter 31 Heun Functions"> <link rel="chapter" href=".././32" title="Chapter 32 Painlevé Transcendents"> <link rel="chapter" href=".././33" title="Chapter 33 Coulomb Functions"> <link rel="chapter" href=".././34" title="Chapter 34 3⁢𝑗,6⁢𝑗,9⁢𝑗 Symbols"> <link rel="chapter" href=".././35" title="Chapter 35 Functions of Matrix Argument"> <link rel="chapter" href=".././36" title="Chapter 36 Integrals with Coalescing Saddles"> <link rel="bibliography" href=".././bib/" title="Bibliography"> <link rel="glossary" href=".././not/" title="Notations"> <link rel="document" href=".././lof/" title="List of Figures"> <link rel="document" href=".././lot/" title="List of Tables"> <link rel="document" href=".././software/" title="Software Index"> <link rel="document" href=".././errata/" title="Errata"> <link rel="document" href=".././help/" title="Need Help?"> <link rel="document" href=".././search/" title="Advanced Search"> <link rel="document" href=".././about/" title="About the Project"> <link rel="index" href=".././idx/B" title="Index B ‣ Index"> <link rel="index" href=".././idx/C" title="Index C ‣ Index"> <link rel="index" href=".././idx/D" title="Index D ‣ Index"> <link rel="index" href=".././idx/E" title="Index E ‣ Index"> <link rel="index" href=".././idx/F" title="Index F ‣ Index"> <link rel="index" href=".././idx/G" title="Index G ‣ Index"> <link rel="index" href=".././idx/H" title="Index H ‣ Index"> <link rel="index" href=".././idx/I" title="Index I ‣ Index"> <link rel="index" href=".././idx/J" title="Index J ‣ Index"> <link rel="index" href=".././idx/K" title="Index K ‣ Index"> <link rel="index" href=".././idx/L" title="Index L ‣ Index"> <link rel="index" href=".././idx/M" title="Index M ‣ Index"> <link rel="index" href=".././idx/N" title="Index N ‣ Index"> <link rel="index" href=".././idx/O" title="Index O ‣ Index"> <link rel="index" href=".././idx/P" title="Index P ‣ Index"> <link rel="index" href=".././idx/Q" title="Index Q ‣ Index"> <link rel="index" href=".././idx/R" title="Index R ‣ Index"> <link rel="index" href=".././idx/S" title="Index S ‣ Index"> <link rel="index" href=".././idx/T" title="Index T ‣ Index"> <link rel="index" href=".././idx/U" title="Index U ‣ Index"> <link rel="index" href=".././idx/V" title="Index V ‣ Index"> <link rel="index" href=".././idx/W" title="Index W ‣ Index"> <link rel="index" href=".././idx/Z" title="Index Z ‣ Index"> <meta name="keywords" lang="en" content=" symbols, -difference equation, Abel means, Abel summability, Abelian functions, Abel–Plana formula, Absolutely continuous integration measure, Airy functions, Airy transform, Airy’s equation, Aitken’s , Al-Salam–Chihara polynomials, Anderson localization, Anger function, Anger–Weber functions, Appell functions, Askey polynomials, Askey scheme for orthogonal polynomials, Askey–Gasper inequality, Askey–Wilson class orthogonal polynomials, Askey–Wilson polynomials, Bessel functions, Bleistein’s method, Chebyshev-series expansions, Chester–Friedman–Ursell method, Coulomb functions, Darboux’s method, Dedekind modular function, Dedekind sum, Dirac delta, Euler–Maclaurin formula, Euler’s pentagonal number theorem, Fabry’s transformation, Fourier integrals, Fourier series, Fresnel integrals, Gegenbauer function, Goldbach conjecture, Haar’s method, Hankel functions, Heine’s formula, Hermite, Heun functions and Heun’s equation, Jacobi, Jacobi function, Jacobian elliptic functions, Jacobi’s identities, Kelvin functions, Lagrange’s formula, Laguerre, Lamé functions, Laplace transforms, Laplace’s method, Legendre, Legendre polynomials, Legendre’s elliptic integrals, Liouville transformation, Liouville–Green (or WKBJ) approximations, Liouville–Green (or WKBJ) type approximations, Liouville–Green approximation theorem, Lommel functions, Maclaurin series, Meixner–Pollaczek, Mellin transform, Mellin transform methods, Mellin transforms, Mellin–Barnes integrals, Olver’s, Padé, Painlevé equations, Poincaré type, Ramanujan’s identity, Ramanujan’s tau function, Riccati form, Riemann surface, Rodrigues-type formulas, Stieltjes transforms, Stokes phenomenon, Struve functions, Waring’s problem, Watson’s lemma, Whipple’s formula, Wronskian, Wronskians, absolute error, acceleration of convergence, accumulation point, acoustics, addition theorems, additive number theory, aerodynamics, affine Weyl groups, algebraic Lamé functions, algebraic curves, algebraic equations, algebraic operations, almost Mathiew equation, alternant, amplitude (, analytic continuation, analytic continuation of matrix elements of the resolvent onto higher Riemann sheets, analytic continuation onto higher Riemann sheets, analytic function, analytic properties, and Zhedanov algebra, and corecursive OP’s, angle between, angle between arcs, angular momenta, angular momentum, angular momentum coupling coefficients, angular momentum operator, annulus, antenna research, applications, approximation techniques, approximations, arc length, arc(s), area of triangle, argument principle, arithmetic Fourier transform, arithmetic mean, arithmetic progression, arithmetic-geometric mean, arithmetics, as eigenfunctions of a , associated Anger–Weber function, associated Hermite polynomials, associated Laguerre functions, associated Laguerre polynomials, associated Legendre equation, associated Legendre functions, associated orthogonal polynomials, astrophysics, asymptotic and order symbols, asymptotic approximations, asymptotic approximations and expansions, asymptotic approximations of integrals, asymptotic approximations of sums and sequences, asymptotic expansions, asymptotic scale or sequence, asymptotic solutions of difference equations, asymptotic solutions of differential equations, asymptotic solutions of transcendental equations, at infinity, atomic photo-ionization, atomic physics, atomic spectra, atomic spectroscopy, attractive potentials, auxiliary functions for Fresnel integrals, auxiliary functions for sine and cosine integrals, axially symmetric potential theory, behavior at singularities, by reflection, canonical integrals, cases of failure, characteristic equation, classification of cases, coalescing critical points, coalescing peak and endpoint, coalescing saddle points, coalescing transition points, coincident characteristic values, complex, complex variables, computation, confluent hypergeometric functions, connection formulas, connection formulas across transition points, continued fractions, cross-products, definite, definition, definitions, degree, derivatives, determinant, differential equation, differentiation, dilatation transformations, discriminant function, distributional methods, double asymptotic properties, duality, elliptic integrals, entire functions, envelope functions, error bounds, error functions, error functions and Voigt functions, error-control function, exact rational, expansions in Chebyshev series, expansions in series of, exponent pairs, exponentially-improved, exponentially-improved expansions, extensions, floating-point, for products, for sequences, for series, generalized, generalized hypergeometric functions, generating functions, graphics, graphs, hyperasymptotic expansions, hypergeometric function, hypergeometric representations, identities, improved accuracy via numerical transformations, in a domain, in terms of Airy functions, in terms of Bessel functions of fixed order, in terms of Bessel functions of variable order, in terms of elementary functions, in the complex plane, incomplete, indefinite, initial values, integer degree and order, integer order, integral identities, integral representation, integral representations, integrals, integration, integration by parts, interrelations, interrelations with other orthogonal polynomials, interval, inverse Laplace transform, inverse Laplace transforms, irregular singularities of rank 1, iterated, large argument, large degree, large order, least squares, level-index, limit relations, limit-preserving, logarithms of, mathematical, matrix elements of the resolvent, method of stationary phase, method of steepest descents, minimax polynomials, minimax rational functions, modified Bessel functions, modulus and phase, monic, monotonicity, multidimensional integrals, nonsymmetric, notation, null, numerical use of, numerically satisfactory solutions, of products, of the first kind, of the second kind, order, orthogonality, orthogonality properties, parabolic cylinder functions, parametrization via Jacobian elliptic functions, partial differential equations, partition function, physical, power series, powers of, principal values, principal values (or branches), products, products of Bessel functions, quadratic, quasi-periodicity, random potentials, re-expansion of remainder terms, real variables, recurrence relation, recurrence relations, reduction formulas, relation to , relation to Bessel functions, relation to Gudermannian function, relation to Legendre’s elliptic integrals, relation to confluent hypergeometric functions, relation to elliptic integrals, relation to modulus and phase, relation to symmetric elliptic integrals, relation to umbilics, relation to zeros, relations to hypergeometric functions, relations to other functions, repeated, representation as , representation by squares, resurgence, reversion of, series expansions, ship waves, singular continuous spectra, singularities, small , small , special values, spherical coordinates, spherical trigonometry, splines, standard solutions, substitution of, summation by parts, sums, symmetric elliptic integrals, symmetry, tables, transformations of variables, transition points, turning points, type 2 Pollaczek, ultraspherical, uniform, uniform asymptotic approximations, uniformization, uniqueness, unrestricted, values on the cut, via connection formulas, with a parameter, with respect to degree or order, zeros"> </head> <body class="color_default textfont_default titlefont_default fontsize_default navbar_default"> <div class="ltx_page_navbar"> <div class="ltx_page_navlogo"><a href=".././" title="Digital Library of Mathematical Functions"><span>DLMF</span></a></div> <div class="ltx_page_navitems"> <form method="get" action=".././search/search"> <ul> <li><a href=".././idx/">Index</a></li> <li><a href=".././not/">Notations</a></li> <li><small><input type="text" name="q" value="" size="6" class="ltx_page_navitem_search"><button type="submit">Search</button></small></li> <li><a href=".././help/" class="ltx_help">Help?</a></li> <li><a href=".././help/cite">Citing</a></li> <li><a href=".././help/customize" class="ltx_customize">Customize</a></li> </ul> </form> </div> <div class="ltx_page_navsponsors"> <div><a href=".././about/" class="ltx_page_navabout">About the Project</a></div> </div> </div> <div class="ltx_page_main"> <div class="ltx_page_header"> <a href=".././bib/Z" title="In Bibliography" class="ltx_ref" rel="prev"><span class="ltx_text ltx_ref_title">Bibliography Z</span></a><a href=".././idx/B" title="In Index" class="ltx_ref" rel="next"><span class="ltx_text ltx_ref_title">Index B</span></a> </div> <div class="ltx_page_content"> <section class="ltx_index"> <h1 class="ltx_title ltx_title_index">Index</h1> <nav class="ltx_TOC"> <div class="ltx_toclist ltx_toc_verycompact">♦A♦<a href=".././idx/B" title="Index B ‣ Index" class="ltx_ref">B</a>♦<a href=".././idx/C" title="Index C ‣ Index" class="ltx_ref">C</a>♦<a href=".././idx/D" title="Index D ‣ Index" class="ltx_ref">D</a>♦<a href=".././idx/E" title="Index E ‣ Index" class="ltx_ref">E</a>♦<a href=".././idx/F" title="Index F ‣ Index" class="ltx_ref">F</a>♦<a href=".././idx/G" title="Index G ‣ Index" class="ltx_ref">G</a>♦<a href=".././idx/H" title="Index H ‣ Index" class="ltx_ref">H</a>♦<a href=".././idx/I" title="Index I ‣ Index" class="ltx_ref">I</a>♦<a href=".././idx/J" title="Index J ‣ Index" class="ltx_ref">J</a>♦<a href=".././idx/K" title="Index K ‣ Index" class="ltx_ref">K</a>♦<a href=".././idx/L" title="Index L ‣ Index" class="ltx_ref">L</a>♦<a href=".././idx/M" title="Index M ‣ Index" class="ltx_ref">M</a>♦<a href=".././idx/N" title="Index N ‣ Index" class="ltx_ref">N</a>♦<a href=".././idx/O" title="Index O ‣ Index" class="ltx_ref">O</a>♦<a href=".././idx/P" title="Index P ‣ Index" class="ltx_ref">P</a>♦<a href=".././idx/Q" title="Index Q ‣ Index" class="ltx_ref">Q</a>♦<a href=".././idx/R" title="Index R ‣ Index" class="ltx_ref">R</a>♦<a href=".././idx/S" title="Index S ‣ Index" class="ltx_ref">S</a>♦<a href=".././idx/T" title="Index T ‣ Index" class="ltx_ref">T</a>♦<a href=".././idx/U" title="Index U ‣ Index" class="ltx_ref">U</a>♦<a href=".././idx/V" title="Index V ‣ Index" class="ltx_ref">V</a>♦<a href=".././idx/W" title="Index W ‣ Index" class="ltx_ref">W</a>♦<a href=".././idx/Z" title="Index Z ‣ Index" class="ltx_ref">Z</a>♦</div></nav> <div class="ltx_page_columns"> <div class="ltx_page_column1"> <ul class="ltx_indexlist"> <li id="Abelmeans" class="ltx_indexentry"> <span class="ltx_indexphrase">Abel means</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.15#Px7" title="Abel Means ‣ §1.15(iii) Summability of Fourier Series ‣ §1.15 Summability Methods ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.15(iii)</span></a></span> </li> <li id="Abelsummability" class="ltx_indexentry"> <span class="ltx_indexphrase">Abel summability</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.15#Px1" title="Abel Summability ‣ §1.15(i) Definitions for Series ‣ §1.15 Summability Methods ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.15(i)</span></a>, <a href=".././1.15#Px10" title="Abel Summability ‣ §1.15(iv) Definitions for Integrals ‣ §1.15 Summability Methods ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.15(iv)</span></a></span> </li> <li id="AbelPlanaformula" class="ltx_indexentry"> <span class="ltx_indexphrase">Abel–Plana formula</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.10#i.p2" title="§2.10(i) Euler–Maclaurin Formula ‣ §2.10 Sums and Sequences ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.10(i)</span></a></span> </li> <li id="Abelianfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Abelian functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././21.8" title="§21.8 Abelian Functions ‣ Applications ‣ Chapter 21 Multidimensional Theta Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§21.8</span></a></span> </li> <li id="absoluteerror" class="ltx_indexentry"> <span class="ltx_indexphrase">absolute error</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.1#v.p1" title="§3.1(v) Error Measures ‣ §3.1 Arithmetics and Error Measures ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.1(v)</span></a></span> </li> <li id="Absolutelycontinuousintegrationmeasure" class="ltx_indexentry"> <span class="ltx_indexphrase">Absolutely continuous integration measure</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.4#Px12" title="Absolutely Continuous Stieltjes Measure ‣ §1.4(v) Definite Integrals ‣ §1.4 Calculus of One Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.4(v)</span></a></span> </li> <li id="accelerationofconvergence" class="ltx_indexentry"> <span class="ltx_indexphrase">acceleration of convergence</span> <ul class="ltx_indexlist"> <li id="accelerationofconvergence.definition" class="ltx_indexentry"> <span class="ltx_indexphrase">definition</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.9#i.p3" title="§3.9(i) Sequence Transformations ‣ §3.9 Acceleration of Convergence ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.9(i)</span></a></span> </li> <li id="accelerationofconvergence.forsequences" class="ltx_indexentry"> <span class="ltx_indexphrase">for sequences</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././3.9" title="§3.9 Acceleration of Convergence ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.9</span></a>—<a href=".././3.9#vi" title="§3.9(vi) Applications and Further Transformations ‣ §3.9 Acceleration of Convergence ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.9(vi)</span></a></span></span> </li> <li id="accelerationofconvergence.forseries" class="ltx_indexentry"> <span class="ltx_indexphrase">for series</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././3.9" title="§3.9 Acceleration of Convergence ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.9</span></a>—<a href=".././3.9#vi" title="§3.9(vi) Applications and Further Transformations ‣ §3.9 Acceleration of Convergence ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.9(vi)</span></a></span></span> </li> <li id="accelerationofconvergence.limitpreserving" class="ltx_indexentry"> <span class="ltx_indexphrase">limit-preserving</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.9#i.p2" title="§3.9(i) Sequence Transformations ‣ §3.9 Acceleration of Convergence ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.9(i)</span></a></span> </li> </ul> </li> <li id="accumulationpoint" class="ltx_indexentry"> <span class="ltx_indexphrase">accumulation point</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.9#Px10.p2" title="Point Sets in ℂ ‣ §1.9(ii) Continuity, Point Sets, and Differentiation ‣ §1.9 Calculus of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.9(ii)</span></a></span> </li> <li id="acoustics" class="ltx_indexentry"> <span class="ltx_indexphrase">acoustics</span> <ul class="ltx_indexlist"> <li id="acoustics.canonicalintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">canonical integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././36.14#iv" title="§36.14(iv) Acoustics ‣ §36.14 Other Physical Applications ‣ Applications ‣ Chapter 36 Integrals with Coalescing Saddles" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§36.14(iv)</span></a></span> </li> </ul> </li> <li id="additivenumbertheory" class="ltx_indexentry"> <span class="ltx_indexphrase">additive number theory</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././27#PT3" title="Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Ch.27</span></a>—<a href=".././27.14#vi.p3" title="§27.14(vi) Ramanujan’s Tau Function ‣ §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.14(vi)</span></a></span></span> <ul class="ltx_indexlist"> <li id="additivenumbertheory.Dedekindmodularfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">Dedekind modular function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.14#iv" title="§27.14(iv) Relation to Modular Functions ‣ §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.14(iv)</span></a></span> </li> <li id="additivenumbertheory.Dedekindsum" class="ltx_indexentry"> <span class="ltx_indexphrase">Dedekind sum</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.14#iii.p1" title="§27.14(iii) Asymptotic Formulas ‣ §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.14(iii)</span></a></span> </li> <li id="additivenumbertheory.discriminantfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">discriminant function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.14#vi" title="§27.14(vi) Ramanujan’s Tau Function ‣ §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.14(vi)</span></a></span> </li> <li id="additivenumbertheory.Eulerspentagonalnumbertheorem" class="ltx_indexentry"> <span class="ltx_indexphrase">Euler’s pentagonal number theorem</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.14#ii.p1" title="§27.14(ii) Generating Functions and Recursions ‣ §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.14(ii)</span></a></span> </li> <li id="additivenumbertheory.Goldbachconjecture" class="ltx_indexentry"> <span class="ltx_indexphrase">Goldbach conjecture</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.13#ii" title="§27.13(ii) Goldbach Conjecture ‣ §27.13 Functions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.13(ii)</span></a></span> </li> <li id="additivenumbertheory.Jacobisidentities" class="ltx_indexentry"> <span class="ltx_indexphrase">Jacobi’s identities</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.13#iv" title="§27.13(iv) Representation by Squares ‣ §27.13 Functions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.13(iv)</span></a></span> </li> <li id="additivenumbertheory.notation" class="ltx_indexentry"> <span class="ltx_indexphrase">notation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.1" title="§27.1 Special Notation ‣ Notation ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.1</span></a></span> </li> <li id="additivenumbertheory.partitionfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">partition function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.13#i" title="§27.13(i) Introduction ‣ §27.13 Functions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.13(i)</span></a></span> <ul class="ltx_indexlist"> <li id="additivenumbertheory.partitionfunction.unrestricted" class="ltx_indexentry"> <span class="ltx_indexphrase">unrestricted</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.14#i.p1" title="§27.14(i) Partition Functions ‣ §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.14(i)</span></a></span> </li> </ul> </li> <li id="additivenumbertheory.Ramanujansidentity" class="ltx_indexentry"> <span class="ltx_indexphrase">Ramanujan’s identity</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.14#v" title="§27.14(v) Divisibility Properties ‣ §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.14(v)</span></a></span> </li> <li id="additivenumbertheory.Ramanujanstaufunction" class="ltx_indexentry"> <span class="ltx_indexphrase">Ramanujan’s tau function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.14#vi" title="§27.14(vi) Ramanujan’s Tau Function ‣ §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.14(vi)</span></a></span> </li> <li id="additivenumbertheory.representationbysquares" class="ltx_indexentry"> <span class="ltx_indexphrase">representation by squares</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.13#iv" title="§27.13(iv) Representation by Squares ‣ §27.13 Functions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.13(iv)</span></a></span> </li> <li id="additivenumbertheory.Waringsproblem" class="ltx_indexentry"> <span class="ltx_indexphrase">Waring’s problem</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.13#iii" title="§27.13(iii) Waring’s Problem ‣ §27.13 Functions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.13(iii)</span></a></span> </li> </ul> </li> <li id="aerodynamics" class="ltx_indexentry"> <span class="ltx_indexphrase">aerodynamics</span> <ul class="ltx_indexlist"> <li id="aerodynamics.Struvefunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Struve functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.12" title="§11.12 Physical Applications ‣ Applications ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.12</span></a></span> </li> </ul> </li> <li id="affineWeylgroups" class="ltx_indexentry"> <span class="ltx_indexphrase">affine Weyl groups</span> <ul class="ltx_indexlist"> <li id="affineWeylgroups.Painleveequations" class="ltx_indexentry"> <span class="ltx_indexphrase">Painlevé equations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././32.7#viii" title="§32.7(viii) Affine Weyl Groups ‣ §32.7 Bäcklund Transformations ‣ Properties ‣ Chapter 32 Painlevé Transcendents" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§32.7(viii)</span></a></span> </li> </ul> </li> <li id="Airyfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Airy functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text ltx_font_bold"><a href=".././9.1" title="§9.1 Special Notation ‣ Notation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.1</span></a></span></span> <ul class="ltx_indexlist"> <li id="Airyfunctions.analyticproperties" class="ltx_indexentry"> <span class="ltx_indexphrase">analytic properties</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.2#i.p1" title="§9.2(i) Airy’s Equation ‣ §9.2 Differential Equation ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.2(i)</span></a></span> </li> <li id="Airyfunctions.applications" class="ltx_indexentry"> <span class="ltx_indexphrase">applications</span> <ul class="ltx_indexlist"> <li id="Airyfunctions.applications.mathematical" class="ltx_indexentry"> <span class="ltx_indexphrase">mathematical</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.15" title="§9.15 Mathematical Applications ‣ Applications ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.15</span></a></span> </li> <li id="Airyfunctions.applications.physical" class="ltx_indexentry"> <span class="ltx_indexphrase">physical</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././9.16" title="§9.16 Physical Applications ‣ Applications ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.16</span></a>—<a href=".././9.16#p6" title="§9.16 Physical Applications ‣ Applications ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.16</span></a></span></span> </li> <li id="Airyfunctions.applications.shipwaves" class="ltx_indexentry"> <span class="ltx_indexphrase">ship waves</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././36.13" title="§36.13 Kelvin’s Ship-Wave Pattern ‣ Applications ‣ Chapter 36 Integrals with Coalescing Saddles" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§36.13</span></a></span> </li> </ul> </li> <li id="Airyfunctions.approximations" class="ltx_indexentry"> <span class="ltx_indexphrase">approximations</span> <ul class="ltx_indexlist"> <li id="Airyfunctions.approximations.expansionsinChebyshevseries" class="ltx_indexentry"> <span class="ltx_indexphrase">expansions in Chebyshev series</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.19#ii" title="§9.19(ii) Expansions in Chebyshev Series ‣ §9.19 Approximations ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.19(ii)</span></a></span> </li> <li id="Airyfunctions.approximations.intermsofelementaryfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">in terms of elementary functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.19#i" title="§9.19(i) Approximations in Terms of Elementary Functions ‣ §9.19 Approximations ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.19(i)</span></a></span> </li> <li id="Airyfunctions.approximations.inthecomplexplane" class="ltx_indexentry"> <span class="ltx_indexphrase">in the complex plane</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.19#iii" title="§9.19(iii) Approximations in the Complex Plane ‣ §9.19 Approximations ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.19(iii)</span></a></span> </li> </ul> </li> <li id="Airyfunctions.asymptoticexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic expansions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././9.7" title="§9.7 Asymptotic Expansions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.7</span></a>—<a href=".././9.7#v.p3" title="§9.7(v) Exponentially-Improved Expansions ‣ §9.7 Asymptotic Expansions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.7(v)</span></a></span></span> <ul class="ltx_indexlist"> <li id="Airyfunctions.asymptoticexpansions.errorbounds" class="ltx_indexentry"> <span class="ltx_indexphrase">error bounds</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.7#iii" title="§9.7(iii) Error Bounds for Real Variables ‣ §9.7 Asymptotic Expansions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.7(iii)</span></a>, <a href=".././9.7#iv" title="§9.7(iv) Error Bounds for Complex Variables ‣ §9.7 Asymptotic Expansions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.7(iv)</span></a></span> </li> <li id="Airyfunctions.asymptoticexpansions.exponentiallyimproved" class="ltx_indexentry"> <span class="ltx_indexphrase">exponentially-improved</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.7#v" title="§9.7(v) Exponentially-Improved Expansions ‣ §9.7 Asymptotic Expansions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.7(v)</span></a></span> </li> </ul> </li> <li id="Airyfunctions.computation" class="ltx_indexentry"> <span class="ltx_indexphrase">computation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././9.17" title="§9.17 Methods of Computation ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.17</span></a>—<a href=".././9.17#v" title="§9.17(v) Zeros ‣ §9.17 Methods of Computation ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.17(v)</span></a></span></span> </li> <li id="Airyfunctions.connectionformulas" class="ltx_indexentry"> <span class="ltx_indexphrase">connection formulas</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.2#v" title="§9.2(v) Connection Formulas ‣ §9.2 Differential Equation ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.2(v)</span></a></span> </li> <li id="Airyfunctions.definitions" class="ltx_indexentry"> <span class="ltx_indexphrase">definitions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.2#i" title="§9.2(i) Airy’s Equation ‣ §9.2 Differential Equation ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.2(i)</span></a></span> </li> <li id="Airyfunctions.differentialequation" class="ltx_indexentry"> <span class="ltx_indexphrase">differential equation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.2#i" title="§9.2(i) Airy’s Equation ‣ §9.2 Differential Equation ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.2(i)</span></a></span> <ul class="ltx_indexlist"> <li id="Airyfunctions.differentialequation.forproducts" class="ltx_indexentry"> <span class="ltx_indexphrase">for products</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.11#i" title="§9.11(i) Differential Equation ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.11(i)</span></a></span> </li> <li id="Airyfunctions.differentialequation.initialvalues" class="ltx_indexentry"> <span class="ltx_indexphrase">initial values</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.2#ii" title="§9.2(ii) Initial Values ‣ §9.2 Differential Equation ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.2(ii)</span></a></span> </li> <li id="Airyfunctions.differentialequation.numericallysatisfactorysolutions" class="ltx_indexentry"> <span class="ltx_indexphrase">numerically satisfactory solutions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.2#iii" title="§9.2(iii) Numerically Satisfactory Pairs of Solutions ‣ §9.2 Differential Equation ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.2(iii)</span></a></span> </li> <li id="Airyfunctions.differentialequation.Riccatiform" class="ltx_indexentry"> <span class="ltx_indexphrase">Riccati form</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.2#vi" title="§9.2(vi) Riccati Form of Differential Equation ‣ §9.2 Differential Equation ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.2(vi)</span></a></span> </li> </ul> </li> <li id="Airyfunctions.Diracdelta" class="ltx_indexentry"> <span class="ltx_indexphrase">Dirac delta</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.17#Px4" title="Airy Functions (§9.2) ‣ §1.17(ii) Integral Representations ‣ §1.17 Integral and Series Representations of the Dirac Delta ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.17(ii)</span></a></span> </li> <li id="Airyfunctions.envelopefunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">envelope functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.8#iii.p4" title="§2.8(iii) Case II: Simple Turning Point ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(iii)</span></a></span> </li> <li id="Airyfunctions.generalized" class="ltx_indexentry"> <span class="ltx_indexphrase">generalized</span><span class="ltx_indexrefs">, <span class="ltx_text ltx_font_italic">see </span><a href=".././idx/G#generalizedAiryfunctions" title="Index G ‣ Index" class="ltx_ref">generalized Airy functions</a>.</span> </li> <li id="Airyfunctions.graphics" class="ltx_indexentry"> <span class="ltx_indexphrase">graphics</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././9.3" title="§9.3 Graphics ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.3</span></a>—<a href=".././9.3#ii" title="§9.3(ii) Complex Variable ‣ §9.3 Graphics ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.3(ii)</span></a></span></span> </li> <li id="Airyfunctions.incomplete" class="ltx_indexentry"> <span class="ltx_indexphrase">incomplete</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.14" title="§9.14 Incomplete Airy Functions ‣ Related Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.14</span></a></span> </li> <li id="Airyfunctions.integralidentities" class="ltx_indexentry"> <span class="ltx_indexphrase">integral identities</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././36.9" title="§36.9 Integral Identities ‣ Properties ‣ Chapter 36 Integrals with Coalescing Saddles" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§36.9</span></a></span> </li> <li id="Airyfunctions.integralrepresentations" class="ltx_indexentry"> <span class="ltx_indexphrase">integral representations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.11#iii" title="§9.11(iii) Integral Representations ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.11(iii)</span></a>, <a href=".././9.5#i" title="§9.5(i) Real Variable ‣ §9.5 Integral Representations ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.5(i)</span></a>, <a href=".././9.5#ii" title="§9.5(ii) Complex Variable ‣ §9.5 Integral Representations ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.5(ii)</span></a></span> </li> <li id="Airyfunctions.integrals" class="ltx_indexentry"> <span class="ltx_indexphrase">integrals</span> <ul class="ltx_indexlist"> <li id="Airyfunctions.integrals.approximations" class="ltx_indexentry"> <span class="ltx_indexphrase">approximations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.19#i.p1" title="§9.19(i) Approximations in Terms of Elementary Functions ‣ §9.19 Approximations ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.19(i)</span></a>, <a href=".././9.19#I1.i1" title="In §9.19(i) Approximations in Terms of Elementary Functions ‣ §9.19 Approximations ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">1st item</span></a>, <a href=".././9.19#I2.i1" title="In §9.19(ii) Expansions in Chebyshev Series ‣ §9.19 Approximations ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">1st item</span></a>, <a href=".././9.19#I2.i2" title="In §9.19(ii) Expansions in Chebyshev Series ‣ §9.19 Approximations ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">2nd item</span></a>, <a href=".././9.19#ii.p1" title="§9.19(ii) Expansions in Chebyshev Series ‣ §9.19 Approximations ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.19(ii)</span></a>, <a href=".././9.19#iii.p1" title="§9.19(iii) Approximations in the Complex Plane ‣ §9.19 Approximations ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.19(iii)</span></a></span> </li> <li id="Airyfunctions.integrals.asymptoticapproximations" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic approximations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.10#ii" title="§9.10(ii) Asymptotic Approximations ‣ §9.10 Integrals ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.10(ii)</span></a></span> </li> <li id="Airyfunctions.integrals.definite" class="ltx_indexentry"> <span class="ltx_indexphrase">definite</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.10#iv" title="§9.10(iv) Definite Integrals ‣ §9.10 Integrals ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.10(iv)</span></a></span> </li> <li id="Airyfunctions.integrals.indefinite" class="ltx_indexentry"> <span class="ltx_indexphrase">indefinite</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.10#i" title="§9.10(i) Indefinite Integrals ‣ §9.10 Integrals ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.10(i)</span></a></span> </li> <li id="Airyfunctions.integrals.ofproducts" class="ltx_indexentry"> <span class="ltx_indexphrase">of products</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.11#iv" title="§9.11(iv) Indefinite Integrals ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.11(iv)</span></a>, <a href=".././9.11#v" title="§9.11(v) Definite Integrals ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.11(v)</span></a></span> </li> <li id="Airyfunctions.integrals.repeated" class="ltx_indexentry"> <span class="ltx_indexphrase">repeated</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.10#viii" title="§9.10(viii) Repeated Integrals ‣ §9.10 Integrals ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.10(viii)</span></a></span> </li> <li id="Airyfunctions.integrals.tables" class="ltx_indexentry"> <span class="ltx_indexphrase">tables</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.18#v" title="§9.18(v) Integrals ‣ §9.18 Tables ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.18(v)</span></a></span> </li> </ul> </li> <li id="Airyfunctions.Laplacetransforms" class="ltx_indexentry"> <span class="ltx_indexphrase">Laplace transforms</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.10#v" title="§9.10(v) Laplace Transforms ‣ §9.10 Integrals ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.10(v)</span></a></span> </li> <li id="Airyfunctions.Maclaurinseries" class="ltx_indexentry"> <span class="ltx_indexphrase">Maclaurin series</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.4" title="§9.4 Maclaurin Series ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.4</span></a></span> </li> <li id="Airyfunctions.Mellintransform" class="ltx_indexentry"> <span class="ltx_indexphrase">Mellin transform</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.10#vi" title="§9.10(vi) Mellin Transform ‣ §9.10 Integrals ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.10(vi)</span></a></span> </li> <li id="Airyfunctions.modulusandphase" class="ltx_indexentry"> <span class="ltx_indexphrase">modulus and phase</span> <ul class="ltx_indexlist"> <li id="Airyfunctions.modulusandphase.asymptoticexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic expansions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././9.8#iv" title="§9.8(iv) Asymptotic Expansions ‣ §9.8 Modulus and Phase ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.8(iv)</span></a>—<a href=".././9.8#iv.p3" title="§9.8(iv) Asymptotic Expansions ‣ §9.8 Modulus and Phase ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.8(iv)</span></a></span></span> </li> <li id="Airyfunctions.modulusandphase.definitions" class="ltx_indexentry"> <span class="ltx_indexphrase">definitions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.8#i" title="§9.8(i) Definitions ‣ §9.8 Modulus and Phase ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.8(i)</span></a></span> </li> <li id="Airyfunctions.modulusandphase.graphs" class="ltx_indexentry"> <span class="ltx_indexphrase">graphs</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.3#i" title="§9.3(i) Real Variable ‣ §9.3 Graphics ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.3(i)</span></a></span> </li> <li id="Airyfunctions.modulusandphase.identities" class="ltx_indexentry"> <span class="ltx_indexphrase">identities</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.8#ii" title="§9.8(ii) Identities ‣ §9.8 Modulus and Phase ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.8(ii)</span></a></span> </li> <li id="Airyfunctions.modulusandphase.monotonicity" class="ltx_indexentry"> <span class="ltx_indexphrase">monotonicity</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.8#iii" title="§9.8(iii) Monotonicity ‣ §9.8 Modulus and Phase ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.8(iii)</span></a></span> </li> <li id="Airyfunctions.modulusandphase.relationtoBesselfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">relation to Bessel functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.8#i" title="§9.8(i) Definitions ‣ §9.8 Modulus and Phase ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.8(i)</span></a></span> </li> <li id="Airyfunctions.modulusandphase.relationtozeros" class="ltx_indexentry"> <span class="ltx_indexphrase">relation to zeros</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.9#ii" title="§9.9(ii) Relation to Modulus and Phase ‣ §9.9 Zeros ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.9(ii)</span></a></span> </li> </ul> </li> <li id="Airyfunctions.notation" class="ltx_indexentry"> <span class="ltx_indexphrase">notation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.1" title="§9.1 Special Notation ‣ Notation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.1</span></a></span> </li> <li id="Airyfunctions.products" class="ltx_indexentry"> <span class="ltx_indexphrase">products</span> <ul class="ltx_indexlist"> <li id="Airyfunctions.products.differentialequation" class="ltx_indexentry"> <span class="ltx_indexphrase">differential equation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.11#i" title="§9.11(i) Differential Equation ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.11(i)</span></a></span> </li> <li id="Airyfunctions.products.integralrepresentations" class="ltx_indexentry"> <span class="ltx_indexphrase">integral representations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.11#iii" title="§9.11(iii) Integral Representations ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.11(iii)</span></a></span> </li> <li id="Airyfunctions.products.integrals" class="ltx_indexentry"> <span class="ltx_indexphrase">integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.11#iv" title="§9.11(iv) Indefinite Integrals ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.11(iv)</span></a>, <a href=".././9.11#v" title="§9.11(v) Definite Integrals ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.11(v)</span></a></span> </li> <li id="Airyfunctions.products.Wronskian" class="ltx_indexentry"> <span class="ltx_indexphrase">Wronskian</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.11#ii" title="§9.11(ii) Wronskian ‣ §9.11 Products ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.11(ii)</span></a></span> </li> </ul> </li> <li id="Airyfunctions.relationtoumbilics" class="ltx_indexentry"> <span class="ltx_indexphrase">relation to umbilics</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././36.2#ii.p4" title="§36.2(ii) Special Cases ‣ §36.2 Catastrophes and Canonical Integrals ‣ Properties ‣ Chapter 36 Integrals with Coalescing Saddles" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§36.2(ii)</span></a></span> </li> <li id="Airyfunctions.relationstootherfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">relations to other functions</span> <ul class="ltx_indexlist"> <li id="Airyfunctions.relationstootherfunctions.Besselfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Bessel functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././9.6#i" title="§9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions ‣ §9.6 Relations to Other Functions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.6(i)</span></a>—<a href=".././9.6#ii.p1" title="§9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions ‣ §9.6 Relations to Other Functions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.6(ii)</span></a></span></span> </li> <li id="Airyfunctions.relationstootherfunctions.confluenthypergeometricfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">confluent hypergeometric functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././13.18#iii" title="§13.18(iii) Modified Bessel Functions ‣ §13.18 Relations to Other Functions ‣ Whittaker Functions ‣ Chapter 13 Confluent Hypergeometric Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§13.18(iii)</span></a>, <a href=".././13.6#iii" title="§13.6(iii) Modified Bessel Functions ‣ §13.6 Relations to Other Functions ‣ Kummer Functions ‣ Chapter 13 Confluent Hypergeometric Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§13.6(iii)</span></a>, <a href=".././9.6#iii" title="§9.6(iii) Airy Functions as Confluent Hypergeometric Functions ‣ §9.6 Relations to Other Functions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.6(iii)</span></a></span> </li> <li id="Airyfunctions.relationstootherfunctions.Hankelfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Hankel functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././9.6#i" title="§9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions ‣ §9.6 Relations to Other Functions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.6(i)</span></a>—<a href=".././9.6#ii.p1" title="§9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions ‣ §9.6 Relations to Other Functions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.6(ii)</span></a></span></span> </li> <li id="Airyfunctions.relationstootherfunctions.modifiedBesselfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">modified Bessel functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././9.6#i" title="§9.6(i) Airy Functions as Bessel Functions, Hankel Functions, and Modified Bessel Functions ‣ §9.6 Relations to Other Functions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.6(i)</span></a>—<a href=".././9.6#ii.p1" title="§9.6(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions as Airy Functions ‣ §9.6 Relations to Other Functions ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.6(ii)</span></a></span></span> </li> </ul> </li> <li id="Airyfunctions.Stieltjestransforms" class="ltx_indexentry"> <span class="ltx_indexphrase">Stieltjes transforms</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.10#vii" title="§9.10(vii) Stieltjes Transforms ‣ §9.10 Integrals ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.10(vii)</span></a></span> </li> <li id="Airyfunctions.tables" class="ltx_indexentry"> <span class="ltx_indexphrase">tables</span> <ul class="ltx_indexlist"> <li id="Airyfunctions.tables.complexvariables" class="ltx_indexentry"> <span class="ltx_indexphrase">complex variables</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.18#iii" title="§9.18(iii) Complex Variables ‣ §9.18 Tables ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.18(iii)</span></a></span> </li> <li id="Airyfunctions.tables.integrals" class="ltx_indexentry"> <span class="ltx_indexphrase">integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.18#v" title="§9.18(v) Integrals ‣ §9.18 Tables ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.18(v)</span></a></span> </li> <li id="Airyfunctions.tables.realvariables" class="ltx_indexentry"> <span class="ltx_indexphrase">real variables</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.18#ii" title="§9.18(ii) Real Variables ‣ §9.18 Tables ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.18(ii)</span></a></span> </li> <li id="Airyfunctions.tables.zeros" class="ltx_indexentry"> <span class="ltx_indexphrase">zeros</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.18#iv" title="§9.18(iv) Zeros ‣ §9.18 Tables ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.18(iv)</span></a>, <span class="ltx_text"><span class="ltx_text ltx_font_rangeend"><a href=".././9.9#v" title="§9.9(v) Tables ‣ §9.9 Zeros ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.9(v)</span></a></span>—<span class="ltx_text ltx_font_rangestart"><a href=".././9.9#v" title="§9.9(v) Tables ‣ §9.9 Zeros ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.9(v)</span></a></span></span></span> </li> </ul> </li> <li id="Airyfunctions.Wronskians" class="ltx_indexentry"> <span class="ltx_indexphrase">Wronskians</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.2#iv" title="§9.2(iv) Wronskians ‣ §9.2 Differential Equation ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.2(iv)</span></a></span> </li> <li id="Airyfunctions.zeros" class="ltx_indexentry"> <span class="ltx_indexphrase">zeros</span> <ul class="ltx_indexlist"> <li id="Airyfunctions.zeros.asymptoticexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic expansions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.9#iv" title="§9.9(iv) Asymptotic Expansions ‣ §9.9 Zeros ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.9(iv)</span></a></span> </li> <li id="Airyfunctions.zeros.computation" class="ltx_indexentry"> <span class="ltx_indexphrase">computation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.3#Px8" title="Example ‣ §3.3(v) Inverse Interpolation ‣ §3.3 Interpolation ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.3(v)</span></a>, <a href=".././9.17#v" title="§9.17(v) Zeros ‣ §9.17 Methods of Computation ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.17(v)</span></a></span> </li> <li id="Airyfunctions.zeros.differentiation" class="ltx_indexentry"> <span class="ltx_indexphrase">differentiation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.9#iii" title="§9.9(iii) Derivatives With Respect to 𝑘 ‣ §9.9 Zeros ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.9(iii)</span></a></span> </li> <li id="Airyfunctions.zeros.relationtomodulusandphase" class="ltx_indexentry"> <span class="ltx_indexphrase">relation to modulus and phase</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.9#ii" title="§9.9(ii) Relation to Modulus and Phase ‣ §9.9 Zeros ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.9(ii)</span></a></span> </li> <li id="Airyfunctions.zeros.tables" class="ltx_indexentry"> <span class="ltx_indexphrase">tables</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.18#iv" title="§9.18(iv) Zeros ‣ §9.18 Tables ‣ Computation ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.18(iv)</span></a>, <span class="ltx_text"><span class="ltx_text ltx_font_rangeend"><a href=".././9.9#v" title="§9.9(v) Tables ‣ §9.9 Zeros ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.9(v)</span></a></span>—<span class="ltx_text ltx_font_rangestart"><a href=".././9.9#v" title="§9.9(v) Tables ‣ §9.9 Zeros ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.9(v)</span></a></span></span></span> </li> </ul> </li> </ul> </li> <li id="Airytransform" class="ltx_indexentry"> <span class="ltx_indexphrase">Airy transform</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././9.10#ix" title="§9.10(ix) Compendia ‣ §9.10 Integrals ‣ Airy Functions ‣ Chapter 9 Airy and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§9.10(ix)</span></a></span> </li> <li id="Airysequation" class="ltx_indexentry"> <span class="ltx_indexphrase">Airy’s equation</span><span class="ltx_indexrefs">, <span class="ltx_text ltx_font_italic">see </span><a href="#Airyfunctions.differentialequation" title="Index" class="ltx_ref">Airy functions, differential equation</a>.