CINXE.COM
Search results for: passive seismic
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: passive seismic</title> <meta name="description" content="Search results for: passive seismic"> <meta name="keywords" content="passive seismic"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="passive seismic" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="passive seismic"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1608</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: passive seismic</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1608</span> Passive Seismic in Hydrogeological Prospecting: The Case Study from Hard Rock and Alluvium Plain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prarabdh%20Tiwari">Prarabdh Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vidya%20Sagar"> M. Vidya Sagar</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bhima%20Raju"> K. Bhima Raju</a>, <a href="https://publications.waset.org/abstracts/search?q=Joy%20Choudhury"> Joy Choudhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Subash%20Chandra"> Subash Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Nagaiah"> E. Nagaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakeel%20Ahmed"> Shakeel Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Passive seismic, a wavefield interferometric imaging, low cost and rapid tool for subsurface investigation is used for various geotechnical purposes such as hydrocarbon exploration, seismic microzonation, etc. With the recent advancement, its application has also been extended to groundwater exploration by means of finding the bedrock depth. Council of Scientific & Industrial Research (CSIR)-National Geophysical Research Institute (NGRI) has experimented passive seismic studies along with electrical resistivity tomography for groundwater in hard rock (Choutuppal, Hyderabad). Passive Seismic with Electrical Resistivity (ERT) can give more clear 2-D subsurface image for Groundwater Exploration in Hard Rock area. Passive seismic data were collected using a Tromino, a three-component broadband seismometer, to measure background ambient noise and processed using GRILLA software. The passive seismic results are found corroborating with ERT (Electrical Resistivity Tomography) results. For data acquisition purpose, Tromino was kept over 30 locations consist recording of 20 minutes at each station. These location shows strong resonance frequency peak, suggesting good impedance contrast between different subsurface layers (ex. Mica rich Laminated layer, Weathered layer, granite, etc.) This paper presents signature of passive seismic for hard rock terrain. It has been found that passive seismic has potential application for formation characterization and can be used as an alternative tool for delineating litho-stratification in an urban condition where electrical and electromagnetic tools cannot be applied due to high cultural noise. In addition to its general application in combination with electrical and electromagnetic methods can improve the interpreted subsurface model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20seismic" title="passive seismic">passive seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=resonant%20frequency" title=" resonant frequency"> resonant frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=Tromino" title=" Tromino"> Tromino</a>, <a href="https://publications.waset.org/abstracts/search?q=GRILLA" title=" GRILLA"> GRILLA</a> </p> <a href="https://publications.waset.org/abstracts/94110/passive-seismic-in-hydrogeological-prospecting-the-case-study-from-hard-rock-and-alluvium-plain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1607</span> Application of Seismic Isolators in Kutahya City Hospital Project Utilizing Double Friction Pendulum Type Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Yamanturk">Kaan Yamanturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Cihan%20Dogruoz"> Cihan Dogruoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake" title="maximum considered earthquake">maximum considered earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20resisting%20frame" title=" moment resisting frame"> moment resisting frame</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20isolator" title=" seismic isolator"> seismic isolator</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a> </p> <a href="https://publications.waset.org/abstracts/109879/application-of-seismic-isolators-in-kutahya-city-hospital-project-utilizing-double-friction-pendulum-type-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1606</span> Seismic Response Control of 20-Storey Benchmark Building Using True Negative Stiffness Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asim%20Qureshi">Asim Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Jangid"> R. S. Jangid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic response control of structures is generally achieved by using control devices which either dissipate the input energy or modify the dynamic properties of structure.In this paper, the response of a 20-storey benchmark building supplemented by viscous dampers and Negative Stiffness Device (NSD) is assessed by numerical simulations using the Newmark-beta method. True negative stiffness is an adaptive passive device which assists the motion unlike positive stiffness. The structure used in this study is subjected to four standard ground motions varying from moderate to severe, near fault to far-field earthquakes. The objective of the present study is to show the effectiveness of the adaptive negative stiffness device (NSD and passive dampers together) relative to passive dampers alone. This is done by comparing the responses of the above uncontrolled structure (i.e., without any device) with the structure having passive dampers only and also with the structure supplemented with adaptive negative stiffness device. Various performance indices, top floor displacement, top floor acceleration and inter-storey drifts are used as comparison parameters. It is found that NSD together with passive dampers is quite effective in reducing the response of aforementioned structure relative to structure without any device or passive dampers only. Base shear and acceleration is reduced significantly by incorporating NSD at the cost of increased inter-storey drifts which can be compensated using the passive dampers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20negative%20stiffness%20device" title="adaptive negative stiffness device">adaptive negative stiffness device</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20yielding" title=" apparent yielding"> apparent yielding</a>, <a