CINXE.COM

Geometric Decompositions – Feature Column

<!DOCTYPE html> <html lang="en-US"> <head> <meta charset="UTF-8" /> <title>Geometric Decompositions &#8211; Feature Column</title> <meta name='robots' content='max-image-preview:large' /> <style>img:is([sizes="auto" i], [sizes^="auto," i]) { contain-intrinsic-size: 3000px 1500px }</style> <script type='text/x-mathjax-config'> MathJax.Hub.Config({ tex2jax: { inlineMath: [['$','$'], ['\\(','\\)']], processEscapes: true } }); </script> <!-- Jetpack Site Verification Tags --> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="generator" content="Hoot Business 2.11.0" /> <link rel='dns-prefetch' href='//cdn.jsdelivr.net' /> <link rel='dns-prefetch' href='//stats.wp.com' /> <link rel='dns-prefetch' href='//fonts.googleapis.com' /> <link rel='dns-prefetch' href='//v0.wordpress.com' /> <link rel='dns-prefetch' href='//widgets.wp.com' /> <link rel='dns-prefetch' href='//s0.wp.com' /> <link rel='dns-prefetch' href='//0.gravatar.com' /> <link rel='dns-prefetch' href='//1.gravatar.com' /> <link rel='dns-prefetch' href='//2.gravatar.com' /> <link rel='preconnect' href='//i0.wp.com' /> <link rel='preconnect' href='//c0.wp.com' /> <link rel="alternate" type="application/rss+xml" title="Feature Column &raquo; Feed" href="https://mathvoices.ams.org/featurecolumn/feed/" /> <link rel="alternate" type="application/rss+xml" title="Feature Column &raquo; Comments Feed" href="https://mathvoices.ams.org/featurecolumn/comments/feed/" /> <link rel="alternate" type="application/rss+xml" title="Feature Column &raquo; Geometric Decompositions Comments Feed" href="https://mathvoices.ams.org/featurecolumn/2022/04/01/geometric-decompositions/feed/" /> <link rel="preload" href="https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/library/fonticons/webfonts/fa-solid-900.woff2" as="font" crossorigin="anonymous"> <link rel="preload" href="https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/library/fonticons/webfonts/fa-regular-400.woff2" as="font" crossorigin="anonymous"> <link rel="preload" href="https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/library/fonticons/webfonts/fa-brands-400.woff2" as="font" crossorigin="anonymous"> <script> window._wpemojiSettings = {"baseUrl":"https:\/\/s.w.org\/images\/core\/emoji\/15.0.3\/72x72\/","ext":".png","svgUrl":"https:\/\/s.w.org\/images\/core\/emoji\/15.0.3\/svg\/","svgExt":".svg","source":{"concatemoji":"https:\/\/mathvoices.ams.org\/featurecolumn\/wp-includes\/js\/wp-emoji-release.min.js?ver=6.7.1"}}; /*! This file is auto-generated */ !function(i,n){var o,s,e;function c(e){try{var t={supportTests:e,timestamp:(new Date).valueOf()};sessionStorage.setItem(o,JSON.stringify(t))}catch(e){}}function p(e,t,n){e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(t,0,0);var t=new Uint32Array(e.getImageData(0,0,e.canvas.width,e.canvas.height).data),r=(e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(n,0,0),new Uint32Array(e.getImageData(0,0,e.canvas.width,e.canvas.height).data));return t.every(function(e,t){return e===r[t]})}function u(e,t,n){switch(t){case"flag":return n(e,"\ud83c\udff3\ufe0f\u200d\u26a7\ufe0f","\ud83c\udff3\ufe0f\u200b\u26a7\ufe0f")?!1:!n(e,"\ud83c\uddfa\ud83c\uddf3","\ud83c\uddfa\u200b\ud83c\uddf3")&&!n(e,"\ud83c\udff4\udb40\udc67\udb40\udc62\udb40\udc65\udb40\udc6e\udb40\udc67\udb40\udc7f","\ud83c\udff4\u200b\udb40\udc67\u200b\udb40\udc62\u200b\udb40\udc65\u200b\udb40\udc6e\u200b\udb40\udc67\u200b\udb40\udc7f");case"emoji":return!n(e,"\ud83d\udc26\u200d\u2b1b","\ud83d\udc26\u200b\u2b1b")}return!1}function f(e,t,n){var r="undefined"!=typeof WorkerGlobalScope&&self instanceof WorkerGlobalScope?new OffscreenCanvas(300,150):i.createElement("canvas"),a=r.getContext("2d",{willReadFrequently:!0}),o=(a.textBaseline="top",a.font="600 32px Arial",{});return e.forEach(function(e){o[e]=t(a,e,n)}),o}function t(e){var t=i.createElement("script");t.src=e,t.defer=!0,i.head.appendChild(t)}"undefined"!=typeof Promise&&(o="wpEmojiSettingsSupports",s=["flag","emoji"],n.supports={everything:!0,everythingExceptFlag:!0},e=new Promise(function(e){i.addEventListener("DOMContentLoaded",e,{once:!0})}),new Promise(function(t){var n=function(){try{var e=JSON.parse(sessionStorage.getItem(o));if("object"==typeof e&&"number"==typeof e.timestamp&&(new Date).valueOf()<e.timestamp+604800&&"object"==typeof e.supportTests)return e.supportTests}catch(e){}return null}();if(!n){if("undefined"!=typeof Worker&&"undefined"!=typeof OffscreenCanvas&&"undefined"!=typeof URL&&URL.createObjectURL&&"undefined"!=typeof Blob)try{var e="postMessage("+f.toString()+"("+[JSON.stringify(s),u.toString(),p.toString()].join(",")+"));",r=new Blob([e],{type:"text/javascript"}),a=new Worker(URL.createObjectURL(r),{name:"wpTestEmojiSupports"});return void(a.onmessage=function(e){c(n=e.data),a.terminate(),t(n)})}catch(e){}c(n=f(s,u,p))}t(n)}).then(function(e){for(var t in e)n.supports[t]=e[t],n.supports.everything=n.supports.everything&&n.supports[t],"flag"!==t&&(n.supports.everythingExceptFlag=n.supports.everythingExceptFlag&&n.supports[t]);n.supports.everythingExceptFlag=n.supports.everythingExceptFlag&&!n.supports.flag,n.DOMReady=!1,n.readyCallback=function(){n.DOMReady=!0}}).then(function(){return e}).then(function(){var e;n.supports.everything||(n.readyCallback(),(e=n.source||{}).concatemoji?t(e.concatemoji):e.wpemoji&&e.twemoji&&(t(e.twemoji),t(e.wpemoji)))}))}((window,document),window._wpemojiSettings); </script> <style id='wp-emoji-styles-inline-css'> img.wp-smiley, img.emoji { display: inline !important; border: none !important; box-shadow: none !important; height: 1em !important; width: 1em !important; margin: 0 0.07em !important; vertical-align: -0.1em !important; background: none !important; padding: 0 !important; } </style> <link rel='stylesheet' id='wp-block-library-css' href='https://c0.wp.com/c/6.7.1/wp-includes/css/dist/block-library/style.min.css' media='all' /> <style id='wp-block-library-theme-inline-css'> .wp-block-audio :where(figcaption){color:#555;font-size:13px;text-align:center}.is-dark-theme .wp-block-audio :where(figcaption){color:#ffffffa6}.wp-block-audio{margin:0 0 1em}.wp-block-code{border:1px solid #ccc;border-radius:4px;font-family:Menlo,Consolas,monaco,monospace;padding:.8em 1em}.wp-block-embed :where(figcaption){color:#555;font-size:13px;text-align:center}.is-dark-theme .wp-block-embed :where(figcaption){color:#ffffffa6}.wp-block-embed{margin:0 0 1em}.blocks-gallery-caption{color:#555;font-size:13px;text-align:center}.is-dark-theme .blocks-gallery-caption{color:#ffffffa6}:root :where(.wp-block-image figcaption){color:#555;font-size:13px;text-align:center}.is-dark-theme :root :where(.wp-block-image figcaption){color:#ffffffa6}.wp-block-image{margin:0 0 1em}.wp-block-pullquote{border-bottom:4px solid;border-top:4px solid;color:currentColor;margin-bottom:1.75em}.wp-block-pullquote cite,.wp-block-pullquote footer,.wp-block-pullquote__citation{color:currentColor;font-size:.8125em;font-style:normal;text-transform:uppercase}.wp-block-quote{border-left:.25em solid;margin:0 0 1.75em;padding-left:1em}.wp-block-quote cite,.wp-block-quote footer{color:currentColor;font-size:.8125em;font-style:normal;position:relative}.wp-block-quote:where(.has-text-align-right){border-left:none;border-right:.25em solid;padding-left:0;padding-right:1em}.wp-block-quote:where(.has-text-align-center){border:none;padding-left:0}.wp-block-quote.is-large,.wp-block-quote.is-style-large,.wp-block-quote:where(.is-style-plain){border:none}.wp-block-search .wp-block-search__label{font-weight:700}.wp-block-search__button{border:1px solid #ccc;padding:.375em .625em}:where(.wp-block-group.has-background){padding:1.25em 2.375em}.wp-block-separator.has-css-opacity{opacity:.4}.wp-block-separator{border:none;border-bottom:2px solid;margin-left:auto;margin-right:auto}.wp-block-separator.has-alpha-channel-opacity{opacity:1}.wp-block-separator:not(.is-style-wide):not(.is-style-dots){width:100px}.wp-block-separator.has-background:not(.is-style-dots){border-bottom:none;height:1px}.wp-block-separator.has-background:not(.is-style-wide):not(.is-style-dots){height:2px}.wp-block-table{margin:0 0 1em}.wp-block-table td,.wp-block-table th{word-break:normal}.wp-block-table :where(figcaption){color:#555;font-size:13px;text-align:center}.is-dark-theme .wp-block-table :where(figcaption){color:#ffffffa6}.wp-block-video :where(figcaption){color:#555;font-size:13px;text-align:center}.is-dark-theme .wp-block-video :where(figcaption){color:#ffffffa6}.wp-block-video{margin:0 0 1em}:root :where(.wp-block-template-part.has-background){margin-bottom:0;margin-top:0;padding:1.25em 2.375em} </style> <link rel='stylesheet' id='mediaelement-css' href='https://c0.wp.com/c/6.7.1/wp-includes/js/mediaelement/mediaelementplayer-legacy.min.css' media='all' /> <link rel='stylesheet' id='wp-mediaelement-css' href='https://c0.wp.com/c/6.7.1/wp-includes/js/mediaelement/wp-mediaelement.min.css' media='all' /> <style id='jetpack-sharing-buttons-style-inline-css'> .jetpack-sharing-buttons__services-list{display:flex;flex-direction:row;flex-wrap:wrap;gap:0;list-style-type:none;margin:5px;padding:0}.jetpack-sharing-buttons__services-list.has-small-icon-size{font-size:12px}.jetpack-sharing-buttons__services-list.has-normal-icon-size{font-size:16px}.jetpack-sharing-buttons__services-list.has-large-icon-size{font-size:24px}.jetpack-sharing-buttons__services-list.has-huge-icon-size{font-size:36px}@media print{.jetpack-sharing-buttons__services-list{display:none!important}}.editor-styles-wrapper .wp-block-jetpack-sharing-buttons{gap:0;padding-inline-start:0}ul.jetpack-sharing-buttons__services-list.has-background{padding:1.25em 2.375em} </style> <style id='classic-theme-styles-inline-css'> /*! This file is auto-generated */ .wp-block-button__link{color:#fff;background-color:#32373c;border-radius:9999px;box-shadow:none;text-decoration:none;padding:calc(.667em + 2px) calc(1.333em + 2px);font-size:1.125em}.wp-block-file__button{background:#32373c;color:#fff;text-decoration:none} </style> <style id='global-styles-inline-css'> :root{--wp--preset--aspect-ratio--square: 1;--wp--preset--aspect-ratio--4-3: 4/3;--wp--preset--aspect-ratio--3-4: 3/4;--wp--preset--aspect-ratio--3-2: 3/2;--wp--preset--aspect-ratio--2-3: 2/3;--wp--preset--aspect-ratio--16-9: 16/9;--wp--preset--aspect-ratio--9-16: 9/16;--wp--preset--color--black: #000000;--wp--preset--color--cyan-bluish-gray: #abb8c3;--wp--preset--color--white: #ffffff;--wp--preset--color--pale-pink: #f78da7;--wp--preset--color--vivid-red: #cf2e2e;--wp--preset--color--luminous-vivid-orange: #ff6900;--wp--preset--color--luminous-vivid-amber: #fcb900;--wp--preset--color--light-green-cyan: #7bdcb5;--wp--preset--color--vivid-green-cyan: #00d084;--wp--preset--color--pale-cyan-blue: #8ed1fc;--wp--preset--color--vivid-cyan-blue: #0693e3;--wp--preset--color--vivid-purple: #9b51e0;--wp--preset--color--accent: #316dcd;--wp--preset--color--accent-font: #ffffff;--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple: linear-gradient(135deg,rgba(6,147,227,1) 0%,rgb(155,81,224) 100%);--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan: linear-gradient(135deg,rgb(122,220,180) 0%,rgb(0,208,130) 100%);--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange: linear-gradient(135deg,rgba(252,185,0,1) 0%,rgba(255,105,0,1) 100%);--wp--preset--gradient--luminous-vivid-orange-to-vivid-red: linear-gradient(135deg,rgba(255,105,0,1) 0%,rgb(207,46,46) 100%);--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray: linear-gradient(135deg,rgb(238,238,238) 0%,rgb(169,184,195) 100%);--wp--preset--gradient--cool-to-warm-spectrum: linear-gradient(135deg,rgb(74,234,220) 0%,rgb(151,120,209) 20%,rgb(207,42,186) 40%,rgb(238,44,130) 