CINXE.COM
Search results for: silica
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: silica</title> <meta name="description" content="Search results for: silica"> <meta name="keywords" content="silica"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="silica" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="silica"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 512</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: silica</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">512</span> Influence of Silica Fume on Ultrahigh Performance Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vitoldas%20Vaitkevi%C4%8Dius">Vitoldas Vaitkevičius</a>, <a href="https://publications.waset.org/abstracts/search?q=Evaldas%20%C5%A0erelis"> Evaldas Šerelis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silica fume, also known as microsilica (MS) or condensed silica fume is a by-product of the production of silicon metal or ferrosilicon alloys. Silica fume is one of the most effective pozzolanic additives which could be used for ultrahigh performance and other types of concrete. Despite the fact, however is not entirely clear, which amount of silica fume is most optimal for UHPC. Main objective of this experiment was to find optimal amount of silica fume for UHPC with and without thermal treatment, when different amount of quartz powder is substituted by silica fume. In this work were investigated four different composition of UHPC with different amount of silica fume. Silica fume were added 0, 10, 15 and 20% of cement (by weight) to UHPC mixture. Optimal amount of silica fume was determined by slump, viscosity, qualitative and quantitative XRD analysis and compression strength tests methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrahigh%20performance%20concrete" title=" ultrahigh performance concrete"> ultrahigh performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a> </p> <a href="https://publications.waset.org/abstracts/4262/influence-of-silica-fume-on-ultrahigh-performance-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">511</span> Comparison of Silica-Filled Rubber Compound Prepared from Unmodified and Modified Silica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thirawudh%20Pongprayoon">Thirawudh Pongprayoon</a>, <a href="https://publications.waset.org/abstracts/search?q=Watcharin%20Rassamee"> Watcharin Rassamee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silica-filled natural rubber compounds were prepared from unmodified and surface-modified silica. The modified silica was coated by ultrathin film of polyisoprene by admicellar polymerization. FTIR and SEM were applied to characterize the modified silica. The cure, mechanic, and dynamics properties were investigated with the comparison of the compounds. Cure characterization of modified silica rubber compound was shorter than that of unmodified silica compound. Strength and abrasion resistance of modified silica compound were better than those of unmodified silica rubber compound. Wet grip and rolling resistance analyzed by DMA from tanδ at 0°C and 60°C using 5 Hz were also better than those of unmodified silica rubber compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica" title="silica">silica</a>, <a href="https://publications.waset.org/abstracts/search?q=admicellar%20polymerization" title=" admicellar polymerization"> admicellar polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20compounds" title=" rubber compounds"> rubber compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20properties" title=" dynamic properties"> dynamic properties</a> </p> <a href="https://publications.waset.org/abstracts/12331/comparison-of-silica-filled-rubber-compound-prepared-from-unmodified-and-modified-silica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">510</span> Preparation of Amorphous silica from Algerian Diatomite and Its Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Medeghri">S. Medeghri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hamzaoui"> S. Hamzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zerdali"> M. Zerdali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Masatomo"> S. Masatomo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work there is a facile method to produce pure amorphous silica from Algerian diatomite with an economic and ecological method. The sodium silicate is commonly used as precursor in silica gel diatomite preparation. In this study, the preparation of sodium silicate is preceded by acid washing of raw diatomite; the acid is then slowly added to precipitate silica at different pH values to obtain silica gel. The silica gel is characterized by EDX, ICP-MS and XRD. The EDX revels that the purity of silica from diatom is 98% after purification compared to raw diatom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diatomite" title="diatomite">diatomite</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20cleaning" title=" acid cleaning"> acid cleaning</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silica" title=" amorphous silica"> amorphous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=purity" title=" purity"> purity</a> </p> <a href="https://publications.waset.org/abstracts/27238/preparation-of-amorphous-silica-from-algerian-diatomite-and-its-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">509</span> Nano and Micro Silica Cooperating Effect on Ferrocement Mortar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Ibrahim%20Abdulla">Aziz Ibrahim Abdulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Mohanad%20Mahdi"> Omar Mohanad Mahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to explore the effect of incorporating Nano-Silica with Silica-fume in ferrocement mortar to enhancing mechanical properties of it. One type of Nano silica with average diameter size 23nm and silica fume have been used with two percentage (1%, 2% Nano silica and 5%, 10% silica fume per weight of cement) and w/c with / without superplasticizer was been calculated by flow test method. Also three sand: cement ratios have been used (1.5, 2.0 and 2.5) with max. Aggregate size 0.6mm in this study for reference and other mixtures. Results reveal adding Nano silica with silica fume to ferrocement mortar enhances its physical and mechanical properties such as compressive strength and flexural strength. The SEM pictures and density with absorption ratio demonstrate that Nano silica with silica fume contributes to enhancement of mortar through yielding denser, more compact and uniform mixtures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20silica" title="nano silica">nano silica</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrocement%20mortar" title=" ferrocement mortar"> ferrocement mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=compresion%20strength" title=" compresion strength"> compresion strength</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20strength" title=" flexural strength "> flexural strength </a> </p> <a href="https://publications.waset.org/abstracts/28127/nano-and-micro-silica-cooperating-effect-on-ferrocement-mortar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">508</span> Mechanical and Long Term Ageing Properties of PMMA Silica Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khlifa">M. Khlifa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Youssef.%20M.