href="https://publications.waset.org/abstracts/search?q=NSD" title=" NSD"> NSD</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20dampers" title=" passive dampers"> passive dampers</a> </p> <a href="https://publications.waset.org/abstracts/27228/seismic-response-control-of-20-storey-benchmark-building-using-true-negative-stiffness-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1605</span> A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Yanik">A. Yanik</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Aldemir"> U. Aldemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios <em>T<sub>a</sub></em>(<em>w</em>), <em>T<sub>v</sub></em>(<em>w</em>), and <em>T<sub>d</sub></em>(<em>w</em>) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20structures" title="bridge structures">bridge structures</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control" title=" passive control"> passive control</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-active%20control" title=" semi-active control"> semi-active control</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20damping" title=" viscous damping"> viscous damping</a> </p> <a href="https://publications.waset.org/abstracts/96050/a-numerical-study-on-semi-active-control-of-a-bridge-deck-under-seismic-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1604</span> Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nastaran%20Moosavi">Nastaran Moosavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mokhtari"> Mohammad Mokhtari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=p-impedance" title=" p-impedance"> p-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=s-impedance" title=" s-impedance"> s-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=post-stack%20seismic%20inversion" title=" post-stack seismic inversion"> post-stack seismic inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-stack%20seismic%20inversion" title=" pre-stack seismic inversion"> pre-stack seismic inversion</a> </p> <a href="https://publications.waset.org/abstracts/54295/application-of-post-stack-and-pre-stack-seismic-inversion-for-prediction-of-hydrocarbon-reservoirs-in-a-persian-gulf-gas-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1603</span> Experimental Analysis of Tuned Liquid Damper (TLD) with Embossments Subject to Random Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Saberi">Mohamad Saberi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Sohrabi"> Arash Sohrabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TLD" title="TLD">TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20table" title=" seismic table"> seismic table</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20system" title=" structural system"> structural system</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunzer%20linear%20behaviour" title=" Hunzer linear behaviour"> Hunzer linear behaviour</a> </p> <a href="https://publications.waset.org/abstracts/6052/experimental-analysis-of-tuned-liquid-damper-tld-with-embossments-subject-to-random-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1602</span> Seismic Assessment of Passive Control Steel Structure with Modified Parameter of Oil Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Naqi">Ahmad Naqi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the passively controlled buildings are extensively becoming popular due to its excellent lateral load resistance circumstance. Typically, these buildings are enhanced with a damping device that has high market demand. Some manufacturer falsified the damping device parameter during the production to achieve the market demand. Therefore, this paper evaluates the seismic performance of buildings equipped with damping devices, which their parameter modified to simulate the falsified devices, intentionally. For this purpose, three benchmark buildings of 4-, 10-, and 20-story were selected from JSSI (Japan Society of Seismic Isolation) manual. The buildings are special moment resisting steel frame with oil damper in the longitudinal direction only. For each benchmark buildings, two types of structural elements are designed to resist the lateral load with and without damping devices (hereafter, known as Trimmed & Conventional Building). The target building was modeled using STERA-3D, a finite element based software coded for study purpose. Practicing the software one can develop either three-dimensional Model (3DM) or Lumped Mass model (LMM). Firstly, the seismic performance of 3DM and LMM models was evaluated and found excellent coincide for the target buildings. The simplified model of LMM used in this study to produce 66 cases for both of the buildings. Then, the device parameters were modified by ± 40% and ±20% to predict many possible conditions of falsification. It is verified that the building which is design to sustain the lateral load with support of damping device (Trimmed Building) are much more under threat as a result of device falsification than those building strengthen by damping device (Conventional Building). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20control%20system" title="passive control system">passive control system</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20damper" title=" oil damper"> oil damper</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title=" seismic assessment"> seismic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20mass%20model" title=" lumped mass model"> lumped mass model</a> </p> <a href="https://publications.waset.org/abstracts/108949/seismic-assessment-of-passive-control-steel-structure-with-modified-parameter-of-oil-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1601</span> Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Ghodsi">S. S. Ghodsi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Mehrabi"> M. H. Mehrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainah%20Ibrahim"> Zainah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Meldi%20Suhatril"> Meldi Suhatril</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20damper" title=" hybrid damper"> hybrid damper</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control%20system" title=" passive control system"> passive control system</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20damper" title=" viscoelastic damper"> viscoelastic damper</a> </p> <a href="https://publications.waset.org/abstracts/78097/evaluation-of-hybrid-viscoelastic-damper-for-passive-energy-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1600</span> Performance Based Seismic Retrofit of Masonry Infiled Reinforced Concrete Frames Using Passive Energy Dissipation Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Madan">Alok Madan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20K.