60%,rgb(251,105,98) 80%,rgb(254,248,76) 100%);--wp--preset--gradient--blush-light-purple: linear-gradient(135deg,rgb(255,206,236) 0%,rgb(152,150,240) 100%);--wp--preset--gradient--blush-bordeaux: linear-gradient(135deg,rgb(254,205,165) 0%,rgb(254,45,45) 50%,rgb(107,0,62) 100%);--wp--preset--gradient--luminous-dusk: linear-gradient(135deg,rgb(255,203,112) 0%,rgb(199,81,192) 50%,rgb(65,88,208) 100%);--wp--preset--gradient--pale-ocean: linear-gradient(135deg,rgb(255,245,203) 0%,rgb(182,227,212) 50%,rgb(51,167,181) 100%);--wp--preset--gradient--electric-grass: linear-gradient(135deg,rgb(202,248,128) 0%,rgb(113,206,126) 100%);--wp--preset--gradient--midnight: linear-gradient(135deg,rgb(2,3,129) 0%,rgb(40,116,252) 100%);--wp--preset--font-size--small: 13px;--wp--preset--font-size--medium: 20px;--wp--preset--font-size--large: 36px;--wp--preset--font-size--x-large: 42px;--wp--preset--spacing--20: 0.44rem;--wp--preset--spacing--30: 0.67rem;--wp--preset--spacing--40: 1rem;--wp--preset--spacing--50: 1.5rem;--wp--preset--spacing--60: 2.25rem;--wp--preset--spacing--70: 3.38rem;--wp--preset--spacing--80: 5.06rem;--wp--preset--shadow--natural: 6px 6px 9px rgba(0, 0, 0, 0.2);--wp--preset--shadow--deep: 12px 12px 50px rgba(0, 0, 0, 0.4);--wp--preset--shadow--sharp: 6px 6px 0px rgba(0, 0, 0, 0.2);--wp--preset--shadow--outlined: 6px 6px 0px -3px rgba(255, 255, 255, 1), 6px 6px rgba(0, 0, 0, 1);--wp--preset--shadow--crisp: 6px 6px 0px rgba(0, 0, 0, 1);}:where(.is-layout-flex){gap: 0.5em;}:where(.is-layout-grid){gap: 0.5em;}body .is-layout-flex{display: flex;}.is-layout-flex{flex-wrap: wrap;align-items: center;}.is-layout-flex > :is(*, div){margin: 0;}body .is-layout-grid{display: grid;}.is-layout-grid > :is(*, div){margin: 0;}:where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;}:where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;}.has-black-color{color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-color{color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-color{color: var(--wp--preset--color--white) !important;}.has-pale-pink-color{color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-color{color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-color{color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-color{color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-color{color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-color{color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-color{color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-color{color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-color{color: var(--wp--preset--color--vivid-purple) !important;}.has-black-background-color{background-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-background-color{background-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-background-color{background-color: var(--wp--preset--color--white) !important;}.has-pale-pink-background-color{background-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-background-color{background-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-background-color{background-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-background-color{background-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-background-color{background-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-background-color{background-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-background-color{background-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-background-color{background-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-background-color{background-color: var(--wp--preset--color--vivid-purple) !important;}.has-black-border-color{border-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-border-color{border-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-border-color{border-color: var(--wp--preset--color--white) !important;}.has-pale-pink-border-color{border-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-border-color{border-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-border-color{border-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-border-color{border-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-border-color{border-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-border-color{border-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-border-color{border-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-border-color{border-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-border-color{border-color: var(--wp--preset--color--vivid-purple) !important;}.has-vivid-cyan-blue-to-vivid-purple-gradient-background{background: var(--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple) !important;}.has-light-green-cyan-to-vivid-green-cyan-gradient-background{background: var(--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan) !important;}.has-luminous-vivid-amber-to-luminous-vivid-orange-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange) !important;}.has-luminous-vivid-orange-to-vivid-red-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-orange-to-vivid-red) !important;}.has-very-light-gray-to-cyan-bluish-gray-gradient-background{background: var(--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray) !important;}.has-cool-to-warm-spectrum-gradient-background{background: var(--wp--preset--gradient--cool-to-warm-spectrum) !important;}.has-blush-light-purple-gradient-background{background: var(--wp--preset--gradient--blush-light-purple) !important;}.has-blush-bordeaux-gradient-background{background: var(--wp--preset--gradient--blush-bordeaux) !important;}.has-luminous-dusk-gradient-background{background: var(--wp--preset--gradient--luminous-dusk) !important;}.has-pale-ocean-gradient-background{background: var(--wp--preset--gradient--pale-ocean) !important;}.has-electric-grass-gradient-background{background: var(--wp--preset--gradient--electric-grass) !important;}.has-midnight-gradient-background{background: var(--wp--preset--gradient--midnight) !important;}.has-small-font-size{font-size: var(--wp--preset--font-size--small) !important;}.has-medium-font-size{font-size: var(--wp--preset--font-size--medium) !important;}.has-large-font-size{font-size: var(--wp--preset--font-size--large) !important;}.has-x-large-font-size{font-size: var(--wp--preset--font-size--x-large) !important;} :where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;} :where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;} :root :where(.wp-block-pullquote){font-size: 1.5em;line-height: 1.6;} </style> <link rel='stylesheet' id='events-manager-css' href='https://mathvoices.ams.org/featurecolumn/wp-content/plugins/events-manager/includes/css/events-manager.min.css?ver=6.3' media='all' /> <link rel='stylesheet' id='stcr-font-awesome-css' href='https://mathvoices.ams.org/featurecolumn/wp-content/plugins/subscribe-to-comments-reloaded/includes/css/font-awesome.min.css?ver=6.7.1' media='all' /> <link rel='stylesheet' id='stcr-style-css' href='https://mathvoices.ams.org/featurecolumn/wp-content/plugins/subscribe-to-comments-reloaded/includes/css/stcr-style.css?ver=6.7.1' media='all' /> <link rel='stylesheet' id='jetpack_likes-css' href='https://c0.wp.com/p/jetpack/14.1/modules/likes/style.css' media='all' /> <link rel='stylesheet' id='hootbiz-googlefont-css' href='https://fonts.googleapis.com/css2?family=Fira%20Sans:ital,wght@0,300;0,400;0,500;0,600;0,700;0,800;1,400;1,700&#038;family=Oswald:ital,wght@0,400&#038;display=swap' media='all' /> <link rel='stylesheet' id='font-awesome-css' href='https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/library/fonticons/font-awesome.css?ver=5.15.4' media='all' /> <link rel='stylesheet' id='jetpack-subscriptions-css' href='https://c0.wp.com/p/jetpack/14.1/modules/subscriptions/subscriptions.css' media='all' /> <link rel='stylesheet' id='hoot-style-css' href='https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/style.css?ver=2.11.0' media='all' /> <link rel='stylesheet' id='hoot-wpblocks-css' href='https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/include/blocks/wpblocks.css?ver=2.11.0' media='all' /> <style id='hoot-wpblocks-inline-css'> .hgrid { max-width: 1080px; } a { color: #316dcd; } a:hover { color: #25529a; } .accent-typo { background: #316dcd; color: #ffffff; } .invert-typo { color: #ffffff; } .enforce-typo { background: #ffffff; } body.wordpress input[type="submit"], body.wordpress #submit, body.wordpress .button { background: #316dcd; color: #ffffff; } body.wordpress input[type="submit"]:hover, body.wordpress #submit:hover, body.wordpress .button:hover, body.wordpress input[type="submit"]:focus, body.wordpress #submit:focus, body.wordpress .button:focus { background: #25529a; color: #ffffff; } h1, h2, h3, h4, h5, h6, .title, .titlefont { font-family: "Fira Sans", sans-serif; text-transform: none; } #main.main,#header-supplementary,.below-header { background: #ffffff; } #topbar { background: #316dcd; color: #ffffff; } #topbar.js-search .searchform.expand .searchtext { background: #316dcd; } #site-logo.logo-border { border-color: #316dcd; } .header-aside-search.js-search .searchform i.fa-search { color: #316dcd; } #site-title { font-family: "Oswald", sans-serif; text-transform: uppercase; } .site-logo-with-icon #site-title i { font-size: 50px; } .site-logo-mixed-image img { max-width: 200px; } .site-title-line em { color: #316dcd; } .site-title-line mark { background: #316dcd; color: #ffffff; } .site-title-heading-font { font-family: "Fira Sans", sans-serif; } .menu-items ul { background: #ffffff; } .menu-items > li.current-menu-item:not(.nohighlight), .menu-items > li.current-menu-ancestor, .menu-items > li:hover,.menu-items ul li.current-menu-item:not(.nohighlight), .menu-items ul li.current-menu-ancestor, .menu-items ul li:hover { background: #ffffff; } .menu-items > li.current-menu-item:not(.nohighlight) > a, .menu-items > li.current-menu-ancestor > a, .menu-items > li:hover > a,.menu-items ul li.current-menu-item:not(.nohighlight) > a, .menu-items ul li.current-menu-ancestor > a, .menu-items ul li:hover > a { color: #316dcd; } .more-link { color: #316dcd; } .more-link a { background: #ffffff; color: #316dcd; } .more-link a:hover { background: #ffffff; color: #25529a; } .main-content-grid,.widget,.frontpage-area { margin-top: 45px; } .widget,.frontpage-area { margin-bottom: 45px; } .frontpage-area.module-bg-highlight, .frontpage-area.module-bg-color, .frontpage-area.module-bg-image { padding: 45px 0; } .footer .widget { margin: 30px 0; } .js-search .searchform.expand .searchtext { background: #ffffff; } #infinite-handle span,.lrm-form a.button, .lrm-form button, .lrm-form button[type=submit], .lrm-form #buddypress input[type=submit], .lrm-form input[type=submit],.widget_newsletterwidget input.tnp-submit[type=submit], .widget_newsletterwidgetminimal input.tnp-submit[type=submit],.woocommerce #respond input#submit.alt, .woocommerce a.button.alt, .woocommerce button.button.alt, .woocommerce input.button.alt,.widget_breadcrumb_navxt .breadcrumbs > .hoot-bcn-pretext { background: #316dcd; color: #ffffff; } .woocommerce nav.woocommerce-pagination ul li a:focus, .woocommerce nav.woocommerce-pagination ul li a:hover { color: #25529a; } .woocommerce div.product .woocommerce-tabs ul.tabs li:hover,.woocommerce div.product .woocommerce-tabs ul.tabs li.active { background: #316dcd; } .woocommerce div.product .woocommerce-tabs ul.tabs li:hover a, .woocommerce div.product .woocommerce-tabs ul.tabs li:hover a:hover,.woocommerce div.product .woocommerce-tabs ul.tabs li.active a { color: #ffffff; } .woocommerce #respond input#submit.alt:hover, .woocommerce a.button.alt:hover, .woocommerce button.button.alt:hover, .woocommerce input.button.alt:hover { background: #25529a; color: #ffffff; } .widget_newsletterwidget input.tnp-submit[type=submit]:hover, .widget_newsletterwidgetminimal input.tnp-submit[type=submit]:hover { background: #25529a; color: #ffffff; } .widget_breadcrumb_navxt .breadcrumbs > .hoot-bcn-pretext:after { border-left-color: #316dcd; } :root .has-accent-color,.is-style-outline>.wp-block-button__link:not(.has-text-color), .wp-block-button__link.is-style-outline:not(.has-text-color) { color: #316dcd; } :root .has-accent-background-color,.wp-block-button__link,.wp-block-button__link:hover,.wp-block-search__button,.wp-block-search__button:hover, .wp-block-file__button,.wp-block-file__button:hover { background: #316dcd; } :root .has-accent-font-color,.wp-block-button__link,.wp-block-button__link:hover,.wp-block-search__button,.wp-block-search__button:hover, .wp-block-file__button,.wp-block-file__button:hover { color: #ffffff; } :root .has-accent-font-background-color { background: #ffffff; } @media only screen and (max-width: 969px){ .mobilemenu-fixed .menu-toggle, .mobilemenu-fixed .menu-items { background: #ffffff; } .sidebar { margin-top: 45px; } .frontpage-widgetarea > div.hgrid > [class*="hgrid-span-"] { margin-bottom: 45px; } } </style> <link rel='stylesheet' id='sharedaddy-css' href='https://c0.wp.com/p/jetpack/14.1/modules/sharedaddy/sharing.css' media='all' /> <link rel='stylesheet' id='social-logos-css' href='https://c0.wp.com/p/jetpack/14.1/_inc/social-logos/social-logos.min.css' media='all' /> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/jquery.min.js" id="jquery-core-js"></script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/jquery-migrate.min.js" id="jquery-migrate-js"></script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/ui/core.min.js" id="jquery-ui-core-js"></script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/ui/mouse.min.js" id="jquery-ui-mouse-js"></script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/ui/sortable.min.js" id="jquery-ui-sortable-js"></script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/ui/datepicker.min.js" id="jquery-ui-datepicker-js"></script> <script id="jquery-ui-datepicker-js-after"> jQuery(function(jQuery){jQuery.datepicker.setDefaults({"closeText":"Close","currentText":"Today","monthNames":["January","February","March","April","May","June","July","August","September","October","November","December"],"monthNamesShort":["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],"nextText":"Next","prevText":"Previous","dayNames":["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],"dayNamesShort":["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],"dayNamesMin":["S","M","T","W","T","F","S"],"dateFormat":"MM d, yy","firstDay":1,"isRTL":false});}); </script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/ui/resizable.min.js" id="jquery-ui-resizable-js"></script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/ui/draggable.min.js" id="jquery-ui-draggable-js"></script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/ui/controlgroup.min.js" id="jquery-ui-controlgroup-js"></script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/ui/checkboxradio.min.js" id="jquery-ui-checkboxradio-js"></script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/ui/button.min.js" id="jquery-ui-button-js"></script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/jquery/ui/dialog.min.js" id="jquery-ui-dialog-js"></script> <script id="events-manager-js-extra"> var EM = {"ajaxurl":"https:\/\/mathvoices.ams.org\/featurecolumn\/wp-admin\/admin-ajax.php","locationajaxurl":"https:\/\/mathvoices.ams.org\/featurecolumn\/wp-admin\/admin-ajax.php?action=locations_search","firstDay":"1","locale":"en","dateFormat":"yy-mm-dd","ui_css":"https:\/\/mathvoices.ams.org\/featurecolumn\/wp-content\/plugins\/events-manager\/includes\/css\/jquery-ui\/build.min.css","show24hours":"","is_ssl":"1","autocomplete_limit":"10","calendar":{"breakpoints":{"small":560,"medium":908,"large":false}},"datepicker":{"format":"Y-m-d"},"search":{"breakpoints":{"small":650,"medium":850,"full":false}},"bookingInProgress":"Please wait while the booking is being submitted.","tickets_save":"Save Ticket","bookingajaxurl":"https:\/\/mathvoices.ams.org\/featurecolumn\/wp-admin\/admin-ajax.php","bookings_export_save":"Export Bookings","bookings_settings_save":"Save Settings","booking_delete":"Are you sure you want to delete?","booking_offset":"30","bb_full":"Sold Out","bb_book":"Book Now","bb_booking":"Booking...","bb_booked":"Booking Submitted","bb_error":"Booking Error. Try again?","bb_cancel":"Cancel","bb_canceling":"Canceling...","bb_cancelled":"Cancelled","bb_cancel_error":"Cancellation Error. Try again?","txt_search":"Search","txt_searching":"Searching...","txt_loading":"Loading..."}; </script> <script src="https://mathvoices.ams.org/featurecolumn/wp-content/plugins/events-manager/includes/js/events-manager.js?ver=6.3" id="events-manager-js"></script> <link rel="https://api.w.org/" href="https://mathvoices.ams.org/featurecolumn/wp-json/" /><link rel="alternate" title="JSON" type="application/json" href="https://mathvoices.ams.org/featurecolumn/wp-json/wp/v2/posts/897" /><link rel="EditURI" type="application/rsd+xml" title="RSD" href="https://mathvoices.ams.org/featurecolumn/xmlrpc.php?rsd" /> <meta name="generator" content="WordPress 6.7.1" /> <link rel="canonical" href="https://mathvoices.ams.org/featurecolumn/2022/04/01/geometric-decompositions/" /> <link rel='shortlink' href='https://mathvoices.ams.org/featurecolumn/?p=897' /> <link rel="alternate" title="oEmbed (JSON)" type="application/json+oembed" href="https://mathvoices.ams.org/featurecolumn/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fmathvoices.ams.org%2Ffeaturecolumn%2F2022%2F04%2F01%2Fgeometric-decompositions%2F" /> <link rel="alternate" title="oEmbed (XML)" type="text/xml+oembed" href="https://mathvoices.ams.org/featurecolumn/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fmathvoices.ams.org%2Ffeaturecolumn%2F2022%2F04%2F01%2Fgeometric-decompositions%2F&#038;format=xml" /> <style>img#wpstats{display:none}</style> <meta name="description" content="A remarkable theorem involving decompositions is that if one has two plane simple polygons of the same area, it is possible to decompose either of the polygons into polygonal pieces that can be reassembled to form the other polygon... Geometric Decompositions Joe Malkevitch York College (CUNY) Introduction When looking at a body of mathematical ideas,&hellip;" /> <!-- Jetpack Open Graph Tags --> <meta property="og:type" content="article" /> <meta property="og:title" content="Geometric Decompositions" /> <meta property="og:url" content="https://mathvoices.ams.org/featurecolumn/2022/04/01/geometric-decompositions/" /> <meta property="og:description" content="A remarkable theorem involving decompositions is that if one has two plane simple polygons of the same area, it is possible to decompose either of the polygons into polygonal pieces that can be rea…" /> <meta property="article:published_time" content="2022-04-01T04:01:02+00:00" /> <meta property="article:modified_time" content="2022-03-27T17:20:37+00:00" /> <meta property="og:site_name" content="Feature Column" /> <meta property="og:image" content="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/03/cropped-cropped-mathvoices-banner-feat-col-1.png?fit=1200%2C279&#038;ssl=1" /> <meta property="og:image:width" content="1200" /> <meta property="og:image:height" content="279" /> <meta property="og:image:alt" content="Banner for the AMS Feature Column" /> <meta property="og:locale" content="en_US" /> <meta name="twitter:site" content="@amermathsoc" /> <meta name="twitter:text:title" content="Geometric Decompositions" /> <meta name="twitter:image" content="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/03/cropped-cropped-mathvoices-banner-feat-col-1.png?fit=1200%2C279&#038;ssl=1&#038;w=640" /> <meta name="twitter:image:alt" content="Banner for the AMS Feature Column" /> <meta name="twitter:card" content="summary_large_image" /> <!-- End Jetpack Open Graph Tags --> <link rel="icon" href="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/02/cropped-ams2.png?fit=32%2C32&#038;ssl=1" sizes="32x32" /> <link rel="icon" href="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/02/cropped-ams2.png?fit=192%2C192&#038;ssl=1" sizes="192x192" /> <link rel="apple-touch-icon" href="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/02/cropped-ams2.png?fit=180%2C180&#038;ssl=1" /> <meta name="msapplication-TileImage" content="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/02/cropped-ams2.png?fit=270%2C270&#038;ssl=1" /> <style id="wp-custom-css"> body { font-family: Helvetica, sans-serif; color: #25282B; background-color: white; line-height: 1.75em; } summary { cursor: pointer; } .list-inline { padding-left:0; margin-left:-5px; list-style:none } .headline.img-headline { display: none; } /*.entry-title {display:none;} .entry-byline{display:none;}*/ .list-inline>li{ display:inline-block; padding-right:5px; padding-left:5px} </style> </head> <body class="post-template-default single single-post postid-897 single-format-standard hoot-business wordpress ltr en en-us parent-theme multisite blog-2 logged-out custom-background custom-header singular singular-post singular-post-897" dir="ltr" itemscope="itemscope" itemtype="https://schema.org/Blog"> <a href="#main" class="screen-reader-text">Skip to content</a> <div id="page-wrapper" class=" hgrid site-boxed page-wrapper sitewrap-wide-right sidebarsN sidebars1 hoot-cf7-style hoot-mapp-style hoot-jetpack-style hoot-sticky-sidebar"> <header id="header" class="site-header header-layout-primary-menu header-layout-secondary-none tablemenu" role="banner" itemscope="itemscope" itemtype="https://schema.org/WPHeader"> <div id="header-primary" class=" header-part header-primary header-primary-menu"> <div class="hgrid"> <div class="table hgrid-span-12"> <div id="branding" class="site-branding branding table-cell-mid"> <div id="site-logo" class="site-logo-text"> <div id="site-logo-text" class="site-logo-text site-logo-text-small"><div id="site-title" class="site-title" itemprop="headline"><a href="https://mathvoices.ams.org/featurecolumn" rel="home" itemprop="url"><span class="blogname">Feature Column</span></a></div></div> </div> </div><!-- #branding --> <div id="header-aside" class=" header-aside table-cell-mid header-aside-menu header-aside-menu-fixed"> <div class="screen-reader-text">Primary Navigation Menu</div> <nav id="menu-primary" class="menu nav-menu menu-primary mobilemenu-fixed mobilesubmenu-click" role="navigation" itemscope="itemscope" itemtype="https://schema.org/SiteNavigationElement"> <a class="menu-toggle" href="#"><span class="menu-toggle-text">Menu</span><i class="fas fa-bars"></i></a> <ul id="menu-primary-items" class="menu-items sf-menu menu"><li id="menu-item-703" class="menu-item menu-item-type-custom menu-item-object-custom menu-item-home menu-item-703"><a href="http://mathvoices.ams.org/featurecolumn"><span class="menu-title">Home</span></a></li> <li id="menu-item-704" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-home menu-item-704"><a href="https://mathvoices.ams.org/featurecolumn/"><span class="menu-title">About</span></a></li> <li id="menu-item-705" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-705"><a href="https://mathvoices.ams.org/featurecolumn/archive/"><span class="menu-title">Feature Column Archive</span></a></li> </ul> </nav><!-- #menu-primary --> </div> </div> </div> </div> </header><!