CINXE.COM
Search results for: SCADA systems
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: SCADA systems</title> <meta name="description" content="Search results for: SCADA systems"> <meta name="keywords" content="SCADA systems"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="SCADA systems" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="SCADA systems"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9364</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: SCADA systems</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9364</span> Basics of SCADA Security: A Technical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micha%C5%82%20Witas">Michał Witas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a technical approach to analysis of security of SCADA systems. Main goal of the paper is to make SCADA administrators aware of risks resulting from SCADA systems usage and to familiarize with methods that can be adopt to existing or planned system, to increase overall system security level. Because SCADA based systems become a industrial standard, more attention should be paid to the security of that systems. Industrial Control Systems (ICS) like SCADA are responsible for controlling crucial aspects of wide range of industrial processes. In pair with that responsibility, goes a lot of money that can be earned or lost – this fact is main reason of increased interest of attackers. Additionally ICS are often responsible for maintaining resources strategic from the point of view of national economy, like electricity (including nuclear power plants), heating, water resources or military facilities, so they can be targets of terrorist cybernetic attacks. Without proper risk analysis and management, vulnerabilities resulting from the usage of SCADA can be easily exploited by potential attacker. Paper is based mostly on own experience in systems security, gathered during academic studies and professional work in international company. As title suggests, it will cover only basics of topic, because every of points mentioned in the document can be base for additional research and papers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=denial%20of%20service" title="denial of service">denial of service</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=security%20policy" title=" security policy"> security policy</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20network" title=" distributed network"> distributed network</a> </p> <a href="https://publications.waset.org/abstracts/20636/basics-of-scada-security-a-technical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9363</span> Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Shaker">Ibrahim Shaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20El%20Hossany"> Amr El Hossany</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Osman"> Moustafa Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%20Raey"> Mohamed El Raey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20dispersion%20model" title="air dispersion model">air dispersion model</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20management" title=" environmental management"> environmental management</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA%20systems" title=" SCADA systems"> SCADA systems</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20system" title=" GIS system"> GIS system</a>, <a href="https://publications.waset.org/abstracts/search?q=integration%20power%20system" title=" integration power system"> integration power system</a> </p> <a href="https://publications.waset.org/abstracts/53013/integration-gis-scada-power-systems-to-enclosure-air-dispersion-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53013.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9362</span> [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Okeke">Michael Okeke</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Blyth"> Andrew Blyth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial%20control%20system%20%28ics" title="industrial control system (ics">industrial control system (ics</a>, <a href="https://publications.waset.org/abstracts/search?q=no-trust-zone%20%28ntz%29" title=" no-trust-zone (ntz)"> no-trust-zone (ntz)</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimisation%20%28pso%29" title=" particle swarm optimisation (pso)"> particle swarm optimisation (pso)</a>, <a href="https://publications.waset.org/abstracts/search?q=supervisory%20control%20and%20data%20acquisition%20%28scada%29" title=" supervisory control and data acquisition (scada)"> supervisory control and data acquisition (scada)</a>, <a href="https://publications.waset.org/abstracts/search?q=swarm%20intelligence%20%28SI%29" title=" swarm intelligence (SI)"> swarm intelligence (SI)</a> </p> <a href="https://publications.waset.org/abstracts/53994/keynote-no-trust-zone-architecture-for-securing-supervisory-control-and-data-acquisition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9361</span> An Industrial Scada System Remote Control Using Mobile Phones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmidah%20Elgali">Ahmidah Elgali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SCADA is the abbreviation for "Administrative Control And Data Acquisition." SCADA frameworks are generally utilized in industry for administrative control and information securing of modern cycles. Regular SCADA frameworks use PC, journal, slim client, and PDA as a client. In this paper, a Java-empowered cell phone has been utilized as a client in an example SCADA application to show and regulate the place of an example model crane. The paper presents a genuine execution of the online controlling of the model crane through a cell phone. The remote correspondence between the cell phone and the SCADA server is performed through a base station by means of general parcel radio assistance GPRS and remote application convention WAP. This application can be used in industrial sites in areas that are likely to be exposed to a security emergency (like terrorist attacks) which causes the sudden exit of the operators; however, no time to perform the shutdown procedures for the plant. Hence this application allows shutting down units and equipment remotely by mobile and so avoids damage and losses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control" title="control">control</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial" title=" industrial"> industrial</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile" title=" mobile"> mobile</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=remote" title=" remote"> remote</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a> </p> <a href="https://publications.waset.org/abstracts/150682/an-industrial-scada-system-remote-control-using-mobile-phones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9360</span> Integration Network ASI in Lab Automation and Networks Industrial in IFCE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Fernandes%20Teixeira%20Filho">Jorge Fernandes Teixeira Filho</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20Oliveira%20Alcantara%20Fontenele"> André Oliveira Alcantara Fontenele</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89rick%20Arag%C3%A3o%20Ribeiro"> Érick Aragão Ribeiro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20networks" title=" industrial networks"> industrial networks</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA%20systems" title=" SCADA systems"> SCADA systems</a>, <a href="https://publications.waset.org/abstracts/search?q=lab%20automation" title=" lab automation"> lab automation</a> </p> <a href="https://publications.waset.org/abstracts/41367/integration-network-asi-in-lab-automation-and-networks-industrial-in-ifce" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9359</span> Optimizing SCADA/RTU Control System Alarms for Gas Wells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali%20Faqeeh">Mohammed Ali Faqeeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> SCADA System Alarms Optimization Process has been introduced recently and applied accordingly in different implemented