%20Hashmi"> Arshad K. Hashmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a plastic analysis procedure based on the energy balance concept for performance based seismic retrofit of multi-story multi-bay masonry infilled reinforced concrete (R/C) frames with a ‘soft’ ground story using passive energy dissipation (PED) devices with the objective of achieving a target performance level of the retrofitted R/C frame for a given seismic hazard level at the building site. The proposed energy based plastic analysis procedure was employed for developing performance based design (PBD) formulations for PED devices for a simulated application in seismic retrofit of existing frame structures designed in compliance with the prevalent standard codes of practice. The PBD formulations developed for PED devices were implemented for simulated seismic retrofit of a representative code-compliant masonry infilled R/C frame with a ‘soft’ ground story using friction dampers as the PED device. Non-linear dynamic analyses of the retrofitted masonry infilled R/C frames is performed to investigate the efficacy and accuracy of the proposed energy based plastic analysis procedure in achieving the target performance level under design level earthquakes. Results of non-linear dynamic analyses demonstrate that the maximum inter-story drifts in the masonry infilled R/C frames with a ‘soft’ ground story that is retrofitted with the friction dampers designed using the proposed PBD formulations are controlled within the target drifts under near-field as well far-field earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20methods" title="energy methods">energy methods</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry%20infilled%20frame" title=" masonry infilled frame"> masonry infilled frame</a>, <a href="https://publications.waset.org/abstracts/search?q=near-field%20earthquakes" title=" near-field earthquakes"> near-field earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20protection" title=" seismic protection"> seismic protection</a>, <a href="https://publications.waset.org/abstracts/search?q=supplemental%20damping%20devices" title=" supplemental damping devices"> supplemental damping devices</a> </p> <a href="https://publications.waset.org/abstracts/19955/performance-based-seismic-retrofit-of-masonry-infiled-reinforced-concrete-frames-using-passive-energy-dissipation-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1599</span> Experimental Analysis of Tuned Liquid Damper (TLD) for High Raised Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Saberi">Mohamad Saberi</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Sohrabi"> Arash Sohrabi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tuned liquid damper is one the passive structural control ways which has been used since mid-1980 decade for seismic control in civil engineering. This system is made of one or many tanks filled with fluid, mostly water that installed on top of the high raised structure and used to prevent structure vibration. In this article, we will show how to make seismic table contain TLD system and analysis the result of using this system in our structure. Results imply that when frequency ratio approaches 1 this system can perform its best in both dissipate energy and increasing structural damping. And also results of these serial experiments are proved compatible with Hunzer linear theory behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TLD" title="TLD">TLD</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20table" title=" seismic table"> seismic table</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20system" title=" structural system"> structural system</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunzer%20linear%20behaviour" title=" Hunzer linear behaviour"> Hunzer linear behaviour</a> </p> <a href="https://publications.waset.org/abstracts/6043/experimental-analysis-of-tuned-liquid-damper-tld-for-high-raised-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1598</span> Tokyo Skyscrapers: Technologically Advanced Structures in Seismic Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Szolomicki">J. Szolomicki</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Golasz-Szolomicka"> H. Golasz-Szolomicka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The architectural and structural analysis of selected high-rise buildings in Tokyo is presented in this paper. The capital of Japan is the most densely populated city in the world and moreover is located in one of the most active seismic zones. The combination of these factors has resulted in the creation of sophisticated designs and innovative engineering solutions, especially in the field of design and construction of high-rise buildings. The foreign architectural studios (as, for Jean Nouvel, Kohn Pedesen Associates, Skidmore, Owings & Merill) which specialize in the designing of skyscrapers, played a major role in the development of technological ideas and architectural forms for such extraordinary engineering structures. Among the projects completed by them, there are examples of high-rise buildings that set precedents for future development. An essential aspect which influences the design of high-rise buildings is the necessity to take into consideration their dynamic reaction to earthquakes and counteracting wind vortices. The need to control motions of these buildings, induced by the force coming from earthquakes and wind, led to the development of various methods and devices for dissipating energy which occur during such phenomena. Currently, Japan is a global leader in seismic technologies which safeguard seismic influence on high-rise structures. Due to these achievements the most modern skyscrapers in Tokyo are able to withstand earthquakes with a magnitude of over seven degrees at the Richter scale. Damping devices applied are of a passive, which do not require additional power supply or active one which suppresses the reaction with the input of extra energy. In recent years also hybrid dampers were used, with an additional active element to improve the efficiency of passive damping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core%20structures" title="core structures">core structures</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20system" title=" damping system"> damping system</a>, <a href="https://publications.waset.org/abstracts/search?q=high-rise%20building" title=" high-rise building"> high-rise building</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20zone" title=" seismic zone"> seismic zone</a> </p> <a href="https://publications.waset.org/abstracts/96808/tokyo-skyscrapers-technologically-advanced-structures-in-seismic-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1597</span> Performance