CINXE.COM

Search results for: cutting tools

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cutting tools</title> <meta name="description" content="Search results for: cutting tools"> <meta name="keywords" content="cutting tools"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cutting tools" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cutting tools"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4491</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cutting tools</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4491</span> Experimental Investigation and Numerical Simulations of the Cylindrical Machining of a Ti-6Al-4V Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sahli">Mohamed Sahli</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Bassir"> David Bassir</a>, <a href="https://publications.waset.org/abstracts/search?q=Thierry%20Barriere"> Thierry Barriere</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Roizard"> Xavier Roizard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Predicting the behaviour of the Ti-6Al-4V alloy during the turning operation was very important in the choice of suitable cutting tools and also in the machining strategies. In this study, a 3D model with thermo-mechanical coupling has been proposed to study the influence of cutting parameters and also lubrication on the performance of cutting tools. The constants of the constitutive Johnson-Cook model of Ti-6Al-4V alloy were identified using inverse analysis based on the parameters of the orthogonal cutting process. Then, numerical simulations of the finishing machining operation were developed and experimentally validated for the cylindrical stock removal stage with the finishing cutting tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20turning" title="titanium turning">titanium turning</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20tools" title=" cutting tools"> cutting tools</a>, <a href="https://publications.waset.org/abstracts/search?q=FE%20simulation" title=" FE simulation"> FE simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=chip" title=" chip"> chip</a> </p> <a href="https://publications.waset.org/abstracts/131356/experimental-investigation-and-numerical-simulations-of-the-cylindrical-machining-of-a-ti-6al-4v-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4490</span> Intelligent Tooling Embedded Sensors for Monitoring the Wear of Cutting Tools in Turning Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatim%20Laalej">Hatim Laalej</a>, <a href="https://publications.waset.org/abstracts/search?q=Jon%20Stammers"> Jon Stammers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In machining, monitoring of tool wear is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Currently, the task of monitoring the wear on the cutting tool is carried out by the operator who performs manual inspections of the cutting tool, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from loss of productivity. The cutting tool consumable costs may also be higher than necessary when tools are changed before the end of their useful life. Furthermore, damage can be caused to the workpiece when tools are not changed soon enough leading to a significant increase in the costs of manufacturing. The present study is concerned with the development of break sensor printed on the flank surface of poly-crystalline diamond (PCD) cutting to perform on-line condition monitoring of the cutting tool used to machine Titanium Ti-6al-4v bar. The results clearly show that there is a strong correlation between the break sensor measurements and the amount of wear in the cutting tool. These findings are significant in that they help the user/operator of the machine tool to determine the condition of the cutting tool without the need of performing manual inspection, thereby reducing the manufacturing costs such as the machine down time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/77528/intelligent-tooling-embedded-sensors-for-monitoring-the-wear-of-cutting-tools-in-turning-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4489</span> Life Prediction of Cutting Tool by the Workpiece Cutting Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noemia%20Gomes%20de%20Mattos%20de%20Mesquita">Noemia Gomes de Mattos de Mesquita</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Eduardo%20Ferreira%20de%20Oliveira"> José Eduardo Ferreira de Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Arimatea%20Quaresma%20Ferraz"> Arimatea Quaresma Ferraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stops to exchange cutting tool, to set up again the tool in a turning operation with CNC or to measure the workpiece dimensions have a direct influence on production. The premature removal of the cutting tool results in high cost of machining since the parcel relating to the cost of the cutting tool increases. On the other hand, the late exchange of cutting tool also increases the cost of production because getting parts out of the preset tolerances may require rework for its use when it does not cause bigger problems such as breaking of cutting tools or the loss of the part. Therefore, the right time to exchange the tool should be well defined when wanted to minimize production costs. When the flank wear is the limiting tool life, the time predetermination that a cutting tool must be used for the machining occurs within the limits of tolerance can be done without difficulty. This paper aims to show how the life of the cutting tool can be calculated taking into account the cutting parameters (cutting speed, feed and depth of cut), workpiece material, power of the machine, the dimensional tolerance of the part, the finishing surface, the geometry of the cutting tool and operating conditions of the machine tool, once known the parameters of Taylor algebraic structure. These parameters were raised for the ABNT 1038 steel machined with cutting tools of hard metal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=productions" title=" productions"> productions</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20condition" title=" cutting condition"> cutting condition</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a> </p> <a