</span> </li> <li id="AitkensDelta2process" class="ltx_indexentry"> <span class="ltx_indexphrase">Aitken’s <math class="ltx_Math" altimg="m1.png" altimg-height="21px" altimg-valign="-2px" altimg-width="31px" alttext="\Delta^{2}" display="inline"><msup><mi mathvariant="normal">Δ</mi><mn>2</mn></msup></math>-process</span> <ul class="ltx_indexlist"> <li id="AitkensDelta2process.forsequences" class="ltx_indexentry"> <span class="ltx_indexphrase">for sequences</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.9#iii" title="§3.9(iii) Aitken’s Δ²-Process ‣ §3.9 Acceleration of Convergence ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.9(iii)</span></a></span> </li> <li id="AitkensDelta2process.iterated" class="ltx_indexentry"> <span class="ltx_indexphrase">iterated</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.9#iii.p2" title="§3.9(iii) Aitken’s Δ²-Process ‣ §3.9 Acceleration of Convergence ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.9(iii)</span></a></span> </li> </ul> </li> <li id="AlSalamChiharapolynomials" class="ltx_indexentry"> <span class="ltx_indexphrase">Al-Salam–Chihara polynomials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.28#iv" title="§18.28(iv) 𝑞⁻¹-Al-Salam–Chihara Polynomials ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(iv)</span></a></span> </li> <li id="algebraiccurves" class="ltx_indexentry"> <span class="ltx_indexphrase">algebraic curves</span> <ul class="ltx_indexlist"> <li id="algebraiccurves.Riemannsurface" class="ltx_indexentry"> <span class="ltx_indexphrase">Riemann surface</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././21.10#I1.i2.p1" title="In §21.10(ii) Riemann Theta Functions Associated with a Riemann Surface ‣ §21.10 Methods of Computation ‣ Computation ‣ Chapter 21 Multidimensional Theta Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">2nd item</span></a>, <a href=".././21.7#i" title="§21.7(i) Connection of Riemann Theta Functions to Riemann Surfaces ‣ §21.7 Riemann Surfaces ‣ Applications ‣ Chapter 21 Multidimensional Theta Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§21.7(i)</span></a>, <a href=".././21.7#iii" title="§21.7(iii) Frobenius’ Identity ‣ §21.7 Riemann Surfaces ‣ Applications ‣ Chapter 21 Multidimensional Theta Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§21.7(iii)</span></a></span> </li> </ul> </li> <li id="algebraicequations" class="ltx_indexentry"> <span class="ltx_indexphrase">algebraic equations</span> <ul class="ltx_indexlist"> <li id="algebraicequations.parametrizationviaJacobianellipticfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">parametrization via Jacobian elliptic functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.18#i" title="§22.18(i) Lengths and Parametrization of Plane Curves ‣ §22.18 Mathematical Applications ‣ Applications ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.18(i)</span></a></span> <ul class="ltx_indexlist"> <li id="algebraicequations.parametrizationviaJacobianellipticfunctions.sphericaltrigonometry" class="ltx_indexentry"> <span class="ltx_indexphrase">spherical trigonometry</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.18#iii.p1" title="§22.18(iii) Uniformization and Other Parametrizations ‣ §22.18 Mathematical Applications ‣ Applications ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.18(iii)</span></a></span> </li> <li id="algebraicequations.parametrizationviaJacobianellipticfunctions.uniformization" class="ltx_indexentry"> <span class="ltx_indexphrase">uniformization</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.18#iii" title="§22.18(iii) Uniformization and Other Parametrizations ‣ §22.18 Mathematical Applications ‣ Applications ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.18(iii)</span></a></span> </li> </ul> </li> </ul> </li> <li id="algebraicLamefunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">algebraic Lamé functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././29.17#ii" title="§29.17(ii) Algebraic Lamé Functions ‣ §29.17 Other Solutions ‣ Lamé Polynomials ‣ Chapter 29 Lamé Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§29.17(ii)</span></a></span> </li> <li id="almostMathiewequation" class="ltx_indexentry"> <span class="ltx_indexphrase">almost Mathiew equation</span> <ul class="ltx_indexlist"> <li id="almostMathiewequation.singularcontinuousspectra" class="ltx_indexentry"> <span class="ltx_indexphrase">singular continuous spectra</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.18#vii.p1" title="§1.18(vii) Continuous Spectra: More General Cases ‣ §1.18 Linear Second Order Differential Operators and Eigenfunction Expansions ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.18(vii)</span></a></span> </li> </ul> </li> <li id="alternant" class="ltx_indexentry"> <span class="ltx_indexphrase">alternant</span> <ul class="ltx_indexlist"> <li id="alternant.determinant" class="ltx_indexentry"> <span class="ltx_indexphrase">determinant</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.3#ii" title="§1.3(ii) Special Determinants ‣ §1.3 Determinants, Linear Operators, and Spectral Expansions ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.3(ii)</span></a></span> </li> </ul> </li> <li id="amplitudeamfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">amplitude (<math class="ltx_Math" altimg="m6.png" altimg-height="13px" altimg-valign="-2px" altimg-width="32px" alttext="\operatorname{am}" display="inline"><mi href=".././22.16#E1" title="Jacobi’s amplitude function">am</mi></math>) function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text ltx_font_bold"><a href=".././22.16#i" title="§22.16(i) Jacobi’s Amplitude (am) Function ‣ §22.16 Related Functions ‣ Properties ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.16(i)</span></a></span></span> <ul class="ltx_indexlist"> <li id="amplitudeamfunction.applications" class="ltx_indexentry"> <span class="ltx_indexphrase">applications</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.19#i" title="§22.19(i) Classical Dynamics: The Pendulum ‣ §22.19 Physical Applications ‣ Applications ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.19(i)</span></a></span> </li> <li id="amplitudeamfunction.approximations" class="ltx_indexentry"> <span class="ltx_indexphrase">approximations</span> <ul class="ltx_indexlist"> <li id="amplitudeamfunction.approximations.smallkk" class="ltx_indexentry"> <span class="ltx_indexphrase">small <math class="ltx_Math" altimg="m7.png" altimg-height="24px" altimg-valign="-6px" altimg-width="42px" alttext="k,k^{\prime}" display="inline"><mrow><mi href=".././22.1#t1.r3" title="modulus">k</mi><mo>,</mo><msup><mi href=".././22.1#t1.r4" title="complementary modulus">k</mi><mo href=".././22.1#t1.r4" title="complementary modulus">′</mo></msup></mrow></math></span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.16#Px6" title="Approximations for Small 𝑘, 𝑘' ‣ §22.16(i) Jacobi’s Amplitude (am) Function ‣ §22.16 Related Functions ‣ Properties ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.16(i)</span></a></span> </li> <li id="amplitudeamfunction.approximations.smallx" class="ltx_indexentry"> <span class="ltx_indexphrase">small <math class="ltx_Math" altimg="m9.png" altimg-height="13px" altimg-valign="-2px" altimg-width="16px" alttext="x" display="inline"><mi href=".././22.1#t1.r1" title="real">x</mi></math></span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.16#Px5" title="Approximation for Small 𝑥 ‣ §22.16(i) Jacobi’s Amplitude (am) Function ‣ §22.16 Related Functions ‣ Properties ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.16(i)</span></a></span> </li> </ul> </li> <li id="amplitudeamfunction.computation" class="ltx_indexentry"> <span class="ltx_indexphrase">computation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.20#vi" title="§22.20(vi) Related Functions ‣ §22.20 Methods of Computation ‣ Computation ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.20(vi)</span></a></span> </li> <li id="amplitudeamfunction.definition" class="ltx_indexentry"> <span class="ltx_indexphrase">definition</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.16#Px1" title="Definition ‣ §22.16(i) Jacobi’s Amplitude (am) Function ‣ §22.16 Related Functions ‣ Properties ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.16(i)</span></a></span> </li> <li id="amplitudeamfunction.Fourierseries" class="ltx_indexentry"> <span class="ltx_indexphrase">Fourier series</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.16#Px7" title="Fourier Series ‣ §22.16(i) Jacobi’s Amplitude (am) Function ‣ §22.16 Related Functions ‣ Properties ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.16(i)</span></a></span> </li> <li id="amplitudeamfunction.integralrepresentation" class="ltx_indexentry"> <span class="ltx_indexphrase">integral representation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.16#Px3" title="Integral Representation ‣ §22.16(i) Jacobi’s Amplitude (am) Function ‣ §22.16 Related Functions ‣ Properties ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.16(i)</span></a></span> </li> <li id="amplitudeamfunction.quasiperiodicity" class="ltx_indexentry"> <span class="ltx_indexphrase">quasi-periodicity</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.16#Px2" title="Quasi-Periodicity ‣ §22.16(i) Jacobi’s Amplitude (am) Function ‣ §22.16 Related Functions ‣ Properties ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.16(i)</span></a></span> </li> <li id="amplitudeamfunction.relationtoellipticintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">relation to elliptic integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.16#Px8" title="Relation to Elliptic Integrals ‣ §22.16(i) Jacobi’s Amplitude (am) Function ‣ §22.16 Related Functions ‣ Properties ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.16(i)</span></a></span> </li> <li id="amplitudeamfunction.relationtoGudermannianfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">relation to Gudermannian function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.16#Px6.p1" title="Approximations for Small 𝑘, 𝑘' ‣ §22.16(i) Jacobi’s Amplitude (am) Function ‣ §22.16 Related Functions ‣ Properties ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.16(i)</span></a></span> </li> <li id="amplitudeamfunction.specialvalues" class="ltx_indexentry"> <span class="ltx_indexphrase">special values</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.16#Px4" title="Special Values ‣ §22.16(i) Jacobi’s Amplitude (am) Function ‣ §22.16 Related Functions ‣ Properties ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.16(i)</span></a></span> </li> <li id="amplitudeamfunction.tables" class="ltx_indexentry"> <span class="ltx_indexphrase">tables</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.21" title="§22.21 Tables ‣ Computation ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.21</span></a></span> </li> </ul> </li> <li id="analyticcontinuation" class="ltx_indexentry"> <span class="ltx_indexphrase">analytic continuation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.10#ii" title="§1.10(ii) Analytic Continuation ‣ §1.10 Functions of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.10(ii)</span></a></span> <ul class="ltx_indexlist"> <li id="analyticcontinuation.byreflection" class="ltx_indexentry"> <span class="ltx_indexphrase">by reflection</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.10#Px3" title="Schwarz Reflection Principle ‣ §1.10(ii) Analytic Continuation ‣ §1.10 Functions of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.10(ii)</span></a></span> </li> </ul> </li> <li id="analyticcontinuationofmatrixelementsoftheresolventontohigherRiemannsheets" class="ltx_indexentry"> <span class="ltx_indexphrase">analytic continuation of matrix elements of the resolvent onto higher Riemann sheets</span> <ul class="ltx_indexlist"> <li id="analyticcontinuationofmatrixelementsoftheresolventontohigherRiemannsheets.dilatationtransformations" class="ltx_indexentry"> <span class="ltx_indexphrase">dilatation transformations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.18#viii.p2" title="§1.18(viii) Mixed Spectra and Eigenfunction Expansions ‣ §1.18 Linear Second Order Differential Operators and Eigenfunction Expansions ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.18(viii)</span></a></span> </li> </ul> </li> <li id="analyticcontinuationontohigherRiemannsheets" class="ltx_indexentry"> <span class="ltx_indexphrase">analytic continuation onto higher Riemann sheets</span> <ul class="ltx_indexlist"> <li id="analyticcontinuationontohigherRiemannsheets.matrixelementsoftheresolvent" class="ltx_indexentry"> <span class="ltx_indexphrase">matrix elements of the resolvent</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.18#viii.p2" title="§1.18(viii) Mixed Spectra and Eigenfunction Expansions ‣ §1.18 Linear Second Order Differential Operators and Eigenfunction Expansions ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.18(viii)</span></a></span> </li> </ul> </li> <li id="analyticfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">analytic function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.9#Px13" title="Analyticity ‣ §1.9(ii) Continuity, Point Sets, and Differentiation ‣ §1.9 Calculus of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.9(ii)</span></a></span> <ul class="ltx_indexlist"> <li id="analyticfunction.atinfinity" class="ltx_indexentry"> <span class="ltx_indexphrase">at infinity</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.9#iv.p1" title="§1.9(iv) Conformal Mapping ‣ §1.9 Calculus of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.9(iv)</span></a></span> </li> <li id="analyticfunction.inadomain" class="ltx_indexentry"> <span class="ltx_indexphrase">in a domain</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.9#Px13.p2" title="Analyticity ‣ §1.9(ii) Continuity, Point Sets, and Differentiation ‣ §1.9 Calculus of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.9(ii)</span></a></span> </li> <li id="analyticfunction.singularities" class="ltx_indexentry"> <span class="ltx_indexphrase">singularities</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.10#iii.p2" title="§1.10(iii) Laurent Series ‣ §1.10 Functions of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.10(iii)</span></a></span> </li> <li id="analyticfunction.zeros" class="ltx_indexentry"> <span class="ltx_indexphrase">zeros</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.10#Px2.p1" title="Zeros ‣ §1.10(i) Taylor’s Theorem for Complex Variables ‣ §1.10 Functions of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.10(i)</span></a></span> </li> </ul> </li> <li id="Andersonlocalization" class="ltx_indexentry"> <span class="ltx_indexphrase">Anderson localization</span> <ul class="ltx_indexlist"> <li id="Andersonlocalization.randompotentials" class="ltx_indexentry"> <span class="ltx_indexphrase">random potentials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.18#vii.p1" title="§1.18(vii) Continuous Spectra: More General Cases ‣ §1.18 Linear Second Order Differential Operators and Eigenfunction Expansions ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.18(vii)</span></a></span> </li> </ul> </li> <li id="Angerfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">Anger function</span><span class="ltx_indexrefs">, <span class="ltx_text ltx_font_italic">see </span><a href="#AngerWeberfunctions" title="Index" class="ltx_ref">Anger–Weber functions</a>.</span> </li> <li id="AngerWeberfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Anger–Weber functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text ltx_font_bold"><a href=".././11.10" title="§11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10</span></a></span></span> <ul class="ltx_indexlist"> <li id="AngerWeberfunctions.analyticproperties" class="ltx_indexentry"> <span class="ltx_indexphrase">analytic properties</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#i.p1" title="§11.10(i) Definitions ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(i)</span></a></span> </li> <li id="AngerWeberfunctions.asymptoticexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic expansions</span> <ul class="ltx_indexlist"> <li id="AngerWeberfunctions.asymptoticexpansions.largeargument" class="ltx_indexentry"> <span class="ltx_indexphrase">large argument</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././11.11#i" title="§11.11(i) Large |𝑧|, Fixed 𝜈 ‣ §11.11 Asymptotic Expansions of Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.11(i)</span></a>—<a href=".././11.11#i.p1" title="§11.11(i) Large |𝑧|, Fixed 𝜈 ‣ §11.11 Asymptotic Expansions of Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.11(i)</span></a></span></span> </li> <li id="AngerWeberfunctions.asymptoticexpansions.largeorder" class="ltx_indexentry"> <span class="ltx_indexphrase">large order</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.11#ii" title="§11.11(ii) Large |𝜈|, Fixed 𝑧 ‣ §11.11 Asymptotic Expansions of Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.11(ii)</span></a></span> </li> </ul> </li> <li id="AngerWeberfunctions.computation" class="ltx_indexentry"> <span class="ltx_indexphrase">computation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.13#i" title="§11.13(i) Introduction ‣ §11.13 Methods of Computation ‣ Computation ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.13(i)</span></a>, <a href=".././3.6#Px2" title="Example 2. Weber Function ‣ §3.6(vi) Examples ‣ §3.6 Linear Difference Equations ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.6(vi)</span></a></span> </li> <li id="AngerWeberfunctions.definitions" class="ltx_indexentry"> <span class="ltx_indexphrase">definitions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#i" title="§11.10(i) Definitions ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(i)</span></a></span> </li> <li id="AngerWeberfunctions.derivatives" class="ltx_indexentry"> <span class="ltx_indexphrase">derivatives</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#ix" title="§11.10(ix) Recurrence Relations and Derivatives ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(ix)</span></a></span> </li> <li id="AngerWeberfunctions.differentialequation" class="ltx_indexentry"> <span class="ltx_indexphrase">differential equation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#ii" title="§11.10(ii) Differential Equations ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(ii)</span></a></span> </li> <li id="AngerWeberfunctions.graphics" class="ltx_indexentry"> <span class="ltx_indexphrase">graphics</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#F1" title="In §11.10(iv) Graphics ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.1</span></a>, <a href=".././11.10.F1.mag" title="In §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.1</span></a>, <a href=".././11.10.F1.mag#F1.thumb" title="In Figure 11.10.1 ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.1</span></a>, <a href=".././11.10#F2" title="In §11.10(iv) Graphics ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.2</span></a>, <a href=".././11.10.F2.mag" title="In §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.2</span></a>, <a href=".././11.10.F2.mag#F2.thumb" title="In Figure 11.10.2 ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.2</span></a>, <a href=".././11.10#F3" title="In §11.10(iv) Graphics ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.3</span></a>, <a href=".././11.10.F3.mag" title="In §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.3</span></a>, <a href=".././11.10.F3.mag#F3.thumb" title="In Figure 11.10.3 ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.3</span></a>, <a href=".././11.10#F4" title="In §11.10(iv) Graphics ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.4</span></a>, <a href=".././11.10.F4.mag" title="In §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.4</span></a>, <a href=".././11.10.F4.mag#F4.thumb" title="In Figure 11.10.4 ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 11.10.4</span></a></span> </li> <li id="AngerWeberfunctions.incomplete" class="ltx_indexentry"> <span