%20Almakki"> A. Youssef. M. Almakki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The addition of silica nanoparticles to poly(methyl methacrylate) (PMMA) can influence its mechanical and aging properties. Dispersed PMMA in colloidal and aggregated silica revealed considerable increase in modulus above the glass transition temperature when aggregated silica nanoparticles were used, whereas colloidally dispersed silica nanoparticles showed only a marginal improvement. In addition, Dispersed PMMA in both aggregated and colloidally silica nanoparticles accelerated physical ageing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20aging" title=" physical aging"> physical aging</a>, <a href="https://publications.waset.org/abstracts/search?q=PMMA" title=" PMMA"> PMMA</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20and%20molecular%20engineering" title=" chemical and molecular engineering "> chemical and molecular engineering </a> </p> <a href="https://publications.waset.org/abstracts/24139/mechanical-and-long-term-ageing-properties-of-pmma-silica-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">507</span> Properties of Epoxy Composite Reinforced with Amorphous and Crystalline Silica from Rice Husk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norul%20Hisham%20Hamid">Norul Hisham Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Affan"> Amir Affan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ummi%20Hani%20Abdullah"> Ummi Hani Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Paridah%20Md.%20Tahir"> Paridah Md. Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Akmal%20Azhar"> Khairul Akmal Azhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmat%20Nawai"> Rahmat Nawai</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20B.%20H.%20Wan%20Sulwani%20Izzati"> W. B. H. Wan Sulwani Izzati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dimensional stability and static bending properties of epoxy composite reinforced with amorphous and crystalline silica were investigated. The amorphous and crystalline silica was obtained by the precipitation method from carbonisation process of the rice husk at a temperature of 600 °C and 1000 °C for 7 hours respectively. The epoxy resin was mixed with 5%, 10% and 15% concentrations of amorphous and crystalline silica. The mixture was stirred for 10 minutes and cured at 28 °C for 72 hours and oven dried at 80 °C for 72 hours. The scanning electron microscope image showed the silica sized of 10-30nm was obtained. The water absorption and thickness swelling of epoxy/amorphous silica composite was not significantly different with silica concentration ranged from 0.08% to 0.09% and 0.17% to 0.20% respectively. The maximum modulus of rupture (85 MPa) and modulus of elasticity (3284 MPa) were achieved for 10% silica concentration. For epoxy/crystalline silica composite; the water absorption and thickness swelling were also not significantly different with silica concentration, ranged from 0.08% to 0.11% and 0.16% to 0.18% respectively. The maximum modulus of rupture (47.9 MPa) and modulus of elasticity (2760 MPa) were achieved for 10% silica concentration. Overall, the water absorption and thickness swelling were almost identical for epoxy composite made from either amorphous or crystalline silica. The epoxy composite made from amorphous silica was stronger than crystalline silica. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy" title="epoxy">epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20stability" title=" dimensional stability"> dimensional stability</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20bending" title=" static bending"> static bending</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a> </p> <a href="https://publications.waset.org/abstracts/84173/properties-of-epoxy-composite-reinforced-with-amorphous-and-crystalline-silica-from-rice-husk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">506</span> Influence of Silica Fume on the Hydration of Cement Pastes Studied by Simultaneous TG-DSC Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anton%20Trn%C3%ADk">Anton Trník</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Scheinherrov%C3%A1"> Lenka Scheinherrová</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20%C4%8Cern%C3%BD"> Robert Černý</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silica fume is a by-product of the ferro-silicon and silicon metal industries. It is mainly in the form of amorphous silica. Silica fume belongs to pozzolanic active materials which can be used in concrete to improve its final properties. In this paper, the influence of silica fume on hydration of cement pastes is studied using differential scanning calorimetry (DSC) and thermogravimetry (TG) at various curing times (2, 7, 28, and 90 days) in the temperature range from 25 to 1000 °C in an argon atmosphere. Samples are prepared from Portland cement CEM I 42.5 R which is partially replaced with the silica fume of 4, 8, and 12 wt.%. The water/binder ratio is chosen as 0.5. It is identified and described the liberation of physically bound water, calcium–silicate–hydrates dehydration, portlandite and calcite decomposition in studied samples. Also, it is found out that an exothermic peak at 950 °C is observed without a significant mass change for samples with 12 wt.% of silica fume after two days of hydration. This peak is probably caused by the pozzolanic reaction between silica fume and Portland cement. Its size corresponds to the degree of crystallization between Ca and Si. The portlandite content is lower for the samples with a higher amount of silica fume. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimetry" title="differential scanning calorimetry">differential scanning calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=hydration" title=" hydration"> hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetry" title=" thermogravimetry"> thermogravimetry</a> </p> <a href="https://publications.waset.org/abstracts/62051/influence-of-silica-fume-on-the-hydration-of-cement-pastes-studied-by-simultaneous-tg-dsc-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">505</span> Investigation Edge Coverage of Automotive Electrocoats Filled by Nano Silica Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marzieh%20Bakhtiary%20Noodeh">Marzieh Bakhtiary Noodeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahla%20Zabet"> Mahla Zabet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Attempts have been carried out to enhance the anticorrosion properties as well as edge coverage of an automotive electrocoating using the nano silica particles. To this end, the automotive electrocoating was reinforced with the nano silica particles at various weight fractions. The electrocoats were applied on the surface of punched edge followed by curing at 160⁰C for 20 min. The effects of nano silica particles on the rheological properties, influencing edge coverage were studied by a RMS (Rheometric Mechanical Spectrometer) technique. The anticorrosion properties were studied by a salt-spray test. The results obtained revealed that nano silica particles can significantly enhance the edge coverage by increasing minimum melt viscosity of electrocoats. It was shown that using 4 wt% nano silica particles, both anticorrosion properties and edge coverage of the electrocoats were significantly improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20silica" title="nano silica">nano silica</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoat" title=" electrocoat"> electrocoat</a>, <a href="https://publications.waset.org/abstracts/search?q=edge%20coverage" title=" edge coverage"> edge coverage</a>, <a href="https://publications.waset.org/abstracts/search?q=anticorrosion" title=" anticorrosion"> anticorrosion</a> </p> <a