href="https://publications.waset.org/abstracts/9191/life-prediction-of-cutting-tool-by-the-workpiece-cutting-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4488</span> Analyzing Damage of the Cutting Tools out of Carbide Metallic during the Turning of a Soaked and Not Hardened Steel XC38 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Seghouani">Mohamed Seghouani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tafraoui"> Ahmed Tafraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Soltane%20Lebaili"> Soltane Lebaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study widened knowledge on the use of the cutting tools out of metal carbide and to define it the influence of the elements of the mode of cut on the behavior of these tools during the machining of treated steel XC38 and untreated. This work aims at evolution determined in experiments of the wear of a cutting tool out of metal carbide with plate reported of P30 nuance for an operation of slide-lathing in turning on soaked and not hardened steel XC38 test-tubes. This research is based on the model of Taylor to determine the life span of the cutting tool according to the various parameters of cut, like the cutting speed Vc, the advance of cut a, the depth of cutting P. In order to express the operational limits of the tool for slide-lathing in a preventive way. The model makes it possible to determine the time of change of the tool and to regard it as a constraint for the respect of the roughness of the workpiece during a work of series in conventional machining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=lifespan" title=" lifespan"> lifespan</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20of%20Taylor" title=" model of Taylor"> model of Taylor</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20tool" title=" cutting tool"> cutting tool</a>, <a href="https://publications.waset.org/abstracts/search?q=carburize%20metal" title=" carburize metal"> carburize metal</a> </p> <a href="https://publications.waset.org/abstracts/21927/analyzing-damage-of-the-cutting-tools-out-of-carbide-metallic-during-the-turning-of-a-soaked-and-not-hardened-steel-xc38" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4487</span> A Prediction of Cutting Forces Using Extended Kienzle Force Model Incorporating Tool Flank Wear Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Peng">Wu Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Anders%20Liljerehn"> Anders Liljerehn</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Magnevall"> Martin Magnevall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In metal cutting, tool wear gradually changes the micro geometry of the cutting edge. Today there is a significant gap in understanding the impact these geometrical changes have on the cutting forces which governs tool deflection and heat generation in the cutting zone. Accurate models and understanding of the interaction between the work piece and cutting tool leads to improved accuracy in simulation of the cutting process. These simulations are useful in several application areas, e.g., optimization of insert geometry and machine tool monitoring. This study aims to develop an extended Kienzle force model to account for the effect of rake angle variations and tool flank wear have on the cutting forces. In this paper, the starting point sets from cutting force measurements using orthogonal turning tests of pre-machined flanches with well-defined width, using triangular coated inserts to assure orthogonal condition. The cutting forces have been measured by dynamometer with a set of three different rake angles, and wear progression have been monitored during machining by an optical measuring collaborative robot. The method utilizes the measured cutting forces with the inserts flank wear progression to extend the mechanistic cutting forces model with flank wear as an input parameter. The adapted cutting forces model is validated in a turning process with commercial cutting tools. This adapted cutting forces model shows the significant capability of prediction of cutting forces accounting for tools flank wear and different-rake-angle cutting tool inserts. The result of this study suggests that the nonlinear effect of tools flank wear and interaction between the work piece and the cutting tool can be considered by the developed cutting forces model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20force" title="cutting force">cutting force</a>, <a href="https://publications.waset.org/abstracts/search?q=kienzle%20model" title=" kienzle model"> kienzle model</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20model" title=" predictive model"> predictive model</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20flank%20wear" title=" tool flank wear"> tool flank wear</a> </p> <a href="https://publications.waset.org/abstracts/152477/a-prediction-of-cutting-forces-using-extended-kienzle-force-model-incorporating-tool-flank-wear-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4486</span> Cutting Tools in Finishing Operations for CNC Rapid Manufacturing Processes: Experimental Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Osman%20Zahid">M. N. Osman Zahid</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Case"> K. Case</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Watts"> D. Watts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an advanced approach in the application of CNC machining for rapid manufacturing processes (CNC-RM). The aim of this study is to improve the quality of machined parts by introducing different cutting tools during finishing operations. As the cutting is performed in different directions, the surfaces presented on part can be classified into several categories. Therefore, suitable cutting tools are assigned to machine particular surfaces and to improve the quality. Experimental studies have been carried out by fabricating several parts based on the suggested approach. The results provide further support for implementing this approach in rapid machining processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNC%20machining" title="CNC machining">CNC machining</a>, <a href="https://publications.waset.org/abstracts/search?q=end%20mill%20tool" title=" end mill tool"> end mill tool</a>, <a href="https://publications.waset.org/abstracts/search?q=finishing%20operation" title=" finishing