of Steel Frame with a Viscoelastic Damper Device under Earthquake Excitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Mehrabi">M. H. Mehrabi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Ghodsi"> S. S. Ghodsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainah%20Ibrahim"> Zainah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Meldi%20Suhatril"> Meldi Suhatril</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Standard routes for upgrading existing buildings to improve their seismic response can be expensive in terms of both time and cost due to the modifications required to the foundations. As a result, interest has grown in the installation of viscoelastic dampers (VEDs) in mid and high-rise buildings. Details of a low-cost viscoelastic passive control device, the rotary rubber braced damper (RRBD), are presented in this paper. This design has the added benefits of being lightweight and simple to install. Experimental methods and finite element modeling were used to assess the performance of the proposed VED design and its effect on building response during earthquakes. The analyses took into account the behaviors of non-linear materials and large deformations. The results indicate that the proposed RRBD provides high levels of energy absorption, ensuring the stable cyclical response of buildings in all scenarios considered. In addition, time history analysis was employed in this study to evaluate the RRBD’s ability to control the displacements and accelerations experienced by steel frame structures. It was demonstrated that the device responds well even at low displacements, highlighting its suitability for use in seismic events of varying severity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title="dynamic response">dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20control" title=" passive control"> passive control</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20test" title=" performance test"> performance test</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20protection" title=" seismic protection"> seismic protection</a> </p> <a href="https://publications.waset.org/abstracts/78986/performance-of-steel-frame-with-a-viscoelastic-damper-device-under-earthquake-excitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78986.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1596</span> Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20shear%20panel%20damper" title="circular shear panel damper">circular shear panel damper</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20analysis" title=" FE analysis"> FE analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteretic%20behavior" title=" hysteretic behavior"> hysteretic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20deformation" title=" large deformation "> large deformation </a> </p> <a href="https://publications.waset.org/abstracts/10327/analytical-evaluation-on-hysteresis-performance-of-circular-shear-panel-damper" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1595</span> New Modification Negative Stiffness Device with Constant Force-Displacement Characteristic for Seismic Protection of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Huan%20Li">Huan Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianchun%20Li"> Jianchun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yancheng%20Li"> Yancheng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yu"> Yang Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a seismic protection method of civil and engineering structures, weakening and damping is effective during the elastic region, while it somehow leads to the early yielding of the entire structure accompanying with large excursions and permanent deformations. Adaptive negative stiffness device is attractive for realizing yielding property without changing the stiffness of the primary structure. In this paper, a new modification negative stiffness device (MNSD) with constant force-displacement characteristic is proposed by combining a magnetic negative stiffness spring, a piecewise linear positive spring and a passive damper with a certain adaptive stiffness device. The proposed passive control MNSD preserves no effect under small excitation. When the displacement amplitude increases beyond the pre-defined yielding point, the force-displacement characteristics of the system with MNSD will keep constant. The seismic protection effect of the MNSD is evaluated by employing it to a single-degree-of-freedom system under sinusoidal excitation, and real earthquake waves. By comparative analysis, the system with MNSD performs better on reducing acceleration and displacement response under different displacement amplitudes than the scenario without it and the scenario with unmodified certain adaptive stiffness device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=negative%20stiffness" title="negative stiffness">negative stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20stiffness" title=" adaptive stiffness"> adaptive stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=weakening%20and%20yielding" title=" weakening and yielding"> weakening and yielding</a>, <a href="https://publications.waset.org/abstracts/search?q=constant%20force-displacement%20characteristic" title=" constant force-displacement characteristic"> constant force-displacement characteristic</a> </p> <a href="https://publications.waset.org/abstracts/125646/new-modification-negative-stiffness-device-with-constant-force-displacement-characteristic-for-seismic-protection-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1594</span> Energy Efficient Construction and the Seismic Resistance of Passive Houses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vojko%20Kilar">Vojko Kilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Azinovi%C4%87"> Boris Azinović</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Koren"> David Koren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, an increasing trend of passive and low-energy buildings transferring form non earthquake-prone to earthquake-prone regions has thrown out the question about the seismic safety of such buildings. The paper describes the most commonly used thermal insulating materials and the special details, which could be critical from the point of view of earthquake resistance. The most critical appeared to be the cases of buildings founded on the RC foundation slab lying on a thermal insulation (TI) layer made of extruded polystyrene (XPS). It was pointed out that in such cases the seismic response of such buildings might differ to response of their fixed based counterparts. The main parameters that