CINXE.COM

Search results for: lectin

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lectin</title> <meta name="description" content="Search results for: lectin"> <meta name="keywords" content="lectin"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lectin" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lectin"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lectin</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Physicochemical Properties and Toxicity Studies on a Lectin from the Bulb of Dioscorea bulbifera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uchenna%20Nkiruka%20Umeononihu">Uchenna Nkiruka Umeononihu</a>, <a href="https://publications.waset.org/abstracts/search?q=Adenike%20Kuku"> Adenike Kuku</a>, <a href="https://publications.waset.org/abstracts/search?q=Oludele%20Odekanyin"> Oludele Odekanyin</a>, <a href="https://publications.waset.org/abstracts/search?q=Olubunmi%20Babalola"> Olubunmi Babalola</a>, <a href="https://publications.waset.org/abstracts/search?q=Femi%20Agboola"> Femi Agboola</a>, <a href="https://publications.waset.org/abstracts/search?q=Rapheal%20Okonji"> Rapheal Okonji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a lectin from the bulb of Dioscorea bulbifera was purified, characterised, and its acute and sub-acute toxicity was investigated with a view to evaluate its toxic effects in mice. The protein from the bulb was extracted by homogenising 50 g of the bulb in 500 ml of phosphate buffered saline (0.025 M) of pH 7.2, stirred for 3 hr, and centrifuged at the speed of 3000 rpm. Blood group and sugar specificity assays of the crude extract were determined. The lectin was purified in a two-step procedure- gel filtration on Sephadex G-75 and affinity chromatography on Sepharose 4-B arabinose. The degree of purity of the purified lectin was ascertained by SDS-polyacrylamide gel electrophoresis. Detection of covalently bound carbohydrate was carried out with Periodic Acid-Schiffs (PAS) reagent staining technique. Effects of temperature, pH, and EDTA on the lectin were carried out using standard methods. This was followed by acute toxicity studies via oral and subcutaneous routes using mice. The animals were monitored for mortality and signs of toxicity. The sub-acute toxicity studies were carried out using rats. Different concentrations of the lectin were administered twice daily for 5 days via the subcutaneous route. The animals were sacrificed on the sixth day; blood samples and liver tissues were collected. Biochemical assays (determination of total protein, direct bilirubin, Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), catalase (CAT), and superoxide dismutase (SOD)) were carried out on the serum and liver homogenates. The collected organs (heart, liver, kidney, and spleen) were subjected to histopathological analysis. The results showed that lectin from the bulbs of Dioscorea bulbifera agglutinated non-specifically the erythrocytes of the human ABO system as well as rabbit erythrocytes. The haemagglutinating activity was strongly inhibited by arabinose and dulcitol with minimum inhibitory concentrations of 0.781 and 6.25, respectively. The lectin was purified to homogeneity with native and subunit molecular weights of 56,273 and 29,373 Daltons, respectively. The lectin was thermostable up to 30 0C and lost 25 %, 33.3 %, and 100 % of its heamagglutinating activity at 40°C, 50°C, and 60°C, respectively. The lectin was maximally active at pH 4 and 5 but lost its total activity at pH eight, while EDTA (10 mM) had no effect on its haemagglutinating activity. PAS reagent staining showed that the lectin was not a glycoprotein. The sub-acute studies on rats showed elevated levels of ALT, AST, serum bilirubin, total protein in serum and liver homogenates suggesting damage to liver and spleen. The study concluded that the aerial bulb of D. bulbifera lectin was non-specific in its heamagglutinating activity and dimeric in its structure. The lectin shared some physicochemical characteristics with lectins from other Dioscorecea species and was moderately toxic to the liver and spleen of treated animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dioscorea%20bulbifera" title="Dioscorea bulbifera">Dioscorea bulbifera</a>, <a href="https://publications.waset.org/abstracts/search?q=heamagglutinin" title=" heamagglutinin"> heamagglutinin</a>, <a href="https://publications.waset.org/abstracts/search?q=lectin" title=" lectin"> lectin</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/130539/physicochemical-properties-and-toxicity-studies-on-a-lectin-from-the-bulb-of-dioscorea-bulbifera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Antimutagenic Activity of a Protein, Lectin Fraction from Urtica Dioica L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nijole%20Savickiene">Nijole Savickiene</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonella%20Di%20Sotto"> Antonella Di Sotto</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriela%20Mazzanti"> Gabriela Mazzanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasa%20Starselskyte"> Rasa Starselskyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Di%20Giacomo"> Silvia Di Giacomo</a>, <a href="https://publications.waset.org/abstracts/search?q=Annabella%20Vitalone"> Annabella Vitalone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant lectins are non-enzymic and non-immune origin proteins that specifically recognize and bind to various sugar structures and possess the activity to agglutinate cells and/or precipitate polysaccharides and glycoconjugates. The emerging evidences showed that plant lectins contribute not only to tumour cell recognition but also to cell adhesion and localization, to signal transduction, to mitogenic cytotoxicity and apoptosis. Among chitin-binding lectins, the Urtica dioica agglutinin (UDA), which is a complex of different isoforms, has been poorly studied for its biological activity. In this context and according to the increasing interest for lectins as novel antitumor drugs, present paper aimed at evaluating the potential antimutagenic activity of a lectin-like glycoprotein-enriched fraction from aerial part of Urtica dioica L. Aim: to evaluate the potential chemopreventive properties of a protein - lectin fraction from the aerial part of Urtica dioica. Materials and methods: Protein – lectin fraction has been tested for the antimutagenic activity in bacteria (50–800 mg/plate; Ames test by the preincubation method) and for the cytotoxicity on human hepatoma HepG2 cells (0.06–2 mg/mL; 24 and 48 h incubation). Results: Protein – lectin fraction from stinging nettle was not cytotoxic on HepG2 cells up to 2 mg/mL; conversely, it exhibited a strong antimutagenic activity against the mutagen 2-aminoanthracene (2AA) in all strains tested (maximum inhibition of 56.78 and 61% in TA98, TA100, and WP2uvrA strains, respectively, at 800 mg/plate). Discussion and conclusions: Protein – lectin fraction from Urtica dioica L. possesses antimutagenic and radical scavenging properties. Being 2AA a pro-carcinogenic agent, we hypothesize that the antimutagenicity of it can be due to the inhibition of CYP450-isoenzymes, involved in the mutagen bioactivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lectins" title="lectins">lectins</a>, <a href="https://publications.waset.org/abstracts/search?q=antimutagenicity" title=" antimutagenicity"> antimutagenicity</a>, <a href="https://publications.waset.org/abstracts/search?q=chemoprevention" title=" chemoprevention"> chemoprevention</a>, <a href="https://publications.waset.org/abstracts/search?q=Urtica%20dioica" title=" Urtica dioica "> Urtica dioica </a> </p> <a href="https://publications.waset.org/abstracts/27253/antimutagenic-activity-of-a-protein-lectin-fraction-from-urtica-dioica-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Development of Lectin-Based Biosensor for Glycoprofiling of Clinical Samples: Focus on Prostate Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Pihikova">Dominika Pihikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Belicky"> Stefan Belicky</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Bertok"> Tomas Bertok</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Sokol"> Roman Sokol</a>, <a href="https://publications.waset.org/abstracts/search?q=Petra%20Kubanikova"> Petra Kubanikova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Tkac"> Jan Tkac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since aberrant glycosylation is frequently accompanied by both physiological and pathological processes in a human body (cancer, AIDS, inflammatory diseases, etc.), the analysis of tumor-associated glycan patterns have a great potential for the development of novel diagnostic approaches. Moreover, altered glycoforms may assist as a suitable tool for the specificity and sensitivity enhancement in early-stage prostate cancer diagnosis. In this paper we discuss the construction and optimization of ultrasensitive sandwich biosensor platform employing lectin as glycan-binding protein. We focus on the immunoassay development, reduction of non-specific interactions and final glycoprofiling of human serum samples including both prostate cancer (PCa) patients and healthy controls. The fabricated biosensor was measured by label-free electrochemical impedance spectroscopy (EIS) with further lectin microarray verification. Furthermore, we analyzed different biosensor interfaces with atomic force microscopy (AFM) in nanomechanical mapping mode showing a significant differences in the altitude. These preliminary results revealing an elevated content of α-2,3 linked sialic acid in PCa patients comparing with healthy controls. All these experiments are important step towards development of point-of-care devices and discovery of novel glyco-biomarkers applicable in cancer diagnosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=glycan" title=" glycan"> glycan</a>, <a href="https://publications.waset.org/abstracts/search?q=lectin" title=" lectin"> lectin</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a> </p> <a