operation"> finishing operation</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20manufacturing" title=" rapid manufacturing"> rapid manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/10148/cutting-tools-in-finishing-operations-for-cnc-rapid-manufacturing-processes-experimental-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4485</span> Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Arrate">Silvia Arrate</a>, <a href="https://publications.waset.org/abstracts/search?q=Waldo%20Salud"> Waldo Salud</a>, <a href="https://publications.waset.org/abstracts/search?q=Eloy%20Par%C3%ADs"> Eloy París</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20tools" title="cutting tools">cutting tools</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=TBM" title=" TBM"> TBM</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/182899/prediction-of-damage-to-cutting-tools-in-an-earth-pressure-balance-tunnel-boring-machine-epb-tbm-a-case-study-l3-guadalajara-metro-line-mexico" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4484</span> Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javier%20A.%20Dominguez%20Caballero">Javier A. Dominguez Caballero</a>, <a href="https://publications.waset.org/abstracts/search?q=Graeme%20A.%20Manson"> Graeme A. Manson</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20B.%20Marshall"> Matthew B. Marshall</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert&rsquo;s crater wear area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20cutting%20tools" title="ceramic cutting tools">ceramic cutting tools</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20machining" title=" high speed machining"> high speed machining</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20condition%20monitoring" title=" tool condition monitoring"> tool condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a> </p> <a href="https://publications.waset.org/abstracts/49401/tool-condition-monitoring-of-ceramic-inserted-tools-in-high-speed-machining-through-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4483</span> Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gizem%20Eser%20Erdek">Gizem Eser Erdek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=remaining%20life%20of%20industrial%20cutting%20tools" title=" remaining life of industrial cutting tools"> remaining life of industrial cutting tools</a>, <a href="https://publications.waset.org/abstracts/search?q=ResNet" title=" ResNet"> ResNet</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=VggNet" title=" VggNet"> VggNet</a> </p> <a href="https://publications.waset.org/abstracts/166428/prediction-of-remaining-life-of-industrial-cutting-tools-with-deep-learning-assisted-image-processing-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4482</span> Intelligent Production Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20%C5%9Eahino%C4%9Flu">A. Şahinoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20G%C3%BCrb%C3%BCz"> R. Gürbüz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20G%C3%BCll%C3%BC"> A. Güllü</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karhan"> M. Karhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study in production machines, it is aimed that machine will automatically perceive cutting data and alter cutting parameters. The two most important parameters have to be checked in machine control unit are progress feed rate and speeds. These parameters are aimed to be controlled by sounds of machine. Optimum sound’s features introduced to computer. During process, real time data is received and converted by Matlab software. Data is converted into numerical values. According to them progress and speeds decreases/increases at a certain rate and thus optimum sound is acquired. Cutting process is made in respect of optimum cutting parameters. During chip remove progress, features of cutting tools, kind of cut material, cutting parameters and used machine; affects on various parameters. Instead of required parameters need to be measured such as temperature, vibration, and tool wear that emerged during cutting process; detailed analysis of the sound emerged during cutting process will provide detection of various data that included in the cutting process by the much more easy and economic way. The relation between cutting parameters and sound is being identified. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20process" title="cutting process">cutting process</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20processing" title=" sound processing"> sound processing</a>, <a href="https://publications.waset.org/abstracts/search?q=intelligent%20late" title=" intelligent late"> intelligent late</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20analysis" title=" sound analysis"> sound analysis</a> </p> <a href="https://publications.waset.org/abstracts/28796/intelligent-production-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4481</span> Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Ghorbani">Siamak Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Ivanovich%20Polushin"> Nikolay Ivanovich Polushin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title="ANOVA">ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=damping%20capacity" title=" damping capacity"> damping capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration"> vibration</a> </p> <a href="https://publications.waset.org/abstracts/40328/effect-of-composite-material-on-damping-capacity-improvement-of-cutting-tool-in-machining-operation-using-taguchi-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4480</span> Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Mullier">Guillaume Mullier</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Fran%C3%A7ois%20Chatelain"> Jean François Chatelain </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50 mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300 m/min cutting speed and 1140 mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded K-Type thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composites" title="composites">composites</a>, <a href="https://publications.waset.org/abstracts/search?q=trimming" title=" trimming"> trimming</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20damage" title=" thermal damage"> thermal