-- #header --> <div id="main" class=" main"> <div class="entry-featured-img-headerwrap loop-meta-withbg loop-meta-staticbg-nocrop"><img class="entry-headerimg" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/03/cropped-cropped-mathvoices-banner-feat-col-1.png?fit=1200%2C279&#038;ssl=1"></div> <div class="hgrid main-content-grid"> <main id="content" class="content hgrid-span-8 has-sidebar layout-wide-right " role="main"> <div id="content-wrap" class=" content-wrap theiaStickySidebar"> <div id="loop-meta" class=" loop-meta-wrap pageheader-bg-default loop-meta-withtext"> <div class="hgrid"> <div class=" loop-meta hgrid-span-12" itemscope="itemscope" itemtype="https://schema.org/WebPageElement"> <div class="entry-header"> <h1 class=" loop-title entry-title" itemprop="headline">Geometric Decompositions</h1> <div class=" loop-description" itemprop="text"><div class="entry-byline"> <div class="entry-byline-block entry-byline-cats"> <span class="entry-byline-label">In:</span> <a href="https://mathvoices.ams.org/featurecolumn/category/2022/" rel="category tag">2022</a>, <a href="https://mathvoices.ams.org/featurecolumn/category/discrete-math-and-combinatorics/" rel="category tag">Discrete Math and Combinatorics</a>, <a href="https://mathvoices.ams.org/featurecolumn/category/columnists/joseph-malkevitch/" rel="category tag">Joseph Malkevitch</a> </div> <div class="entry-byline-block entry-byline-tags"> <span class="entry-byline-label">Tagged:</span> <a href="https://mathvoices.ams.org/featurecolumn/tag/euclidean-geometry/" rel="tag">Euclidean geometry</a>, <a href="https://mathvoices.ams.org/featurecolumn/tag/polytopes-and-polyhedra/" rel="tag">polytopes and polyhedra</a> </div></div><!-- .entry-byline --></div><!-- .loop-description --> </div><!-- .entry-header --> </div><!-- .loop-meta --> </div> </div> <article id="post-897" class="entry author-uwhitcher post-897 post type-post status-publish format-standard has-post-thumbnail category-4 category-discrete-math-and-combinatorics category-joseph-malkevitch tag-euclidean-geometry tag-polytopes-and-polyhedra" itemscope="itemscope" itemtype="https://schema.org/BlogPosting" itemprop="blogPost"> <div class="entry-content" itemprop="articleBody"> <div class="entry-the-content"> <p><span id="pullQuote">A remarkable theorem involving decompositions is that if one has two plane simple polygons of the same area, it is possible to decompose either of the polygons into polygonal pieces that can be reassembled to form the other polygon&#8230;</span></p> <h1 class="headlineText">Geometric Decompositions</h1> <p><b>Joe Malkevitch<br /> York College (CUNY)</b></p> <p><P></p> <h3>Introduction</h3> </p> <p>When looking at a body of mathematical ideas, one might look for the &#8220;atoms&#8221; or parts so that one could see the whole by having insight into its parts. If in some future state of the Earth there were no automobiles and some humans came across a well preserved car from the 1970&#8217;s, but with no prior knowledge of what such a thing was, how might they interpret what they were looking at? An archaeologist at that time might try to understand its parts as a way to think through what the whole thing was good for. Perhaps these people might decide it was a small moveable house?</p> <p>In an earlier <A HREF="https://mathvoices.ams.org/featurecolumn/2021/10/01/decomposition/">Feature Column essay</A> I looked at how by studying primes 2, 3, 5, 7, &#8230; we get insight into big integers such as 1111113. There I also looked at partitions of positive integers&mdash;for example, $5 = 4 + 1$ and $5 = 3 + 1 + 1$ are but two of the partitions of 5. Words connoting or related to <em>decomposition</em> in English are: decompositions, dissections, factoring, irreducible, etc. It is not uncommon in mathematics to use words as technical vocabulary that suggest ideas that a word has in more ordinary usage, that is non-mathematical contexts. For example, consider the word &quot;irreducible&quot;. This suggests something that cannot be broken up into parts.</p> <h3>Geometric Decomposition</h3> <p>Before addressing the issue of geometric compositions in earnest, as a teaser remember that one of the most important and well known theorem in mathematics is the Pythagorean Theorem, though attributing it to Pythagorus or even the Pythagoreans distorts the history of this remarkable result, which can be viewed as a result in algebra or a result in geometry. The Pythagorean Theorem states that if one has a right triangle (one where two sides meet at a 90 degree angle&mdash;that is, are perpendicular), the square (in the algebraic) sense of the lengths of the side opposite the right angle is the sum of the squares of the lengths of the other two sides. But this theorem about lengths can also be interpreted as a statement about the areas of the geometric squares that can be constructed on the sides of a right triangle. Here are diagrams (Figures 1 and 2) that support one of the many proofs of the Pythagorean Theorem that involved moving around pieces of squares and assembling them to form other squares.</p> <p></P></p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts2.jpg?resize=468%2C268&#038;ssl=1" width="468" height="268" ALT="Dissection proof of the Pythagorean Theorem"><BR><br /> </DIV></p> <p></P></p> <p><DIV ALIGN="CENTER">Figure 1 (A proof of the Pythagorean Theorem based on decomposing the squares into pieces that can be reassembled in other ways. Diagram courtesy of Wikipedia.)<BR><br /> <img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts3.jpg?resize=256%2C268&#038;ssl=1" width="256" height="268" ALT="Dissection proof of the Pythagorean Theorem"> <BR><br /> </DIV></p> <p></P></p> <p><DIV ALIGN="CENTER">Figure 2 (A proof of the Pythagorean Theorem based on reassembling the pieces of squares on the sides of a right triangle, shown in white. Image courtesy of Wikipedia.)<BR><br /> </DIV></p> <p> Proofs of theorems using &quot;physical models&quot; such as the diagrams in Figures 1 and 2 are quite compelling because of the amazing ability of humans to input and process visual information. The eye responds to issues related to the length of segments and the area of regions, even if sometimes the fact that area scales as the square of length rather than length itself sometimes causes individuals to make misleading judgments about diagrams. </p> <p>One might try to understand geometric objects in terms of the parts that make them up. These parts might be described as: points, lines, membrane patterns, corners, curves, etc. Sometimes these parts can be viewed with terms that overlap. In describing a shirt one might use terms like sleeves and buttons and in describing a car one might mention windows and wheels. Here we will give special consideration to the notion of a polygon.</p> <p>After the point and the line, among the most fundamental of geometrical objects is the triangle. A triangle is a collection of three points not on a line and the segments joining pairs of the points which are known as the vertices of the triangle. When we classify polygons that are drawn on a flat piece of paper in the plane, we can do so by counting the number of corners of the polygon or by counting the number of sides (edges) of the polygon. We can think of a polygon as a collections of points joined by sticks with no membrane filling in the result or we can include the <em>interior</em> of the polygon along with the &quot;sticks.&quot; There are pros and cons for defining shapes in particular ways. Here I just want to point out that we can classify polygons drawn in the plane, not only by their number of corners, but by whether or not the polygon intersects itself or has notches. We say a set $X$ is <em>convex</em> if given any two elements $u$ and $v$ of $X$ the line segment joining $u$ and $v$ is contained in (is a subset of) $X$.</p> <p></P></p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts4.jpg?resize=220%2C208&#038;ssl=1" width="220" height="208" ALT="Non-convex set defined"><BR><br /> </DIV></p> <p><P></p> <p></P></p> <p><DIV ALIGN="CENTER">Figure 3 (A diagram illustrating the idea of convexity. Courtesy of Wikipedia.)<BR><br /> </DIV></p> <p><P></p> <p>Figure 3 provides an illustration of this fundamental concept of modern geometry. Intuitively, a convex set is one that does not have notches or holes. In particular polygons drawn in the plane are usually defined (as are circles) to be dots connected by straight line segments&mdash;&quot;sticks&quot;&mdash;without the points in the interior. Triangles with their interiors are convex sets but as soon as we have a polygon with more than 3 vertices we can have non-convex polygons, polygons whose vertices do not lie in a plane, or polygons whose sides self-intersect. In some situations polygons are allowed to have several consecutive vertices lying along a straight line, but often it is required that pairs of consecutive vertices not lie along the same line. This polygon has 6 vertices (corners) and 6 sides, and is thus often described as a hexagon, in this case, a non-convex hexagon.</p> <p>Historically, attention has been given to the length of sides and the measure of the interior (and sometimes exterior) angles of polygons. When the angles of a convex polygon are equal and its sides have the same length, it is called <em>regular</em>. However, one can consider polygons where the sides are all equal, that is the polygon is <em>equilateral</em>, or the angles are all equal, in which case it is <em>equiangular</em>. The polygon in Figure 4 is an equilateral hexagon. Its angles are not all equal, but there are three different sizes of angle, equal in pairs. If one adopts a partition-style way of classifying this polygon it is an example of a non-convex $\{6\}$; $\{2, 2, 2\}$ since there are six sides of equal length, and three types of angles equal in pairs.</p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts5.jpg?resize=158%2C105&#038;ssl=1" width="158" height="105" ALT="Non-convex hexagon"></p> <p>Figure 4 (A non-convex hexagon where all of the sides have equal length.)</p> <p></DIV></p> <p><P>Figure 5 shows a small sampler of polygons, one convex and others non-convex. In one case, all consecutive pairs of sides of the polygon meet at right angles (a <em>rectilinear</em> or <em>orthogonal</em> polygon).<br /> </P></p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts6.jpg?resize=373%2C229&#038;ssl=1" width="373" height="229" ALT="Sample of polygons"></p> <p>Figure 5 (A sampler of different kinds of polygons, convex and non-convex.)<br /> </DIV></p> <p> The simplest polygon is one that has only three vertices, a triangle. In the spirit of decomposition, it is natural to ask if every plane simple polygon can be decomposed using existing vertices into triangles. While this may seem intuitively obvious, it is actually not that easy to prove this fact, though it is true. It may seem intuitively clear that the 3-dimensional analogues of polyhedra, including ones that are non-convex but have the topology of a sphere can be decomposed into tetrahedra (e.g. the &quot;atoms&quot; of 3-dimensional convex polyhedra, as it were), but this is in fact not true! </p> <p>Given a polygon with vertices drawn in the plane, it is always possible to subdivide that polygon into triangles using existing vertices. However, for some decomposition problems it is of interest to add additional vertices to the sides of the polygon as part of the decomposition effort, and sometimes one might also allow having vertices in the interior of the polygon. Thus in Figure 12 you can see how a square can be subdivided into triangles by adding some additional vertices along the side of the square and also how to do the subdivision using an additional vertex. Figure 6 shows a simple (no self-intersections) non-convex polygon with 11 vertices (11 sides). Using 8 segments joining existing vertices this 11-gon can be subdivided into triangles using 8 diagonals and giving rise to 9 triangles. In fact there are many other such triangles starting with this same polygon but all of them will involve using 8 diagonals and give rise to 9 triangles. In general any simple $n$-gon ($n$ at least 4) can be triangulated using<br /> $(n-3)$ diagonals into $(n-2)$ triangles. (One can see this using Euler&#8217;s Polyhedral Formula for a connected graph: $V + F &#8211; E = 2$ for a connected graph drawn in the plane.)