stages. First, MODBUS communication protocols between RTU/SCADA were improved at the level of I/O points scanning intervals. Then, some of the technical issues related to manufacturing limitations were resolved. Afterward, another approach was followed to take a decision on the configured alarms database. So, a couple of meetings and workshops were held among all system stakeholders, which resulted in an agreement of disabling unnecessary (Diagnostic) alarms. Moreover, a leap forward step was taken to segregate the SCADA Operator Graphics in a way to show only process-related alarms while some other graphics will ensure the availability of field alarms related to maintenance and engineering purposes. This overall system management and optimization have resulted in a huge effective impact on all operations, maintenance, and engineering. It has reduced unneeded open tickets for maintenance crews which led to reduce the driven mileages accordingly. Also, this practice has shown a good impression on the operation reactions and response to the emergency situations as the SCADA operators can be staying much vigilant on the real alarms rather than gets distracted by noisy ones. SCADA System Alarms Optimization process has been executed utilizing all applicable in-house resources among engineering, maintenance, and operations crews. The methodology of the entire enhanced scopes is performed through various stages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SCADA" title="SCADA">SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=RTU%20Communication" title=" RTU Communication"> RTU Communication</a>, <a href="https://publications.waset.org/abstracts/search?q=alarm%20management%20system" title=" alarm management system"> alarm management system</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA%20alarms" title=" SCADA alarms"> SCADA alarms</a>, <a href="https://publications.waset.org/abstracts/search?q=Modbus" title=" Modbus"> Modbus</a>, <a href="https://publications.waset.org/abstracts/search?q=DNP%20protocol" title=" DNP protocol"> DNP protocol</a> </p> <a href="https://publications.waset.org/abstracts/142519/optimizing-scadartu-control-system-alarms-for-gas-wells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9358</span> Intrusion Detection in SCADA Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leandros%20A.%20Maglaras">Leandros A. Maglaras</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianmin%20Jiang"> Jianmin Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyber-security" title="cyber-security">cyber-security</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA%20systems" title=" SCADA systems"> SCADA systems</a>, <a href="https://publications.waset.org/abstracts/search?q=OCSVM" title=" OCSVM"> OCSVM</a>, <a href="https://publications.waset.org/abstracts/search?q=intrusion%20detection" title=" intrusion detection"> intrusion detection</a> </p> <a href="https://publications.waset.org/abstracts/10165/intrusion-detection-in-scada-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10165.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9357</span> Stochastic Edge Based Anomaly Detection for Supervisory Control and Data Acquisitions Systems: Considering the Zambian Power Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lukumba%20Phiri">Lukumba Phiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Tembo"> Simon Tembo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kumbuso%20Joshua%20Nyoni"> Kumbuso Joshua Nyoni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Zambia recent initiatives by various power operators like ZESCO, CEC, and consumers like the mines to upgrade power systems into smart grids target an even tighter integration with information technologies to enable the integration of renewable energy sources, local and bulk generation, and demand response. Thus, for the reliable operation of smart grids, its information infrastructure must be secure and reliable in the face of both failures and cyberattacks. Due to the nature of the systems, ICS/SCADA cybersecurity and governance face additional challenges compared to the corporate networks, and critical systems may be left exposed. There exist control frameworks internationally such as the NIST framework, however, there are generic and do not meet the domain-specific needs of the SCADA systems. Zambia is also lagging in cybersecurity awareness and adoption, therefore there is a concern about securing ICS controlling key infrastructure critical to the Zambian economy as there are few known facts about the true posture. In this paper, we introduce a stochastic Edged-based Anomaly Detection for SCADA systems (SEADS) framework for threat modeling and risk assessment. SEADS enables the calculation of steady-steady probabilities that are further applied to establish metrics like system availability, maintainability, and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomaly" title="anomaly">anomaly</a>, <a href="https://publications.waset.org/abstracts/search?q=availability" title=" availability"> availability</a>, <a href="https://publications.waset.org/abstracts/search?q=detection" title=" detection"> detection</a>, <a href="https://publications.waset.org/abstracts/search?q=edge" title=" edge"> edge</a>, <a href="https://publications.waset.org/abstracts/search?q=maintainability" title=" maintainability"> maintainability</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic" title=" stochastic"> stochastic</a> </p> <a href="https://publications.waset.org/abstracts/153922/stochastic-edge-based-anomaly-detection-for-supervisory-control-and-data-acquisitions-systems-considering-the-zambian-power-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9356</span> Adopting Flocks of Birds Approach to Predator for Anomalies Detection on Industrial Control Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Okeke">M. Okeke</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Blyth"> A. Blyth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial Control Systems (ICS) such as Supervisory Control And Data Acquisition (SCADA) can be seen in many different critical infrastructures, from nuclear management to utility, medical equipment, power, waste and engine management on ships and planes. The role SCADA plays in critical infrastructure has resulted in a call to secure them. Many lives depend on it for daily activities and the attack vectors are becoming more sophisticated. Hence, the security of ICS is vital as malfunction of it might result in huge risk. This paper describes how the application of Prey Predator (PP) approach in flocks of birds could enhance the detection of malicious activities on ICS. The PP approach explains how these animals in groups or flocks detect predators by following some simple rules. They are not necessarily very intelligent animals but their approach in solving complex issues such as detection through corporation, coordination and communication worth emulating. This paper will emulate flocking behavior seen in birds in detecting predators. The PP approach will adopt six nearest bird approach in detecting any predator. Their local and global bests are based on the individual detection as well as group detection. The PP algorithm was designed following MapReduce methodology that follows a Split Detection Convergence (SDC) approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20life" title="artificial life">artificial life</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20control%20system%20%28ICS%29" title=" industrial control system (ICS)"> industrial control system (ICS)</a>, <a href="https://publications.waset.org/abstracts/search?q=IDS" title=" IDS"> IDS</a>, <a href="https://publications.waset.org/abstracts/search?q=prey%20predator%20%28PP%29" title=" prey predator (PP)"> prey predator (PP)</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=SDC" title=" SDC"> SDC</a> </p> <a href="https://publications.waset.org/abstracts/41748/adopting-flocks-of-birds-approach-to-predator-for-anomalies-detection-on-industrial-control-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9355</span> Integrating the Modbus SCADA Communication Protocol