need special designers’ attention are: the building’s lateral top displacement, the ductility demand of the superstructure, the foundation friction coefficient demand, the maximum compressive stress in the TI layer and the percentage of the uplifted foundation. The analyses have shown that the potentially negative influences of inserting the TI under the foundation slab could be expected only for slender high-rise buildings subjected to severe earthquakes. Oppositely it was demonstrated for the foundation friction coefficient demand which could exceed the capacity value yet in the case of low-rise buildings subjected to moderate earthquakes. Some suggestions to prevent the horizontal shifts are also given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake%20response" title="earthquake response">earthquake response</a>, <a href="https://publications.waset.org/abstracts/search?q=extruded%20polystyrene%20%28XPS%29" title=" extruded polystyrene (XPS)"> extruded polystyrene (XPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=low-energy%20buildings" title=" low-energy buildings"> low-energy buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=foundations%20on%20thermal%20insulation%20layer" title=" foundations on thermal insulation layer"> foundations on thermal insulation layer</a> </p> <a href="https://publications.waset.org/abstracts/7157/energy-efficient-construction-and-the-seismic-resistance-of-passive-houses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1593</span> Seizure Effects of FP Bearings on the Seismic Reliability of Base-Isolated Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Castaldo">Paolo Castaldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Palazzo"> Bruno Palazzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Lodato"> Laura Lodato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with the seizure effects of friction pendulum (FP) bearings on the seismic reliability of a 3D base-isolated nonlinear structural system, designed according to Italian seismic code (NTC08). The isolated system consists in a 3D reinforced concrete superstructure, a r.c. substructure and the FP devices, described by employing a velocity dependent model. The seismic input uncertainty is considered as a random variable relevant to the problem, by employing a set of natural seismic records selected in compliance with L’Aquila (Italy) seismic hazard as provided from NTC08. Several non-linear dynamic analyses considering the three components of each ground motion have been performed with the aim to evaluate the seismic reliability of the superstructure, substructure, and isolation level, also taking into account the seizure event of the isolation devices. Finally, a design solution aimed at increasing the seismic robustness of the base-isolated systems with FPS is analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FP%20devices" title="FP devices">FP devices</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reliability" title=" seismic reliability"> seismic reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20robustness" title=" seismic robustness"> seismic robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=seizure" title=" seizure"> seizure</a> </p> <a href="https://publications.waset.org/abstracts/55083/seizure-effects-of-fp-bearings-on-the-seismic-reliability-of-base-isolated-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1592</span> Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kahil%20Amar">Kahil Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukais%20Said"> Boukais Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Kezmane%20Ali"> Kezmane Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannachi%20Naceur%20Eddine"> Hannachi Naceur Eddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamizi%20Mohand"> Hamizi Mohand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method, we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will be developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title="seismic performance">seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20method" title=" pushover method"> pushover method</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization%20of%20seismic%20motion" title=" characterization of seismic motion"> characterization of seismic motion</a>, <a href="https://publications.waset.org/abstracts/search?q=harmfulness%20of%20the%20seismic" title=" harmfulness of the seismic"> harmfulness of the seismic</a> </p> <a href="https://publications.waset.org/abstracts/29929/introduction-of-the-harmfulness-of-the-seismic-signal-in-the-assessment-of-the-performance-of-reinforced-concrete-frame-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1591</span> The Prospective Assessment of Zero-Energy Dwellings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Dj.%20Jovanovic">Jovana Dj. Jovanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20M.%20Stevovic"> Svetlana M. Stevovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The highest priority of so called, projected <em>passive houses</em> is to meet the appropriate energy demand. Every single material and layer which is injected into a dwelling has a certain energy quantity stored. The <em>passive houses</em> include optimized insulation levels with minimal thermal bridges, minimum of air leakage through the building, utilization of passive solar and internal gains, and good circulation of air which leans on mechanical ventilation system. The focus of this paper is on passive <em>house </em>features, benefits and targets, their feasibility and energy demands which are set up during each project. Numerous <em>passive house-standards</em> outline the very significant role of zero-energy dwellings towards the modern label of sustainable development. It is clear that the performance of both built and existing housing stock must be addressed if the population across the world sets out the energy objectives. This scientific article examines passive house features since the many passive house cases are launched. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benefits" title="benefits">benefits</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20demands" title=" energy demands"> energy demands</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20houses" title=" passive houses"> passive houses</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/42382/the-prospective-assessment-of-zero-energy-dwellings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1590</span> Seismic Design Approach for Areas with Low Seismicity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mogens%20Saberi">Mogens Saberi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The following article focuses on a new seismic design approach for Denmark. Denmark is located in a low seismic zone and up till now a general and very simplified approach has been used to accommodate the effect of seismic loading. The current used method is presented and it is found that the approach is on the unsafe side for many building types in Denmark. The damages during time due to earth quake is presented and a seismic map for Denmark is developed and presented. Furthermore, a new design approach is suggested and compared to the existing one. The new approach is relatively simple but captures the effect of seismic loading more realistic than the existing one. The new approach is believed to the incorporated in the Danish Deign Code for building structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20seismicity" title="low seismicity">low seismicity</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20design%20approach" title=" new design approach"> new design approach</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=Denmark" title=" Denmark"> Denmark</a> </p> <a href="https://publications.waset.org/abstracts/59411/seismic-design-approach-for-areas-with-low-seismicity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1589</span> Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingxin%20Hui">Yingxin Hui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20engineering" title="bridge engineering">bridge engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20feature" title=" seismic response feature"> seismic response feature</a>, <a href="https://publications.waset.org/abstracts/search?q=across%20faults" title=" across faults"> across faults</a>, <a href="https://publications.waset.org/abstracts/search?q=rupture%20directivity%20effect" title=" rupture directivity effect"> rupture directivity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=fling%20step" title=" fling step"> fling step</a> </p> <a href="https://publications.waset.org/abstracts/19709/study-on-seismic-response-feature-of-multi-span-bridges-crossing-fault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1588</span> Seismic Performance Evaluation of Existing Building Using Structural Information Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byungmin%20Cho">Byungmin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongchul%20Lee"> Dongchul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Taejin%20Kim"> Taejin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minhee%20Lee"> Minhee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The procedure for the seismic retrofit of existing buildings includes the seismic evaluation. In the evaluation step, it is assessed whether the buildings have satisfactory performance against seismic load. Based on the results of that, the buildings are upgraded. To evaluate seismic performance of the buildings, it usually goes through the model transformation from elastic analysis to inelastic analysis. However, when the data is not delivered through the interwork, engineers should manually input the data. In this process, since it leads to inaccuracy and loss of information, the results of the analysis become less accurate. Therefore, in this study, the process for the seismic evaluation of existing buildings using structural information modeling is suggested. This structural information modeling makes the work economic and accurate. To this end, it is determined which part of the process could be computerized through the investigation of the process for the seismic evaluation based on ASCE 41. The structural information modeling process is developed to apply to the seismic evaluation using Perform 3D program usually used for the nonlinear response history analysis. To validate this process, the seismic performance of an existing building is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=existing%20building" title="existing building">existing building</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20information%20modeling" title=" structural information modeling"> structural information modeling</a> </p> <a href="https://publications.waset.org/abstracts/31008/seismic-performance-evaluation-of-existing-building-using-structural-information-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1587</span> Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Naeem">Asad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title="seismic retrofit">seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20viscous%20damper" title=" spring viscous damper"> spring viscous damper</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20structures" title=" earthquake resistant structures"> earthquake resistant structures</a> </p> <a href="https://publications.waset.org/abstracts/97455/shaking-table-test-and-seismic-performance-evaluation-of-spring-viscous-damper-cable-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1586</span> Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soltani%20Amir">Soltani Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Jiaxin"> Hu Jiaxin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of optimal parameters of a passive control system device is the primary objective of this study. Expanding upon the use of control devices in wind and earthquake hazard reduction has led to development of various control systems. The advantage of non-linearity characteristics in a passive control device and the optimal control method using LQR algorithm are explained in this study. Finally, this paper introduces a simple approach to determine optimum parameters of a nonlinear viscous damper for vibration control of structures. A MATLAB program is used to produce the dynamic motion of the structure considering the stiffness matrix of the SDOF frame and the non-linear damping effect. This study concluded that the proposed system (variable damping system) has better performance in system response control than a linear damping system. Also, according to the energy dissipation graph, the total energy loss is greater in non-linear damping system than other systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=passive%20control%20system" title="passive control system">passive control system</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20devices" title=" damping devices"> damping devices</a>, <a href="https://publications.waset.org/abstracts/search?q=viscous%20dampers" title=" viscous dampers"> viscous dampers</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20algorithm" title=" control algorithm"> control algorithm</a> </p> <a href="https://publications.waset.org/abstracts/10226/optimum-parameter-of-a-viscous-damper-for-seismic-and-wind-vibration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1585</span> A