</p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts7.jpg?resize=222%2C160&#038;ssl=1" width="222" height="160" ALT="Triangulated polygon"></p> <p>Figure 6 (A simple non-convex polygon converted using diagonals to a polygon subdivided into triangles.)<BR><br /> </DIV></p> <p>Figure 7 and Figure 8 show (Figure 7) a convex 9-gon subdivided by 6 diagonals into 7 triangles and (Figure 8) a non-convex 9-gon subdivided by 6 diagonals into 7 triangles. Unlike the triangulation in Figure 6, each of these triangulations includes one (or more) triangles which share edges with three other triangles, something which does not occur for Figure 6. </p> <p></P></p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts8.jpg?resize=280%2C192&#038;ssl=1" width="280" height="192" ALT="Triangulated polygon"></p> <p>Figure 7 (A convex polygon subdivided into triangles.)<BR><br /> </DIV></p> <p><P></p> <p></P></p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts9.jpg?resize=175%2C166&#038;ssl=1" width="175" height="166" ALT="triangulated polygon"></p> <p>Figure 8 (A non-convex polygon partitioned into triangles using the diagonal edges shown in red.)<BR><br /> </DIV></p> <p>In Figure 8 I have called attention to the edges that subdivide the original polygon into triangles by coloring the subdividing diagonals red. As a problem in graph theory (the theory of diagrams involving dots and the lines that join them), you may want to think about the question:</p> <p>Given a collection of edges, when can they serve as the diagonals for a plane $n$-gon that turns the $n$-gon into a triangulated polygon? </p> <p>A remarkable theorem involving decompositions is that if one has two plane simple polygons of the same area, it is possible to decompose either of the polygons into polygonal pieces that can be reassembled to form the other polygon. This result is known as the <A HREF="https://en.wikipedia.org/wiki/Wallace%E2%80%93Bolyai%E2%80%93Gerwien_theorem">Wallace-Bolyai-Gerwien Theorem</A>. By way of illustration, Figure 9 shows a way to decompose a square and equilateral triangle of equal area into polygonal parts that can be used to form the other shape. The decomposition shown uses the minimal number of pieces. A lot of research has been done on <em>equidecomposibility</em> with a minimal number of pieces and where one uses particular shapes for the pieces in the decomposition. </p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts10.jpg?resize=468%2C244&#038;ssl=1" width="468" height="244" ALT="Wallace-Bolyai-Gerwien Theorem illustrated"><BR><br /> </DIV></p> <p><DIV ALIGN="CENTER">Figure 9 (A square and equilateral triangle of the same area can be decomposed into 4 pieces which can be assembled to form the other shape. Image courtesy of Wikipedia.)<BR><br /> </DIV></p> <p>It is natural to ask if, in 3 dimensions, two polyhedra with the same volume can have one be decomposed (cut) into pieces and reassembled to form the other. <A HREF="https://en.wikipedia.org/wiki/Hilbert%27s_third_problem">This problem</A> was solved by Max Dehn (1876-1952) and was one of a set of famous problems designed by David Hilbert (1862-1943), whose solution he thought would create progress in a variety of mathematical areas. Figure 10 shows two 3-dimensional polyhedra, one decomposed into the other. Dehn provided tools for telling when this could be done. However, it may surprise you to learn that the analogue of what we see in Figure 9 can&#8217;t be achieved, that is, a regular 3-cube (see left of Figure 10) can&#8217;t be cut into polyhedral pieces and reassembled to a regular tetrahedron of the same volume. </p> <p></P></p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts11.jpg?resize=468%2C201&#038;ssl=1" width="468" height="201" ALT="Cube cut and assembled to a prism"><BR><br /> Figure 10 (A cube decomposed into a triangular prism of the same volume. Image courtesy of Wikipedia.)<BR><br /> </DIV></p> <p><h3>Decomposing Squares</h3> <p>A natural question about decomposition of a polygon is whether or not the polygon can be decomposed into convex pieces, and in particular triangles, which will automatically be convex, where the pieces can be made to have equal area.</p> <p>Each of the squares in Figure 11 can be thought of as squares of side length 2 and both have been divided into 4 congruent triangles, and thus, for the one on the left the 4 triangles have the same area and the same is true on the right. It is interesting that in each case the triangles are special because they are right triangles and thus satisfy the Pythagorean theorem. You can verify for yourself that on the left, the right triangles are isosceles right triangles with sides $\sqrt{2}$, $\sqrt{2}$, and 2 while on the right the triangles are scalene (all three sides of different lengths) and these lengths are 1, 2, $\sqrt{5}$. Also note that although the squares above are meant to be congruent, both of side length 2, it may not appear that the smaller triangles on each side have equal area but you can verify using the Pythagorean Theorem that the small triangles on the left have the same area as the smaller triangles on the right. </p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts12.jpg?resize=144%2C144&#038;ssl=1" width="144" height="144" ALT="Triangulated wquare, equal area triangles"> <img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts13.jpg?resize=144%2C144&#038;ssl=1" width="144" height="144" ALT="Triangulated ssquare, equal area triangles"></p> <p>Figure 11 (Two different ways to subdivide congruent initial squares into 4 congruent triangles.) </p> <p></DIV></p> <p><P>The decompositions of squares into equal area triangular parts in Figure 12 can be extended to decomposing a square in various ways into an even number of parts. The decompositions shown in Figure 11 have the property that when two triangles touch each other they touch along a complete edge of another triangle. Are other kinds of decompositions of a square into an even number of triangles possible? Figure 12 shows an example of how a square can be decomposed into 6 parts, and not all of the triangles are right triangles, where some of the triangles meet other triangles along a part of an edge rather than a full edge, and yet the 6 parts can be shown to have equal area. Triangles which touch in this way are said not to meet edge-to-edge. In recent years interest in tilings of the plane as well as polygons into pieces with special properties allows for tiles that don&#8217;t meet edge-to-edge. <BR><br /> </P></p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts14.jpg?resize=421%2C421&#038;ssl=1" width="421" height="421" ALT="Square cut into 6 equal area triangle parts"></p> <p>Figure 12 (A decomposition of a square into 6 triangles of equal area, where not all of the triangles meet edge-to-edge. Image courtesy of Wikipedia.) <BR><br /> </DIV></p> <p> What almost certainly has already occurred to you regarding this discussion is decomposing a square into an odd number of triangles with the same area. If you try to find such a dissection you will find that you are not able to do this! So you might try to prove that it cannot occur. However, if you are like many people you will not find it so easy to do this. Recently, the following theorem has been associated with the name Paul Monsky:</p> <p>Theorem (1970): It is not possible to decompose a square into an odd number of triangles of equal area.</p> <p>Like many easy-to-state questions that are not so easy to demonstrate there is a lot of history in how Monsky came to show his result. It might seem that the history would go back into ancient times but in fact the problem seems to have been born quite recently. The origin of the problem appears to have occurred in 1965 with Fred Richmond and other names associated with the problem are John Thomas and Sherman Stein. While many saw the problem with the publication of Monsky&#8217;s proof in 1970, it was work of Sherman Stein that magnified interest in the problem under the title of what have come to be called equidissection problems. What Stein basically did was to ask what other shapes in the plane were such that they could not be dissected into triangles of equal area. You might want to think about this issue for yourself and perhaps you can come up with some new variants that other people have not thought of. After all why restrict oneself to squares! </p> <p>The fact that a square can&#8217;t be decomposed into an odd number of squares of the same area does not mean that one can&#8217;t think about dividing squares into an odd number of triangles such as those in Figure 13. We know that the<br /> triangles in such a decomposition cannot have equal area, but researchers have investigated the issue of how close to being equal in area they can be made in terms of the number of triangles in the decomposition.</p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts15.jpg?resize=144%2C144&#038;ssl=1" width="144" height="144" ALT="Square cut into 5 triangles"></p> <p>Figure 13 (A square decomposed into an odd number of triangles. Such a decomposition with all the triangles having equal area is not possible.) <BR><br /> </DIV></p> <p><P></p> <p>Much more recent than the ideas that lead to Monsky&#8217;s Theorem has been the idea of investigating when one can take a convex polygonal region in the plane and decompose it into $N$ convex pieces which have the same area and perimeter! A published version of this challenge appeared in a paper posted to the ArXiv in 2008 by R. Nandakumar and N. Ramana Rao which has subsequently, in the spirit of Monsky&#8217;s Theorem, attracted additional interest in this question and its generalizations.<br /> This problem, while very easy to state, has inspired a huge amount of new geometrical facts as well as many new questions. It is very common in the process of making progress on one mathematical problem that it opens up new questions, the need to invent new tools and sometimes whole new clusters of mathematical questions.</p> <p>We have looked at how surprisingly rich and complex the environment of decomposing a polygon into triangles can be and, in particular, the decomposition of a square into triangles of equal area. What about decomposing a square into squares subject to various rules? Clearly one can take a square and decompose it into various numbers of other squares of the same area, and the number of squares in the decomposition can be even or odd. However, much earlier than the interest in what has come to be called Monsky&#8217;s Theorem, a group of British students, all of whom went on to distinction in various ways, R.L. Brooks, Cedric Smith, Arthur Stone and William Tutte, while students at Cambridge University in the 1930s looked at a problem which has lead to much important and interesting work in various parts of mathematics and is, again, very much a decomposition theorem. The idea is to take a square (or once generalized as a question, rectangle) and divide it into squares with the initially curious restriction that all of the squares in the decomposition have <em>different</em> side lengths. This problem has come to be known as the perfect square problem. Figure 14 shows an interesting example that fails to achieve this goal but is nonetheless striking for what it does accomplish. </p> <p><BR><br /> </P></p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts16.jpg?resize=166%2C166&#038;ssl=1" width="166" height="166" ALT="Square cut into squares"></p> <p>Figure 14 (A square of relatively small side length subdivided into smaller squares some of which have the same edge length. Image courtesy of Wikipedia.)