with Elliptic Curve Cryptography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Despoina%20Chochtoula">Despoina Chochtoula</a>, <a href="https://publications.waset.org/abstracts/search?q=Aristidis%20Ilias"> Aristidis Ilias</a>, <a href="https://publications.waset.org/abstracts/search?q=Yannis%20Stamatiou"> Yannis Stamatiou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modbus is a protocol that enables the communication among devices which are connected to the same network. This protocol is, often, deployed in connecting sensor and monitoring units to central supervisory servers in Supervisory Control and Data Acquisition, or SCADA, systems. These systems monitor critical infrastructures, such as factories, power generation stations, nuclear power reactors etc. in order to detect malfunctions and ignite alerts and corrective actions. However, due to their criticality, SCADA systems are vulnerable to attacks that range from simple eavesdropping on operation parameters, exchanged messages, and valuable infrastructure information to malicious modification of vital infrastructure data towards infliction of damage. Thus, the SCADA research community has been active over strengthening SCADA systems with suitable data protection mechanisms based, to a large extend, on cryptographic methods for data encryption, device authentication, and message integrity protection. However, due to the limited computation power of many SCADA sensor and embedded devices, the usual public key cryptographic methods are not appropriate due to their high computational requirements. As an alternative, Elliptic Curve Cryptography has been proposed, which requires smaller key sizes and, thus, less demanding cryptographic operations. Until now, however, no such implementation has been proposed in the SCADA literature, to the best of our knowledge. In order to fill this gap, our methodology was focused on integrating Modbus, a frequently used SCADA communication protocol, with Elliptic Curve based cryptography and develop a server/client application to demonstrate the proof of concept. For the implementation we deployed two C language libraries, which were suitably modify in order to be successfully integrated: libmodbus (https://github.com/stephane/libmodbus) and ecc-lib https://www.ceid.upatras.gr/webpages/faculty/zaro/software/ecc-lib/). The first library provides a C implementation of the Modbus/TCP protocol while the second one offers the functionality to develop cryptographic protocols based on Elliptic Curve Cryptography. These two libraries were combined, after suitable modifications and enhancements, in order to give a modified version of the Modbus/TCP protocol focusing on the security of the data exchanged among the devices and the supervisory servers. The mechanisms we implemented include key generation, key exchange/sharing, message authentication, data integrity check, and encryption/decryption of data. The key generation and key exchange protocols were implemented with the use of Elliptic Curve Cryptography primitives. The keys established by each device are saved in their local memory and are retained during the whole communication session and are used in encrypting and decrypting exchanged messages as well as certifying entities and the integrity of the messages. Finally, the modified library was compiled for the Android environment in order to run the server application as an Android app. The client program runs on a regular computer. The communication between these two entities is an example of the successful establishment of an Elliptic Curve Cryptography based, secure Modbus wireless communication session between a portable device acting as a supervisor station and a monitoring computer. Our first performance measurements are, also, very promising and demonstrate the feasibility of embedding Elliptic Curve Cryptography into SCADA systems, filling in a gap in the relevant scientific literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elliptic%20curve%20cryptography" title="elliptic curve cryptography">elliptic curve cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=ICT%20security" title=" ICT security"> ICT security</a>, <a href="https://publications.waset.org/abstracts/search?q=modbus%20protocol" title=" modbus protocol"> modbus protocol</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=TCP%2FIP%20protocol" title=" TCP/IP protocol"> TCP/IP protocol</a> </p> <a href="https://publications.waset.org/abstracts/72732/integrating-the-modbus-scada-communication-protocol-with-elliptic-curve-cryptography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9354</span> Machine Learning Based Anomaly Detection in Hydraulic Units of Governors in Hydroelectric Power Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Akif%20B%C3%BCt%C3%BCner">Mehmet Akif Bütüner</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0lhan%20Ko%C5%9Falay"> İlhan Koşalay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydroelectric power plants (HEPPs) are renewable energy power plants with the highest installed power in the world. While the control systems operating in these power plants ensure that the system operates at the desired operating point, it is also responsible for stopping the relevant unit safely in case of any malfunction. While these control systems are expected not to miss signals that require stopping, on the other hand, it is desired not to cause unnecessary stops. In traditional control systems including modern systems with SCADA infrastructure, alarm conditions to create warnings or trip conditions to put relevant unit out of service automatically are usually generated with predefined limits regardless of different operating conditions. This approach results in alarm/trip conditions to be less likely to detect minimal changes which may result in serious malfunction scenarios in near future. With the methods proposed in this research, routine behavior of the oil circulation of hydraulic governor of a HEPP will be modeled with machine learning methods using historical data obtained from SCADA system. Using the created model and recently gathered data from control system, oil pressure of hydraulic accumulators will be estimated. Comparison of this estimation with the measurements made and recorded instantly by the SCADA system will help to foresee failure before becoming worse and determine remaining useful life. By using model outputs, maintenance works will be made more planned, so that undesired stops are prevented, and in case of any malfunction, the system will be stopped or several alarms are triggered before the problem grows. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroelectric" title="hydroelectric">hydroelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=governor" title=" governor"> governor</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title=" anomaly detection"> anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/153204/machine-learning-based-anomaly-detection-in-hydraulic-units-of-governors-in-hydroelectric-power-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9353</span> Development of a Smart System for Measuring Strain Levels of Natural Gas and Petroleum Pipelines on Earthquake Fault Lines in Turkiye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Yetik">Ahmet Yetik</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyit%20Ali%20Kara"> Seyit Ali Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Cevat%20%C3%96zarpa"> Cevat Özarpa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Load changes occur on natural gas and oil pipelines due to natural disasters. The displacement of the soil around the natural gas and oil pipes due to situations that may cause erosion, such as earthquakes, landslides, and floods, is the source of this load change. The exposure of natural gas and oil pipes to variable loads causes deformation, cracks, and breaks in these pipes. Cracks and breaks on the pipes cause damage to people and the environment due to reasons such as explosions. Especially with the examinations made after natural disasters, it can be easily understood which of the pipes has more damage in the regions followed. It