href="https://publications.waset.org/abstracts/24511/investigation-edge-coverage-of-automotive-electrocoats-filled-by-nano-silica-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">504</span> Fabrication and Characterization of Glass Nanofibers through Electrospinning of Silica Sol-Gel along with in situ Synthesis of Ag Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Kangazian%20Kangazi">Mahsa Kangazian Kangazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Ghareh%20Aghaji"> Ali Akbar Ghareh Aghaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Montazer"> Majid Montazer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, silica nanofibers are highly regarded among the inorganic nanofibers due to the high reactivity and availability of silicon compounds in nature. Sol-gel process is required for electrospinning of silica nanofibers in which a metal alkoxide is hydrolyzed, and the viscosity is increased. In this study, silica nanofibers containing silver nanoparticles were synthesized and electrospun from a mixture of silica sol with an easy spinnable polymer (PVA) as an additive. The silica sol contains tetraethyl orthosilicate (TEOS), silver nitrate, distilled water, nitric acid, and ethanol. Nanofibers were formed through electrospinning setup. The nanofibers were calcinated to remove the solvent and additive polymer. Consequently, pure silica nanofibers were produced. FTIR analysis indicated entire removal of polyvinyl alcohol from the structure and formation of silan groups. The presence of silver, silica and oxygen was confirmed by EDX. Also, XRD patterns revealed the presence of silver nanoparticles with a mean crystal size of 18 nm. FESEM images showed that adding silver nitrate into the sol-gel, resulted in lower nanofibers diameter from 286 to 136 nm. Furthermore, the electrospun nanofibers were more resistance in acidic media than alkaline media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20synthesis%20of%20silver%20nanoparticles" title="in situ synthesis of silver nanoparticles">in situ synthesis of silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanofibers" title=" silica nanofibers"> silica nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=tetraethyl%20orthosilicate" title=" tetraethyl orthosilicate"> tetraethyl orthosilicate</a> </p> <a href="https://publications.waset.org/abstracts/82795/fabrication-and-characterization-of-glass-nanofibers-through-electrospinning-of-silica-sol-gel-along-with-in-situ-synthesis-of-ag-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">503</span> Study of Dispersion of Silica and Chitosan Nanoparticles into Gelatin Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohit%20Batra">Mohit Batra</a>, <a href="https://publications.waset.org/abstracts/search?q=Noel%20Sarkar"> Noel Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayeeta%20Mitra"> Jayeeta Mitra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study silica nanoparticles were synthesized using different methods and different silica sources namely Tetraethyl ortho silicate (TEOS), Sodium Silicate, Rice husk while chitosan nanoparticles were prepared with ionic gelation method using Sodium tripolyphosphate (TPP). Size and texture of silica nanoparticles were studied using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) along with the effect of change in concentration of various reagents in different synthesis processes. Size and dispersion of Silica nanoparticles prepared from TEOS using stobber’s method were found better than other methods while nanoparticles prepared using rice husk were cheaper than other ones. Catalyst found to play a very significant role in controlling the size of nanoparticles in all methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica%20nanoparticles" title="silica nanoparticles">silica nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-nanocomposites" title=" bio-nanocomposites"> bio-nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a> </p> <a href="https://publications.waset.org/abstracts/63358/study-of-dispersion-of-silica-and-chitosan-nanoparticles-into-gelatin-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">502</span> Effect of Temperature and Time on the Yield of Silica from Rice Husk Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Adamu%20Musa">Mohammed Adamu Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shehu%20Saminu%20Babba"> Shehu Saminu Babba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The technological trend towards waste utilization and cost reduction in industrial processing has attracted use of Rice Husk as a value added material. Both rice husk (RH) and Rice Husk Ash (RHA) has been found suitable for wide range of domestic as well as industrial applications. Therefore, the purpose of this research is to produce high grade sodium silicate from rice husk ash by considering the effect of temperature and time of heating as the process variables. The experiment was performed by heating the rice husk at temperatures 500 °C, 600 °C, 700 °C and 800 °C and time 60min, 90min, 120min and 150min were used to obtain the ash. 1.0M of aqueous sodium hydroxide solution was used to dissolve the silicate from the ash, which contained crude sodium silicate. In addition, the ash was neutralized by adding 5M of HCL until the pH reached 3.5 to give silica gel. At 6000C and 120mins, 94.23% silica was obtained from the RHA. At higher temperatures (700 °C and 800 °C) the percentage yield of silica reduced due to surface melting and carbon fixation in the lattice caused by presence of potassium. For this research, 600 °C is considered to be the optimum temperature for silica production from RHA. Silica produced from RHA can generate aggregate value and can be used in areas such as pulp and paper, plastic and rubber reinforcement industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burning" title="burning">burning</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20gel" title=" silica gel"> silica gel</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/44042/effect-of-temperature-and-time-on-the-yield-of-silica-from-rice-husk-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">501</span> Fabrication of Cellulose Acetate/Polyethylene Glycol Membranes Blended with Silica and Carbon Nanotube for Desalination Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nurkhamidah">Siti Nurkhamidah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeni%20Rahmawati"> Yeni Rahmawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadlilatul%20Taufany"> Fadlilatul Taufany</a>, <a href="https://publications.waset.org/abstracts/search?q=Eamor%20M.%20Woo"> Eamor M. Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=I%20Made%20P.%20A.%20Merta"> I Made P. A. Merta</a>, <a href="https://publications.waset.org/abstracts/search?q=Deffry%20D.%20A.%20Putra"> Deffry D. A. Putra</a>, <a href="https://publications.waset.org/abstracts/search?q=Pitsyah%20Alifiyanti"> Pitsyah Alifiyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Krisna%20D.