damage</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%0D%0Aquality" title=" surface quality"> surface quality</a> </p> <a href="https://publications.waset.org/abstracts/31144/influence-of-thermal-damage-on-the-mechanical-strength-of-trimmed-cfrp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4479</span> A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatim%20Laalej">Hatim Laalej</a>, <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Sumohano-Verdeja"> Salvador Sumohano-Verdeja</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20McLeay"> Thomas McLeay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=milling%20operation" title=" milling operation"> milling operation</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20condition%20monitoring" title=" tool condition monitoring"> tool condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear%20prediction" title=" tool wear prediction"> tool wear prediction</a> </p> <a href="https://publications.waset.org/abstracts/51178/a-flute-tracking-system-for-monitoring-the-wear-of-cutting-tools-in-milling-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4478</span> Reusing of HSS Hacksaw Blades as Rough Machining Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raja%20V.">Raja V.</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokkalingam%20B."> Chokkalingam B.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For rough cutting, in many industries and educational institutions using carbon steels or HSS single point cutting tools in center lathe machine. In power hacksaw blades, only the cutter teeth region used to parting off the given material. The portions other than the teeth can be used as a single point cutting tool for rough turning and facing on soft materials. The hardness and Tensile strength of this used Power hacksaw blade is almost same as conventional cutting tools. In this paper, the effect of power hacksaw blades over conventional tool has been compared. Thickness of the blade (1.6 mm) is very small compared to its length and width. Hence, a special tool holding device is designed to hold the tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness" title="hardness">hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20steels" title=" high speed steels"> high speed steels</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20hacksaw%20blade" title=" power hacksaw blade"> power hacksaw blade</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/23057/reusing-of-hss-hacksaw-blades-as-rough-machining-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4477</span> Active Deformable Micro-Cutters with Nano-Abrasives </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Pappa">M. Pappa</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Efstathiou"> C. Efstathiou</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Livanos"> G. Livanos</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Xidas"> P. Xidas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Vakondios"> D. Vakondios</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Maravelakis"> E. Maravelakis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zervakis"> M. Zervakis</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Antoniadis"> A. Antoniadis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The choice of cutting tools in manufacturing processes is an essential parameter on which the required manufacturing time, the consumed energy and the cost effort all depend. If the number of tool changing times could be minimized or even eliminated by using a single convex tool providing multiple profiles, then a significant benefit of time and energy saving, as well as tool cost, would be achieved. A typical machine contains a variety of tools in order to deal with different curvatures and material removal rates. In order to minimize the required cutting tool changes, Actively Deformable micro-Cutters (ADmC) will be developed. The design of the Actively Deformable micro-Cutters will be based on the same cutting technique and mounting method as that in typical cutters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deformable%20cutters" title="deformable cutters">deformable cutters</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20tool" title=" cutting tool"> cutting tool</a>, <a href="https://publications.waset.org/abstracts/search?q=milling" title=" milling"> milling</a>, <a href="https://publications.waset.org/abstracts/search?q=turning" title=" turning"> turning</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/33058/active-deformable-micro-cutters-with-nano-abrasives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4476</span> Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20D.%20Sonawane">Gaurav D. Sonawane</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20G.%20Sargade"> Vikas G. Sargade</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20temperature" title="cutting temperature">cutting temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=DSS2205" title=" DSS2205"> DSS2205</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20turning" title=" dry turning"> dry turning</a>, <a href="https://publications.waset.org/abstracts/search?q=HiPIMS" title=" HiPIMS"> HiPIMS</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20integrity" title=" surface integrity"> surface integrity</a> </p> <a href="https://publications.waset.org/abstracts/103034/studies-on-the-characterization-and-machinability-of-duplex-stainless-steel-2205-during-dry-turning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4475</span> High-Speed Cutting of Inconel 625 Using Carbide Ball End Mill</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazumasa%20Kawasaki">Kazumasa Kawasaki</a>, <a href="https://publications.waset.org/abstracts/search?q=Katsuya%20Fukazawa"> Katsuya Fukazawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel-based superalloys are an important class of engineering material within the aerospace and power generation, due to their excellent combination of corrosion resistance and mechanical properties, including high-temperature applications Inconel 625 is one of such superalloys and difficult-to-machine material. In cutting of Inconel 625 superalloy with a ball end mill, the problem of adhesive wear often occurs. However, the proper