has been determined that the earthquakes in Turkey caused permanent damage to the pipelines. This project was designed and realized because it was determined that there were cracks and gas leaks in the insulation gaskets placed in the pipelines, especially at the junction points. In this study, A new SCADA (Supervisory Control and Data Acquisition) application has been developed to monitor load changes caused by natural disasters. The newly developed SCADA application monitors the changes in the x, y, and z axes of the stresses occurring in the pipes with the help of strain gauge sensors placed on the pipes. For the developed SCADA system, test setups in accordance with the standards were created during the fieldwork. The test setups created were integrated into the SCADA system, and the system was followed up. Thanks to the SCADA system developed with the field application, the load changes that will occur on the natural gas and oil pipes are instantly monitored, and the accumulations that may create a load on the pipes and their surroundings are immediately intervened, and new risks that may arise are prevented. It has contributed to energy supply security, asset management, pipeline holistic management, and sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20gas%20pipes" title=" natural gas pipes"> natural gas pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20pipes" title=" oil pipes"> oil pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20measurement" title=" strain measurement"> strain measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20measurement" title=" stress measurement"> stress measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide" title=" landslide"> landslide</a> </p> <a href="https://publications.waset.org/abstracts/168413/development-of-a-smart-system-for-measuring-strain-levels-of-natural-gas-and-petroleum-pipelines-on-earthquake-fault-lines-in-turkiye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9352</span> RS Based SCADA System for Longer Distance Powered Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harkishen%20Singh">Harkishen Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Gavin%20Mangeni"> Gavin Mangeni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project aims at building an efficient and automatic power monitoring SCADA system, which is capable of monitoring the electrical parameters of high voltage powered devices in real time for example RMS voltage and current, frequency, energy consumed, power factor etc. The system uses RS-485 serial communication interface to transfer data over longer distances. Embedded C programming is the platform used to develop two hardware modules namely: RTU and Master Station modules, which both use the CC2540 BLE 4.0 microcontroller configured in slave / master mode. The Si8900 galvanic ally isolated microchip is used to perform ADC externally. The hardware communicates via UART port and sends data to the user PC using the USB port. Labview software is used to design a user interface to display current state of the power loads being monitored as well as logs data to excel spreadsheet file. An understanding of the Si8900’s auto baud rate process is key to successful implementation of this project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SCADA" title="SCADA">SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=RS485" title=" RS485"> RS485</a>, <a href="https://publications.waset.org/abstracts/search?q=CC2540" title=" CC2540"> CC2540</a>, <a href="https://publications.waset.org/abstracts/search?q=labview" title=" labview"> labview</a>, <a href="https://publications.waset.org/abstracts/search?q=Si8900" title=" Si8900"> Si8900</a> </p> <a href="https://publications.waset.org/abstracts/44265/rs-based-scada-system-for-longer-distance-powered-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44265.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9351</span> Interoperability Model Design of Smart Grid Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seon-Hack%20Hong">Seon-Hack Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae-Il%20Choi"> Tae-Il Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interoperability is defined as systems, components, and devices developed by different entities smoothly exchanging information and functioning organically without mutual consultation, being able to communicate with each other and computer systems of the same type or different types, and exchanging information or the ability of two or more systems to exchange information and use the information exchanged without extra effort. Insufficiencies such as duplication of functions when developing systems and applications due to lack of interoperability in the electric power system and low efficiency due to a lack of mutual information transmission system between the inside of the application program and the design is improved, and the seamless linkage of newly developed systems is improved. Since it is necessary to secure interoperability for this purpose, we designed the smart grid-based interoperability standard model in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interoperability" title="interoperability">interoperability</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system" title=" power system"> power system</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20information%20model" title=" common information model"> common information model</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=IEEE2030" title=" IEEE2030"> IEEE2030</a>, <a href="https://publications.waset.org/abstracts/search?q=Zephyr" title=" Zephyr"> Zephyr</a> </p> <a href="https://publications.waset.org/abstracts/166219/interoperability-model-design-of-smart-grid-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9350</span> Practical Techniques of Improving State Estimator Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiamran%20Radjabli">Kiamran Radjabli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> State Estimator became an intrinsic part of Energy Management Systems (EMS). The SCADA measurements received from the field are processed by the State Estimator in order to accurately determine the actual operating state of the power systems and provide that information to other real-time network applications. All EMS vendors offer a State Estimator functionality in their baseline products. However, setting up and ensuring that State Estimator consistently produces a reliable solution often consumes a substantial engineering effort. This paper provides generic recommendations and describes a simple practical approach to efficient tuning of State Estimator, based on the working experience with major EMS software platforms and consulting projects in many electrical utilities of the USA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convergence" title="convergence">convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20estimator" title=" state estimator"> state estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=troubleshooting" title=" troubleshooting"> troubleshooting</a>, <a href="https://publications.waset.org/abstracts/search?q=tuning" title=" tuning"> tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20systems" title=" power systems"> power systems</a> </p> <a href="https://publications.waset.org/abstracts/124338/practical-techniques-of-improving-state-estimator-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9349</span> Methodology of Automation and Supervisory Control and Data Acquisition for Restructuring Industrial Systems </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakhoua%20Najeh">Lakhoua Najeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In most situations, an industrial system already existing, conditioned by its history, its culture and its context are in difficulty facing the necessity to restructure itself in an organizational and technological environment in perpetual evolution. This is why all operations of restructuring first of all require a diagnosis based on a functional analysis. After a presentation of the functionality of a supervisory system for complex processes, we present the