%20Priambodo"> Krisna D. Priambodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cellulose acetate/polyethylene glycol (CA/PEG) membrane was modified with varying amount of silica and carbon nanotube (CNT) to enhance its separation performance in the desalination process. These composite membranes were characterized for their hydrophilicity, morphology and permeation properties. The experiment results show that hydrophilicity of CA/PEG/Silica membranes increases with the increasing of silica concentration and the decreasing particle size of silica. From Scanning Electron Microscopy (SEM) image, it shows that pore structure of CA/PEG membranes increases with the addition of silica. Membrane performance analysis shows that permeate flux, salt rejection, and permeability of membranes increase with the increasing of silica concentrations. The effect of CNT on the hydrophylicity, morphology, and permeation properties was also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube" title="carbon nanotube">carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20acetate" title=" cellulose acetate"> cellulose acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=PEG" title=" PEG"> PEG</a> </p> <a href="https://publications.waset.org/abstracts/50953/fabrication-of-cellulose-acetatepolyethylene-glycol-membranes-blended-with-silica-and-carbon-nanotube-for-desalination-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">500</span> The Influence of Mineraliser Granulometry on Dense Silica Brick Microstructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Nevrivova">L. Nevrivova</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Lang"> K. Lang</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kotoucek"> M. Kotoucek</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Vsiansky"> D. Vsiansky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This entry concerned with dense silica microstructure was produced as a part of a project within the Technology Agency of the Czech Republic which is being implemented in cooperation of the biggest producer of refractories the P-D Refractories CZ company with the research organisation Brno University of Technology. The paper is focused on the influence of mixture homogenisation and the influence of grain size of the mineraliser on the resulting utility properties of the material as well as its microstructure. It has a decisive influence on the durability of the material in a building structure. This paper is a continuation of a previously published study dealing with the suitability of various types of mineralising agents in terms of density, strength and mineral composition of silica. The entry describes the influence of the method of mixture homogenisation and the influence of granulometry of the applied Fe-mineralising agent on the resulting silica microstructure. Porosity, density, phase composition and microstructure of the experimentally prepared silica samples were examined and the results were discussed in context with the technology of homogenisation and firing temperature used. The properties of silica brick samples were compared to the sample without any Fe-mineraliser. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica%20bricks" title="silica bricks">silica bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-mineraliser" title=" Fe-mineraliser"> Fe-mineraliser</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogical%20composition" title=" mineralogical composition"> mineralogical composition</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20developed%20silica%20material" title=" new developed silica material"> new developed silica material</a> </p> <a href="https://publications.waset.org/abstracts/17434/the-influence-of-mineraliser-granulometry-on-dense-silica-brick-microstructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">499</span> Development of Water-Based Thermal Insulation Paints Using Silica Aerogel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lu%20Yanru">Lu Yanru</a>, <a href="https://publications.waset.org/abstracts/search?q=Handojo%20Djati%20Utomo"> Handojo Djati Utomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yin%20Xi%20Jiang"> Yin Xi Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xiaodong"> Li Xiaodong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insulation plays a key role in the sustainable building due to the contribution of energy consumption reduction. Without sufficient insulation, a great amount of the energy used to heat or cool a building will be lost to the outdoors. In this study, we developed a highly efficient thermal insulation paint with the incorporation of silica aerogel. Silica aerogel, with a low thermal conductivity of 0.01 W/mK, has been successfully prepared from the solid waste from the incineration plants. It has been added into water-based paints to increase its thermal insulation properties. To investigate the thermal insulation performance of silica aerogel additive, the paint samples were mixed with silica aerogel at different sizes and with various portions. The thermal conductivity, water resistance, thermal stability and adhesion strength of the samples were tested and evaluated. The thermal diffusivity measurements proved that adding silica aerogel additive could improve the thermal insulation properties of the paint significantly. Up to 5 ˚C reductions were observed after applying paints with silica aerogel additive compare to the one without it. The results showed that the developed thermal insulation paints have great potential for an application in green and sustainable building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica%20aerogel" title="silica aerogel">silica aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulation" title=" thermal insulation"> thermal insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=water-based%20paints" title=" water-based paints"> water-based paints</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resistant" title=" water resistant"> water resistant</a> </p> <a href="https://publications.waset.org/abstracts/118598/development-of-water-based-thermal-insulation-paints-using-silica-aerogel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">498</span> Effectiveness of Natural Zeolite in Mitigating Alkali Silica Reaction Expansions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esma%20Gizem%20Daskiran">Esma Gizem Daskiran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Mustafa%20Daskiran"> Mehmet Mustafa Daskiran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the effectiveness of two natural zeolites in reducing expansion of concrete due to alkali-silica reaction. These natural zeolites have different reactive silica content. Three aggregates; two natural sand and one crushed stone aggregate were used while preparing mortar bars in accordance with accelerated mortar bar test method, ASTM C1260. Performance of natural zeolites are compared by examining the expansions due to alkali silica reaction. Natural zeolites added to the mixtures at %10 and %20 replacement levels by weight of cement. Natural zeolite with high reactive silica content had better performance on reducing expansions due to ASR. In this research, using high reactive zeolite at %20 replacement level was effective in mitigating expansions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkali%20silica%20reaction" title="alkali silica reaction">alkali silica reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20zeolite" title=" natural zeolite"> natural zeolite</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a>, <a href="https://publications.waset.org/abstracts/search?q=expansion" title=" expansion"> expansion</a> </p> <a href="https://publications.waset.org/abstracts/32640/effectiveness-of-natural-zeolite-in-mitigating-alkali-silica-reaction-expansions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">497</span> Influence of TEOS Concentration and Triton Additive on the Nanostructured Silica Sol-Gel Antireflective Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najme%20lari">Najme