cutting conditions are not known so much because of lack of study examples. In this study, the experiments using ball end mills made of carbide tools were tried to find the best cutting conditions out following qualifications. Using Inconel 625 superalloy as a work material, three kinds of experiment, with the revolution speed of 5000 rpm, 8000 rpm, and 10000 rpm, were performed under dry cutting conditions in feed speed per tooth of 0.045 mm/ tooth, depth of cut of 0.1 mm. As a result, in the case of 8000 rpm, it was successful to cut longest with the least wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inconel%20625" title="Inconel 625">Inconel 625</a>, <a href="https://publications.waset.org/abstracts/search?q=ball%20end%20mill" title=" ball end mill"> ball end mill</a>, <a href="https://publications.waset.org/abstracts/search?q=carbide%20tool" title=" carbide tool"> carbide tool</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20cutting" title=" high speed cutting"> high speed cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a> </p> <a href="https://publications.waset.org/abstracts/98349/high-speed-cutting-of-inconel-625-using-carbide-ball-end-mill" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4474</span> Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmajeed%20Dabwan">Abdulmajeed Dabwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saqib%20Anwar"> Saqib Anwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Al-Samhan"> Ali Al-Samhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20beam%20melting" title="electron beam melting">electron beam melting</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti6Al4V" title=" Ti6Al4V"> Ti6Al4V</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20morphology" title=" surface morphology"> surface morphology</a> </p> <a href="https://publications.waset.org/abstracts/122114/effects-of-milling-process-parameters-on-cutting-forces-and-surface-roughness-when-finishing-ti6al4v-produced-by-electron-beam-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122114.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4473</span> Modeling of Surface Roughness in Hard Turning of DIN 1.2210 Cold Work Tool Steel with Ceramic Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Erdi%20Korkmaz">Mehmet Erdi Korkmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BCnay"> Mustafa Günay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, grinding is frequently replaced with hard turning for reducing set up time and higher accuracy. This paper focused on mathematical modeling of average surface roughness (Ra) in hard turning of AISI L2 grade (DIN 1.2210) cold work tool steel with ceramic tools. The steel was hardened to 60±1 HRC after the heat treatment process. Cutting speed, feed rate, depth of cut and tool nose radius was chosen as the cutting conditions. The uncoated ceramic cutting tools were used in the machining experiments. The machining experiments were performed according to Taguchi L27 orthogonal array on CNC lathe. Ra values were calculated by averaging three roughness values obtained from three different points of machined surface. The influences of cutting conditions on surface roughness were evaluated as statistical and experimental. The analysis of variance (ANOVA) with 95% confidence level was applied for statistical analysis of experimental results. Finally, mathematical models were developed using the artificial neural networks (ANN). ANOVA results show that feed rate is the dominant factor affecting surface roughness, followed by tool nose radius and cutting speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANN" title="ANN">ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20turning" title=" hard turning"> hard turning</a>, <a href="https://publications.waset.org/abstracts/search?q=DIN%201.2210" title=" DIN 1.2210"> DIN 1.2210</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/8729/modeling-of-surface-roughness-in-hard-turning-of-din-12210-cold-work-tool-steel-with-ceramic-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4472</span> Cutting Performance of BDD Coating on WC-Co Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xu">Feng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaozhi%20Liu"> Zhaozhi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhua%20Xu"> Junhua Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolong%20Tang"> Xiaolong Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunwen%20Zuo"> Dunwen Zuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cemented%20carbide%20with%20high%20cobalt%20content" title="cemented carbide with high cobalt content">cemented carbide with high cobalt content</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD%20boron-doped%20diamond" title=" CVD boron-doped diamond"> CVD boron-doped diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20test" title=" cutting test"> cutting test</a>, <a href="https://publications.waset.org/abstracts/search?q=drill" title=" drill"> drill</a> </p> <a href="https://publications.waset.org/abstracts/23174/cutting-performance-of-bdd-coating-on-wc-co-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4471</span> Preparation and Cutting Performance of Boron-Doped Diamond Coating on Cemented Carbide Cutting Tools with High Cobalt Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhaozhi%20Liu">Zhaozhi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Xu"> Feng Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhua%20Xu"> Junhua Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolong%20Tang"> Xiaolong Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Liu"> Ying Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunwen%20Zuo"> Dunwen Zuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical vapor deposition (CVD) diamond coated cutting tool has excellent cutting performance, it is the most ideal tool for the processing of nonferrous metals and alloys, composites, nonmetallic materials and other difficult-to-machine materials efficiently and accurately. Depositing CVD diamond coating on the cemented carbide with high cobalt content can improve its toughness and strength, therefore, it is very important to research on the preparation technology and cutting properties of CVD diamond coated cemented carbide cutting tool with high cobalt content. The preparation technology of boron-doped diamond (BDD) coating has been studied and the coated drills were prepared. BDD coating were deposited on the drills by using the optimized parameters and the SEM results show that there are no cracks or collapses in the coating. Cutting tests with the prepared drills against the silumin and aluminum base printed circuit board (PCB) have been studied. The results show that the wear amount of the coated drill is small and the machined surface has a better precision. The coating does not come off during the test, which shows good adhesion and cutting performance of the drill. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cemented%20carbide%20with%20high%20cobalt%20content" title="cemented carbide with high cobalt content">cemented carbide with high cobalt content</a>, <a href="https://publications.waset.org/abstracts/search?q=CVD%20boron-doped%20diamond" title=" CVD boron-doped diamond"> CVD boron-doped diamond</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20test" title=" cutting test"> cutting test</a>, <a href="https://publications.waset.org/abstracts/search?q=drill" title=" drill"> drill</a> </p> <a href="https://publications.waset.org/abstracts/20081/preparation-and-cutting-performance-of-boron-doped-diamond-coating-on-cemented-carbide-cutting-tools-with-high-cobalt-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4470</span> An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghorbani">S. Ghorbani</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20I.%20Polushin"> N. I. Polushin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20condition" title="cutting condition">cutting condition</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=CART%20algorithm" title=" CART algorithm"> CART algorithm</a> </p> <a href="https://publications.waset.org/abstracts/70715/an-alternative-approach-for-assessing-the-impact-of-cutting-conditions-on-surface-roughness-using-single-decision-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4469</span> Neural Network Monitoring Strategy of Cutting Tool Wear of Horizontal High Speed Milling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kious%20Mecheri">Kious Mecheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjadj%20Abdechafik"> Hadjadj Abdechafik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameur%20Aissa"> Ameur Aissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wear of cutting tool degrades the quality of the product in the manufacturing processes. The online monitoring of the cutting tool wear level is very necessary to prevent the deterioration of the quality of machining. Unfortunately there is not a direct manner to measure the cutting tool wear online. Consequently we must adopt an indirect method where wear will be estimated from the measurement of one or more physical parameters appearing during the machining process such as the cutting force, the vibrations, or the acoustic emission etc. In this work, a neural network system is elaborated in order to estimate the flank wear from the cutting force measurement and the cutting conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flank%20wear" title="flank wear">flank wear</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20milling" title=" high speed milling"> high speed milling</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/6906/neural-network-monitoring-strategy-of-cutting-tool-wear-of-horizontal-high-speed-milling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4468</span> Experimental Chip/Tool Temperature FEM Model Calibration by Infrared Thermography: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riccardo%20Angiuli">Riccardo Angiuli</a>, <a href="https://publications.waset.org/abstracts/search?q=Michele%20Giannuzzi"> Michele Giannuzzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodolfo%20Franchi"> Rodolfo Franchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20Papadia"> Gabriele Papadia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature knowledge in machining is fundamental to improve the numerical and FEM models used for the study of some critical process aspects, such as the behavior of the worked material and tool. The extreme conditions in which they operate make it impossible to use traditional measuring instruments; infrared thermography can be used as a valid measuring instrument for temperature measurement during metal cutting. In the study, a large experimental program on superduplex steel (ASTM A995 gr. 5A) cutting was carried out, the relevant cutting temperatures were measured by infrared thermography when certain cutting parameters changed, from traditional values to extreme ones. The values identified were used to calibrate a FEM model for the prediction of residual life of the tools. During the study, the problems related to the detection of cutting temperatures by infrared thermography were analyzed, and a dedicated procedure was developed that could be used during similar processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machining" title="machining">machining</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20thermography" title=" infrared thermography"> infrared thermography</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20measurement" title=" temperature measurement"> temperature measurement</a> </p> <a href="https://publications.waset.org/abstracts/92363/experimental-chiptool-temperature-fem-model-calibration-by-infrared-thermography-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4467</span> Cut-Out Animation as an Technic and Development inside History Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armagan%20Gokcearslan">Armagan Gokcearslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The art of animation has developed very rapidly from the aspects of script, sound and music, motion, character design, techniques being used and technological tools being developed since the first years until today. Technical variety attracts a particular attention in the art of animation. Being perceived as a kind of illusion in the beginning; animations commonly used the Flash Sketch technique. Animations artists using the Flash Sketch technique created scenes by drawing them on a blackboard with chalk. The Flash Sketch technique was used