concepts of industrial automation and supervisory control and data acquisition (SCADA). Methods: This global analysis exploits the various available documents on the one hand and takes on the other hand in consideration the various testimonies through investigations, the interviews or the collective workshops; otherwise, it also takes observations through visits as a basis and even of the specific operations. The exploitation of this diagnosis enables us to elaborate the project of restructuring thereafter. Leaving from the system analysis for the restructuring of industrial systems, and after a technical diagnosis based on visits, an analysis of the various technical documents and management as well as on targeted interviews, a focusing retailing the various levels of analysis has been done according a general methodology. Results: The methodology adopted in order to contribute to the restructuring of industrial systems by its participative and systemic character and leaning on a large consultation a lot of human resources that of the documentary resources, various innovating actions has been proposed. These actions appear in the setting of the TQM gait requiring applicable parameter quantification and a treatment valorising some information. The new management environment will enable us to institute an information and communication system possibility of migration toward an ERP system. Conclusion: Technological advancements in process monitoring, control and industrial automation over the past decades have contributed greatly to improve the productivity of virtually all industrial systems throughout the world. This paper tries to identify the principles characteristics of a process monitoring, control and industrial automation in order to provide tools to help in the decision-making process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=supervision" title=" supervision"> supervision</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=TQM" title=" TQM"> TQM</a> </p> <a href="https://publications.waset.org/abstracts/95624/methodology-of-automation-and-supervisory-control-and-data-acquisition-for-restructuring-industrial-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9348</span> Management of Non-Revenue Municipal Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Habib%20Muhammetoglu">Habib Muhammetoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ethem%20Karadirek"> I. Ethem Karadirek</a>, <a href="https://publications.waset.org/abstracts/search?q=Selami%20Kara"> Selami Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Muhammetoglu"> Ayse Muhammetoglu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of non-revenue water (NRW) from municipal water distribution networks is common in many countries such as Turkey, where the average yearly water losses are around 50% . Water losses can be divided into two major types namely: 1) Real or physical water losses, and 2) Apparent or commercial water losses. Total water losses in Antalya city, Turkey is around 45%. Methods: A research study was conducted to develop appropriate methodologies to reduce NRW. A pilot study area of about 60 thousands inhabitants was chosen to apply the study. The pilot study area has a supervisory control and data acquisition (SCADA) system for the monitoring and control of many water quantity and quality parameters at the groundwater drinking wells, pumping stations, distribution reservoirs, and along the water mains. The pilot study area was divided into 18 District Metered Areas (DMAs) with different number of service connections that ranged between a few connections to less than 3000 connections. The flow rate and water pressure to each DMA were on-line continuously measured by an accurate flow meter and water pressure meter that were connected to the SCADA system. Customer water meters were installed to all billed and unbilled water users. The monthly water consumption as given by the water meters were recorded regularly. Water balance was carried out for each DMA using the well-know standard IWA approach. There were considerable variations in the water losses percentages and the components of the water losses among the DMAs of the pilot study area. Old Class B customer water meters at one DMA were replaced by more accurate new Class C water meters. Hydraulic modelling using the US-EPA EPANET model was carried out in the pilot study area for the prediction of water pressure variations at each DMA. The data sets required to calibrate and verify the hydraulic model were supplied by the SCADA system. It was noticed that a number of the DMAs exhibited high water pressure values. Therefore, pressure reducing valves (PRV) with constant head were installed to reduce the pressure up to a suitable level that was determined by the hydraulic model. On the other hand, the hydraulic model revealed that the water pressure at the other DMAs cannot be reduced when complying with the minimum pressure requirement (3 bars) as stated by the related standards. Results: Physical water losses were reduced considerably as a result of just reducing water pressure. Further physical water losses reduction was achieved by applying acoustic methods. The results of the water balances helped in identifying the DMAs that have considerable physical losses. Many bursts were detected especially in the DMAs that have high physical water losses. The SCADA system was very useful to assess the efficiency level of this method and to check the quality of repairs. Regarding apparent water losses reduction, changing the customer water meters resulted in increasing water revenue by more than 20%. Conclusions: DMA, SCADA, modelling, pressure management, leakage detection and accurate customer water meters are efficient for NRW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NRW" title="NRW">NRW</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20losses" title=" water losses"> water losses</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20management" title=" pressure management"> pressure management</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=apparent%20water%20losses" title=" apparent water losses"> apparent water losses</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20water%20distribution%20networks" title=" urban water distribution networks"> urban water distribution networks</a> </p> <a href="https://publications.waset.org/abstracts/15668/management-of-non-revenue-municipal-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9347</span> Design and Development of an 'Optimisation Controller' and a SCADA Based Monitoring System for Renewable Energy Management in Telecom Towers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sundaram">M. Sundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20R.%20Sanath%20Kumar"> H. R. Sanath Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ramprakash"> A. Ramprakash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy saving is a key sustainability focus area for the Indian telecom industry today. This is especially true in rural India where energy consumption contributes to 70 % of the total network operating cost. In urban areas, the energy cost for network operation ranges between 15-30 %. This expenditure on energy as a result of the lack of grid power availability highlights a potential barrier to telecom industry growth. As a result of this, telecom tower companies switch to diesel generators, making them the second largest consumer of diesel in India, consuming over 2.5 billion litres per annum. The growing cost of energy due to increasing diesel prices and concerns over rising greenhouse emissions have caused these companies to look at other renewable energy options. Even the TRAI (Telecom Regulation Authority of India) has issued a number of guidelines to implement Renewable Energy Technologies (RETs) in the telecom towers as part of its ‘Implementation of Green Technologies in Telecom Sector’ initiative. Our proposal suggests the implementation of a Programmable Logic Controller (PLC) based ‘optimisation controller’ that can not only efficiently utilize the energy from RETs but also help to conserve the power used in the telecom towers. When there are multiple RETs available to supply energy, this controller will pick the optimum amount of energy from each RET based on the availability and feasibility at that point of time, reducing the dependence on diesel generators. For effective maintenance of the towers, we are planing to implement a SCADA based monitoring system along with the ‘optimization controller’. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operation%20costs" title="operation costs">operation costs</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption%20of%20fuel%20and%20carbon%20footprint" title=" consumption of fuel and carbon footprint"> consumption of fuel and carbon footprint</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation%20of%20a%20programmable%20logic%20controller%20%28PLC%29%20based%20%E2%80%98optimisation%20controller%E2%80%99" title=" implementation of a programmable logic controller (PLC) based ‘optimisation controller’"> implementation of a programmable logic controller (PLC) based ‘optimisation controller’</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient%20SCADA%20based%20monitoring%20system" title=" efficient SCADA based monitoring system"> efficient SCADA based monitoring system</a> </p> <a href="https://publications.waset.org/abstracts/17807/design-and-development-of-an-optimisation-controller-and-a-scada-based-monitoring-system-for-renewable-energy-management-in-telecom-towers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9346</span> Application of IED to Condition Based Maintenance of Medium Voltage GCB/VCB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Ta%20Yang">Ming-Ta Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Cherng%20Gu"> Jyh-Cherng Gu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Huang"> Chun-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Lung%20Guan"> Jin-Lung Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time base maintenance (TBM) is conventionally applied by the power utilities to maintain circuit breakers (CBs), transformers, bus bars and cables, which may result in under maintenance or over maintenance. As information and communication technology (ICT) industry develops, the maintenance policies of many power utilities have gradually changed from TBM to condition base maintenance (CBM) to improve system operating efficiency, operation cost and power supply reliability. This paper discusses the feasibility of using intelligent electronic devices (IEDs) to construct a CB CBM management platform. CBs in power substations can be monitored using IEDs with additional logic configuration and wire connections. The CB monitoring data can be sent through intranet to a control center and be analyzed and integrated by the Elipse Power Studio software. Finally, a human-machine interface (HMI) of supervisory control and data acquisition (SCADA) system can be designed to construct a CBM management platform to provide maintenance decision information for the maintenance personnel, management personnel and CB manufacturers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circuit%20breaker" title="circuit breaker">circuit breaker</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20base%20maintenance" title=" condition base maintenance"> condition base maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20electronic%20device" title=" intelligent electronic device"> intelligent electronic device</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20base%20maintenance" title=" time base maintenance"> time base maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a> </p> <a href="https://publications.waset.org/abstracts/12921/application-of-ied-to-condition-based-maintenance-of-medium-voltage-gcbvcb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9345</span> Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Dallyn">Paul Dallyn</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20El-Hamalawi"> Ashraf El-Hamalawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Palmeri"> Alessandro Palmeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Bob%20Knight"> Bob Knight</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grouted%20connection" title="grouted connection">grouted connection</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20structure" title=" offshore structure"> offshore structure</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a> </p> <a href="https://publications.waset.org/abstracts/17605/development-of-a-numerical-model-to-predict-wear-in-grouted-connections-for-offshore-wind-turbine-generators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9344</span> Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atish%20Bagchi">Atish Bagchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20Chandrasekaran"> Siva Chandrasekaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GNN" title="GNN">GNN</a>, <a href="https://publications.waset.org/abstracts/search?q=Entropy" title="Entropy">Entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=anomaly%20detection" title="anomaly detection">anomaly detection</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20time-series" title="industrial time-series">industrial time-series</a>, <a href="https://publications.waset.org/abstracts/search?q=AI" title="AI">AI</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=Industry%204.0" title="Industry 4.0">Industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=Machine%20Learning" title="Machine Learning">Machine Learning</a> </p> <a href="https://publications.waset.org/abstracts/145382/hybrid-gnn-based-machine-learning-forecasting-model-for-industrial-iot-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9343</span> PLC Based Automatic Railway Crossing System for India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tapan%20Upadhyay">Tapan Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqib%20Siddiqui"> Aqib Siddiqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameer%20Khan"> Sameer Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Railway crossing system in India is a manually operated level crossing system, either manned or unmanned. The main aim is to protect pedestrians and vehicles from colliding with trains, which pass at regular intervals, as India has the largest and busiest railway network. But because of human error and negligence, every year thousands of lives are lost due to accidents at railway crossings. To avoid this, we suggest a solution, by using Programmable Logical Controller (PLC) based automatic system, which will automatically control the barrier as well as roadblocks to stop people from crossing while security warning is given. Often people avoid security warning, and pass two-wheelers from beneath the barrier, while the train is at a distance away. This paper aims at reducing the fatality and accident rate by controlling barrier and roadblocks using sensors which sense the incoming train and vehicles and sends a signal to PLC. The PLC in return sends a signal to barrier and roadblocks. Once the train passes, the barrier and roadblocks retrieve back, and the passage is clear for vehicles and pedestrians to cross. PLC’s are used because they are very flexible, cost effective, space efficient, reduces complexity and minimises errors. Supervisory Control And Data Acquisition (SCADA) is used to monitor the functioning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20crossing" title="level crossing">level crossing</a>, <a href="https://publications.waset.org/abstracts/search?q=PLC" title=" PLC"> PLC</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a> </p> <a href="https://publications.waset.org/abstracts/20135/plc-based-automatic-railway-crossing-system-for-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9342</span> Risks beyond Cyber in IoT Infrastructure and Services</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mattias%20Bergstrom">Mattias Bergstrom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Significance of the Study: This research will provide new insights into the risks with digital embedded infrastructure. Through this research, we will analyze each risk and its potential