Passive Reaction Force Compensation for a Linear Motor Motion Stage Using Pre-Compressed Springs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kim%20Duc%20Hoang">Kim Duc Hoang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeong%20Joon%20Ahn"> Hyeong Joon Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residual vibration of the system base due to a high-acceleration motion of a stage may reduce life and productivity of the manufacturing device. Although a passive RFC can reduce vibration of the system base, spring or dummy mass should be replaced to tune performance of the RFC. In this paper, we develop a novel concept of the passive RFC mechanism for a linear motor motion stage using pre-compressed springs. Dynamic characteristic of the passive RFC can be adjusted by pre-compression of the spring without exchanging the spring or dummy mass. First, we build a linear motor motion stage with pre-compressed springs. Then, the effect of the pre-compressed spring on the passive RFC is investigated by changing both pre-compressions and stiffness of springs. Finally, the effectiveness of the passive RFC using pre-compressed springs was verified with both simulations and experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20motor%20motion%20stage" title="linear motor motion stage">linear motor motion stage</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20vibration" title=" residual vibration"> residual vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20RFC" title=" passive RFC"> passive RFC</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-compressed%20spring" title=" pre-compressed spring"> pre-compressed spring</a> </p> <a href="https://publications.waset.org/abstracts/63341/a-passive-reaction-force-compensation-for-a-linear-motor-motion-stage-using-pre-compressed-springs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1584</span> Dilation Effect on 3D Passive Earth Pressure Coefficients for Retaining Wall </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khelifa%20Tarek">Khelifa Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Benmebarek%20Sadok"> Benmebarek Sadok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 2D passive earth pressures acting on rigid retaining walls problem has been widely treated in the literature using different approaches (limit equilibrium, limit analysis, slip line and numerical computation), however, the 3D passive earth pressures problem has received less attention. This paper is concerned with the numerical study of 3D passive earth pressures induced by the translation of a rigid rough retaining wall for associated and non-associated soils. Using the explicit finite difference code FLAC3D, the increase of the passive earth pressures due to the decrease of the wall breadth is investigated. The results given by the present numerical analysis are compared with other investigation. The influence of the angle of dilation on the coefficients is also studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20modeling" title="numerical modeling">numerical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC3D" title=" FLAC3D"> FLAC3D</a>, <a href="https://publications.waset.org/abstracts/search?q=retaining%20wall" title=" retaining wall"> retaining wall</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20earth%20pressures" title=" passive earth pressures"> passive earth pressures</a>, <a href="https://publications.waset.org/abstracts/search?q=angle%20of%20dilation" title=" angle of dilation"> angle of dilation</a> </p> <a href="https://publications.waset.org/abstracts/33167/dilation-effect-on-3d-passive-earth-pressure-coefficients-for-retaining-wall" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1583</span> Study on Seismic Assessment of Earthquake-Damaged Reinforced Concrete Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fu-Pei%20Hsiao">Fu-Pei Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fung-Chung%20Tu"> Fung-Chung Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20Chiu"> Chien-Kuo Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, to develop a method for detailed assesses of post-earthquake seismic performance for RC buildings in Taiwan, experimental data for several column specimens with various failure modes (flexural failure, flexural-shear failure, and shear failure) are used to derive reduction factors of seismic capacity for specified damage states. According to the damage states of RC columns and their corresponding seismic reduction factors suggested by experimental data, this work applies the detailed seismic performance assessment method to identify the seismic capacity of earthquake-damaged RC buildings. Additionally, a post-earthquake emergent assessment procedure is proposed that can provide the data needed for decision about earthquake-damaged buildings in a region with high seismic hazard. Finally, three actual earthquake-damaged school buildings in Taiwan are used as a case study to demonstrate application of the proposed assessment method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title="seismic assessment">seismic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reduction%20factor" title=" seismic reduction factor"> seismic reduction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20seismic%20ratio" title=" residual seismic ratio"> residual seismic ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=post-earthquake" title=" post-earthquake"> post-earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a> </p> <a href="https://publications.waset.org/abstracts/43183/study-on-seismic-assessment-of-earthquake-damaged-reinforced-concrete-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1582</span> The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhwane%20Boudjelthia">Radhwane Boudjelthia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most recent earthquakes occurred in the world have killed thousands of people and severe damage. For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach to protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads, among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation," to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20forces" title=" seismic forces"> seismic forces</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement" title=" displacement"> displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance" title=" resonance"> resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=response." title=" response."> response.