by primary animation artists like Emile Cohl, Winsor McCay ande Blackton. And then tools like Magical Lantern, Thaumatrope, Phenakisticope, and Zeotrap were developed and started to be used intensely in the first years of the art of animation. Today, on the other hand, the art of animation is affected by developments in the computer technology. It is possible to create three-dimensional and two-dimensional animations with the help of various computer software. Cut-out technique is among the important techniques being used in the art of animation. Cut-out animation technique is based on the art of paper cutting. Examining cut-out animations; it is observed that they technically resemble the art of paper cutting. The art of paper cutting has a rooted history. It is possible to see the oldest samples of paper cutting in the People’s Republic of China in the period after the 2. century B.C. when the Chinese invented paper. The most popular artist using the cut-out animation technique is the German artist Lotte Reiniger. This study titled “Cut-out Animation as a Technic and Development Inside History Process” will embrace the art of paper cutting, the relationship between the art of paper cutting and cut-out animation, its development within the historical process, animation artists producing artworks in this field, important cut-out animations, and their technical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cut-out" title="cut-out">cut-out</a>, <a href="https://publications.waset.org/abstracts/search?q=paper%20art" title=" paper art"> paper art</a>, <a href="https://publications.waset.org/abstracts/search?q=animation" title=" animation"> animation</a>, <a href="https://publications.waset.org/abstracts/search?q=technic" title=" technic"> technic</a> </p> <a href="https://publications.waset.org/abstracts/62712/cut-out-animation-as-an-technic-and-development-inside-history-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4466</span> Effect of Cutting Tools and Working Conditions on the Machinability of Ti-6Al-4V Using Vegetable Oil-Based Cutting Fluids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Gariani">S. Gariani</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Shyha"> I. Shyha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cutting titanium alloys are usually accompanied with low productivity, poor surface quality, short tool life and high machining costs. This is due to the excessive generation of heat at the cutting zone and difficulties in heat dissipation due to relatively low heat conductivity of this metal. The cooling applications in machining processes are crucial as many operations cannot be performed efficiently without cooling. Improving machinability, increasing productivity, enhancing surface integrity and part accuracy are the main advantages of cutting fluids. Conventional fluids such as mineral oil-based, synthetic and semi-synthetic are the most common cutting fluids in the machining industry. Although, these cutting fluids are beneficial in the industries, they pose a great threat to human health and ecosystem. Vegetable oils (VOs) are being investigated as a potential source of environmentally favourable lubricants, due to a combination of biodegradability, good lubricous properties, low toxicity, high flash points, low volatility, high viscosity indices and thermal stability. Fatty acids of vegetable oils are known to provide thick, strong, and durable lubricant films. These strong lubricating films give the vegetable oil base stock a greater capability to absorb pressure and high load carrying capacity. This paper details preliminary experimental results when turning Ti-6Al-4V. The impact of various VO-based cutting fluids, cutting tool materials, working conditions was investigated. The full factorial experimental design was employed involving 24 tests to evaluate the influence of process variables on average surface roughness (Ra), tool wear and chip formation. In general, Ra varied between 0.5 and 1.56 µm and Vasco1000 cutting fluid presented comparable performance with other fluids in terms of surface roughness while uncoated coarse grain WC carbide tool achieved lower flank wear at all cutting speeds. On the other hand, all tools tips were subjected to uniform flank wear during whole cutting trails. Additionally, formed chip thickness ranged between 0.1 and 0.14 mm with a noticeable decrease in chip size when higher cutting speed was used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20fluids" title="cutting fluids">cutting fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=turning" title=" turning"> turning</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-4V" title=" Ti-6Al-4V"> Ti-6Al-4V</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetable%20oils" title=" vegetable oils"> vegetable oils</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20conditions" title=" working conditions"> working conditions</a> </p> <a href="https://publications.waset.org/abstracts/41930/effect-of-cutting-tools-and-working-conditions-on-the-machinability-of-ti-6al-4v-using-vegetable-oil-based-cutting-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4465</span> Study of Behavior Tribological Cutting Tools Based on Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Achour%20L.%20Chekour">A. Achour L. Chekour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mekroud"> A. Mekroud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tribology, the science of lubrication, friction and wear, plays an important role in science "crossroads" initiated by the recent developments in the industry. Its multidisciplinary nature reinforces its scientific interest. It covers all the sciences that deal with the contact between two solids loaded and relative motion. It is thus one of the many intersections more clearly established disciplines such as solid mechanics and the fluids, rheological, thermal, materials science and chemistry. As for his experimental approach, it is based on the physical and processing signals and images. The optimization of operating conditions by cutting tool must contribute significantly to the development and productivity of advanced automation of machining techniques because their implementation requires sufficient knowledge of how the process and in