negation strategies, especially for AI and autonomous automation. Moreover, the analysis that is presented in this paper will convey valuable information for future research that can create more stable, secure, and efficient autonomous systems. To learn and understand the risks, a large IoT system was envisioned, and risks with hardware, tampering, and cyberattacks were collected, researched, and evaluated to create a comprehensive understanding of the potential risks. Potential solutions have then been evaluated on an open source IoT hardware setup. This list shows the identified passive and active risks evaluated in the research. Passive Risks: (1) Hardware failures- Critical Systems relying on high rate data and data quality are growing; SCADA systems for infrastructure are good examples of such systems. (2) Hardware delivers erroneous data- Sensors break, and when they do so, they don’t always go silent; they can keep going, just that the data they deliver is garbage, and if that data is not filtered out, it becomes disruptive noise in the system. (3) Bad Hardware injection- Erroneous generated sensor data can be pumped into a system by malicious actors with the intent to create disruptive noise in critical systems. (4) Data gravity- The weight of the data collected will affect Data-Mobility. (5) Cost inhibitors- Running services that need huge centralized computing is cost inhibiting. Large complex AI can be extremely expensive to run. Active Risks: Denial of Service- It is one of the most simple attacks, where an attacker just overloads the system with bogus requests so that valid requests disappear in the noise. Malware- Malware can be anything from simple viruses to complex botnets created with specific goals, where the creator is stealing computer power and bandwidth from you to attack someone else. Ransomware- It is a kind of malware, but it is so different in its implementation that it is worth its own mention. The goal with these pieces of software is to encrypt your system so that it can only be unlocked with a key that is held for ransom. DNS spoofing- By spoofing DNS calls, valid requests and data dumps can be sent to bad destinations, where the data can be extracted for extortion or to corrupt and re-inject into a running system creating a data echo noise loop. After testing multiple potential solutions. We found that the most prominent solution to these risks was to use a Peer 2 Peer consensus algorithm over a blockchain to validate the data and behavior of the devices (sensors, storage, and computing) in the system. By the devices autonomously policing themselves for deviant behavior, all risks listed above can be negated. In conclusion, an Internet middleware that provides these features would be an easy and secure solution to any future autonomous IoT deployments. As it provides separation from the open Internet, at the same time, it is accessible over the blockchain keys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IoT" title="IoT">IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA" title=" SCADA"> SCADA</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=AI" title=" AI"> AI</a> </p> <a href="https://publications.waset.org/abstracts/150432/risks-beyond-cyber-in-iot-infrastructure-and-services" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9341</span> Data Driven Infrastructure Planning for Offshore Wind farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isha%20Saxena">Isha Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Kazemtabrizi"> Behzad Kazemtabrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20C.%20M.%20Troffaes"> Matthias C. M. Troffaes</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Crabtree"> Christopher Crabtree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian%20parameter%20inference" title=" bayesian parameter inference"> bayesian parameter inference</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimation" title=" maximum likelihood estimation"> maximum likelihood estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=weibull%20function" title=" weibull function"> weibull function</a>, <a href="https://publications.waset.org/abstracts/search?q=SCADA%20data" title=" SCADA data"> SCADA data</a> </p> <a href="https://publications.waset.org/abstracts/172809/data-driven-infrastructure-planning-for-offshore-wind-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9340</span> Models Development of Graphical Human Interface Using Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%89rick%20Arag%C3%A3o%20Ribeiro">Érick Aragão Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Andr%C3%A9%20Pereira%20Th%C3%A9"> George André Pereira Thé</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Marques%20Soares"> José Marques Soares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphical Human Interface, also known as supervision software, are increasingly present in industrial processes supported by Supervisory Control and Data Acquisition (SCADA) systems and so it is evident the need for qualified developers. In order to make engineering students able to produce high quality supervision software, method for the development must be created. In this paper we propose model, based on the international standards ISO/IEC 25010 and ISO/IEC 25040, for the development of graphical human interface. When compared with to other methods through experiments, the model here presented leads to improved quality indexes, therefore help guiding the decisions of programmers. Results show the efficiency of the models and the contribution to student learning. Students assessed the training they have received and considered it satisfactory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20development%20models" title="software development models">software development models</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20quality" title=" software quality"> software quality</a>, <a href="https://publications.waset.org/abstracts/search?q=supervision%20software" title=" supervision software"> supervision software</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a> </p> <a href="https://publications.waset.org/abstracts/40132/models-development-of-graphical-human-interface-using-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9339</span> A Framework for Event-Based Monitoring of Business Processes in the Supply Chain Management of Industry 4.0</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Atug">Johannes Atug</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Radke"> Andreas Radke</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitchell%20Tseng"> Mitchell Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunther%20Reinhart"> Gunther Reinhart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern supply chains, large numbers of SKU (Stock-Keeping-Unit) need to be timely managed, and any delays in noticing disruptions of items often limit the ability to defer the impact on customer order fulfillment. However, in supply chains of IoT-connected enterprises, the ERP (Enterprise-Resource-Planning), the MES (Manufacturing-Execution-System) and the SCADA (Supervisory-Control-and-Data-Acquisition) systems generate large amounts of data, which generally glean much earlier notice of deviations in the business process steps. That is, analyzing these streams of data with process mining techniques allows the monitoring of the supply chain business processes and thus identification of items that deviate from the standard order fulfillment process. In this paper, a framework to enable event-based SCM (Supply-Chain-Management) processes including an overview of core enabling technologies are presented, which is based on the RAMI (Reference-Architecture-Model for Industrie 4.0) architecture. The application of this framework in the industry is presented, and implications for SCM in industry 4.0 and further research are outlined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyber-physical%20production%20systems" title="cyber-physical production systems">cyber-physical production systems</a>, <a href="https://publications.waset.org/abstracts/search?q=event-based%20monitoring" title=" event-based