lari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrokh%20Ahangarani"> Shahrokh Ahangarani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shanaghi"> Ali Shanaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanostructure silica antireflective surfaces were fabricated on glasses by Sol-Gel technique. Various silica sols (varying in composition: tetraethyl orthosilicate (TEOS) concentration and Triton additive) were synthesized by the polymeric process and then subsequently coated on substrates. Silica thin films were investigated by using UV-Visible Spectroscopy; Fourier-Transformed Infrared Spectrophotometer and Filed Emission Scanning Electron Microscopy were used. Results indicated that dense silica layers, obtained from the polymeric method, permit a considerable reduction of these light reflections compared with uncoated glasses in all the cases studied, but the degree of reduction is different depending on the composition of the precursor solution. It was found that the transmittance increased from 0.915 for the bare slide up to 0.96 for the best made sample corresponding to the Triton-doped silica. The addition of Triton x-100 to the silica sols improved the optical property of thin film because of it helps to create nanoporous in the coating. Also the results showed SiO2 content is an effective parameter to prepare the antireflective films. Loss of SiO2 cause to rapid the reactions and Si-O-Si bonding form better under this condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol%E2%80%93gel" title="sol–gel">sol–gel</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20thin%20films" title=" silica thin films"> silica thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=antireflective%20coatings" title=" antireflective coatings"> antireflective coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=triton" title=" triton"> triton</a> </p> <a href="https://publications.waset.org/abstracts/24148/influence-of-teos-concentration-and-triton-additive-on-the-nanostructured-silica-sol-gel-antireflective-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">496</span> In-Vitro and Antibacterial Studies for Silicate-Phosphate Glasses Formed with Biosynthesized Silica </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Damandeep%20Kaur">Damandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=O.P.%20Pandey"> O.P. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=M.S.%20Reddy"> M.S. Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present research, bio-synthesisation of silica particles has been carried out successfully. For this purpose, agriculture waste rice husk (RH) has been utilized. Among several types of agriculture waste, RH is considered to be cost-effective and easily accessible. In the present investigation, a chemical approach has been followed to extract silica nanoparticles. X-Ray Diffraction (XRD) patterns indicated the amorphous nature of silica at lower temperature range. Silica and other mineral contents have been found using energy dispersive spectroscopy (EDS). Morphological and structural studies have been carried out with the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Fourier Transform Infrared Transmission (FTIR) spectroscopy. Further, extracted silica from RH has been used for preparation of the glasses. The appearance of broad humps in XRD patterns confirmed the amorphous nature of prepared glasses. These glasses exhibited enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria. The as-synthesized glass samples can be further used for physical and structural studies for drug loading applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title="rice husk">rice husk</a>, <a href="https://publications.waset.org/abstracts/search?q=biosynthesized%20silica" title=" biosynthesized silica"> biosynthesized silica</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20glasses" title=" bioactive glasses"> bioactive glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20studies" title=" antibacterial studies"> antibacterial studies</a> </p> <a href="https://publications.waset.org/abstracts/125359/in-vitro-and-antibacterial-studies-for-silicate-phosphate-glasses-formed-with-biosynthesized-silica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125359.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">495</span> Synthesis of Iso-Amyl, Benzyl and Cinnamyl Esters over Active, Selective, Reusable and Eco-Friendly Natural Silica Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abd%20El-Aziz%20Said">Abd El-Aziz Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, natural silica was used as an active, selective, reusable and eco-friendly catalyst for the liquid phase synthesis of iso-amyl, benzyl and cinnamyl esters. The original and calcined natural silica were characterized by TG-DTA, XRF, XRD, FTIR, SEM, and N2-sorption analysis. The surface acidity of the catalysts was determined using isopropanol dehydration and the strength of available acid sites was measured using chemisorption of pyridine (PY) and dimethyl pyridine (DMPY). The results of acidity specified that the acidic sites are of Brönsted type, while PY-TPD demonstrated that almost of the acidic sites over the surface of natural silica are of weak and intermediate strength. The catalytic activity of natural silica towards esterification of acetic acid with alcohols was extensively studied. The results revealed that natural silica had high catalytic activity with 100% selectivity to all targeted esters. In addition, the yields obtained in batch methods were 83, 81, and 80%, respectively, whereas these yields after simple distillation were improved 97, 99.5, and 90%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquid-phase%20esterification" title="liquid-phase esterification">liquid-phase esterification</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20silica" title=" natural silica"> natural silica</a>, <a href="https://publications.waset.org/abstracts/search?q=acidity%20esters" title=" acidity esters"> acidity esters</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/120099/synthesis-of-iso-amyl-benzyl-and-cinnamyl-esters-over-active-selective-reusable-and-eco-friendly-natural-silica-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">494</span> Nanostructure Antireflective Sol-Gel Silica Coatings for Solar Collectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najme%20Lari">Najme Lari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrokh%20Ahangarani"> Shahrokh Ahangarani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Shanaghi"> Ali Shanaghi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sol-gel technology is a promising manufacturing method to produce anti reflective silica thin films for solar energy applications. So to improve the properties of the films, controlling parameter of the sol - gel method is very important. In this study, soaking treatment effect on optical properties of silica anti reflective thin films was investigated. UV-Visible Spectroscopy, Fourier-Transformed Infrared Spectrophotometer and Field Emission Scanning Electron Microscopy was used for the characterization of silica thin films. Results showed that all nanoporous silica layers cause to considerable reduction of light reflections compared with uncoated glasses. With single layer deposition, the amount of reduction depends on the dipping time of coating and has an optimal time. Also, it was found that solar transmittance increased from 91.5% for the bare slide up to 97.5% for the best made sample corresponding to two deposition cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol%E2%80%93gel" title="sol–gel">sol–gel</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20thin%20films" title=" silica thin films"> silica thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=anti%20reflective%20coatings" title=" anti reflective coatings"> anti reflective coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=soaking%20treatment" title=" soaking treatment"> soaking treatment</a> </p> <a href="https://publications.waset.org/abstracts/23222/nanostructure-antireflective-sol-gel-silica-coatings-for-solar-collectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">493</span> Sol-Gel Erbium-Doped Silica-Hafnia Planar Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustapha%20El%20Mataouy">Mustapha El Mataouy</a>, <a href="https://publications.waset.org/abstracts/search?q=Abellatif%20Aaliti"> Abellatif Aaliti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhamed%20Khaddor"> Mouhamed Khaddor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Erbium actived silica-hafnia planar waveguides have been prepared by sol-gel route. The films were deposited on vitreous silica substrates using dip-coating technique. The parameters of preparation have been chosen to optimize the waveguides for operation in the near infrared (NIR) region, and to increase the luminescence efficiency of the metastable 4I13/2 state of Erbium ions. The waveguides properties were determined by m-lines spectroscopy, loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical process related to the emission in the C telecom band (1530nm-1565nm) of the Erbium ions. The results are discussed with the aim of comparing the structural and optical properties of Erbium activated silica-hafnia planar waveguides with different molar ratio of Si / Hf. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erbium" title="erbium">erbium</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20amplifiers" title=" optical amplifiers"> optical amplifiers</a>, <a href="https://publications.waset.org/abstracts/search?q=silica-hafnia" title=" silica-hafnia"> silica-hafnia</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=waveguide" title=" waveguide"> waveguide</a> </p> <a href="https://publications.waset.org/abstracts/59785/sol-gel-erbium-doped-silica-hafnia-planar-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">492</span> The Influence of Silica on the Properties of Cementitious Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eva%20Stefanovska">Eva Stefanovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Estefania%20Cuenca"> Estefania Cuenca</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Momirov"> Aleksandra Momirov</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Fidanchevska"> Monika Fidanchevska</a>, <a href="https://publications.waset.org/abstracts/search?q=Liberato%20Ferrara"> Liberato Ferrara</a>, <a href="https://publications.waset.org/abstracts/search?q=Emilija%20Fidanchevski"> Emilija Fidanchevski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silica is used in construction materials as a part of natural raw materials or as an additive in powder form (micro and nano dimensions). SiO₂ particles in cement act as centers of nucleation, as a filler or as pozzolan material. In this regard, silica improves the microstructure of cementitious composites, increases the mechanical properties, and finally also results into improved durability of the final products. Improved properties of cementitious composites may lead to better structural efficiency, which, together with increased durability, results into increased sustainability signature of structures made with this kind of materials. The aim of the present work was to investigate the influence of silica on the properties of cement. Fly ash (as received and mechanically activated) and synthetized silica (sol-gel method using TEOS as precursor) was used in the investigation as source of silica. Four types of cement mixtures were investigated (reference cement paste, cement paste with addition of 15wt.% as-received fly ash, cement paste with 15 wt.% mechanically activated fly ash and cement paste with 14wt.% mechanically activated fly ash and 1 wt.% silica). The influence of silica on setting time and mechanical properties (2, 7 and 28 days) was followed. As a matter of fact it will be shown that cement paste with composition 85 wt. % cement, 14 wt.% mechanically activated fly ash and 1 wt. % SiO₂ obtained by the sol-gel method was the best performing one, with increased compressive and flexure strength by 9 and 10 % respectively, as compared to the reference mixture. Acknowledgements: 'COST Action CA15202, www.sarcos.eng.cam.ac.uk' <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement" title="cement">cement</a>, <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title=" fly ash"> fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a> </p> <a href="https://publications.waset.org/abstracts/116244/the-influence-of-silica-on-the-properties-of-cementitious-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">491</span> Influence of Silica Fume Addition on Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Datta">Gaurav Datta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sourav%20Ghosh"> Sourav Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Roy"> Rahul Roy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The incorporation of silica fume into the normal concrete is a routine one in the present days to produce the tailor made high strength and high performance concrete. The design parameters are increasing with the incorporation of silica fume in conventional concrete and the mix proportioning is becoming complex. The main objective of this paper has been made to investigate the different mechanical properties like compressive strength, permeability, porosity, density, modulus of elasticity, compacting factor, slump of concrete incorporating silica fume. In this present paper 5 (five) mix of concrete incorporating silica fume is cast to perform experiments. These experiments were carried out by replacing cement with different percentages of silica fume at a single constant water-cementitious materials ratio keeping other mix design variables constant. The silica fume was replaced by 0%, 5%, 10%, 15% and 20% for water-cementitious materials (w/cm) ratio for 0.40. For all mixes compressive strengths were determined at 24 hours, 7 and 28 days for 100 mm and 150 mm cubes. Other properties like permeability, porosity, density, modulus of elasticity, compacting factor, and slump were also determined for five mixes of concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20performance%20concrete" title="high performance concrete">high performance concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20strength%20concrete" title=" high strength concrete"> high strength concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/45898/influence-of-silica-fume-addition-on-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45898.