particular the evolution of tool wear. In addition, technological advances have developed the use of very hard materials, refractory difficult machinability, requiring highly resistant materials tools. In this study, we present the behavior wear a machining tool during the roughing operation according to the cutting parameters. The interpretation of the experimental results is based mainly on observations and analyzes of sharp edges e tool using the latest techniques: scanning electron microscopy (SEM) and optical rugosimetry laser beam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=friction" title="friction">friction</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=tool" title=" tool"> tool</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting" title=" cutting"> cutting</a> </p> <a href="https://publications.waset.org/abstracts/31229/study-of-behavior-tribological-cutting-tools-based-on-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4464</span> Tool Wear of Aluminum/Chromium/Tungsten Based Coated Cemented Carbide Tools in Cutting Sintered Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadahiro%20Wada">Tadahiro Wada</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroyuki%20Hanyu"> Hiroyuki Hanyu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, to clarify the effectiveness of an aluminum/chromium/tungsten-based-coated tool for cutting sintered steel, tool wear was experimentally investigated. The sintered steel was turned with the (Al60,Cr25,W15)N-, (Al60,Cr25,W15)(C,N)- and (Al64,Cr28,W8)(C,N)-coated cemented carbide tools according to the physical vapor deposition (PVD) method. Moreover, the tool wear of the aluminum/chromium/tungsten-based-coated item was compared with that of the (Al,Cr)N coated tool. Furthermore, to clarify the tool wear mechanism of the aluminum/chromium/tungsten-coating film for cutting sintered steel, Scanning Electron Microscope observation and Energy Dispersive x-ray Spectroscopy mapping analysis were conducted on the abraded surface. The following results were obtained: (1) The wear progress of the (Al64,Cr28,W8)(C,N)-coated tool was the slowest among that of the five coated tools. (2) Adding carbon (C) to the aluminum/chromium/tungsten-based-coating film was effective for improving the wear-resistance. (3) The main wear mechanism of the (Al60,Cr25,W15)N-, the (Al60,Cr25,W15)(C,N)- and the (Al64,Cr28,W8)(C,N)-coating films was abrasive wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting" title="cutting">cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20vapor%20deposition%20coating%20method" title=" physical vapor deposition coating method"> physical vapor deposition coating method</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear" title=" tool wear"> tool wear</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20wear%20mechanism" title=" tool wear mechanism"> tool wear mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=%28Al" title=" (Al"> (Al</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr" title="Cr">Cr</a>, <a href="https://publications.waset.org/abstracts/search?q=W%29N-coating%20film" title="W)N-coating film">W)N-coating film</a>, <a href="https://publications.waset.org/abstracts/search?q=%28Al" title=" (Al"> (Al</a>, <a href="https://publications.waset.org/abstracts/search?q=Cr" title="Cr">Cr</a>, <a href="https://publications.waset.org/abstracts/search?q=W%29%28C" title="W)(C">W)(C</a>, <a href="https://publications.waset.org/abstracts/search?q=N%29-coating%20film" title="N)-coating film">N)-coating film</a>, <a href="https://publications.waset.org/abstracts/search?q=sintered%20steel" title=" sintered steel"> sintered steel</a> </p> <a href="https://publications.waset.org/abstracts/30858/tool-wear-of-aluminumchromiumtungsten-based-coated-cemented-carbide-tools-in-cutting-sintered-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4463</span> Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20T.%20Hayajneh">Mohammed T. Hayajneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al<sub>2</sub>O<sub>3</sub> particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20life" title=" tool life"> tool life</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/42835/prediction-of-cutting-tool-life-in-drilling-of-reinforced-aluminum-alloy-composite-using-a-fuzzy-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4462</span> A Method to Determine Cutting Force Coefficients in Turning Using Mechanistic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20C.%20Bera">T. C. Bera</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bansal"> A. Bansal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nema"> D. Nema</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During performing turning operation, cutting force plays a significant role in metal cutting process affecting tool-work piece deflection, vibration and eventually part quality. The present research work aims to develop a mechanistic cutting force model and to study the mechanistic constants used in the force model in case of turning operation. The proposed model can be used for the reliable and accurate estimation of the cutting forces establishing relationship of various force components (cutting force and feed force) with uncut chip thickness. The accurate estimation of cutting force is required to improve thin-walled part accuracy by controlling the tool-work piece deflection induced surface errors and tool-work piece vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turning" title="turning">turning</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20forces" title=" cutting forces"> cutting forces</a>, <a href="https://publications.waset.org/abstracts/search?q=cutting%20constants" title=" cutting constants"> cutting constants</a>, <a href="https://publications.waset.org/abstracts/search?q=uncut%20chip%20thickness" title=" uncut chip thickness"> uncut chip thickness</a> </p> <a href="https://publications.waset.org/abstracts/30832/a-method-to-determine-cutting-force-coefficients-in-turning-using-mechanistic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=149">149</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=150">150</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cutting%20tools&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10