<BR><br /> </DIV></p> <p>Figure 15 shows an example of a square with the property that all the subdividing squares have different edge lengths.</p> <p></P></p> <p><DIV ALIGN="CENTER"><img data-recalc-dims="1" decoding="async" src="https://i0.wp.com/mathvoices.ams.org/featurecolumn/wp-content/uploads/sites/2/2022/04/parts17.jpg?resize=468%2C473&#038;ssl=1" width="468" height="473" ALT="Square cut into squares"><BR><br /> Figure 15 (A square subdivided into squares all of which have different edge lengths. Image courtesy of Wikipedia.)<BR><br /> </DIV></p> <p>There are many &quot;windows&quot; (some not square) that serve as entries into mathematical insights and investigations. Looking at parts or decompositions of shapes as well as numbers leads to lots of fascinating mathematics and its applications.</p> <p><B>References</B></p> <p>Those who can access <A HREF="https://www.jstor.org/">JSTOR</A> can find some of the papers mentioned above there. For those with access, the American Mathematical Society&#8217;s <A HREF="https://mathscinet.ams.org/mathscinet">MathSciNet</A> can be used to get additional bibliographic information and reviews of some of these materials. Some of the items above can be found via the <A HREF="https://dl.acm.org/">ACM Digital Library</A>, which also provides bibliographic services.</p> <p>Abrams, Aaron, and Jamie Pommersheim. &quot;Generalized dissections and Monsky&#8217;s theorem.&quot; Discrete &amp; Computational Geometry (2022): 1-37.<BR><br /> Alsina, Claudi, and Roger B. Nelsen. Math made visual: creating images for understanding mathematics. Vol. 28. American Mathematical Soc., 2006.</p> <p>Akopyan, Arseniy, Sergey Avvakumov, and Roman Karasev. &quot;Convex fair partitions into an arbitrary number of pieces.&quot; arXiv preprint arXiv:1804.03057 (2018).</p> <p>Alsina, Claudi, and Roger B. Nelsen. A Cornucopia of quadrilaterals. Vol. 55. American Mathematical Soc., 2020.</p> <p>Frederickson, G. Dissections: Plane and Fancy. New York: Cambridge University Press, pp. 28-29, 1997.</p> <p>Hoehn, Larry. A New Proof of the Pythagorean Theorem: Mathematics Teacher. February 1995; NCTM: Reston, VA.</p> <p>Jepsen, Charles, and Roc Yang. &quot;Making Squares from Pythagorean Triangles.&quot; The College Mathematics Journal 29.4 (1998): 284-288.</p> <p>Karasev, Roman, Alfredo Hubard, and Boris Aronov. &quot;Convex equipartitions: the spicy chicken theorem.&quot; Geometriae Dedicata 170.1 (2014): 263-279.</p> <p>Kasimatis, Elaine Ann. &quot;Dissections of regular polygons into triangles of equal areas.&quot; Discrete &amp; Computational Geometry 4.4 (1989): 375-381.</p> <p>Katz, Victor J. . A History of Mathematics. 1993; Harper Collins: New York, New York. </p> <p>Loomis, E. S. The Pythagorean Proposition: Its Demonstrations Analyzed and Classified and Bibliography of Sources for Data of the Four Kinds of &quot;Proofs,&quot; 2nd ed. Reston, VA: National Council of Teachers of Mathematics, 1968.</p> <p>Machover, M. &quot;Euler&#8217;s Theorem Implies the Pythagorean Proposition.&quot; Amer. Math. Monthly 103, 351, 1996.</p> <p>Maldonado, Gerardo L., and Edgardo Rold&aacute;n-Pensado. &quot;Dissecting the square into seven or nine congruent parts.&quot; Discrete Mathematics 345.5 (2022): 112800.</p> <p>Maor, Eli. The Pythagorean theorem: a 4,000-year history. Vol. 65. Princeton University Press, 2019.</p> <p>Mead, David G. &quot;Dissection of the hypercube into simplexes.&quot; Proceedings of the American Mathematical Society 76.2 (1979): 302-304.</p> <p>Monsky, Paul. &quot;On dividing a square into triangles.&quot; The American Mathematical Monthly 77.2 (1970): 161-164.</p> <p>Nelsen, Roger B. Proofs without words: Exercises in visual thinking. No. 1. MAA, 1993.</p> <p>Posamentier, Alfred S. The Pythagorean theorem: the story of its power and beauty. Prometheus books, 2010.</p> <p>Nandakumar, R., and N. Ramana Rao. &quot;Fair partitions of polygons: An elementary introduction.&quot; Proceedings-Mathematical Sciences 122.3 (2012): 459-467.</p> <p>Rooney, Elaine Ann Kasimatis. &quot;DISSECTION OF REGULAR POLYGONS INTO TRIANGLES OF EQUAL AREAS.&quot; (1987): 4188-4188.</p> <p>Stein, Sherman. &quot;Equidissections of centrally symmetric octagons.&quot; Aequationes Mathematicae 37.2 (1989): 313-318.</p> <p>Stein, Sherman K. &quot;Cutting a polyomino into triangles of equal areas.&quot; The American Mathematical Monthly 106.3 (1999): 255-257.</p> <p>Stein, Sherman. &quot;A generalized conjecture about cutting a polygon into triangles of equal areas.&quot; Discrete &amp; Computational Geometry 24.1 (2000): 141-145.</p> <p>Stein, Sherman. &quot;Cutting a polygon into triangles of equal areas.&quot; The Mathematical Intelligencer 26.1 (2004): 17-21.</p> <p>Su, Zhanjun, and Ren Ding. &quot;Dissections of polygons into triangles of equal areas.&quot; Journal of Applied Mathematics and Computing 13.1 (2003): 29-36.</p> <p>Wang, Yang, Lei Ren, and Hui Rao. &quot;Dissecting a square into congruent polygons.&quot; Discrete Mathematics &amp; Theoretical Computer Science 22 (2020).</P></p> <div class="sharedaddy sd-sharing-enabled"><div class="robots-nocontent sd-block sd-social sd-social-icon-text sd-sharing"><h3 class="sd-title">Share this:</h3><div class="sd-content"><ul><li class="share-facebook"><a rel="nofollow noopener noreferrer" data-shared="sharing-facebook-897" class="share-facebook sd-button share-icon" href="https://mathvoices.ams.org/featurecolumn/2022/04/01/geometric-decompositions/?share=facebook" target="_blank" title="Click to share on Facebook" ><span>Facebook</span></a></li><li class="share-x"><a rel="nofollow noopener noreferrer" data-shared="sharing-x-897" class="share-x sd-button share-icon" href="https://mathvoices.ams.org/featurecolumn/2022/04/01/geometric-decompositions/?share=x" target="_blank" title="Click to share on X" ><span>X</span></a></li><li class="share-end"></li></ul></div></div></div><div class='sharedaddy sd-block sd-like jetpack-likes-widget-wrapper jetpack-likes-widget-unloaded' id='like-post-wrapper-202620863-897-67596c33e51e4' data-src='https://widgets.wp.com/likes/?ver=14.1#blog_id=202620863&amp;post_id=897&amp;origin=mathvoices.ams.org&amp;obj_id=202620863-897-67596c33e51e4&amp;n=1' data-name='like-post-frame-202620863-897-67596c33e51e4' data-title='Like or Reblog'><h3 class="sd-title">Like this:</h3><div class='likes-widget-placeholder post-likes-widget-placeholder' style='height: 55px;'><span class='button'><span>Like</span></span> <span class="loading">Loading...</span></div><span class='sd-text-color'></span><a class='sd-link-color'></a></div> </div> </div><!-- .entry-content --> <div class="screen-reader-text" itemprop="datePublished" itemtype="https://schema.org/Date">2022-04-01</div> </article><!-- .entry --> <div id="loop-nav-wrap" class="loop-nav"><div class="prev">Previous Post: <a href="https://mathvoices.ams.org/featurecolumn/2022/03/01/ordinary-least-squares/" rel="prev">The Origins of Ordinary Least Squares Assumptions</a></div><div class="next">Next Post: <a href="https://mathvoices.ams.org/featurecolumn/2022/05/01/designing-supersymmetry/" rel="next">Designing supersymmetry</a></div></div><!-- .loop-nav --> <section id="comments-template"> <div id="respond" class="comment-respond"> <h3 id="reply-title" class="comment-reply-title">Leave a Reply <small><a rel="nofollow" id="cancel-comment-reply-link" href="/featurecolumn/2022/04/01/geometric-decompositions/#respond" style="display:none;">Cancel reply</a></small></h3><form action="https://mathvoices.ams.org/featurecolumn/wp-comments-post.php" method="post" id="commentform" class="comment-form" novalidate><p class="comment-notes"><span id="email-notes">Your email address will not be published.</span> <span class="required-field-message">Required fields are marked <span class="required">*</span></span></p><p class="comment-form-comment"><label for="comment">Comment <span class="required">*</span></label> <textarea id="comment" name="comment" cols="45" rows="8" maxlength="65525" required></textarea></p><p><b>HTML tags are not allowed.</b></p><p class="comment-form-author"><label for="author">Name <span class="required">*</span></label> <input x-autocompletetype="name-full" id="author" name="author" type="text" value="" size="30" maxlength="245" autocomplete="name" required /></p> <p class="comment-form-email"><label for="email">Email <span class="required">*</span></label> <input x-autocompletetype="email" id="email" name="email" type="email" value="" size="30" maxlength="100" aria-describedby="email-notes" autocomplete="email" required /></p> <p class="comment-form-cookies-consent"><input id="wp-comment-cookies-consent" name="wp-comment-cookies-consent" type="checkbox" value="yes" /> <label for="wp-comment-cookies-consent">Save my name, email, and website in this browser for the next time I comment.</label></p> <p>56,870 Spambots Blocked by <a href="https://www.toddlahman.com/shop/simple-comments/" title="Simple Comments" target="_blank">Simple Comments</a></p> <p class="comment-subscription-form"><input type="checkbox" name="subscribe_comments" id="subscribe_comments" value="subscribe" style="width: auto; -moz-appearance: checkbox; -webkit-appearance: checkbox;" /> <label class="subscribe-label" id="subscribe-label" for="subscribe_comments">Notify me of follow-up comments by email.</label></p><p class="comment-subscription-form"><input type="checkbox" name="subscribe_blog" id="subscribe_blog" value="subscribe" style="width: auto; -moz-appearance: checkbox; -webkit-appearance: checkbox;" /> <label class="subscribe-label" id="subscribe-blog-label" for="subscribe_blog">Notify me of new posts by email.</label></p><p class='comment-form-subscriptions'><label for='subscribe-reloaded'><input style='width:30px' type='checkbox' name='subscribe-reloaded' id='subscribe-reloaded' value='yes' /> Notify me of followup comments via e-mail. You can also <a href='https://mathvoices.ams.org/featurecolumn/comment-subscriptions/?srp=897&amp;srk=670fa4bfeb139d13245dcdc12ca15773&amp;sra=s&amp;srsrc=f'>subscribe</a> without commenting.</label></p><p class="form-submit"><input name="submit" type="submit" id="submit" class="submit" value="Post Comment" /> <input type='hidden' name='comment_post_ID' value='897' id='comment_post_ID' /> <input type='hidden' name='comment_parent' id='comment_parent' value='0' /> </p><!-- 56,870 Spambots Blocked by Simple Comments version 1.5 located at https://www.toddlahman.com/shop/simple-comments/ --> <p><h3><noscript>JavaScript must be turned on to leave a comment.</noscript></h3></p> <input type='hidden' name='sec_pwd_field' id='pwd_field_sec' value='' /> <input type='hidden' name='sec_comment_ip' id='comment_ip_sec' value='' /></form> </div><!-- #respond --> </section><!-- #comments-template --> </div><!-- #content-wrap --> </main><!-- #content --> <aside id="sidebar-primary" class="sidebar sidebar-primary hgrid-span-4 layout-wide-right " role="complementary" itemscope="itemscope" itemtype="https://schema.org/WPSideBar"> <div class=" sidebar-wrap theiaStickySidebar"> <section id="search-2" class="widget widget_search"><div class="searchbody"><form method="get" class="searchform" action="https://mathvoices.ams.org/featurecolumn/" ><label class="screen-reader-text">Search</label><i class="fas fa-search"></i><input type="text" class="searchtext" name="s" placeholder="Type Search Term &hellip;" value="" /><input type="submit" class="submit" name="submit" value="Search" /><span class="js-search-placeholder"></span></form></div><!