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">490</span> Wear and Fraction Behavior of Porcelain Coated with Polyurethane/SiO2 Coating Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ching%20Yern%20Chee">Ching Yern Chee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various loading of nano silica is added into polyurethane (PU) and then coated on porcelain substrate. The wear and friction properties of the porcelain substrates coated with polyurethane/nano silica nano composite coatings were investigated using the reciprocating wear testing machine. The friction and wear test of polyurethane/nano silica coated porcelain substrate was studied at different sliding speed and applied load. It was found that the optimum composition of nano silica is 3 wt% which gives the lowest friction coefficient and wear rate in all applied load ranges and sliding speeds. For 3 wt% nano silica filled PU coated porcelain substrate, the increment of sliding speed caused higher wear rates but lower frictions coefficient. Besides, the friction coefficient of nano silica filled PU coated porcelain substrate decreased but the wear rate increased with the applied load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porcelain" title="porcelain">porcelain</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite%20coating" title=" nanocomposite coating"> nanocomposite coating</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20behavior" title=" wear behavior"> wear behavior</a> </p> <a href="https://publications.waset.org/abstracts/16997/wear-and-fraction-behavior-of-porcelain-coated-with-polyurethanesio2-coating-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">489</span> Thermal Property Improvement of Silica Reinforced Epoxy Composite Specimens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyu%20Sang%20Jo">Hyu Sang Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee"> Gyo Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the mechanical and thermal properties of epoxy composites that are reinforced with micrometer-sized silica particles were investigated by using the specimen experiments. For all specimens used in this study (from the baseline to specimen containing 70 wt% silica filler), the tensile strengths were gradually increased by 8-10%, but the ductility of the specimen was decreased by 34%, compared with those of the baseline samples. Similarly, for the samples containing 70 wt% silica filler, the coefficient of thermal expansion was reduced by 25%, but the thermal conductivity was increased by 100%, compared with those of the baseline samples. The improvement of thermal stability of the silica-reinforced specimen was confirmed to be within the experimented range, and the smaller silica particle was found to be more effective in delaying the thermal expansion of the specimens. When the smaller particle was used as filler, due to the increased specific interface area between filler and matrix, the thermal conductivities of the composite specimens were measured to be slightly lower than those of the specimens reinforced with the larger particle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube%20filler" title="carbon nanotube filler">carbon nanotube filler</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20composite" title=" epoxy composite"> epoxy composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20property" title=" thermal property"> thermal property</a> </p> <a href="https://publications.waset.org/abstracts/44711/thermal-property-improvement-of-silica-reinforced-epoxy-composite-specimens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44711.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">488</span> Preparation of Fluoroalkyl End-Capped Oligomers/Silica Nanocomposites Possessing a Nonflammable Characteristic Even After Calcination at 800 oC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hideo%20Sawada">Hideo Sawada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluoroalkyl end-capped oligomers [RF-(M)n-RF; RF = fluoroalkyl groups; M = radical polymerizable monomers] can form nanometre size-controlled self-assembled oligomeric aggregates through the aggregations of end-capped fluoroalkyl groups. Fluoroalkyl end-capped oligomeric aggregates can also interact with guest molecules to afford fluorinated aggregate/guest molecule nanocomposites; although the corresponding non-fluorinated oligomers cannot form such molecular aggregates to interact with guest molecules. For example, silica nanoparticles should act as guest molecules in fluorinated oligomeric aggregate cores to give new fluorinated oligomer-coated silica nanoparticles (fluorinated oligomer/silica nanocomposites). In these fluoroalkyl end-capped oligomers/silica nanocomposites, some fluorinated oligomers/silica nanocomposites were found to exhibit no weight loss behavior corresponding to the contents of oligomers in the silica matrices even after calcination at 800 oC. Fluoroalkyl end-capped vinyltrimethoxysilane oligomer-coated silica nanoparticles can be prepared by the sol-gel reaction of the corresponding fluorinated oligomer under alkaline conditions. The modified glass surface treated with this fluorinated oligomeric nanoparticle exhibited a completely super-hydrophobic characteristic. These fluorinated nanoparticles were also applied to the surface modification possessing a super-oleophobic characteristic. Not only fluoroalkyl end-capped oligomers but also low molecular weight fluorinated surfactants such as perfluoro-1,3-propanedisulfonic acid (PFPS) were applied to the preparation of fluorinated surfactants/silica nanocomposites to give no weight loss in proportion to the content of the surfactants in the nanocomposites even after calcination at 800 oC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorinated%20oligomer" title="fluorinated oligomer">fluorinated oligomer</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20nanocomposite" title=" silica nanocomposite"> silica nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=nonflammable%20characteristic" title=" nonflammable characteristic"> nonflammable characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=superamphiphobic%20chracteristic" title=" superamphiphobic chracteristic"> superamphiphobic chracteristic</a> </p> <a href="https://publications.waset.org/abstracts/22984/preparation-of-fluoroalkyl-end-capped-oligomerssilica-nanocomposites-possessing-a-nonflammable-characteristic-even-after-calcination-at-800-oc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">487</span> Multi-Layer Silica Alumina Membrane Performance for Flue Gas Separation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ngozi%20Nwogu">Ngozi Nwogu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Kajama"> Mohammed Kajama</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Anyanwu"> Emmanuel Anyanwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Gobina"> Edward Gobina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the objective to create technologically advanced materials to be scientifically applicable, multi-layer silica alumina membranes were molecularly fabricated by continuous surface coating silica layers containing hybrid material onto a ceramic porous substrate for flue gas separation applications. The multi-layer silica alumina membrane was prepared by dip coating technique before further drying in an oven at elevated temperature. The effects of substrate physical appearance, coating quantity, the cross-linking agent, a number of coatings and testing conditions on the gas separation performance of the membrane have been investigated. Scanning electron microscope was used to investigate the development of coating thickness. The membrane shows impressive perm selectivity especially for CO2 and N2 binary mixture representing a stimulated flue gas stream <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20separation" title="gas separation">gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20membrane" title=" silica membrane"> silica membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20factor" title=" separation factor"> separation factor</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20layer%20thickness" title=" membrane layer thickness"> membrane layer thickness</a> </p> <a href="https://publications.waset.org/abstracts/29152/multi-layer-silica-alumina-membrane-performance-for-flue-gas-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">486</span> Improvement of Chemical Demulsifier Performance Using Silica Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20E.