class="ltx_indexphrase">incomplete</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.14#v" title="§11.14(v) Incomplete Functions ‣ §11.14 Tables ‣ Computation ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.14(v)</span></a></span> </li> <li id="AngerWeberfunctions.integralrepresentations" class="ltx_indexentry"> <span class="ltx_indexphrase">integral representations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#i" title="§11.10(i) Definitions ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(i)</span></a></span> </li> <li id="AngerWeberfunctions.integrals" class="ltx_indexentry"> <span class="ltx_indexphrase">integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#x" title="§11.10(x) Integrals and Sums ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(x)</span></a></span> </li> <li id="AngerWeberfunctions.interrelations" class="ltx_indexentry"> <span class="ltx_indexphrase">interrelations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#v" title="§11.10(v) Interrelations ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(v)</span></a></span> </li> <li id="AngerWeberfunctions.Maclaurinseries" class="ltx_indexentry"> <span class="ltx_indexphrase">Maclaurin series</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#iii" title="§11.10(iii) Maclaurin Series ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(iii)</span></a></span> </li> <li id="AngerWeberfunctions.notation" class="ltx_indexentry"> <span class="ltx_indexphrase">notation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.1" title="§11.1 Special Notation ‣ Notation ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.1</span></a></span> </li> <li id="AngerWeberfunctions.order" class="ltx_indexentry"> <span class="ltx_indexphrase">order</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.1" title="§11.1 Special Notation ‣ Notation ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.1</span></a></span> </li> <li id="AngerWeberfunctions.recurrencerelations" class="ltx_indexentry"> <span class="ltx_indexphrase">recurrence relations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#ix" title="§11.10(ix) Recurrence Relations and Derivatives ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(ix)</span></a></span> </li> <li id="AngerWeberfunctions.relationstootherfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">relations to other functions</span> <ul class="ltx_indexlist"> <li id="AngerWeberfunctions.relationstootherfunctions.Fresnelintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">Fresnel integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#vi.p1" title="§11.10(vi) Relations to Other Functions ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(vi)</span></a></span> </li> <li id="AngerWeberfunctions.relationstootherfunctions.Lommelfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Lommel functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././11.10#vi" title="§11.10(vi) Relations to Other Functions ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(vi)</span></a>—<a href=".././11.10#vi.p1" title="§11.10(vi) Relations to Other Functions ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(vi)</span></a></span></span> </li> <li id="AngerWeberfunctions.relationstootherfunctions.Struvefunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Struve functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#vi.p2" title="§11.10(vi) Relations to Other Functions ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(vi)</span></a></span> </li> </ul> </li> <li id="AngerWeberfunctions.seriesexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">series expansions</span> <ul class="ltx_indexlist"> <li id="AngerWeberfunctions.seriesexpansions.powerseries" class="ltx_indexentry"> <span class="ltx_indexphrase">power series</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#iii" title="§11.10(iii) Maclaurin Series ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(iii)</span></a></span> </li> <li id="AngerWeberfunctions.seriesexpansions.productsofBesselfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">products of Bessel functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#viii" title="§11.10(viii) Expansions in Series of Products of Bessel Functions ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(viii)</span></a></span> </li> </ul> </li> <li id="AngerWeberfunctions.specialvalues" class="ltx_indexentry"> <span class="ltx_indexphrase">special values</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#vii" title="§11.10(vii) Special Values ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(vii)</span></a></span> </li> <li id="AngerWeberfunctions.sums" class="ltx_indexentry"> <span class="ltx_indexphrase">sums</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.10#x" title="§11.10(x) Integrals and Sums ‣ §11.10 Anger–Weber Functions ‣ Related Functions ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.10(x)</span></a></span> </li> <li id="AngerWeberfunctions.tables" class="ltx_indexentry"> <span class="ltx_indexphrase">tables</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././11.14#iv" title="§11.14(iv) Anger–Weber Functions ‣ §11.14 Tables ‣ Computation ‣ Chapter 11 Struve and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§11.14(iv)</span></a></span> </li> </ul> </li> <li id="anglebetweenarcs" class="ltx_indexentry"> <span class="ltx_indexphrase">angle between arcs</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.9#Px22" title="Conformal Transformation ‣ §1.9(iv) Conformal Mapping ‣ §1.9 Calculus of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.9(iv)</span></a></span> </li> <li id="angularmomenta" class="ltx_indexentry"> <span class="ltx_indexphrase">angular momenta</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././34.2#p1" title="§34.2 Definition: 3⁢𝑗 Symbol ‣ Properties ‣ Chapter 34 3⁢𝑗,6⁢𝑗,9⁢𝑗 Symbols" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§34.2</span></a></span> </li> <li id="angularmomentum" class="ltx_indexentry"> <span class="ltx_indexphrase">angular momentum</span> <ul class="ltx_indexlist"> <li id="angularmomentum.generalizedhypergeometricfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">generalized hypergeometric functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16.24#iii" title="§16.24(iii) 3⁢𝑗, 6⁢𝑗, and 9⁢𝑗 Symbols ‣ §16.24 Physical Applications ‣ Applications ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.24(iii)</span></a></span> </li> </ul> </li> <li id="angularmomentumcouplingcoefficients" class="ltx_indexentry"> <span class="ltx_indexphrase">angular momentum coupling coefficients</span><span class="ltx_indexrefs">, <span class="ltx_text ltx_font_italic">see </span><a href=".././idx/T#threejsymbols" title="Index T ‣ Index" class="ltx_ref"><math class="ltx_Math" altimg="m3.png" altimg-height="21px" altimg-valign="-6px" altimg-width="24px" alttext="\mathit{3j}" display="inline"><mrow><mn class="ltx_mathvariant_italic" href=".././34.2#E4" mathvariant="italic" title="3⁢𝑗 symbol">3</mn><mo href=".././34.2#E4" title="3⁢𝑗 symbol">⁢</mo><mi href=".././34.2#E4" title="3⁢𝑗 symbol">j</mi></mrow></math> symbols</a>, <a href=".././idx/S#sixjsymbols" title="Index S ‣ Index" class="ltx_ref"><math class="ltx_Math" altimg="m4.png" altimg-height="21px" altimg-valign="-6px" altimg-width="24px" alttext="\mathit{6j}" display="inline"><mrow><mn class="ltx_mathvariant_italic" href=".././34.4#E1" mathvariant="italic" title="6⁢𝑗 symbol">6</mn><mo href=".././34.4#E1" title="6⁢𝑗 symbol">⁢</mo><mi href=".././34.4#E1" title="6⁢𝑗 symbol">j</mi></mrow></math> symbols</a>, <em class="ltx_emph">and</em> <a href=".././idx/N#ninejsymbols" title="Index N ‣ Index" class="ltx_ref"><math class="ltx_Math" altimg="m5.png" altimg-height="21px" altimg-valign="-6px" altimg-width="24px" alttext="\mathit{9j}" display="inline"><mrow><mn class="ltx_mathvariant_italic" href=".././34.6#E1" mathvariant="italic" title="9⁢𝑗 symbol">9</mn><mo href=".././34.6#E1" title="9⁢𝑗 symbol">⁢</mo><mi href=".././34.6#E1" title="9⁢𝑗 symbol">j</mi></mrow></math> symbols</a>.</span> </li> <li id="angularmomentumoperator" class="ltx_indexentry"> <span class="ltx_indexphrase">angular momentum operator</span> <ul class="ltx_indexlist"> <li id="angularmomentumoperator.sphericalcoordinates" class="ltx_indexentry"> <span class="ltx_indexphrase">spherical coordinates</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.30#iv.p2" title="§14.30(iv) Applications ‣ §14.30 Spherical and Spheroidal Harmonics ‣ Applications ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.30(iv)</span></a></span> </li> </ul> </li> <li id="annulus" class="ltx_indexentry"> <span class="ltx_indexphrase">annulus</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.10#iii" title="§1.10(iii) Laurent Series ‣ §1.10 Functions of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.10(iii)</span></a></span> </li> <li id="antennaresearch" class="ltx_indexentry"> <span class="ltx_indexphrase">antenna research</span> <ul class="ltx_indexlist"> <li id="antennaresearch.Lamefunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Lamé functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././29.19#i" title="§29.19(i) Lamé Functions ‣ §29.19 Physical Applications ‣ Applications ‣ Chapter 29 Lamé Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§29.19(i)</span></a></span> </li> </ul> </li> <li id="Appellfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Appell functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text ltx_font_bold"><a href=".././16.13" title="§16.13 Appell Functions ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.13</span></a></span></span> <ul class="ltx_indexlist"> <li id="Appellfunctions.analyticcontinuation" class="ltx_indexentry"> <span class="ltx_indexphrase">analytic continuation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16.15#p1" title="§16.15 Integral Representations and Integrals ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.15</span></a></span> </li> <li id="Appellfunctions.applications" class="ltx_indexentry"> <span class="ltx_indexphrase">applications</span> <ul class="ltx_indexlist"> <li id="Appellfunctions.applications.physical" class="ltx_indexentry"> <span class="ltx_indexphrase">physical</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16.24" title="§16.24 Physical Applications ‣ Applications ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.24</span></a></span> </li> </ul> </li> <li id="Appellfunctions.computation" class="ltx_indexentry"> <span class="ltx_indexphrase">computation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16#PT6" title="Computation ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Ch.16</span></a></span> </li> <li id="Appellfunctions.definition" class="ltx_indexentry"> <span class="ltx_indexphrase">definition</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././16.13" title="§16.13 Appell Functions ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.13</span></a>—<a href=".././16.13#p1" title="§16.13 Appell Functions ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.13</span></a></span></span> </li> <li id="Appellfunctions.integralrepresentations" class="ltx_indexentry"> <span class="ltx_indexphrase">integral representations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16.15" title="§16.15 Integral Representations and Integrals ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.15</span></a></span> </li> <li id="Appellfunctions.integrals" class="ltx_indexentry"> <span class="ltx_indexphrase">integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16.15" title="§16.15 Integral Representations and Integrals ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.15</span></a></span> <ul class="ltx_indexlist"> <li id="Appellfunctions.integrals.inverseLaplacetransform" class="ltx_indexentry"> <span class="ltx_indexphrase">inverse Laplace transform</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16.15#p1" title="§16.15 Integral Representations and Integrals ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.15</span></a></span> </li> </ul> </li> <li id="Appellfunctions.notation" class="ltx_indexentry"> <span class="ltx_indexphrase">notation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16.13" title="§16.13 Appell Functions ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.13</span></a></span> </li> <li id="Appellfunctions.partialdifferentialequations" class="ltx_indexentry"> <span class="ltx_indexphrase">partial differential equations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16.14#i" title="§16.14(i) Appell Functions ‣ §16.14 Partial Differential Equations ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.14(i)</span></a></span> </li> <li id="Appellfunctions.relationtoLegendresellipticintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">relation to Legendre’s elliptic integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././19.5#p1" title="§19.5 Maclaurin and Related Expansions ‣ Legendre’s Integrals ‣ Chapter 19 Elliptic Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§19.5</span></a></span> </li> <li id="Appellfunctions.relationtosymmetricellipticintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">relation to symmetric elliptic integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././19.25#vii.p1" title="§19.25(vii) Hypergeometric Function ‣ §19.25 Relations to Other Functions ‣ Symmetric Integrals ‣ Chapter 19 Elliptic Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§19.25(vii)</span></a></span> </li> <li id="Appellfunctions.relationstohypergeometricfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">relations to hypergeometric functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16.16#i" title="§16.16(i) Reduction Formulas ‣ §16.16 Transformations of Variables ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.16(i)</span></a></span> </li> <li id="Appellfunctions.transformationsofvariables" class="ltx_indexentry"> <span class="ltx_indexphrase">transformations of variables</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././16.16" title="§16.16 Transformations of Variables ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.16</span></a>—<a href=".././16.16#ii.p2" title="§16.16(ii) Other Transformations ‣ §16.16 Transformations of Variables ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.16(ii)</span></a></span></span> <ul class="ltx_indexlist"> <li id="Appellfunctions.transformationsofvariables.quadratic" class="ltx_indexentry"> <span class="ltx_indexphrase">quadratic</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16.16#ii" title="§16.16(ii) Other Transformations ‣ §16.16 Transformations of Variables ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.16(ii)</span></a></span> </li> <li id="Appellfunctions.transformationsofvariables.reductionformulas" class="ltx_indexentry"> <span class="ltx_indexphrase">reduction formulas</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././16.16#i" title="§16.16(i) Reduction Formulas ‣ §16.16 Transformations of Variables ‣ Two-Variable Hypergeometric Functions ‣ Chapter 16 Generalized Hypergeometric Functions and Meijer 𝐺-Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§16.16(i)</span></a></span> </li> </ul> </li> </ul> </li> <li id="approximationtechniques" class="ltx_indexentry"> <span class="ltx_indexphrase">approximation techniques</span> <ul class="ltx_indexlist"> <li id="approximationtechniques.Chebyshevseriesexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">Chebyshev-series expansions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.11#Px1" title="Chebyshev Expansions ‣ §3.11(ii) Chebyshev-Series Expansions ‣ §3.11 Approximation Techniques ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.11(ii)</span></a></span> </li> <li id="approximationtechniques.leastsquares" class="ltx_indexentry"> <span class="ltx_indexphrase">least squares</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text ltx_font_rangeend"><a href=".././3.11#Px8" title="The Fast Fourier Transform ‣ §3.11(v) Least Squares Approximations ‣ §3.11 Approximation Techniques ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.11(v)</span></a></span>, <span class="ltx_text"><a href=".././3.11#v" title="§3.11(v) Least Squares Approximations ‣ §3.11 Approximation Techniques ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.11(v)</span></a>—<span class="ltx_text ltx_font_rangestart"><a href=".././3.11#v" title="§3.11(v) Least Squares Approximations ‣ §3.11 Approximation Techniques ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.11(v)</span></a></span></span></span> </li> <li id="approximationtechniques.minimaxpolynomials" class="ltx_indexentry"> <span class="ltx_indexphrase">minimax polynomials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.11#i" title="§3.11(i) Minimax Polynomial Approximations ‣ §3.11 Approximation Techniques ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.11(i)</span></a></span> </li> <li id="approximationtechniques.minimaxrationalfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">minimax rational functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.11#iii" title="§3.11(iii) Minimax Rational Approximations ‣ §3.11 Approximation Techniques ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.11(iii)</span></a></span> </li> <li id="approximationtechniques.Pade" class="ltx_indexentry"> <span class="ltx_indexphrase">Padé</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././3.11#iv" title="§3.11(iv) Padé Approximations ‣ §3.11 Approximation Techniques ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.11(iv)</span></a>—<a href=".././3.11#Px6" title="Laplace Transform Inversion ‣ §3.11(iv) Padé Approximations ‣ §3.11 Approximation Techniques ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.11(iv)</span></a></span></span> </li> <li id="approximationtechniques.splines" class="ltx_indexentry"> <span class="ltx_indexphrase">splines</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><span class="ltx_text ltx_font_rangeend"><a href=".././3.11#vi" title="§3.11(vi) Splines ‣ §3.11 Approximation Techniques ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.11(vi)</span></a></span>—<span class="ltx_text ltx_font_rangestart"><a href=".././3.11#vi" title="§3.11(vi) Splines ‣ §3.11 Approximation Techniques ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.11(vi)</span></a></span></span></span> </li> </ul> </li> <li id="arclength" class="ltx_indexentry"> <span class="ltx_indexphrase">arc length</span> <ul class="ltx_indexlist"> <li id="arclength.Jacobianellipticfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Jacobian elliptic functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.18#i" title="§22.18(i) Lengths and Parametrization of Plane Curves ‣ §22.18 Mathematical Applications ‣ Applications ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.18(i)</span></a></span> </li> </ul> </li> <li id="arcs" class="ltx_indexentry"> <span class="ltx_indexphrase">arc(s)</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.9#iii" title="§1.9(iii) Integration ‣ §1.9 Calculus of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.9(iii)</span></a></span> <ul class="ltx_indexlist"> <li id="arcs.anglebetween" class="ltx_indexentry"> <span class="ltx_indexphrase">angle between</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.9#Px22" title="Conformal Transformation ‣ §1.9(iv) Conformal Mapping ‣ §1.9 Calculus of a Complex Variable ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.9(iv)</span></a></span> </li> </ul> </li> <li id="areaoftriangle" class="ltx_indexentry"> <span class="ltx_indexphrase">area of triangle</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././10.22#Px10.p2" title="Triple Products ‣ §10.22(iv) Integrals over the Interval (0,∞) ‣ §10.22 Integrals ‣ Bessel and Hankel Functions ‣ Chapter 10 Bessel Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§10.22(iv)</span></a></span> </li> <li id="argumentprinciple" class="ltx_indexentry"> <span class="ltx_indexphrase">argument principle</span><span class="ltx_indexrefs">, <span class="ltx_text ltx_font_italic">see </span><a href=".././idx/P#phaseprinciple" title="Index P ‣ Index" class="ltx_ref">phase principle</a>.