-- /searchbody --></section><section id="blog_subscription-2" class="widget widget_blog_subscription jetpack_subscription_widget"><h3 class="widget-title"><span>Subscribe to Feature Column via Email</span></h3> <div class="wp-block-jetpack-subscriptions__container"> <form action="#" method="post" accept-charset="utf-8" id="subscribe-blog-blog_subscription-2" data-blog="202620863" data-post_access_level="everybody" > <div id="subscribe-text"><p>Enter your email address to subscribe to Feature Column and receive notifications of new posts by email.</p> </div> <p id="subscribe-email"> <label id="jetpack-subscribe-label" class="screen-reader-text" for="subscribe-field-blog_subscription-2"> Email Address </label> <input type="email" name="email" required="required" value="" id="subscribe-field-blog_subscription-2" placeholder="Email Address" /> </p> <p id="subscribe-submit" > <input type="hidden" name="action" value="subscribe"/> <input type="hidden" name="source" value="https://mathvoices.ams.org/featurecolumn/2022/04/01/geometric-decompositions/"/> <input type="hidden" name="sub-type" value="widget"/> <input type="hidden" name="redirect_fragment" value="subscribe-blog-blog_subscription-2"/> <input type="hidden" id="_wpnonce" name="_wpnonce" value="263d9746ba" /><input type="hidden" name="_wp_http_referer" value="/featurecolumn/2022/04/01/geometric-decompositions/" /> <button type="submit" class="wp-block-button__link" name="jetpack_subscriptions_widget" > Subscribe </button> </p> </form> </div> </section><section id="block-3" class="widget widget_block"><div class="wp-block-group"><div class="wp-block-group__inner-container is-layout-flow wp-block-group-is-layout-flow"><h2 class="wp-block-heading">Recent Posts</h2><ul class="wp-block-latest-posts__list wp-block-latest-posts"><li><a class="wp-block-latest-posts__post-title" href="https://mathvoices.ams.org/featurecolumn/2024/12/01/capturing-the-invisible-hopping-rabbit/">Capturing the Invisible Hopping Rabbit</a></li> <li><a class="wp-block-latest-posts__post-title" href="https://mathvoices.ams.org/featurecolumn/2024/11/01/strung-out-on-automorphic-forms/">Strung Out on Automorphic Forms</a></li> <li><a class="wp-block-latest-posts__post-title" href="https://mathvoices.ams.org/featurecolumn/2024/10/01/people-and-computers-compared/">People and Computers Compared</a></li> <li><a class="wp-block-latest-posts__post-title" href="https://mathvoices.ams.org/featurecolumn/2024/09/01/payoffs-and-strategies/">Payoffs and strategies</a></li> <li><a class="wp-block-latest-posts__post-title" href="https://mathvoices.ams.org/featurecolumn/2024/08/01/welcome-to-the-fold/">Welcome to the Fold</a></li> </ul></div></div></section><section id="categories-2" class="widget widget_categories"><h3 class="widget-title"><span>Categories</span></h3> <ul> <li class="cat-item cat-item-2"><a href="https://mathvoices.ams.org/featurecolumn/category/2020/">2020</a> </li> <li class="cat-item cat-item-3"><a href="https://mathvoices.ams.org/featurecolumn/category/2021/">2021</a> </li> <li class="cat-item cat-item-4"><a href="https://mathvoices.ams.org/featurecolumn/category/2022/">2022</a> </li> <li class="cat-item cat-item-112"><a href="https://mathvoices.ams.org/featurecolumn/category/2023/">2023</a> </li> <li class="cat-item cat-item-147"><a href="https://mathvoices.ams.org/featurecolumn/category/2024/">2024</a> </li> <li class="cat-item cat-item-5"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/adam-a-smith/">Adam A. Smith</a> </li> <li class="cat-item cat-item-168"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/adriana-salerno/">Adriana Salerno</a> </li> <li class="cat-item cat-item-6"><a href="https://mathvoices.ams.org/featurecolumn/category/algebra-and-number-theory/">Algebra and Number Theory</a> </li> <li class="cat-item cat-item-115"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/allechar-serrano-lopez/">Allechar Serrano López</a> </li> <li class="cat-item cat-item-109"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/anil-venkatesh/">Anil Venkatesh</a> </li> <li class="cat-item cat-item-7"><a href="https://mathvoices.ams.org/featurecolumn/category/archive/">Archive</a> </li> <li class="cat-item cat-item-8"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/bill-casselman/">Bill Casselman</a> </li> <li class="cat-item cat-item-9"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/colm-mulcahy/">Colm Mulcahy</a> </li> <li class="cat-item cat-item-10"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/courtney-gibbons/">Courtney Gibbons</a> </li> <li class="cat-item cat-item-11"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/david-austin/">David Austin</a> </li> <li class="cat-item cat-item-176"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/deepayan-sarkar/">Deepayan Sarkar</a> </li> <li class="cat-item cat-item-12"><a href="https://mathvoices.ams.org/featurecolumn/category/discrete-math-and-combinatorics/">Discrete Math and Combinatorics</a> </li> <li class="cat-item cat-item-13"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/etienne-ghys/">Étienne Ghys</a> </li> <li class="cat-item cat-item-114"><a href="https://mathvoices.ams.org/featurecolumn/category/geometry-and-topology/">Geometry and Topology</a> </li> <li class="cat-item cat-item-14"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/guillermo-fereyra/">Guillermo Fereyra</a> </li> <li class="cat-item cat-item-15"><a href="https://mathvoices.ams.org/featurecolumn/category/history-of-mathematics/">History of mathematics</a> </li> <li class="cat-item cat-item-172"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/holley-friedlander/">Holley Friedlander</a> </li> <li class="cat-item cat-item-16"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/john-eggers/">John Eggers</a> </li> <li class="cat-item cat-item-17"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/joseph-malkevitch/">Joseph Malkevitch</a> </li> <li class="cat-item cat-item-18"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/josh-leys/">Josh Leys</a> </li> <li class="cat-item cat-item-134"><a href="https://mathvoices.ams.org/featurecolumn/category/math-and-arts-humanities/">Math and Arts/Humanities</a> </li> <li class="cat-item cat-item-137"><a href="https://mathvoices.ams.org/featurecolumn/category/math-and-social-sciences/">Math and Social Sciences</a> </li> <li class="cat-item cat-item-20"><a href="https://mathvoices.ams.org/featurecolumn/category/math-and-technology/">Math and Technology</a> </li> <li class="cat-item cat-item-21"><a href="https://mathvoices.ams.org/featurecolumn/category/math-and-the-sciences/">Math and the Sciences</a> </li> <li class="cat-item cat-item-22"><a href="https://mathvoices.ams.org/featurecolumn/category/mathematics-and-biology/">Mathematics and Biology</a> </li> <li class="cat-item cat-item-23"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/moira-chas/">Moira Chas</a> </li> <li class="cat-item cat-item-100"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/noah-giansiracusa/">Noah Giansiracusa</a> </li> <li class="cat-item cat-item-24"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/patrick-ion/">Patrick Ion</a> </li> <li class="cat-item cat-item-25"><a href="https://mathvoices.ams.org/featurecolumn/category/probability-and-statistics/">Probability and Statistics</a> </li> <li class="cat-item cat-item-26"><a href="https://mathvoices.ams.org/featurecolumn/category/real-and-complex-analysis/">Real and Complex Analysis</a> </li> <li class="cat-item cat-item-169"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/sara-chari/">Sara Chari</a> </li> <li class="cat-item cat-item-77"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/sara-stoudt/">Sara Stoudt</a> </li> <li class="cat-item cat-item-142"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/sarah-wolff/">Sarah Wolff</a> </li> <li class="cat-item cat-item-27"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/steven-h-weintraub/">Steven H. Weintraub</a> </li> <li class="cat-item cat-item-175"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/sunil-chebolu/">Sunil Chebolu</a> </li> <li class="cat-item cat-item-28"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/tamsyn-morrill/">Tamsyn Morrill</a> </li> <li class="cat-item cat-item-29"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/tony-phillips/">Tony Phillips</a> </li> <li class="cat-item cat-item-1"><a href="https://mathvoices.ams.org/featurecolumn/category/uncategorized/">Uncategorized</a> </li> <li class="cat-item cat-item-30"><a href="https://mathvoices.ams.org/featurecolumn/category/columnists/ursula-whitcher/">Ursula Whitcher</a> </li> </ul> </section><section id="tag_cloud-2" class="widget widget_tag_cloud"><h3 class="widget-title"><span>Tags</span></h3><div class="tagcloud"><a href="https://mathvoices.ams.org/featurecolumn/tag/5g/" class="tag-cloud-link tag-link-32 tag-link-position-1" style="font-size: 8pt;" aria-label="5G (1 item)">5G</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/alan-turing/" class="tag-cloud-link tag-link-33 tag-link-position-2" style="font-size: 14.3pt;" aria-label="alan turing (2 items)">alan turing</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/ams/" class="tag-cloud-link tag-link-34 tag-link-position-3" style="font-size: 8pt;" aria-label="ams (1 item)">ams</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/astronauts/" class="tag-cloud-link tag-link-35 tag-link-position-4" style="font-size: 8pt;" aria-label="astronauts (1 item)">astronauts</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/branko-grunbaum/" class="tag-cloud-link tag-link-36 tag-link-position-5" style="font-size: 8pt;" aria-label="Branko Grünbaum (1 item)">Branko Grünbaum</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/cantor-set/" class="tag-cloud-link tag-link-37 tag-link-position-6" style="font-size: 8pt;" aria-label="cantor set (1 item)">cantor set</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/chess/" class="tag-cloud-link tag-link-38 tag-link-position-7" style="font-size: 18.5pt;" aria-label="chess (3 items)">chess</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/claude-shannon/" class="tag-cloud-link tag-link-39 tag-link-position-8" style="font-size: 8pt;" aria-label="Claude Shannon (1 item)">Claude Shannon</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/cryptography/" class="tag-cloud-link tag-link-107 tag-link-position-9" style="font-size: 18.5pt;" aria-label="cryptography (3 items)">cryptography</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/desargues/" class="tag-cloud-link tag-link-41 tag-link-position-10" style="font-size: 8pt;" aria-label="Desargues (1 item)">Desargues</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/epidemic/" class="tag-cloud-link tag-link-42 tag-link-position-11" style="font-size: 14.3pt;" aria-label="epidemic (2 items)">epidemic</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/euclidean-geometry/" class="tag-cloud-link tag-link-43 tag-link-position-12" style="font-size: 18.5pt;" aria-label="Euclidean geometry (3 items)">Euclidean geometry</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/feature-column-history/" class="tag-cloud-link tag-link-44 tag-link-position-13" style="font-size: 8pt;" aria-label="feature column history (1 item)">feature column history</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/games/" class="tag-cloud-link