monitoring"> event-based monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=RAMI%20%28Reference-Architecture-Model%20for%20Industrie%204.0%29" title=" RAMI (Reference-Architecture-Model for Industrie 4.0)"> RAMI (Reference-Architecture-Model for Industrie 4.0)</a> </p> <a href="https://publications.waset.org/abstracts/75155/a-framework-for-event-based-monitoring-of-business-processes-in-the-supply-chain-management-of-industry-40" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9338</span> Substation Automation, Digitization, Cyber Risk and Chain Risk Management Reliability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serzhan%20Ashirov">Serzhan Ashirov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dana%20Nour"> Dana Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafat%20Rob"> Rafat Rob</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Alotaibi"> Khaled Alotaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There has been a fast growth in the introduction and use of communications, information, monitoring, and sensing technologies. The new technologies are making their way to the Industrial Control Systems as embedded in products, software applications, IT services, or commissioned to enable integration and automation of increasingly global supply chains. As a result, the lines that separated the physical, digital, and cyber world have diminished due to the vast implementation of the new, disruptive digital technologies. The variety and increased use of these technologies introduce many cybersecurity risks affecting cyber-resilience of the supply chain, both in terms of the product or service delivered to a customer and members of the supply chain operation. US department of energy considers supply chain in the IR4 space to be the weakest link in cybersecurity. The IR4 identified the digitization of the field devices, followed by digitalization that eventually moved through the digital transformation space with little care for the new introduced cybersecurity risks. This paper will examine the best methodologies for securing the electrical substations from cybersecurity attacks due to supply chain risks, and due to digitization effort. SCADA systems are the most vulnerable part of the power system infrastructure due to digitization and due to the weakness and vulnerabilities in the supply chain security. The paper will discuss in details how create a secure supply chain methodology, secure substations, and mitigate the risks due to digitization <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cybersecurity" title="cybersecurity">cybersecurity</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20methodology" title=" supply chain methodology"> supply chain methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=secure%20substation" title=" secure substation"> secure substation</a>, <a href="https://publications.waset.org/abstracts/search?q=digitization" title=" digitization"> digitization</a> </p> <a href="https://publications.waset.org/abstracts/173095/substation-automation-digitization-cyber-risk-and-chain-risk-management-reliability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9337</span> Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umit%20Cali">Umit Cali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20sources" title="renewable energy sources">renewable energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title=" wind power"> wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20economics" title=" energy economics"> energy economics</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20trading" title=" power trading"> power trading</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20grids" title=" power grids"> power grids</a> </p> <a href="https://publications.waset.org/abstracts/36223/grid-and-market-integration-of-large-scale-wind-farms-using-advanced-predictive-data-mining-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9336</span> Power System Modeling for Calculations in Frequency and Steady State Domain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Levacic">G. Levacic</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zupan"> A. Zupan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Application of new technological solutions and installation of new elements into the network requires special attention when investigating its interaction with the existing power system. Special attention needs to be devoted to the occurrence of harmonic resonance. Sources of increasing harmonic penetration could be wind power plants, Flexible Alternating Current Transmission System (FACTS) devices, underground and submarine cable installations etc. Calculation in frequency domain with various software, for example, the software for power systems transients EMTP-RV presents one of the most common ways to obtain the harmonic impedance of the system. Along calculations in frequency domain, such software allows performing of different type of calculations as well as steady-state domain. This paper describes a power system modeling with software EMTP-RV based on data from SCADA/EMS system. The power flow results on 220 kV and 400 kV voltage levels retrieved from EMTP-RV are verified by comparing with power flow results from power transmissions system planning software PSS/E. The determination of the harmonic impedance for the case of remote power plant connection with cable up to 2500 Hz is presented as an example of calculations in frequency domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20system%20modeling" title="power system modeling">power system modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20domain" title=" frequency domain"> frequency domain</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20state" title=" steady state"> steady state</a>, <a href="https://publications.waset.org/abstracts/search?q=EMTP-RV" title=" EMTP-RV"> EMTP-RV</a>, <a href="https://publications.waset.org/abstracts/search?q=PSS%2FE" title=" PSS/E"> PSS/E</a> </p> <a href="https://publications.waset.org/abstracts/87152/power-system-modeling-for-calculations-in-frequency-and-steady-state-domain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9335</span> Development of Configuration Software of Space Environment Simulator Control System Based on Linux </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhan%20Haiyang">Zhan Haiyang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Lei"> Zhang Lei</a>, <a href="https://publications.waset.org/abstracts/search?q=Ning%20Juan"> Ning Juan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a configuration software solution in Linux, which is used for the control of space environment simulator. After introducing the structure and basic principle, it is said that the developing of QT software frame and the dynamic data exchanging between PLC and computer. The OPC driver in Linux is also developed. This driver realizes many-to-many communication between hardware devices and SCADA software. Moreover, an algorithm named “Scan PRI” is put forward. This algorithm is much more optimizable and efficient compared with "Scan in sequence" in Windows. This software has been used in practical project. It has a good control effect and can achieve the expected goal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Linux%20OS" title="Linux OS">Linux OS</a>, <a href="https://publications.waset.org/abstracts/search?q=configuration%20software" title=" configuration software"> configuration software</a>, <a href="https://publications.waset.org/abstracts/search?q=OPC%20Server%20driver" title=" OPC Server driver"> OPC Server driver</a>, <a href="https://publications.waset.org/abstracts/search?q=MYSQL%20database" title=" MYSQL database"> MYSQL database</a> </p> <a href="https://publications.waset.org/abstracts/54104/development-of-configuration-software-of-space-environment-simulator-control-system-based-on-linux" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=312">312</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=313">313</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SCADA%20systems&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>