</span> </li> <li id="arithmeticFouriertransform" class="ltx_indexentry"> <span class="ltx_indexphrase">arithmetic Fourier transform</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././27.17" title="§27.17 Other Applications ‣ Applications ‣ Chapter 27 Functions of Number Theory" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§27.17</span></a></span> </li> <li id="arithmeticmean" class="ltx_indexentry"> <span class="ltx_indexphrase">arithmetic mean</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.2#iv" title="§1.2(iv) Means ‣ §1.2 Elementary Algebra ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.2(iv)</span></a>, <a href=".././1.7#iii" title="§1.7(iii) Means ‣ §1.7 Inequalities ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.7(iii)</span></a></span> </li> <li id="arithmeticprogression" class="ltx_indexentry"> <span class="ltx_indexphrase">arithmetic progression</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././1.2#Px2" title="Arithmetic Progression ‣ §1.2(ii) Finite Series ‣ §1.2 Elementary Algebra ‣ Topics of Discussion ‣ Chapter 1 Algebraic and Analytic Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§1.2(ii)</span></a></span> </li> <li id="arithmeticgeometricmean" class="ltx_indexentry"> <span class="ltx_indexphrase">arithmetic-geometric mean</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text ltx_font_bold"><a href=".././19.8#i" title="§19.8(i) Gauss’s Arithmetic-Geometric Mean (AGM) ‣ §19.8 Quadratic Transformations ‣ Legendre’s Integrals ‣ Chapter 19 Elliptic Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§19.8(i)</span></a></span></span> <ul class="ltx_indexlist"> <li id="arithmeticgeometricmean.hypergeometricfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">hypergeometric function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././15.17#iv.p2" title="§15.17(iv) Combinatorics ‣ §15.17 Mathematical Applications ‣ Applications ‣ Chapter 15 Hypergeometric Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§15.17(iv)</span></a></span> </li> <li id="arithmeticgeometricmean.integralrepresentations" class="ltx_indexentry"> <span class="ltx_indexphrase">integral representations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././19.8#i" title="§19.8(i) Gauss’s Arithmetic-Geometric Mean (AGM) ‣ §19.8 Quadratic Transformations ‣ Legendre’s Integrals ‣ Chapter 19 Elliptic Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§19.8(i)</span></a></span> </li> <li id="arithmeticgeometricmean.Jacobianellipticfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Jacobian elliptic functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././22.20#ii" title="§22.20(ii) Arithmetic-Geometric Mean ‣ §22.20 Methods of Computation ‣ Computation ‣ Chapter 22 Jacobian Elliptic Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§22.20(ii)</span></a></span> </li> <li id="arithmeticgeometricmean.Legendresellipticintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">Legendre’s elliptic integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././19.8#i" title="§19.8(i) Gauss’s Arithmetic-Geometric Mean (AGM) ‣ §19.8 Quadratic Transformations ‣ Legendre’s Integrals ‣ Chapter 19 Elliptic Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§19.8(i)</span></a>—<a href=".././19.8#i.p3" title="§19.8(i) Gauss’s Arithmetic-Geometric Mean (AGM) ‣ §19.8 Quadratic Transformations ‣ Legendre’s Integrals ‣ Chapter 19 Elliptic Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§19.8(i)</span></a></span></span> </li> <li id="arithmeticgeometricmean.symmetricellipticintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">symmetric elliptic integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././19.22#ii" title="§19.22(ii) Gauss’s Arithmetic-Geometric Mean (AGM) ‣ §19.22 Quadratic Transformations ‣ Symmetric Integrals ‣ Chapter 19 Elliptic Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§19.22(ii)</span></a></span> </li> </ul> </li> </ul> </div> <div class="ltx_page_column2"> <ul class="ltx_indexlist"> <li id="arithmetics" class="ltx_indexentry"> <span class="ltx_indexphrase">arithmetics</span> <ul class="ltx_indexlist"> <li id="arithmetics.complex" class="ltx_indexentry"> <span class="ltx_indexphrase">complex</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.1#v.p3" title="§3.1(v) Error Measures ‣ §3.1 Arithmetics and Error Measures ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.1(v)</span></a></span> </li> <li id="arithmetics.exactrational" class="ltx_indexentry"> <span class="ltx_indexphrase">exact rational</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.1#iii" title="§3.1(iii) Rational Arithmetics ‣ §3.1 Arithmetics and Error Measures ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.1(iii)</span></a></span> </li> <li id="arithmetics.floatingpoint" class="ltx_indexentry"> <span class="ltx_indexphrase">floating-point</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.1#i" title="§3.1(i) Floating-Point Arithmetic ‣ §3.1 Arithmetics and Error Measures ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.1(i)</span></a></span> </li> <li id="arithmetics.interval" class="ltx_indexentry"> <span class="ltx_indexphrase">interval</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.1#ii" title="§3.1(ii) Interval Arithmetic ‣ §3.1 Arithmetics and Error Measures ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.1(ii)</span></a></span> </li> <li id="arithmetics.levelindex" class="ltx_indexentry"> <span class="ltx_indexphrase">level-index</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././3.1#iv" title="§3.1(iv) Level-Index Arithmetic ‣ §3.1 Arithmetics and Error Measures ‣ Areas ‣ Chapter 3 Numerical Methods" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§3.1(iv)</span></a></span> </li> </ul> </li> <li id="Askeypolynomials" class="ltx_indexentry"> <span class="ltx_indexphrase">Askey polynomials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.33#Px3" title="Askey ‣ §18.33(iv) Special Cases ‣ §18.33 Polynomials Orthogonal on the Unit Circle ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.33(iv)</span></a></span> </li> <li id="Askeyschemefororthogonalpolynomials" class="ltx_indexentry"> <span class="ltx_indexphrase">Askey scheme for orthogonal polynomials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.21#F1" title="In Meixner–Pollaczek → Hermite ‣ §18.21(ii) Limit Relations and Special Cases ‣ §18.21 Hahn Class: Interrelations ‣ Askey Scheme ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 18.21.1</span></a>, <a href=".././18.21.F1.mag" title="In §18.21 Hahn Class: Interrelations ‣ Askey Scheme ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 18.21.1</span></a>, <a href=".././18.21.F1.mag#F1.thumb" title="In Figure 18.21.1 ‣ §18.21 Hahn Class: Interrelations ‣ Askey Scheme ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 18.21.1</span></a></span> </li> <li id="AskeyGasperinequality" class="ltx_indexentry"> <span class="ltx_indexphrase">Askey–Gasper inequality</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.14#Px13.p1" title="Jacobi ‣ §18.14(iv) Positive Sums ‣ §18.14 Inequalities ‣ Classical Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.14(iv)</span></a>, <a href=".././18.38#Px6.p1" title="Complex Function Theory ‣ §18.38(ii) Classical OP’s: Mathematical Developments and Applications ‣ §18.38 Mathematical Applications ‣ Applications ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.38(ii)</span></a></span> </li> <li id="AskeyWilsonclassorthogonalpolynomials" class="ltx_indexentry"> <span class="ltx_indexphrase">Askey–Wilson class orthogonal polynomials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././18.28" title="§18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28</span></a>—<a href=".././18.28#xi" title="§18.28(xi) Limits for 𝑞↓-1 ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(xi)</span></a></span></span> <ul class="ltx_indexlist"> <li id="AskeyWilsonclassorthogonalpolynomials.aseigenfunctionsofaqdifferenceoperator" class="ltx_indexentry"> <span class="ltx_indexphrase">as eigenfunctions of a <math class="ltx_Math" altimg="m8.png" altimg-height="17px" altimg-valign="-6px" altimg-width="14px" alttext="q" display="inline"><mi href=".././18.1#i.t1.r3" title="real variable">q</mi></math>-difference operator</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.28#i.p1" title="§18.28(i) Introduction ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(i)</span></a></span> </li> <li id="AskeyWilsonclassorthogonalpolynomials.asymptoticapproximations" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic approximations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.29" title="§18.29 Asymptotic Approximations for 𝑞-Hahn and Askey–Wilson Classes ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.29</span></a></span> </li> <li id="AskeyWilsonclassorthogonalpolynomials.interrelationswithotherorthogonalpolynomials" class="ltx_indexentry"> <span class="ltx_indexphrase">interrelations with other orthogonal polynomials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.21#F1" title="In Meixner–Pollaczek → Hermite ‣ §18.21(ii) Limit Relations and Special Cases ‣ §18.21 Hahn Class: Interrelations ‣ Askey Scheme ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 18.21.1</span></a>, <a href=".././18.21.F1.mag" title="In §18.21 Hahn Class: Interrelations ‣ Askey Scheme ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 18.21.1</span></a>, <a href=".././18.21.F1.mag#F1.thumb" title="In Figure 18.21.1 ‣ §18.21 Hahn Class: Interrelations ‣ Askey Scheme ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Figure 18.21.1</span></a></span> </li> <li id="AskeyWilsonclassorthogonalpolynomials.limitrelations" class="ltx_indexentry"> <span class="ltx_indexphrase">limit relations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.28#x" title="§18.28(x) Limit Relations ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(x)</span></a></span> </li> <li id="AskeyWilsonclassorthogonalpolynomials.orthogonalityproperties" class="ltx_indexentry"> <span class="ltx_indexphrase">orthogonality properties</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.28#i.p1" title="§18.28(i) Introduction ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(i)</span></a></span> </li> <li id="AskeyWilsonclassorthogonalpolynomials.representationasqhypergeometricfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">representation as <math class="ltx_Math" altimg="m8.png" altimg-height="17px" altimg-valign="-6px" altimg-width="14px" alttext="q" display="inline"><mi href=".././18.1#i.t1.r3" title="real variable">q</mi></math>-hypergeometric functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././18.28#i.p1" title="§18.28(i) Introduction ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(i)</span></a>—<a href=".././18.28#xi" title="§18.28(xi) Limits for 𝑞↓-1 ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(xi)</span></a></span></span> </li> </ul> </li> <li id="AskeyWilsonpolynomials" class="ltx_indexentry"> <span class="ltx_indexphrase">Askey–Wilson polynomials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.28#ii" title="§18.28(ii) Askey–Wilson Polynomials ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(ii)</span></a>, <span class="ltx_text ltx_font_italic">see also </span><span class="ltx_text">Askey–Wilson class orthogonal polynomials.</span></span> <ul class="ltx_indexlist"> <li id="AskeyWilsonpolynomials.andZhedanovalgebra" class="ltx_indexentry"> <span class="ltx_indexphrase">and Zhedanov algebra</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.38#Px14.p2" title="Zhedanov Algebra ‣ §18.38(iii) Other OP’s ‣ §18.38 Mathematical Applications ‣ Applications ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.38(iii)</span></a></span> </li> <li id="AskeyWilsonpolynomials.asymptoticapproximations" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic approximations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.29" title="§18.29 Asymptotic Approximations for 𝑞-Hahn and Askey–Wilson Classes ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.29</span></a></span> </li> <li id="AskeyWilsonpolynomials.duality" class="ltx_indexentry"> <span class="ltx_indexphrase">duality</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.28#Px4" title="Duality ‣ §18.28(ii) Askey–Wilson Polynomials ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(ii)</span></a></span> </li> <li id="AskeyWilsonpolynomials.nonsymmetric" class="ltx_indexentry"> <span class="ltx_indexphrase">nonsymmetric</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.38#Px15.p3" title="Dunkl Type Operators and Nonsymmetric Orthogonal Polynomials ‣ §18.38(iii) Other OP’s ‣ §18.38 Mathematical Applications ‣ Applications ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.38(iii)</span></a></span> </li> <li id="AskeyWilsonpolynomials.qdifferenceequation" class="ltx_indexentry"> <span class="ltx_indexphrase"><math class="ltx_Math" altimg="m8.png" altimg-height="17px" altimg-valign="-6px" altimg-width="14px" alttext="q" display="inline"><mi href=".././18.1#i.t1.r3" title="real variable">q</mi></math>-difference equation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.28#Px2" title="𝑞-Difference Equation ‣ §18.28(ii) Askey–Wilson Polynomials ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(ii)</span></a></span> </li> <li id="AskeyWilsonpolynomials.recurrencerelation" class="ltx_indexentry"> <span class="ltx_indexphrase">recurrence relation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.28#Px3" title="Recurrence Relation ‣ §18.28(ii) Askey–Wilson Polynomials ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(ii)</span></a></span> </li> <li id="AskeyWilsonpolynomials.relationtoqhypergeometricfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">relation to <math class="ltx_Math" altimg="m8.png" altimg-height="17px" altimg-valign="-6px" altimg-width="14px" alttext="q" display="inline"><mi href=".././18.1#i.t1.r3" title="real variable">q</mi></math>-hypergeometric functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././18.28#ii" title="§18.28(ii) Askey–Wilson Polynomials ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(ii)</span></a>—<a href=".././18.28#xi" title="§18.28(xi) Limits for 𝑞↓-1 ‣ §18.28 Askey–Wilson Class ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.28(xi)</span></a></span></span> </li> </ul> </li> <li id="associatedAngerWeberfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">associated Anger–Weber function</span><span class="ltx_indexrefs">, <span class="ltx_text ltx_font_italic">see </span><a href="#AngerWeberfunctions" title="Index" class="ltx_ref">Anger–Weber functions</a>.</span> </li> <li id="associatedHermitepolynomials" class="ltx_indexentry"> <span class="ltx_indexphrase">associated Hermite polynomials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.30#iv" title="§18.30(iv) Associated Hermite Polynomials ‣ §18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30(iv)</span></a></span> </li> <li id="associatedLaguerrefunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">associated Laguerre functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././33.22#v.p3" title="§33.22(v) Asymptotic Solutions ‣ §33.22 Particle Scattering and Atomic and Molecular Spectra ‣ Physical Applications ‣ Chapter 33 Coulomb Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§33.22(v)</span></a></span> </li> <li id="associatedLaguerrepolynomials" class="ltx_indexentry"> <span class="ltx_indexphrase">associated Laguerre polynomials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.30#iii" title="§18.30(iii) Associated Laguerre Polynomials ‣ §18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30(iii)</span></a></span> </li> <li id="associatedLegendreequation" class="ltx_indexentry"> <span class="ltx_indexphrase">associated Legendre equation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.2#ii" title="§14.2(ii) Associated Legendre Equation ‣ §14.2 Differential Equations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.2(ii)</span></a>, <a href=".././14.21#i" title="§14.21(i) Associated Legendre Equation ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(i)</span></a></span> <ul class="ltx_indexlist"> <li id="associatedLegendreequation.exponentpairs" class="ltx_indexentry"> <span class="ltx_indexphrase">exponent pairs</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.2#iii" title="§14.2(iii) Numerically Satisfactory Solutions ‣ §14.2 Differential Equations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.2(iii)</span></a></span> </li> <li id="associatedLegendreequation.numericallysatisfactorysolutions" class="ltx_indexentry"> <span class="ltx_indexphrase">numerically satisfactory solutions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.2#iii" title="§14.2(iii) Numerically Satisfactory Solutions ‣ §14.2 Differential Equations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.2(iii)</span></a>, <a href=".././14.21#ii" title="§14.21(ii) Numerically Satisfactory Solutions ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(ii)</span></a></span> </li> <li id="associatedLegendreequation.singularities" class="ltx_indexentry"> <span class="ltx_indexphrase">singularities</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.2#iii" title="§14.2(iii) Numerically Satisfactory Solutions ‣ §14.2 Differential Equations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.2(iii)</span></a></span> </li> <li id="associatedLegendreequation.standardsolutions" class="ltx_indexentry"> <span class="ltx_indexphrase">standard solutions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.2#ii" title="§14.2(ii) Associated Legendre Equation ‣ §14.2 Differential Equations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.2(ii)</span></a>, <a href=".././14.21#i.p1" title="§14.21(i) Associated Legendre Equation ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(i)</span></a>, <a href=".././14.3#Px4" title="Associated Legendre Function of the Second Kind ‣ §14.3(ii) Interval 1&lt;𝑥&lt;∞ ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3(ii)</span></a></span> </li> </ul> </li> <li id="associatedLegendrefunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">associated Legendre functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text ltx_font_bold"><a href=".././14.1#p3" title="§14.1 Special Notation ‣ Notation ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.1</span></a></span>, <span class="ltx_text ltx_font_italic">see also </span><a href=".././idx/F#Ferrersfunctions" title="Index F ‣ Index" class="ltx_ref">Ferrers functions</a>.</span> <ul class="ltx_indexlist"> <li id="associatedLegendrefunctions.additiontheorems" class="ltx_indexentry"> <span class="ltx_indexphrase">addition theorems</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.18#ii" title="§14.18(ii) Addition Theorems ‣ §14.18 Sums ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.18(ii)</span></a>, <a href=".././14.28#i" title="§14.28(i) Addition Theorem ‣ §14.28 Sums ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.28(i)</span></a></span> </li> <li id="associatedLegendrefunctions.analyticcontinuation" class="ltx_indexentry"> <span class="ltx_indexphrase">analytic continuation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.24" title="§14.24 Analytic Continuation ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.24</span></a></span> </li> <li id="associatedLegendrefunctions.analyticproperties" class="ltx_indexentry"> <span class="ltx_indexphrase">analytic properties</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.21#i.p1" title="§14.21(i) Associated Legendre Equation ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(i)</span></a></span> </li> <li id="associatedLegendrefunctions.applications" class="ltx_indexentry"> <span class="ltx_indexphrase">applications</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././14#PT4" title="Applications ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">Ch.14</span></a>—<a href=".././14.31#iii.p2" title="§14.31(iii) Miscellaneous ‣ §14.31 Other Applications ‣ Applications ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.31(iii)</span></a></span></span> </li> <li id="associatedLegendrefunctions.asymptoticapproximations" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic approximations</span><span class="ltx_indexrefs">, <span class="ltx_text ltx_font_italic">see </span><a href="#associatedLegendrefunctions.uniformasymptoticapproximations" title="Index" class="ltx_ref">uniform asymptotic approximations</a>.</span> </li> <li id="associatedLegendrefunctions.behavioratsingularities" class="ltx_indexentry"> <span class="ltx_indexphrase">behavior at singularities</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.21#iii" title="§14.21(iii) Properties ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(iii)</span></a>, <a href=".././14.8#i.p2" title="§14.8(i) 𝑥→limit-from1- or 𝑥→limit-from{-1}+ ‣ §14.8 Behavior at Singularities ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.8(i)</span></a></span> </li> <li id="associatedLegendrefunctions.computation" class="ltx_indexentry"> <span class="ltx_indexphrase">computation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.32" title="§14.32 Methods of Computation ‣ Computation ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.32</span></a></span> </li> <li id="associatedLegendrefunctions.connectionformulas" class="ltx_indexentry"> <span class="ltx_indexphrase">connection formulas</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.21#iii" title="§14.21(iii) Properties ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(iii)</span></a>, <a href=".././14.9#iii" title="§14.9(iii) Connections Between 𝑃^{±𝜇}_𝜈(𝑥), 𝑃^{±𝜇}_{-𝜈-1}(𝑥), 𝑸^{±𝜇}_𝜈(𝑥), 𝑸^𝜇_{-𝜈-1}(𝑥) ‣ §14.9 Connection Formulas ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.9(iii)</span></a></span> </li> <li id="associatedLegendrefunctions.continuedfractions" class="ltx_indexentry"> <span class="ltx_indexphrase">continued fractions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.14" title="§14.14 Continued Fractions ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.14</span></a></span> </li> <li id="associatedLegendrefunctions.crossproducts" class="ltx_indexentry"> <span class="ltx_indexphrase">cross-products</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.2#iv" title="§14.2(iv) Wronskians and Cross-Products ‣ §14.2 Differential Equations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.2(iv)</span></a></span> </li> <li id="associatedLegendrefunctions.definitions" class="ltx_indexentry"> <span class="ltx_indexphrase">definitions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.21#i.p1" title="§14.21(i) Associated Legendre Equation ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(i)</span></a>, <span class="ltx_text"><a href=".././14.3#ii" title="§14.3(ii) Interval 1&lt;𝑥&lt;∞ ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3(ii)</span></a>—<a href=".././14.3#iii.p2" title="§14.3(iii) Alternative Hypergeometric Representations ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3(iii)</span></a></span></span> </li> <li id="associatedLegendrefunctions.degree" class="ltx_indexentry"> <span class="ltx_indexphrase">degree</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.1" title="§14.1 Special Notation ‣ Notation ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.1</span></a></span> </li> <li id="associatedLegendrefunctions.derivatives" class="ltx_indexentry"> <span class="ltx_indexphrase">derivatives</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.10" title="§14.10 Recurrence Relations and Derivatives ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.10</span></a></span> <ul class="ltx_indexlist"> <li id="associatedLegendrefunctions.derivatives.withrespecttodegreeororder" class="ltx_indexentry"> <span class="ltx_indexphrase">with respect to degree or order</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.11" title="§14.11 Derivatives with Respect to Degree or Order ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.11</span></a></span> </li> </ul> </li> <li id="associatedLegendrefunctions.differentialequation" class="ltx_indexentry"> <span class="ltx_indexphrase">differential equation</span><span class="ltx_indexrefs">, <span class="ltx_text ltx_font_italic">see </span><a href="#associatedLegendreequation" title="Index" class="ltx_ref">associated Legendre equation</a>.