tag-link-84 tag-link-position-14" style="font-size: 14.3pt;" aria-label="games (2 items)">games</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/game-theory/" class="tag-cloud-link tag-link-148 tag-link-position-15" style="font-size: 22pt;" aria-label="game theory (4 items)">game theory</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/generating-functions/" class="tag-cloud-link tag-link-45 tag-link-position-16" style="font-size: 8pt;" aria-label="generating functions (1 item)">generating functions</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/genetics/" class="tag-cloud-link tag-link-46 tag-link-position-17" style="font-size: 8pt;" aria-label="genetics (1 item)">genetics</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/geoffrey-colin-shephard/" class="tag-cloud-link tag-link-47 tag-link-position-18" style="font-size: 8pt;" aria-label="Geoffrey Colin Shephard (1 item)">Geoffrey Colin Shephard</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/herd-immunity/" class="tag-cloud-link tag-link-48 tag-link-position-19" style="font-size: 8pt;" aria-label="herd immunity (1 item)">herd immunity</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/higgs-boson/" class="tag-cloud-link tag-link-49 tag-link-position-20" style="font-size: 8pt;" aria-label="Higgs boson (1 item)">Higgs boson</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/lattices-groups/" class="tag-cloud-link tag-link-97 tag-link-position-21" style="font-size: 18.5pt;" aria-label="lattices (groups) (3 items)">lattices (groups)</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/lie-groups/" class="tag-cloud-link tag-link-111 tag-link-position-22" style="font-size: 14.3pt;" aria-label="Lie groups (2 items)">Lie groups</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/machine-learning/" class="tag-cloud-link tag-link-50 tag-link-position-23" style="font-size: 14.3pt;" aria-label="Machine learning (2 items)">Machine learning</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/measles/" class="tag-cloud-link tag-link-51 tag-link-position-24" style="font-size: 8pt;" aria-label="measles (1 item)">measles</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/medieval/" class="tag-cloud-link tag-link-52 tag-link-position-25" style="font-size: 8pt;" aria-label="medieval (1 item)">medieval</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/mirror-symmetry/" class="tag-cloud-link tag-link-53 tag-link-position-26" style="font-size: 8pt;" aria-label="mirror symmetry (1 item)">mirror symmetry</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/paleontology/" class="tag-cloud-link tag-link-54 tag-link-position-27" style="font-size: 8pt;" aria-label="paleontology (1 item)">paleontology</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/pappuss-theorem/" class="tag-cloud-link tag-link-55 tag-link-position-28" style="font-size: 8pt;" aria-label="Pappus&#039;s Theorem (1 item)">Pappus&#039;s Theorem</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/partitions/" class="tag-cloud-link tag-link-56 tag-link-position-29" style="font-size: 14.3pt;" aria-label="partitions (2 items)">partitions</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/pca/" class="tag-cloud-link tag-link-57 tag-link-position-30" style="font-size: 8pt;" aria-label="pca (1 item)">pca</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/persi-diaconis/" class="tag-cloud-link tag-link-143 tag-link-position-31" style="font-size: 14.3pt;" aria-label="persi diaconis (2 items)">persi diaconis</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/physics/" class="tag-cloud-link tag-link-82 tag-link-position-32" style="font-size: 14.3pt;" aria-label="physics (2 items)">physics</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/poetry/" class="tag-cloud-link tag-link-135 tag-link-position-33" style="font-size: 14.3pt;" aria-label="poetry (2 items)">poetry</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/polar-codes/" class="tag-cloud-link tag-link-58 tag-link-position-34" style="font-size: 8pt;" aria-label="polar codes (1 item)">polar codes</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/polytopes-and-polyhedra/" class="tag-cloud-link tag-link-59 tag-link-position-35" style="font-size: 14.3pt;" aria-label="polytopes and polyhedra (2 items)">polytopes and polyhedra</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/predictive-policing/" class="tag-cloud-link tag-link-60 tag-link-position-36" style="font-size: 8pt;" aria-label="Predictive policing (1 item)">Predictive policing</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/predpol/" class="tag-cloud-link tag-link-61 tag-link-position-37" style="font-size: 8pt;" aria-label="PredPol (1 item)">PredPol</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/primes/" class="tag-cloud-link tag-link-62 tag-link-position-38" style="font-size: 18.5pt;" aria-label="primes (3 items)">primes</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/probability/" class="tag-cloud-link tag-link-86 tag-link-position-39" style="font-size: 14.3pt;" aria-label="probability (2 items)">probability</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/quadratic-formula/" class="tag-cloud-link tag-link-63 tag-link-position-40" style="font-size: 8pt;" aria-label="quadratic formula (1 item)">quadratic formula</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/seir-model/" class="tag-cloud-link tag-link-67 tag-link-position-41" style="font-size: 14.3pt;" aria-label="SEIR model (2 items)">SEIR model</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/string-theory/" class="tag-cloud-link tag-link-70 tag-link-position-42" style="font-size: 14.3pt;" aria-label="string theory (2 items)">string theory</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/tic-tac-toe/" class="tag-cloud-link tag-link-165 tag-link-position-43" style="font-size: 14.3pt;" aria-label="tic-tac-toe (2 items)">tic-tac-toe</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/tilings/" class="tag-cloud-link tag-link-72 tag-link-position-44" style="font-size: 14.3pt;" aria-label="tilings (2 items)">tilings</a> <a href="https://mathvoices.ams.org/featurecolumn/tag/voting/" class="tag-cloud-link tag-link-141 tag-link-position-45" style="font-size: 14.3pt;" aria-label="voting (2 items)">voting</a></div> </section><section id="meta-2" class="widget widget_meta"><h3 class="widget-title"><span>Meta</span></h3> <ul> <li><a href="https://mathvoices.ams.org/featurecolumn/wp-login.php">Log in</a></li> <li><a href="https://mathvoices.ams.org/featurecolumn/feed/">Entries feed</a></li> <li><a href="https://mathvoices.ams.org/featurecolumn/comments/feed/">Comments feed</a></li> <li><a href="https://wordpress.org/">WordPress.org</a></li> </ul> </section> </div><!-- .sidebar-wrap --> </aside><!-- #sidebar-primary --> </div><!-- .main-content-grid --> </div><!-- #main --> <div id="post-footer" class=" post-footer hgrid-stretch linkstyle"> <div class="hgrid"> <div class="hgrid-span-12"> <p class="credit small"> Designed using <a class="theme-link" href="https://wphoot.com/themes/hoot-business/" title="Hoot Business WordPress Theme">Hoot Business</a>. Powered by <a class="wp-link" href="https://wordpress.org">WordPress</a>. </p><!-- .credit --> </div> </div> </div> </div><!-- #page-wrapper --> <script type="text/javascript"> window.WPCOM_sharing_counts = {"https:\/\/mathvoices.ams.org\/featurecolumn\/2022\/04\/01\/geometric-decompositions\/":897}; </script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/comment-reply.min.js" id="comment-reply-js" async data-wp-strategy="async"></script> <script src="https://c0.wp.com/c/6.7.1/wp-includes/js/hoverIntent.min.js" id="hoverIntent-js"></script> <script src="https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/js/jquery.superfish.js?ver=1.7.5" id="jquery-superfish-js"></script> <script src="https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/js/jquery.fitvids.js?ver=1.1" id="jquery-fitvids-js"></script> <script src="https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/js/jquery.parallax.js?ver=1.4.2" id="jquery-parallax-js"></script> <script src="https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/js/resizesensor.js?ver=1.7.0" id="resizesensor-js"></script> <script src="https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/js/jquery.theia-sticky-sidebar.js?ver=1.7.0" id="jquery-theia-sticky-sidebar-js"></script> <script src="//cdn.jsdelivr.net/npm/mathjax@2.7.8/MathJax.js?config=TeX-MML-AM_CHTML%2CSafe.js&amp;ver=6.7.1" id="mathjax-js"></script> <script id="sc_ipwd-js-extra"> var sc_ipwd_script = {"sc_ajaxurl":"https:\/\/mathvoices.ams.org\/featurecolumn\/wp-admin\/admin-ajax.php"}; </script> <script src="https://mathvoices.ams.org/featurecolumn/wp-content/plugins/simple-comments/js/comments/sc-ipwd-nn.min.js?ver=1.5" id="sc_ipwd-js"></script> <script src="https://mathvoices.ams.org/featurecolumn/wp-content/themes/hoot-business/js/hoot.theme.js?ver=2.11.0" id="hoot-theme-js"></script> <script src="https://stats.wp.com/e-202450.js" id="jetpack-stats-js" data-wp-strategy="defer"></script> <script id="jetpack-stats-js-after"> _stq = window._stq || []; _stq.push([ "view", JSON.parse("{\"v\":\"ext\",\"blog\":\"202620863\",\"post\":\"897\",\"tz\":\"-5\",\"srv\":\"mathvoices.ams.org\",\"j\":\"1:14.1\"}") ]); _stq.push([ "clickTrackerInit", "202620863", "897" ]); </script> <script src="https://c0.wp.com/p/jetpack/14.1/_inc/build/likes/queuehandler.min.js" id="jetpack_likes_queuehandler-js"></script> <script id="sharing-js-js-extra"> var sharing_js_options = {"lang":"en","counts":"1","is_stats_active":"1"}; </script> <script src="https://c0.wp.com/p/jetpack/14.1/_inc/build/sharedaddy/sharing.min.js" id="sharing-js-js"></script> <script id="sharing-js-js-after"> var windowOpen; ( function () { function matches( el, sel ) { return !! ( el.matches && el.matches( sel ) || el.msMatchesSelector && el.msMatchesSelector( sel ) ); } document.body.addEventListener( 'click', function ( event ) { if ( ! event.target ) { return; } var el; if ( matches( event.target, 'a.share-facebook' ) ) { el = event.target; } else if ( event.target.parentNode && matches( event.target.parentNode, 'a.share-facebook' ) ) { el = event.target.parentNode; } if ( el ) { event.preventDefault(); // If there's another sharing window open, close it. if ( typeof windowOpen !== 'undefined' ) { windowOpen.close(); } windowOpen = window.open( el.getAttribute( 'href' ), 'wpcomfacebook', 'menubar=1,resizable=1,width=600,height=400' ); return false; } } ); } )(); var windowOpen; ( function () { function matches( el, sel ) { return !! ( el.matches && el.matches( sel ) || el.msMatchesSelector && el.msMatchesSelector( sel ) ); } document.body.addEventListener( 'click', function ( event ) { if ( ! event.target ) { return; } var el; if ( matches( event.target, 'a.share-x' ) ) { el = event.target; } else if ( event.target.parentNode && matches( event.target.parentNode, 'a.share-x' ) ) { el = event.target.parentNode; } if ( el ) { event.preventDefault(); // If there's another sharing window open, close it. if ( typeof windowOpen !== 'undefined' ) { windowOpen.close(); } windowOpen = window.open( el.getAttribute( 'href' ), 'wpcomx', 'menubar=1,resizable=1,width=600,height=350' ); return false; } } ); } )(); </script> <iframe src='https://widgets.wp.com/likes/master.html?ver=20241211#ver=20241211&#038;n=1' scrolling='no' id='likes-master' name='likes-master' style='display:none;'></iframe> <div id='likes-other-gravatars' class='wpl-new-layout' role="dialog" aria-hidden="true" tabindex="-1"><div class="likes-text"><span>%d</span></div><ul class="wpl-avatars sd-like-gravatars"></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10