%20Gandomkar">G. E. Gandomkar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Bekhradinassab"> E. Bekhradinassab</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sabbaghi"> S. Sabbaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Zerafat"> M. M. Zerafat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of water content in crude oil emulsions reduces pipeline corrosion potential and increases the productivity. Chemical emulsification of crude oil emulsions is one of the methods available to reduce the water content. Presence of demulsifier causes the film layer between the crude oil emulsion and water droplets to become unstable leading to the acceleration of water coalescence. This research has been performed to study the improvement performance of a chemical demulsifier by silica nanoparticles. The silica nano-particles have been synthesized by sol-gel technique and precipitation using poly vinyl alcohol (PVA) and poly ethylene glycol (PEG) as surfactants and then nano-particles are added to the demulsifier. The silica nanoparticles were characterized by Particle Size Analyzer (PSA) and SEM. Upon the addition of nanoparticles, bottle tests have been carried out to separate and measure the water content. The results show that silica nano-particles increase the demulsifier efficiency by about 40%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demulsifier" title="demulsifier">demulsifier</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydration" title=" dehydration"> dehydration</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20dioxide" title=" silicon dioxide"> silicon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title=" nanoparticle"> nanoparticle</a> </p> <a href="https://publications.waset.org/abstracts/18936/improvement-of-chemical-demulsifier-performance-using-silica-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">485</span> Development of Impervious Concrete Using Micro Silica and GGBS as Cement Replacement Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rizwan%20Akram">Muhammad Rizwan Akram</a>, <a href="https://publications.waset.org/abstracts/search?q=Saim%20Raza"> Saim Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Hanif%20Chauhan"> Hamza Hanif Chauhan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the aim of research to evaluate the performance of ordinary Portland concretes containing cement replacement materials in both binary and ternary system. Blocks of concrete were prepared to have a constant water-binder ratio of 0.30. The test variables included the type and the amount of the supplementary cementious materials (SCMs) such as class of Silica Fume (SF) and ground granulated blast furnace slag (GGBS). Portland cement was replaced with Silica Fume (SF) upto 7.5% and GGBS up to a level of 50%. Then physical properties are assessed from the compressive strength and permeability tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title="silica fume">silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability "> permeability </a> </p> <a href="https://publications.waset.org/abstracts/44752/development-of-impervious-concrete-using-micro-silica-and-ggbs-as-cement-replacement-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">484</span> Generation of Mesoporous Silica Shell onto SSZ-13 and Its Effects on Methanol to Olefins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Weiyong">Ying Weiyong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The micro/mesoporous core-shell composites compromising SSZ-13 cores and mesoporous silica shells were synthesized successfully with the soft template of cetytrimethylammonium. The shell thickness could be tuned from 25 nm to 100 nm by varying the TEOS/SSZ-13 ratio. The BET and SEM results show the core-shell composites possessing the tunable surface area (544.7-811.0 m2/g) with plenty of mesopores (2.7 nm). The acidity intensity of the strong acid sites on SSZ-13 was remarkably impaired with the decoration of the mesoporous silica shell, which leads to the suppression of the hydrogen transfer reaction in MTO reaction. The micro/mesoporous core-shell composites exhibit better methanol to olefins reaction performance with a prolonged lifetime and the improvement of light olefins selectivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core-shell" title="core-shell">core-shell</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica" title=" mesoporous silica"> mesoporous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol%20to%20olefins" title=" methanol to olefins"> methanol to olefins</a>, <a href="https://publications.waset.org/abstracts/search?q=SSZ-13" title=" SSZ-13"> SSZ-13</a> </p> <a href="https://publications.waset.org/abstracts/120695/generation-of-mesoporous-silica-shell-onto-ssz-13-and-its-effects-on-methanol-to-olefins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">483</span> Comparison of Physical and Chemical Properties of Micro-Silica and Locally Produced Metakaolin and Effect on the Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20U.%20Khan">S. U. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ayub"> T. Ayub</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Shafiq"> N. Shafiq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The properties of locally produced metakaolin (MK) as cement replacing material and the comparison of reactivity with commercially available micro-silica have been investigated. Compressive strength, splitting tensile strength, and load-deflection behaviour under bending are the properties that have been studied. The amorphous phase of MK with micro-silica was compared through X-ray diffraction (XRD) pattern. Further, interfacial transition zone of concrete with micro-silica and MK was observed through Field Emission Scanning Electron Microscopy (FESEM). Three mixes of concrete were prepared. One of the mix is without cement replacement as control mix, and the remaining two mixes are 10% cement replacement with micro-silica and MK. It has been found that MK, due to its irregular structure and amorphous phase, has high reactivity with portlandite in concrete. The compressive strength at early age is higher with MK as compared to micro-silica. MK concrete showed higher splitting tensile strength and higher load carrying capacity as compared to control and micro-silica concrete at all ages respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title="metakaolin">metakaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20strength" title=" splitting tensile strength"> splitting tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20deflection" title=" load deflection"> load deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20transition%20zone" title=" interfacial transition zone"> interfacial transition zone</a> </p> <a href="https://publications.waset.org/abstracts/75163/comparison-of-physical-and-chemical-properties-of-micro-silica-and-locally-produced-metakaolin-and-effect-on-the-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=silica&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>