</span> </li> <li id="associatedLegendrefunctions.expansionsinseriesof" class="ltx_indexentry"> <span class="ltx_indexphrase">expansions in series of</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.18#i.p1" title="§14.18(i) Expansion Theorem ‣ §14.18 Sums ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.18(i)</span></a></span> </li> <li id="associatedLegendrefunctions.generalized" class="ltx_indexentry"> <span class="ltx_indexphrase">generalized</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.29#p1" title="§14.29 Generalizations ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.29</span></a></span> </li> <li id="associatedLegendrefunctions.generatingfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">generating functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.21#iii" title="§14.21(iii) Properties ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(iii)</span></a>, <a href=".././14.7#iv" title="§14.7(iv) Generating Functions ‣ §14.7 Integer Degree and Order ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.7(iv)</span></a></span> </li> <li id="associatedLegendrefunctions.graphics" class="ltx_indexentry"> <span class="ltx_indexphrase">graphics</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><span class="ltx_text ltx_font_rangeend"><a href=".././14.22" title="§14.22 Graphics ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.22</span></a></span>—<span class="ltx_text ltx_font_rangestart"><a href=".././14.4#iii" title="§14.4(iii) Associated Legendre Functions: 2D Graphs ‣ §14.4 Graphics ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.4(iii)</span></a></span></span>, <span class="ltx_text ltx_font_rangeend"><a href=".././14.4#iv" title="§14.4(iv) Associated Legendre Functions: 3D Surfaces ‣ §14.4 Graphics ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.4(iv)</span></a></span></span> </li> <li id="associatedLegendrefunctions.Heinesformula" class="ltx_indexentry"> <span class="ltx_indexphrase">Heine’s formula</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.28#ii" title="§14.28(ii) Heine’s Formula ‣ §14.28 Sums ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.28(ii)</span></a></span> </li> <li id="associatedLegendrefunctions.hypergeometricrepresentations" class="ltx_indexentry"> <span class="ltx_indexphrase">hypergeometric representations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.21#iii" title="§14.21(iii) Properties ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(iii)</span></a>, <span class="ltx_text"><a href=".././14.3" title="§14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3</span></a>—<a href=".././14.3#iii.p2" title="§14.3(iii) Alternative Hypergeometric Representations ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3(iii)</span></a></span></span> </li> <li id="associatedLegendrefunctions.integerdegreeandorder" class="ltx_indexentry"> <span class="ltx_indexphrase">integer degree and order</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.21#iii" title="§14.21(iii) Properties ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(iii)</span></a>, <span class="ltx_text"><a href=".././14.7" title="§14.7 Integer Degree and Order ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.7</span></a>—<a href=".././14.7#iv.p5" title="§14.7(iv) Generating Functions ‣ §14.7 Integer Degree and Order ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.7(iv)</span></a></span></span> </li> <li id="associatedLegendrefunctions.integerorder" class="ltx_indexentry"> <span class="ltx_indexphrase">integer order</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.21#i.p1" title="§14.21(i) Associated Legendre Equation ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(i)</span></a>, <span class="ltx_text"><a href=".././14.6" title="§14.6 Integer Order ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.6</span></a>—<a href=".././14.6#ii.p2" title="§14.6(ii) Negative Integer Orders ‣ §14.6 Integer Order ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.6(ii)</span></a></span></span> </li> <li id="associatedLegendrefunctions.integralrepresentations" class="ltx_indexentry"> <span class="ltx_indexphrase">integral representations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.12#ii" title="§14.12(ii) 1&lt;𝑥&lt;∞ ‣ §14.12 Integral Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.12(ii)</span></a>, <a href=".././14.25" title="§14.25 Integral Representations ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.25</span></a></span> </li> <li id="associatedLegendrefunctions.integrals" class="ltx_indexentry"> <span class="ltx_indexphrase">integrals</span> <ul class="ltx_indexlist"> <li id="associatedLegendrefunctions.integrals.definite" class="ltx_indexentry"> <span class="ltx_indexphrase">definite</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.17#ii" title="§14.17(ii) Barnes’ Integral ‣ §14.17 Integrals ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.17(ii)</span></a>, <a href=".././14.17#iii" title="§14.17(iii) Orthogonality Properties ‣ §14.17 Integrals ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.17(iii)</span></a>, <a href=".././14.17#iv" title="§14.17(iv) Definite Integrals of Products ‣ §14.17 Integrals ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.17(iv)</span></a></span> </li> <li id="associatedLegendrefunctions.integrals.Laplacetransforms" class="ltx_indexentry"> <span class="ltx_indexphrase">Laplace transforms</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.17#v" title="§14.17(v) Laplace Transforms ‣ §14.17 Integrals ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.17(v)</span></a></span> </li> <li id="associatedLegendrefunctions.integrals.Mellintransforms" class="ltx_indexentry"> <span class="ltx_indexphrase">Mellin transforms</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.17#vi" title="§14.17(vi) Mellin Transforms ‣ §14.17 Integrals ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.17(vi)</span></a></span> </li> <li id="associatedLegendrefunctions.integrals.products" class="ltx_indexentry"> <span class="ltx_indexphrase">products</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.17#iv" title="§14.17(iv) Definite Integrals of Products ‣ §14.17 Integrals ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.17(iv)</span></a></span> </li> </ul> </li> <li id="associatedLegendrefunctions.notation" class="ltx_indexentry"> <span class="ltx_indexphrase">notation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.1" title="§14.1 Special Notation ‣ Notation ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.1</span></a></span> </li> <li id="associatedLegendrefunctions.ofthefirstkind" class="ltx_indexentry"> <span class="ltx_indexphrase">of the first kind</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.3#Px3" title="Associated Legendre Function of the First Kind ‣ §14.3(ii) Interval 1&lt;𝑥&lt;∞ ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3(ii)</span></a></span> </li> <li id="associatedLegendrefunctions.ofthesecondkind" class="ltx_indexentry"> <span class="ltx_indexphrase">of the second kind</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.3#Px4" title="Associated Legendre Function of the Second Kind ‣ §14.3(ii) Interval 1&lt;𝑥&lt;∞ ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3(ii)</span></a></span> </li> <li id="associatedLegendrefunctions.Olvers" class="ltx_indexentry"> <span class="ltx_indexphrase">Olver’s</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.21#i.p1" title="§14.21(i) Associated Legendre Equation ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(i)</span></a>, <a href=".././14.3#Px4.p3" title="Associated Legendre Function of the Second Kind ‣ §14.3(ii) Interval 1&lt;𝑥&lt;∞ ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3(ii)</span></a></span> </li> <li id="associatedLegendrefunctions.order" class="ltx_indexentry"> <span class="ltx_indexphrase">order</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.1" title="§14.1 Special Notation ‣ Notation ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.1</span></a></span> </li> <li id="associatedLegendrefunctions.orthogonality" class="ltx_indexentry"> <span class="ltx_indexphrase">orthogonality</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.17#iii" title="§14.17(iii) Orthogonality Properties ‣ §14.17 Integrals ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.17(iii)</span></a></span> </li> <li id="associatedLegendrefunctions.principalvaluesorbranches" class="ltx_indexentry"> <span class="ltx_indexphrase">principal values (or branches)</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.21#i.p1" title="§14.21(i) Associated Legendre Equation ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(i)</span></a></span> </li> <li id="associatedLegendrefunctions.recurrencerelations" class="ltx_indexentry"> <span class="ltx_indexphrase">recurrence relations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.10" title="§14.10 Recurrence Relations and Derivatives ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.10</span></a>, <a href=".././14.21#iii" title="§14.21(iii) Properties ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(iii)</span></a></span> </li> <li id="associatedLegendrefunctions.relationstootherfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">relations to other functions</span> <ul class="ltx_indexlist"> <li id="associatedLegendrefunctions.relationstootherfunctions.ellipticintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">elliptic integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.5#v.p1" title="§14.5(v) 𝜇=0, 𝜈=±{1/2} ‣ §14.5 Special Values ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.5(v)</span></a></span> </li> <li id="associatedLegendrefunctions.relationstootherfunctions.Gegenbauerfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">Gegenbauer function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.3#iv" title="§14.3(iv) Relations to Other Functions ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3(iv)</span></a></span> </li> <li id="associatedLegendrefunctions.relationstootherfunctions.hypergeometricfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">hypergeometric function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.3#ii" title="§14.3(ii) Interval 1&lt;𝑥&lt;∞ ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3(ii)</span></a>, <a href=".././14.3#iii.p1" title="§14.3(iii) Alternative Hypergeometric Representations ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3(iii)</span></a>, <a href=".././15.9#iv" title="§15.9(iv) Associated Legendre Functions; Ferrers Functions ‣ §15.9 Relations to Other Functions ‣ Properties ‣ Chapter 15 Hypergeometric Function" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§15.9(iv)</span></a></span> </li> <li id="associatedLegendrefunctions.relationstootherfunctions.Jacobifunction" class="ltx_indexentry"> <span class="ltx_indexphrase">Jacobi function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.3#iv" title="§14.3(iv) Relations to Other Functions ‣ §14.3 Definitions and Hypergeometric Representations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.3(iv)</span></a></span> </li> <li id="associatedLegendrefunctions.relationstootherfunctions.Legendrepolynomials" class="ltx_indexentry"> <span class="ltx_indexphrase">Legendre polynomials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.7#i" title="§14.7(i) 𝜇=0 ‣ §14.7 Integer Degree and Order ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.7(i)</span></a></span> </li> </ul> </li> <li id="associatedLegendrefunctions.Rodriguestypeformulas" class="ltx_indexentry"> <span class="ltx_indexphrase">Rodrigues-type formulas</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.7#ii" title="§14.7(ii) Rodrigues-Type Formulas ‣ §14.7 Integer Degree and Order ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.7(ii)</span></a></span> </li> <li id="associatedLegendrefunctions.specialvalues" class="ltx_indexentry"> <span class="ltx_indexphrase">special values</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.5#iii.p1" title="§14.5(iii) 𝜇=±{1/2} ‣ §14.5 Special Values ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.5(iii)</span></a>, <a href=".././14.5#v.p1" title="§14.5(v) 𝜇=0, 𝜈=±{1/2} ‣ §14.5 Special Values ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.5(v)</span></a></span> </li> <li id="associatedLegendrefunctions.sums" class="ltx_indexentry"> <span class="ltx_indexphrase">sums</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././14.18" title="§14.18 Sums ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.18</span></a>—<a href=".././14.18#iv.p1" title="§14.18(iv) Compendia ‣ §14.18 Sums ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.18(iv)</span></a></span>, <a href=".././14.28" title="§14.28 Sums ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.28</span></a></span> </li> <li id="associatedLegendrefunctions.tables" class="ltx_indexentry"> <span class="ltx_indexphrase">tables</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.33" title="§14.33 Tables ‣ Computation ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.33</span></a></span> </li> <li id="associatedLegendrefunctions.uniformasymptoticapproximations" class="ltx_indexentry"> <span class="ltx_indexphrase">uniform asymptotic approximations</span> <ul class="ltx_indexlist"> <li id="associatedLegendrefunctions.uniformasymptoticapproximations.largedegree" class="ltx_indexentry"> <span class="ltx_indexphrase">large degree</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././14.15#iii" title="§14.15(iii) Large 𝜈, Fixed 𝜇 ‣ §14.15 Uniform Asymptotic Approximations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.15(iii)</span></a>—<a href=".././14.15#v.p6" title="§14.15(v) Large 𝜈, (𝜈+{1/2})⁢𝛿≤𝜇≤(𝜈+{1/2})/𝛿 ‣ §14.15 Uniform Asymptotic Approximations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.15(v)</span></a></span>, <a href=".././14.26" title="§14.26 Uniform Asymptotic Expansions ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.26</span></a></span> </li> <li id="associatedLegendrefunctions.uniformasymptoticapproximations.largeorder" class="ltx_indexentry"> <span class="ltx_indexphrase">large order</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././14.15#i" title="§14.15(i) Large 𝜇, Fixed 𝜈 ‣ §14.15 Uniform Asymptotic Approximations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.15(i)</span></a>—<a href=".././14.15#ii" title="§14.15(ii) Large 𝜇, 0≤𝜈+{1/2}≤(1-𝛿)⁢𝜇 ‣ §14.15 Uniform Asymptotic Approximations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.15(ii)</span></a></span>, <a href=".././14.26" title="§14.26 Uniform Asymptotic Expansions ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.26</span></a></span> </li> </ul> </li> <li id="associatedLegendrefunctions.valuesonthecut" class="ltx_indexentry"> <span class="ltx_indexphrase">values on the cut</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.23" title="§14.23 Values on the Cut ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.23</span></a></span> </li> <li id="associatedLegendrefunctions.Whipplesformula" class="ltx_indexentry"> <span class="ltx_indexphrase">Whipple’s formula</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.9#iv" title="§14.9(iv) Whipple’s Formula ‣ §14.9 Connection Formulas ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.9(iv)</span></a></span> </li> <li id="associatedLegendrefunctions.Wronskians" class="ltx_indexentry"> <span class="ltx_indexphrase">Wronskians</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././14.2#iv.p1" title="§14.2(iv) Wronskians and Cross-Products ‣ §14.2 Differential Equations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.2(iv)</span></a>—<a href=".././14.2#iv.p2" title="§14.2(iv) Wronskians and Cross-Products ‣ §14.2 Differential Equations ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.2(iv)</span></a></span>, <a href=".././14.21#iii" title="§14.21(iii) Properties ‣ §14.21 Definitions and Basic Properties ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.21(iii)</span></a></span> </li> <li id="associatedLegendrefunctions.zeros" class="ltx_indexentry"> <span class="ltx_indexphrase">zeros</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././14.16#iii" title="§14.16(iii) Interval 1&lt;𝑥&lt;∞ ‣ §14.16 Zeros ‣ Real Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.16(iii)</span></a>, <a href=".././14.27" title="§14.27 Zeros ‣ Complex Arguments ‣ Chapter 14 Legendre and Related Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§14.27</span></a></span> </li> </ul> </li> <li id="associatedorthogonalpolynomials" class="ltx_indexentry"> <span class="ltx_indexphrase">associated orthogonal polynomials</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.2#x" title="§18.2(x) Orthogonal Polynomials and Continued Fractions ‣ §18.2 General Orthogonal Polynomials ‣ General Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.2(x)</span></a>, <span class="ltx_text"><a href=".././18.30" title="§18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30</span></a>—<span class="ltx_text ltx_font_rangestart"><a href=".././18.30" title="§18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30</span></a></span></span></span> <ul class="ltx_indexlist"> <li id="associatedorthogonalpolynomials.andcorecursiveOPs" class="ltx_indexentry"> <span class="ltx_indexphrase">and corecursive OP’s</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.2#x.p2" title="§18.2(x) Orthogonal Polynomials and Continued Fractions ‣ §18.2 General Orthogonal Polynomials ‣ General Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.2(x)</span></a>, <a href=".././18.30#vi" title="§18.30(vi) Corecursive Orthogonal Polynomials ‣ §18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30(vi)</span></a></span> </li> <li id="associatedorthogonalpolynomials.Hermite" class="ltx_indexentry"> <span class="ltx_indexphrase">Hermite</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.30#iv" title="§18.30(iv) Associated Hermite Polynomials ‣ §18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30(iv)</span></a></span> </li> <li id="associatedorthogonalpolynomials.Jacobi" class="ltx_indexentry"> <span class="ltx_indexphrase">Jacobi</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.30#i" title="§18.30(i) Associated Jacobi Polynomials ‣ §18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30(i)</span></a></span> </li> <li id="associatedorthogonalpolynomials.Laguerre" class="ltx_indexentry"> <span class="ltx_indexphrase">Laguerre</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.30#iii" title="§18.30(iii) Associated Laguerre Polynomials ‣ §18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30(iii)</span></a></span> </li> <li id="associatedorthogonalpolynomials.Legendre" class="ltx_indexentry"> <span class="ltx_indexphrase">Legendre</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.30#ii" title="§18.30(ii) Associated Legendre Polynomials ‣ §18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30(ii)</span></a></span> </li> <li id="associatedorthogonalpolynomials.MeixnerPollaczek" class="ltx_indexentry"> <span class="ltx_indexphrase">Meixner–Pollaczek</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.30#v" title="§18.30(v) Associated Meixner–Pollaczek Polynomials ‣ §18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30(v)</span></a></span> </li> <li id="associatedorthogonalpolynomials.monic" class="ltx_indexentry"> <span class="ltx_indexphrase">monic</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.2#x" title="§18.2(x) Orthogonal Polynomials and Continued Fractions ‣ §18.2 General Orthogonal Polynomials ‣ General Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.2(x)</span></a>, <a href=".././18.30#vii" title="§18.30(vii) Corecursive and Associated Monic Orthogonal Polynomials ‣ §18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30(vii)</span></a></span> </li> <li id="associatedorthogonalpolynomials.type2Pollaczek" class="ltx_indexentry"> <span class="ltx_indexphrase">type 2 Pollaczek</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.30#viii.p1" title="§18.30(viii) Other Associated Polynomials ‣ §18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30(viii)</span></a></span> </li> <li id="associatedorthogonalpolynomials.ultraspherical" class="ltx_indexentry"> <span class="ltx_indexphrase">ultraspherical</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././18.30#viii.p1" title="§18.30(viii) Other Associated Polynomials ‣ §18.30 Associated OP’s ‣ Other Orthogonal Polynomials ‣ Chapter 18 Orthogonal Polynomials" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§18.30(viii)</span></a></span> </li> </ul> </li> <li id="astrophysics" class="ltx_indexentry"> <span class="ltx_indexphrase">astrophysics</span> <ul class="ltx_indexlist"> <li id="astrophysics.errorfunctionsandVoigtfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">error functions and Voigt functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././7.21#p3" title="§7.21 Physical Applications ‣ Applications ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§7.21</span></a></span> </li> <li id="astrophysics.HeunfunctionsandHeunsequation" class="ltx_indexentry"> <span class="ltx_indexphrase">Heun functions and Heun’s equation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././31.17#ii" title="§31.17(ii) Other Applications ‣ §31.17 Physical Applications ‣ Applications ‣ Chapter 31 Heun Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§31.17(ii)</span></a></span> </li> </ul> </li> <li id="asymptoticandordersymbols" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic and order symbols</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#i" title="§2.1(i) Asymptotic and Order Symbols ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(i)</span></a></span> <ul class="ltx_indexlist"> <li id="asymptoticandordersymbols.definition" class="ltx_indexentry"> <span class="ltx_indexphrase">definition</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#i.p1" title="§2.1(i) Asymptotic and Order Symbols ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(i)</span></a></span> </li> <li id="asymptoticandordersymbols.differentiation" class="ltx_indexentry"> <span class="ltx_indexphrase">differentiation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#ii" title="§2.1(ii) Integration and Differentiation ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(ii)</span></a></span> </li> <li id="asymptoticandordersymbols.integration" class="ltx_indexentry"> <span class="ltx_indexphrase">integration</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#ii" title="§2.1(ii) Integration and Differentiation ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(ii)</span></a></span> </li> </ul> </li> <li id="asymptoticapproximationsandexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic approximations and expansions</span><span class="ltx_indexrefs">, <span class="ltx_text ltx_font_italic">see also </span><a href="#asymptoticapproximationsofintegrals" title="Index" class="ltx_ref">asymptotic approximations of integrals</a>, <a href="#asymptoticapproximationsofsumsandsequences" title="Index" class="ltx_ref">asymptotic approximations of sums and sequences</a>, <a href="#asymptoticsolutionsofdifferenceequations" title="Index" class="ltx_ref">asymptotic solutions of difference equations</a>, <a href="#asymptoticsolutionsofdifferentialequations" title="Index" class="ltx_ref">asymptotic solutions of differential equations</a>, <em class="ltx_emph">and</em> <a href="#asymptoticsolutionsoftranscendentalequations" title="Index" class="ltx_ref">asymptotic solutions of transcendental equations</a>.