</a> </p> <a href="https://publications.waset.org/abstracts/165358/the-effects-of-damping-devices-on-displacements-velocities-and-accelerations-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1581</span> Accurate Algorithm for Selecting Ground Motions Satisfying Code Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Ha">S. J. Ha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Baik"> S. J. Baik</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20O.%20Kim"> T. O. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Han"> S. W. Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For computing the seismic responses of structures, current seismic design provisions permit response history analyses (RHA) that can be used without limitations in height, seismic design category, and building irregularity. In order to obtain accurate seismic responses using RHA, it is important to use adequate input ground motions. Current seismic design provisions provide criteria for selecting ground motions. In this study, the accurate and computationally efficient algorithm is proposed for accurately selecting ground motions that satisfy the requirements specified in current seismic design provisions. The accuracy of the proposed algorithm is verified using single-degree-of-freedom systems with various natural periods and yield strengths. This study shows that the mean seismic responses obtained from RHA with seven and ten ground motions selected using the proposed algorithm produce errors within 20% and 13%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title=" ground motion"> ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20history%20analysis" title=" response history analysis"> response history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=selection" title=" selection"> selection</a> </p> <a href="https://publications.waset.org/abstracts/55643/accurate-algorithm-for-selecting-ground-motions-satisfying-code-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1580</span> The Necessity of Retrofitting for Masonry Buildings in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20G%C3%BCler">Soner Güler</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen"> Mustafa Gülen</a>, <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel"> Eylem Güzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry buildings constitute major part of building stock in Turkey. Masonry buildings were built up especially in rural areas and underdeveloped regions due to economic reasons. Almost all of these masonry buildings are not designed and detailed according to any design guidelines by designers. As a result of this, masonry buildings were totally collapsed or heavily damaged when subjected to destructive earthquake effects. Thus, these masonry buildings that were built up in our country must be retrofitted to improve their seismic performance. In this study, new seismic retrofitting techniques that is easy to apply and low-cost are summarized and the importance of seismic retrofitting is also emphasized for existing masonry buildings in Turkey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20buildings" title="masonry buildings">masonry buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20effects" title=" earthquake effects"> earthquake effects</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofitting%20techniques" title=" seismic retrofitting techniques"> seismic retrofitting techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a> </p> <a href="https://publications.waset.org/abstracts/31789/the-necessity-of-retrofitting-for-masonry-buildings-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1579</span> The Effects of Damping Devices on Displacements, Velocities and Accelerations of Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radhwane%20Boudjelthia">Radhwane Boudjelthia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most recent earthquakes that occurred in the world and particularly in Algeria, have killed thousands of people and severe damage. The example that is etched in our memory is the last earthquake in the regions of Boumerdes and Algiers (Boumerdes earthquake of May 21, 2003). For all the actors involved in the building process, the earthquake is the litmus test for construction. The goal we set ourselves is to contribute to the implementation of a thoughtful approach to the seismic protection of structures. For many engineers, the most conventional approach protection works (buildings and bridges) the effects of earthquakes is to increase rigidity. This approach is not always effective, especially when there is a context that favors the phenomenon of resonance and amplification of seismic forces. Therefore, the field of earthquake engineering has made significant inroads among others catalyzed by the development of computational techniques in computer form and the use of powerful test facilities. This has led to the emergence of several innovative technologies, such as the introduction of special devices insulation between infrastructure and superstructure. This approach, commonly known as "seismic isolation" to absorb the significant efforts without the structure is damaged and thus ensuring the protection of lives and property. In addition, the restraints to the construction by the ground shaking are located mainly at the supports. With these moves, the natural period of construction is increasing, and seismic loads are reduced. Thus, there is an attenuation of the seismic movement. Likewise, the insulation of the base mechanism may be used in combination with earthquake dampers in order to control the deformation of the insulation system and the absolute displacement of the superstructure located above the isolation interface. On the other hand, only can use these earthquake dampers to reduce the oscillation amplitudes and thus reduce seismic loads. The use of damping devices represents an effective solution for the rehabilitation of existing structures. Given all these acceleration reducing means considered passive, much research has been conducted for several years to develop an active control system of the response of buildings to earthquakes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20forces" title=" seismic forces"> seismic forces</a>, <a href="https://publications.waset.org/abstracts/search?q=displacement" title=" displacement"> displacement</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance" title=" resonance"> resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a> </p> <a href="https://publications.waset.org/abstracts/125244/the-effects-of-damping-devices-on-displacements-velocities-and-accelerations-of-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=53">53</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=54">54</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=passive%20seismic&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>