</span> <ul class="ltx_indexlist"> <li id="asymptoticapproximationsandexpansions.algebraicoperations" class="ltx_indexentry"> <span class="ltx_indexphrase">algebraic operations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#iii" title="§2.1(iii) Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(iii)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.casesoffailure" class="ltx_indexentry"> <span class="ltx_indexphrase">cases of failure</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.11#i" title="§2.11(i) Numerical Use of Asymptotic Expansions ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(i)</span></a>—<a href=".././2.11#i.p2" title="§2.11(i) Numerical Use of Asymptotic Expansions ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(i)</span></a></span>, <a href=".././2.6#i.p1" title="§2.6(i) Divergent Integrals ‣ §2.6 Distributional Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.6(i)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.differentiation" class="ltx_indexentry"> <span class="ltx_indexphrase">differentiation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#iii" title="§2.1(iii) Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(iii)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.doubleasymptoticproperties" class="ltx_indexentry"> <span class="ltx_indexphrase">double asymptotic properties</span> <ul class="ltx_indexlist"> <li id="asymptoticapproximationsandexpansions.doubleasymptoticproperties.Besselfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Bessel functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././10.41#v" title="§10.41(v) Double Asymptotic Properties (Continued) ‣ §10.41 Asymptotic Expansions for Large Order ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§10.41(v)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.doubleasymptoticproperties.Hankelfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Hankel functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././10.41#v" title="§10.41(v) Double Asymptotic Properties (Continued) ‣ §10.41 Asymptotic Expansions for Large Order ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§10.41(v)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.doubleasymptoticproperties.Kelvinfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Kelvin functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././10.69" title="§10.69 Uniform Asymptotic Expansions for Large Order ‣ Kelvin Functions ‣ Chapter 10 Bessel Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§10.69</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.doubleasymptoticproperties.modifiedBesselfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">modified Bessel functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././10.41#iv" title="§10.41(iv) Double Asymptotic Properties ‣ §10.41 Asymptotic Expansions for Large Order ‣ Modified Bessel Functions ‣ Chapter 10 Bessel Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§10.41(iv)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.doubleasymptoticproperties.paraboliccylinderfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">parabolic cylinder functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././12.10#vi" title="§12.10(vi) Modifications of Expansions in Elementary Functions ‣ §12.10 Uniform Asymptotic Expansions for Large Parameter ‣ Properties ‣ Chapter 12 Parabolic Cylinder Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§12.10(vi)</span></a></span> </li> </ul> </li> <li id="asymptoticapproximationsandexpansions.exponentiallyimprovedexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">exponentially-improved expansions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.11#iii" title="§2.11(iii) Exponentially-Improved Expansions ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(iii)</span></a>—<a href=".././2.11#v" title="§2.11(v) Exponentially-Improved Expansions (continued) ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(v)</span></a></span></span> </li> <li id="asymptoticapproximationsandexpansions.generalized" class="ltx_indexentry"> <span class="ltx_indexphrase">generalized</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#v" title="§2.1(v) Generalized Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(v)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.hyperasymptoticexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">hyperasymptotic expansions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.11#v" title="§2.11(v) Exponentially-Improved Expansions (continued) ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(v)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.improvedaccuracyvianumericaltransformations" class="ltx_indexentry"> <span class="ltx_indexphrase">improved accuracy via numerical transformations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><span class="ltx_text ltx_font_rangeend"><a href=".././2.11#vi" title="§2.11(vi) Direct Numerical Transformations ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(vi)</span></a></span>—<span class="ltx_text ltx_font_rangestart"><a href=".././2.11#vi" title="§2.11(vi) Direct Numerical Transformations ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(vi)</span></a></span></span></span> </li> <li id="asymptoticapproximationsandexpansions.integration" class="ltx_indexentry"> <span class="ltx_indexphrase">integration</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#iii" title="§2.1(iii) Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(iii)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.logarithmsof" class="ltx_indexentry"> <span class="ltx_indexphrase">logarithms of</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#iii" title="§2.1(iii) Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(iii)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.null" class="ltx_indexentry"> <span class="ltx_indexphrase">null</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#iii.p6" title="§2.1(iii) Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(iii)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.numericaluseof" class="ltx_indexentry"> <span class="ltx_indexphrase">numerical use of</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><span class="ltx_text ltx_font_rangeend"><a href=".././2.11#i" title="§2.11(i) Numerical Use of Asymptotic Expansions ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(i)</span></a></span>—<span class="ltx_text ltx_font_rangestart"><a href=".././2.11#vi" title="§2.11(vi) Direct Numerical Transformations ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(vi)</span></a></span></span></span> </li> <li id="asymptoticapproximationsandexpansions.Poincaretype" class="ltx_indexentry"> <span class="ltx_indexphrase">Poincaré type</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#iii.p1" title="§2.1(iii) Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(iii)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.powersof" class="ltx_indexentry"> <span class="ltx_indexphrase">powers of</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#iii" title="§2.1(iii) Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(iii)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.reexpansionofremainderterms" class="ltx_indexentry"> <span class="ltx_indexphrase">re-expansion of remainder terms</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.11#iii" title="§2.11(iii) Exponentially-Improved Expansions ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(iii)</span></a>—<a href=".././2.11#vi" title="§2.11(vi) Direct Numerical Transformations ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(vi)</span></a></span></span> </li> <li id="asymptoticapproximationsandexpansions.reversionof" class="ltx_indexentry"> <span class="ltx_indexphrase">reversion of</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.2#Px1" title="Example ‣ §2.2 Transcendental Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.2</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.Stokesphenomenon" class="ltx_indexentry"> <span class="ltx_indexphrase">Stokes phenomenon</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.11#iv" title="§2.11(iv) Stokes Phenomenon ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(iv)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.substitutionof" class="ltx_indexentry"> <span class="ltx_indexphrase">substitution of</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#iii" title="§2.1(iii) Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(iii)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.uniform" class="ltx_indexentry"> <span class="ltx_indexphrase">uniform</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#iv" title="§2.1(iv) Uniform Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(iv)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.uniqueness" class="ltx_indexentry"> <span class="ltx_indexphrase">uniqueness</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#iii" title="§2.1(iii) Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(iii)</span></a></span> </li> <li id="asymptoticapproximationsandexpansions.viaconnectionformulas" class="ltx_indexentry"> <span class="ltx_indexphrase">via connection formulas</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.11#ii" title="§2.11(ii) Connection Formulas ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(ii)</span></a></span> </li> </ul> </li> <li id="asymptoticapproximationsofintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic approximations of integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.2#Px1" title="Example ‣ §2.2 Transcendental Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.2</span></a>—<a href=".././2.6#iv" title="§2.6(iv) Regularization ‣ §2.6 Distributional Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.6(iv)</span></a></span></span> <ul class="ltx_indexlist"> <li id="asymptoticapproximationsofintegrals.Bleisteinsmethod" class="ltx_indexentry"> <span class="ltx_indexphrase">Bleistein’s method</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.3#v" title="§2.3(v) Coalescing Peak and Endpoint: Bleistein’s Method ‣ §2.3 Integrals of a Real Variable ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.3(v)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.ChesterFriedmanUrsellmethod" class="ltx_indexentry"> <span class="ltx_indexphrase">Chester–Friedman–Ursell method</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.4#v" title="§2.4(v) Coalescing Saddle Points: Chester, Friedman, and Ursell’s Method ‣ §2.4 Contour Integrals ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.4(v)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.coalescingcriticalpoints" class="ltx_indexentry"> <span class="ltx_indexphrase">coalescing critical points</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.4#v" title="§2.4(v) Coalescing Saddle Points: Chester, Friedman, and Ursell’s Method ‣ §2.4 Contour Integrals ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.4(v)</span></a>, <a href=".././2.4#vi" title="§2.4(vi) Other Coalescing Critical Points ‣ §2.4 Contour Integrals ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.4(vi)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.coalescingpeakandendpoint" class="ltx_indexentry"> <span class="ltx_indexphrase">coalescing peak and endpoint</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.3#v" title="§2.3(v) Coalescing Peak and Endpoint: Bleistein’s Method ‣ §2.3 Integrals of a Real Variable ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.3(v)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.coalescingsaddlepoints" class="ltx_indexentry"> <span class="ltx_indexphrase">coalescing saddle points</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.4#v" title="§2.4(v) Coalescing Saddle Points: Chester, Friedman, and Ursell’s Method ‣ §2.4 Contour Integrals ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.4(v)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.distributionalmethods" class="ltx_indexentry"> <span class="ltx_indexphrase">distributional methods</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.6" title="§2.6 Distributional Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.6</span></a>—<a href=".././2.6#iv" title="§2.6(iv) Regularization ‣ §2.6 Distributional Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.6(iv)</span></a></span></span> </li> <li id="asymptoticapproximationsofintegrals.Fourierintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">Fourier integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.3#i.p3" title="§2.3(i) Integration by Parts ‣ §2.3 Integrals of a Real Variable ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.3(i)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.Haarsmethod" class="ltx_indexentry"> <span class="ltx_indexphrase">Haar’s method</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.4#ii" title="§2.4(ii) Inverse Laplace Transforms ‣ §2.4 Contour Integrals ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.4(ii)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.integrationbyparts" class="ltx_indexentry"> <span class="ltx_indexphrase">integration by parts</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.3#i" title="§2.3(i) Integration by Parts ‣ §2.3 Integrals of a Real Variable ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.3(i)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.inverseLaplacetransforms" class="ltx_indexentry"> <span class="ltx_indexphrase">inverse Laplace transforms</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.4#i" title="§2.4(i) Watson’s Lemma ‣ §2.4 Contour Integrals ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.4(i)</span></a>—<a href=".././2.4#ii" title="§2.4(ii) Inverse Laplace Transforms ‣ §2.4 Contour Integrals ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.4(ii)</span></a></span></span> </li> <li id="asymptoticapproximationsofintegrals.Laplacetransforms" class="ltx_indexentry"> <span class="ltx_indexphrase">Laplace transforms</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.3#i.p1" title="§2.3(i) Integration by Parts ‣ §2.3 Integrals of a Real Variable ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.3(i)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.Laplacesmethod" class="ltx_indexentry"> <span class="ltx_indexphrase">Laplace’s method</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><span class="ltx_text ltx_font_rangeend"><a href=".././2.3#iii" title="§2.3(iii) Laplace’s Method ‣ §2.3 Integrals of a Real Variable ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.3(iii)</span></a></span>—<a href=".././2.4#iii" title="§2.4(iii) Laplace’s Method ‣ §2.4 Contour Integrals ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.4(iii)</span></a></span></span> </li> <li id="asymptoticapproximationsofintegrals.Mellintransform" class="ltx_indexentry"> <span class="ltx_indexphrase">Mellin transform</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.3#vi" title="§2.3(vi) Asymptotics of Mellin Transforms ‣ §2.3 Integrals of a Real Variable ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.3(vi)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.Mellintransformmethods" class="ltx_indexentry"> <span class="ltx_indexphrase">Mellin transform methods</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.5" title="§2.5 Mellin Transform Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.5</span></a></span> <ul class="ltx_indexlist"> <li id="asymptoticapproximationsofintegrals.Mellintransformmethods.extensions" class="ltx_indexentry"> <span class="ltx_indexphrase">extensions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><span class="ltx_text ltx_font_rangeend"><a href=".././2.5#ii" title="§2.5(ii) Extensions ‣ §2.5 Mellin Transform Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.5(ii)</span></a></span>—<span class="ltx_text ltx_font_rangestart"><a href=".././2.5#ii" title="§2.5(ii) Extensions ‣ §2.5 Mellin Transform Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.5(ii)</span></a></span></span></span> </li> </ul> </li> <li id="asymptoticapproximationsofintegrals.methodofstationaryphase" class="ltx_indexentry"> <span class="ltx_indexphrase">method of stationary phase</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.3#iv" title="§2.3(iv) Method of Stationary Phase ‣ §2.3 Integrals of a Real Variable ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.3(iv)</span></a></span> <ul class="ltx_indexlist"> <li id="asymptoticapproximationsofintegrals.methodofstationaryphase.extensions" class="ltx_indexentry"> <span class="ltx_indexphrase">extensions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.3#iv.p5" title="§2.3(iv) Method of Stationary Phase ‣ §2.3 Integrals of a Real Variable ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.3(iv)</span></a></span> </li> </ul> </li> <li id="asymptoticapproximationsofintegrals.methodofsteepestdescents" class="ltx_indexentry"> <span class="ltx_indexphrase">method of steepest descents</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.4#iv.p2" title="§2.4(iv) Saddle Points ‣ §2.4 Contour Integrals ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.4(iv)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.multidimensionalintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">multidimensional integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.5#ii" title="§2.5(ii) Extensions ‣ §2.5 Mellin Transform Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.5(ii)</span></a></span> </li> <li id="asymptoticapproximationsofintegrals.Stieltjestransforms" class="ltx_indexentry"> <span class="ltx_indexphrase">Stieltjes transforms</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><span class="ltx_text ltx_font_rangeend"><a href=".././2.6#ii" title="§2.6(ii) Stieltjes Transform ‣ §2.6 Distributional Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.6(ii)</span></a></span>—<span class="ltx_text ltx_font_rangestart"><a href=".././2.6#ii" title="§2.6(ii) Stieltjes Transform ‣ §2.6 Distributional Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.6(ii)</span></a></span></span></span> <ul class="ltx_indexlist"> <li id="asymptoticapproximationsofintegrals.Stieltjestransforms.generalized" class="ltx_indexentry"> <span class="ltx_indexphrase">generalized</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.6#ii.p7" title="§2.6(ii) Stieltjes Transform ‣ §2.6 Distributional Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.6(ii)</span></a></span> </li> </ul> </li> <li id="asymptoticapproximationsofintegrals.Watsonslemma" class="ltx_indexentry"> <span class="ltx_indexphrase">Watson’s lemma</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.3#ii" title="§2.3(ii) Watson’s Lemma ‣ §2.3 Integrals of a Real Variable ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.3(ii)</span></a>, <a href=".././2.4#i" title="§2.4(i) Watson’s Lemma ‣ §2.4 Contour Integrals ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.4(i)</span></a></span> <ul class="ltx_indexlist"> <li id="asymptoticapproximationsofintegrals.Watsonslemma.generalized" class="ltx_indexentry"> <span class="ltx_indexphrase">generalized</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.3#ii" title="§2.3(ii) Watson’s Lemma ‣ §2.3 Integrals of a Real Variable ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.3(ii)</span></a></span> </li> </ul> </li> </ul> </li> <li id="asymptoticapproximationsofsumsandsequences" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic approximations of sums and sequences</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.10" title="§2.10 Sums and Sequences ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.10</span></a>—<a href=".././2.10#Px4" title="Example ‣ §2.10(iv) Taylor and Laurent Coefficients: Darboux’s Method ‣ §2.10 Sums and Sequences ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.10(iv)</span></a></span></span> <ul class="ltx_indexlist"> <li id="asymptoticapproximationsofsumsandsequences.AbelPlanaformula" class="ltx_indexentry"> <span class="ltx_indexphrase">Abel–Plana formula</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><span class="ltx_text ltx_font_rangeend"><a href=".././2.10#i.p2" title="§2.10(i) Euler–Maclaurin Formula ‣ §2.10 Sums and Sequences ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.10(i)</span></a></span>—<span class="ltx_text ltx_font_rangestart"><a href=".././2.10#i.p2" title="§2.10(i) Euler–Maclaurin Formula ‣ §2.10 Sums and Sequences ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.10(i)</span></a></span></span></span> </li> <li id="asymptoticapproximationsofsumsandsequences.Darbouxsmethod" class="ltx_indexentry"> <span class="ltx_indexphrase">Darboux’s method</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.10#iv" title="§2.10(iv) Taylor and Laurent Coefficients: Darboux’s Method ‣ §2.10 Sums and Sequences ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.10(iv)</span></a>—<a href=".././2.10#Px4" title="Example ‣ §2.10(iv) Taylor and Laurent Coefficients: Darboux’s Method ‣ §2.10 Sums and Sequences ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.10(iv)</span></a></span></span> </li> <li id="asymptoticapproximationsofsumsandsequences.entirefunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">entire functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.10#iii" title="§2.10(iii) Asymptotic Expansions of Entire Functions ‣ §2.10 Sums and Sequences ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.10(iii)</span></a></span> </li> <li id="asymptoticapproximationsofsumsandsequences.EulerMaclaurinformula" class="ltx_indexentry"> <span class="ltx_indexphrase">Euler–Maclaurin formula</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.10#i" title="§2.10(i) Euler–Maclaurin Formula ‣ §2.10 Sums and Sequences ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.10(i)</span></a>—<a href=".././2.10#Px1.p5" title="Example ‣ §2.10(i) Euler–Maclaurin Formula ‣ §2.10 Sums and Sequences ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.10(i)</span></a></span></span> </li> <li id="asymptoticapproximationsofsumsandsequences.summationbyparts" class="ltx_indexentry"> <span class="ltx_indexphrase">summation by parts</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.10#ii" title="§2.10(ii) Summation by Parts ‣ §2.10 Sums and Sequences ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.10(ii)</span></a></span> </li> </ul> </li> <li id="asymptoticscaleorsequence" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic scale or sequence</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.1#v.p1" title="§2.1(v) Generalized Asymptotic Expansions ‣ §2.1 Definitions and Elementary Properties ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.1(v)</span></a></span> </li> <li id="asymptoticsolutionsofdifferenceequations" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic solutions of difference equations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.9" title="§2.9 Difference Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.9</span></a>—<a href=".././2.9#iii.p4" title="§2.9(iii) Other Approximations ‣ §2.9 Difference Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.9(iii)</span></a></span></span> <ul class="ltx_indexlist"> <li id="asymptoticsolutionsofdifferenceequations.characteristicequation" class="ltx_indexentry"> <span class="ltx_indexphrase">characteristic equation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.9#i.p2" title="§2.9(i) Distinct Characteristic Values ‣ §2.9 Difference Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.9(i)</span></a></span> </li> <li id="asymptoticsolutionsofdifferenceequations.coincidentcharacteristicvalues" class="ltx_indexentry"> <span class="ltx_indexphrase">coincident characteristic values</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.9#ii" title="§2.9(ii) Coincident Characteristic Values ‣ §2.9 Difference Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.9(ii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferenceequations.LiouvilleGreenorWKBJtypeapproximations" class="ltx_indexentry"> <span class="ltx_indexphrase">Liouville–Green (or WKBJ) type approximations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.9#iii" title="§2.9(iii) Other Approximations ‣ §2.9 Difference Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.9(iii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferenceequations.transitionpoints" class="ltx_indexentry"> <span class="ltx_indexphrase">transition points</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.9#iii.p2" title="§2.9(iii) Other Approximations ‣ §2.9 Difference Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.9(iii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferenceequations.turningpoints" class="ltx_indexentry"> <span class="ltx_indexphrase">turning points</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.9#iii.p2" title="§2.9(iii) Other Approximations ‣ §2.9 Difference Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.9(iii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferenceequations.withaparameter" class="ltx_indexentry"> <span class="ltx_indexphrase">with a parameter</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.9#ii" title="§2.9(ii) Coincident Characteristic Values ‣ §2.9 Difference Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.9(ii)</span></a>—<a href=".././2.9#iii.p4" title="§2.9(iii) Other Approximations ‣ §2.9 Difference Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.9(iii)</span></a></span></span> </li> </ul> </li> <li id="asymptoticsolutionsofdifferentialequations" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic solutions of differential equations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.6#iv" title="§2.6(iv) Regularization ‣ §2.6 Distributional Methods ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.6(iv)</span></a>—<a href=".././2.8#vi.p8" title="§2.8(vi) Coalescing Transition Points ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(vi)</span></a></span></span> <ul class="ltx_indexlist"> <li id="asymptoticsolutionsofdifferentialequations.characteristicequation" class="ltx_indexentry"> <span class="ltx_indexphrase">characteristic equation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.7#ii.p2" title="§2.7(ii) Irregular Singularities of Rank 1 ‣ §2.7 Differential Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.7(ii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.coincidentcharacteristicvalues" class="ltx_indexentry"> <span class="ltx_indexphrase">coincident characteristic values</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.7#ii" title="§2.7(ii) Irregular Singularities of Rank 1 ‣ §2.7 Differential Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.7(ii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.errorcontrolfunction" class="ltx_indexentry"> <span class="ltx_indexphrase">error-control function</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.7#Px1.p1" title="Liouville–Green Approximation Theorem ‣ §2.7(iii) Liouville–Green (WKBJ) Approximation ‣ §2.7 Differential Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.7(iii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.Fabrystransformation" class="ltx_indexentry"> <span class="ltx_indexphrase">Fabry’s transformation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.7#ii" title="§2.7(ii) Irregular Singularities of Rank 1 ‣ §2.7 Differential Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.7(ii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.irregularsingularitiesofrank1" class="ltx_indexentry"> <span class="ltx_indexphrase">irregular singularities of rank 1</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.7#ii" title="§2.7(ii) Irregular Singularities of Rank 1 ‣ §2.7 Differential Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.7(ii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.LiouvilleGreenor" class="ltx_indexentry"> <span class="ltx_indexphrase">Liouville–Green (or WKBJ) approximations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.7#iii" title="§2.7(iii) Liouville–Green (WKBJ) Approximation ‣ §2.7 Differential Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.7(iii)</span></a>—<a href=".././2.7#Px2" title="Example ‣ §2.7(iii) Liouville–Green (WKBJ) Approximation ‣ §2.7 Differential Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.7(iii)</span></a></span></span> </li> <li id="asymptoticsolutionsofdifferentialequations.LiouvilleGreenapproximationtheorem" class="ltx_indexentry"> <span class="ltx_indexphrase">Liouville–Green approximation theorem</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.7#iii" title="§2.7(iii) Liouville–Green (WKBJ) Approximation ‣ §2.7 Differential Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.7(iii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.numericallysatisfactorysolutions" class="ltx_indexentry"> <span class="ltx_indexphrase">numerically satisfactory solutions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.7#iv" title="§2.7(iv) Numerically Satisfactory Solutions ‣ §2.7 Differential Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.7(iv)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.resurgence" class="ltx_indexentry"> <span class="ltx_indexphrase">resurgence</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.11#v" title="§2.11(v) Exponentially-Improved Expansions (continued) ‣ §2.11 Remainder Terms; Stokes Phenomenon ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.11(v)</span></a>, <a href=".././2.7#ii.p5" title="§2.7(ii) Irregular Singularities of Rank 1 ‣ §2.7 Differential Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.7(ii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.withaparameter" class="ltx_indexentry"> <span class="ltx_indexphrase">with a parameter</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><a href=".././2.8" title="§2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8</span></a>—<a href=".././2.8#vi.p8" title="§2.8(vi) Coalescing Transition Points ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(vi)</span></a></span></span> <ul class="ltx_indexlist"> <li id="asymptoticsolutionsofdifferentialequations.withaparameter.classificationofcases" class="ltx_indexentry"> <span class="ltx_indexphrase">classification of cases</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.8#i" title="§2.8(i) Classification of Cases ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(i)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.withaparameter.coalescingtransitionpoints" class="ltx_indexentry"> <span class="ltx_indexphrase">coalescing transition points</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.8#vi" title="§2.8(vi) Coalescing Transition Points ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(vi)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.withaparameter.connectionformulasacrosstransitionpoints" class="ltx_indexentry"> <span class="ltx_indexphrase">connection formulas across transition points</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.8#v" title="§2.8(v) Multiple and Fractional Turning Points ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(v)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.withaparameter.intermsofAiryfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">in terms of Airy functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.8#iii" title="§2.8(iii) Case II: Simple Turning Point ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(iii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.withaparameter.intermsofBesselfunctionsoffixedorder" class="ltx_indexentry"> <span class="ltx_indexphrase">in terms of Bessel functions of fixed order</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><span class="ltx_text"><span class="ltx_text ltx_font_rangeend"><a href=".././2.8#iv" title="§2.8(iv) Case III: Simple Pole ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(iv)</span></a></span>—<span class="ltx_text ltx_font_rangestart"><a href=".././2.8#iv" title="§2.8(iv) Case III: Simple Pole ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(iv)</span></a></span></span></span> </li> <li id="asymptoticsolutionsofdifferentialequations.withaparameter.intermsofBesselfunctionsofvariableorder" class="ltx_indexentry"> <span class="ltx_indexphrase">in terms of Bessel functions of variable order</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.8#vi" title="§2.8(vi) Coalescing Transition Points ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(vi)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.withaparameter.intermsofelementaryfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">in terms of elementary functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.8#ii.p1" title="§2.8(ii) Case I: No Transition Points ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(ii)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.withaparameter.Liouvilletransformation" class="ltx_indexentry"> <span class="ltx_indexphrase">Liouville transformation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.8#i" title="§2.8(i) Classification of Cases ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(i)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.withaparameter.transitionpoints" class="ltx_indexentry"> <span class="ltx_indexphrase">transition points</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.8#i.p1" title="§2.8(i) Classification of Cases ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(i)</span></a></span> </li> <li id="asymptoticsolutionsofdifferentialequations.withaparameter.turningpoints" class="ltx_indexentry"> <span class="ltx_indexphrase">turning points</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.8#i.p1" title="§2.8(i) Classification of Cases ‣ §2.8 Differential Equations with a Parameter ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.8(i)</span></a></span> </li> </ul> </li> </ul> </li> <li id="asymptoticsolutionsoftranscendentalequations" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic solutions of transcendental equations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.2" title="§2.2 Transcendental Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.2</span></a></span> <ul class="ltx_indexlist"> <li id="asymptoticsolutionsoftranscendentalequations.Lagrangesformula" class="ltx_indexentry"> <span class="ltx_indexphrase">Lagrange’s formula</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././2.2#Px1.p2" title="Example ‣ §2.2 Transcendental Equations ‣ Areas ‣ Chapter 2 Asymptotic Approximations" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§2.2</span></a></span> </li> </ul> </li> <li id="atomicphotoionization" class="ltx_indexentry"> <span class="ltx_indexphrase">atomic photo-ionization</span> <ul class="ltx_indexlist"> <li id="atomicphotoionization.Coulombfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Coulomb functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././33.22#Px1" title="𝗄 Scaling ‣ §33.22(ii) Definitions of Variables ‣ §33.22 Particle Scattering and Atomic and Molecular Spectra ‣ Physical Applications ‣ Chapter 33 Coulomb Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§33.22(ii)</span></a></span> </li> </ul> </li> <li id="atomicphysics" class="ltx_indexentry"> <span class="ltx_indexphrase">atomic physics</span> <ul class="ltx_indexlist"> <li id="atomicphysics.Coulombfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Coulomb functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././33.22#Px3" title="i⁢𝗄 Scaling ‣ §33.22(ii) Definitions of Variables ‣ §33.22 Particle Scattering and Atomic and Molecular Spectra ‣ Physical Applications ‣ Chapter 33 Coulomb Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§33.22(ii)</span></a></span> </li> <li id="atomicphysics.errorfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">error functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././7.21#p3" title="§7.21 Physical Applications ‣ Applications ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§7.21</span></a></span> </li> </ul> </li> <li id="atomicspectra" class="ltx_indexentry"> <span class="ltx_indexphrase">atomic spectra</span> <ul class="ltx_indexlist"> <li id="atomicspectra.Coulombfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Coulomb functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././33.22#Px1" title="𝗄 Scaling ‣ §33.22(ii) Definitions of Variables ‣ §33.22 Particle Scattering and Atomic and Molecular Spectra ‣ Physical Applications ‣ Chapter 33 Coulomb Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§33.22(ii)</span></a></span> </li> </ul> </li> <li id="atomicspectroscopy" class="ltx_indexentry"> <span class="ltx_indexphrase">atomic spectroscopy</span> <ul class="ltx_indexlist"> <li id="atomicspectroscopy.3j6j9jsymbols" class="ltx_indexentry"> <span class="ltx_indexphrase"><math class="ltx_Math" altimg="m2.png" altimg-height="21px" altimg-valign="-6px" altimg-width="83px" alttext="\mathit{3j},\mathit{6j},\mathit{9j}" display="inline"><mrow><mrow><mn class="ltx_mathvariant_italic" href=".././34.2#E4" mathvariant="italic" title="3⁢𝑗 symbol">3</mn><mo href=".././34.2#E4" title="3⁢𝑗 symbol">⁢</mo><mi href=".././34.2#E4" title="3⁢𝑗 symbol">j</mi></mrow><mo>,</mo><mrow><mn class="ltx_mathvariant_italic" href=".././34.4#E1" mathvariant="italic" title="6⁢𝑗 symbol">6</mn><mo href=".././34.4#E1" title="6⁢𝑗 symbol">⁢</mo><mi href=".././34.4#E1" title="6⁢𝑗 symbol">j</mi></mrow><mo>,</mo><mrow><mn class="ltx_mathvariant_italic" href=".././34.6#E1" mathvariant="italic" title="9⁢𝑗 symbol">9</mn><mo href=".././34.6#E1" title="9⁢𝑗 symbol">⁢</mo><mi href=".././34.6#E1" title="9⁢𝑗 symbol">j</mi></mrow></mrow></math> symbols</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././34.12" title="§34.12 Physical Applications ‣ Applications ‣ Chapter 34 3⁢𝑗,6⁢𝑗,9⁢𝑗 Symbols" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§34.12</span></a></span> </li> </ul> </li> <li id="attractivepotentials" class="ltx_indexentry"> <span class="ltx_indexphrase">attractive potentials</span> <ul class="ltx_indexlist"> <li id="attractivepotentials.Coulombfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">Coulomb functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././33.22#Px1.tab1" title="𝗄 Scaling ‣ §33.22(ii) Definitions of Variables ‣ §33.22 Particle Scattering and Atomic and Molecular Spectra ‣ Physical Applications ‣ Chapter 33 Coulomb Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§33.22(ii)</span></a>, <a href=".././33.22#Px2.tab1" title="𝑍 Scaling ‣ §33.22(ii) Definitions of Variables ‣ §33.22 Particle Scattering and Atomic and Molecular Spectra ‣ Physical Applications ‣ Chapter 33 Coulomb Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§33.22(ii)</span></a>, <a href=".././33.22#Px3.tab1" title="i⁢𝗄 Scaling ‣ §33.22(ii) Definitions of Variables ‣ §33.22 Particle Scattering and Atomic and Molecular Spectra ‣ Physical Applications ‣ Chapter 33 Coulomb Functions" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§33.22(ii)</span></a></span> </li> </ul> </li> <li id="auxiliaryfunctionsforFresnelintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">auxiliary functions for Fresnel integrals</span> <ul class="ltx_indexlist"> <li id="auxiliaryfunctionsforFresnelintegrals.approximations" class="ltx_indexentry"> <span class="ltx_indexphrase">approximations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././7.24#i" title="§7.24(i) Approximations in Terms of Elementary Functions ‣ §7.24 Approximations ‣ Computation ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§7.24(i)</span></a></span> </li> <li id="auxiliaryfunctionsforFresnelintegrals.asymptoticexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic expansions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././7.12#ii" title="§7.12(ii) Fresnel Integrals ‣ §7.12 Asymptotic Expansions ‣ Properties ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§7.12(ii)</span></a></span> </li> <li id="auxiliaryfunctionsforFresnelintegrals.computation" class="ltx_indexentry"> <span class="ltx_indexphrase">computation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././7.22#i" title="§7.22(i) Main Functions ‣ §7.22 Methods of Computation ‣ Computation ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§7.22(i)</span></a></span> </li> <li id="auxiliaryfunctionsforFresnelintegrals.definitions" class="ltx_indexentry"> <span class="ltx_indexphrase">definitions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././7.2#iv" title="§7.2(iv) Auxiliary Functions ‣ §7.2 Definitions ‣ Properties ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§7.2(iv)</span></a></span> </li> <li id="auxiliaryfunctionsforFresnelintegrals.derivatives" class="ltx_indexentry"> <span class="ltx_indexphrase">derivatives</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././7.10#p1" title="§7.10 Derivatives ‣ Properties ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§7.10</span></a></span> </li> <li id="auxiliaryfunctionsforFresnelintegrals.integralrepresentations" class="ltx_indexentry"> <span class="ltx_indexphrase">integral representations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././7.7#ii" title="§7.7(ii) Auxiliary Functions ‣ §7.7 Integral Representations ‣ Properties ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§7.7(ii)</span></a></span> <ul class="ltx_indexlist"> <li id="auxiliaryfunctionsforFresnelintegrals.integralrepresentations.MellinBarnesintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">Mellin–Barnes integrals</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././7.7#Px1" title="Mellin–Barnes Integrals ‣ §7.7(ii) Auxiliary Functions ‣ §7.7 Integral Representations ‣ Properties ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§7.7(ii)</span></a></span> </li> </ul> </li> <li id="auxiliaryfunctionsforFresnelintegrals.symmetry" class="ltx_indexentry"> <span class="ltx_indexphrase">symmetry</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././7.4#p1" title="§7.4 Symmetry ‣ Properties ‣ Chapter 7 Error Functions, Dawson’s and Fresnel Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§7.4</span></a></span> </li> </ul> </li> <li id="auxiliaryfunctionsforsineandcosineintegrals" class="ltx_indexentry"> <span class="ltx_indexphrase">auxiliary functions for sine and cosine integrals</span> <ul class="ltx_indexlist"> <li id="auxiliaryfunctionsforsineandcosineintegrals.analyticcontinuation" class="ltx_indexentry"> <span class="ltx_indexphrase">analytic continuation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././6.4#p2" title="§6.4 Analytic Continuation ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§6.4</span></a></span> </li> <li id="auxiliaryfunctionsforsineandcosineintegrals.approximations" class="ltx_indexentry"> <span class="ltx_indexphrase">approximations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././6.20#I1.i4.p1" title="In §6.20(i) Approximations in Terms of Elementary Functions ‣ §6.20 Approximations ‣ Computation ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">4th item</span></a></span> </li> <li id="auxiliaryfunctionsforsineandcosineintegrals.asymptoticexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">asymptotic expansions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././6.12#ii.p1" title="§6.12(ii) Sine and Cosine Integrals ‣ §6.12 Asymptotic Expansions ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§6.12(ii)</span></a></span> <ul class="ltx_indexlist"> <li id="auxiliaryfunctionsforsineandcosineintegrals.asymptoticexpansions.exponentiallyimproved" class="ltx_indexentry"> <span class="ltx_indexphrase">exponentially-improved</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././6.12#ii.p3" title="§6.12(ii) Sine and Cosine Integrals ‣ §6.12 Asymptotic Expansions ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§6.12(ii)</span></a></span> </li> </ul> </li> <li id="auxiliaryfunctionsforsineandcosineintegrals.Chebyshevseriesexpansions" class="ltx_indexentry"> <span class="ltx_indexphrase">Chebyshev-series expansions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././6.20#I2.i5.p1" title="In §6.20(ii) Expansions in Chebyshev Series ‣ §6.20 Approximations ‣ Computation ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">5th item</span></a></span> </li> <li id="auxiliaryfunctionsforsineandcosineintegrals.computation" class="ltx_indexentry"> <span class="ltx_indexphrase">computation</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././6.18#ii" title="§6.18(ii) Auxiliary Functions ‣ §6.18 Methods of Computation ‣ Computation ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§6.18(ii)</span></a></span> </li> <li id="auxiliaryfunctionsforsineandcosineintegrals.definition" class="ltx_indexentry"> <span class="ltx_indexphrase">definition</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././6.2#iii" title="§6.2(iii) Auxiliary Functions ‣ §6.2 Definitions and Interrelations ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§6.2(iii)</span></a></span> </li> <li id="auxiliaryfunctionsforsineandcosineintegrals.integralrepresentations" class="ltx_indexentry"> <span class="ltx_indexphrase">integral representations</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././6.7#iii" title="§6.7(iii) Auxiliary Functions ‣ §6.7 Integral Representations ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§6.7(iii)</span></a></span> </li> <li id="auxiliaryfunctionsforsineandcosineintegrals.principalvalues" class="ltx_indexentry"> <span class="ltx_indexphrase">principal values</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././6.4#p3" title="§6.4 Analytic Continuation ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§6.4</span></a></span> </li> <li id="auxiliaryfunctionsforsineandcosineintegrals.relationtoconfluenthypergeometricfunctions" class="ltx_indexentry"> <span class="ltx_indexphrase">relation to confluent hypergeometric functions</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././6.11#Px2.p1" title="Confluent Hypergeometric Function ‣ §6.11 Relations to Other Functions ‣ Properties ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§6.11</span></a></span> </li> <li id="auxiliaryfunctionsforsineandcosineintegrals.tables" class="ltx_indexentry"> <span class="ltx_indexphrase">tables</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././6.19#ii" title="§6.19(ii) Real Variables ‣ §6.19 Tables ‣ Computation ‣ Chapter 6 Exponential, Logarithmic, Sine, and Cosine Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§6.19(ii)</span></a></span> </li> </ul> </li> <li id="axiallysymmetricpotentialtheory" class="ltx_indexentry"> <span class="ltx_indexphrase">axially symmetric potential theory</span><span class="ltx_indexrefs"><span class="ltx_text"> </span><a href=".././19.18#ii.p4" title="§19.18(ii) Differential Equations ‣ §19.18 Derivatives and Differential Equations ‣ Symmetric Integrals ‣ Chapter 19 Elliptic Integrals" class="ltx_ref"><span class="ltx_text ltx_ref_tag">§19.18(ii)</span></a></span> </li> </ul> </div> </div> </section> </div> <div class="ltx_page_footer"> <div class="ltx_siblings"> <a href=".././bib/Z" title="In Bibliography" class="ltx_ref" rel="prev"><span class="ltx_text ltx_ref_title">Bibliography Z</span></a><a href=".././idx/B" title="In Index" class="ltx_ref" rel="next"><span class="ltx_text ltx_ref_title">Index B</span></a> </div> <div class="ltx_footer_links ltx_centering"> <a href=".././about/notices">© 2010–2025 NIST</a> / <a href=".././about/notices#S2">Disclaimer</a> / <a href="mailto:DLMF-feedback@nist.gov">Feedback</a>; Version 1.2.4; Release date 2025-03-15.</div> <span id="pagesettings"></span> <div class="ltx_nist_logo"><a href="http://www.nist.gov/"><img src=".././style/nistidc.png" width="500" alt="NIST"></a></div> <div class="ltx_nist_links ltx_align_right"> <a href="https://www.nist.gov/privacy-policy">Site Privacy</a> <a href="https://www.nist.gov/oism/accessibility">Accessibility</a> <a href="https://www.nist.gov/privacy">Privacy Program</a> <a href="https://www.nist.gov/oism/copyrights">Copyrights</a> <a href="https://www.commerce.gov/vulnerability-disclosure-policy">Vulnerability Disclosure</a> <a href="https://www.nist.gov/no-fear-act-policy">No Fear Act Policy</a> <a href="https://www.nist.gov/foia">FOIA</a> <a href="https://www.nist.gov/environmental-policy-statement">Environmental Policy</a> <a href="https://www.nist.gov/summary-report-scientific-integrity">Scientific Integrity</a> <a href="https://www.nist.gov/nist-information-quality-standards">Information Quality Standards</a> <a href="https://www.commerce.gov/">Commerce.gov</a> <a href="http://www.science.gov/">Science.gov</a> <a href="http://www.usa.gov/">USA.gov</a> </div> </div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10