href="https://publications.waset.org/abstracts/33642/development-of-lectin-based-biosensor-for-glycoprofiling-of-clinical-samples-focus-on-prostate-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Glyco-Biosensing as a Novel Tool for Prostate Cancer Early-Stage Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Damborsky">Pavel Damborsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Zamorova"> Martina Zamorova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Katrlik"> Jaroslav Katrlik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prostate cancer is annually the most common newly diagnosed cancer among men. An extensive number of evidence suggests that traditional serum Prostate-specific antigen (PSA) assay still suffers from a lack of sufficient specificity and sensitivity resulting in vast over-diagnosis and overtreatment. Thus, the early-stage detection of prostate cancer (PCa) plays undisputedly a critical role for successful treatment and improved quality of life. Over the last decade, particular altered glycans have been described that are associated with a range of chronic diseases, including cancer and inflammation. These glycans differences enable a distinction to be made between physiological and pathological state and suggest a valuable biosensing tool for diagnosis and follow-up purposes. Aberrant glycosylation is one of the major characteristics of disease progression. Consequently, the aim of this study was to develop a more reliable tool for early-stage PCa diagnosis employing lectins as glyco-recognition elements. Biosensor and biochip technology putting to use lectin-based glyco-profiling is one of the most promising strategies aimed at providing fast and efficient analysis of glycoproteins. The proof-of-concept experiments based on sandwich assay employing anti-PSA antibody and an aptamer as a capture molecules followed by lectin glycoprofiling were performed. We present a lectin-based biosensing assay for glycoprofiling of serum biomarker PSA using different biosensor and biochip platforms such as label-free surface plasmon resonance (SPR) and microarray with fluorescent label. The results suggest significant differences in interaction of particular lectins with PSA. The antibody-based assay is frequently associated with the sensitivity, reproducibility, and cross-reactivity issues. Aptamers provide remarkable advantages over antibodies due to the nucleic acid origin, stability and no glycosylation. All these data are further step for construction of highly selective, sensitive and reliable sensors for early-stage diagnosis. The experimental set-up also holds promise for the development of comparable assays with other glycosylated disease biomarkers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarker" title="biomarker">biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosylation" title=" glycosylation"> glycosylation</a>, <a href="https://publications.waset.org/abstracts/search?q=lectin" title=" lectin"> lectin</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a> </p> <a href="https://publications.waset.org/abstracts/33641/glyco-biosensing-as-a-novel-tool-for-prostate-cancer-early-stage-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Molecular Characterization and Identification of C-Type Lectin in Red Palm Weevil, Rhynchophorus ferrugineus Oliver</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafiza%20Javaria%20Ashraf">Hafiza Javaria Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinghong%20Wang"> Xinghong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhanghong%20Shi"> Zhanghong Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Youming%20Hou"> Youming Hou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insect’s innate immunity depends on a variety of defense responses for the recognition of invading pathogens. Pathogen recognition involves particular proteins known as pattern recognition receptors (PRRs). These PRRs interact with pathogen-associated molecular patterns (PAMPs) present on the surface of pathogens to distinguish between self and non-self. C-type lectins (CTLs) belong to a superfamily of PPRs which involved in insect immunity and defense mechanism. Rhynchophorus ferrugineus Olivier is a devastating pest of Palm cultivations in China. Although studies on R. ferrugineus immune mechanism and host defense have conducted, however, the role of CTL in immune responses of R. ferrugineus remains elusive. Here, we report RfCTL, which is a secreted protein containing a single-CRD domain. The open reading frame (ORF) of CTL is 226 bp, which encodes a putative protein of 168 amino acids. Transcript expression analysis revealed that RfCTL highly expressed in immune-related tissues, i.e., hemolymph and fat body. The abundance of RfCTL in the gut and fat body dramatically increased upon Staphylococcus aureus and Escherichia coli bacterial challenges, suggesting a role in defense against gram-positive and gram-negative bacterial infection. Taken together, we inferred that RfCTL might be involved in the immune defense of R. ferrugineus and established a solid foundation for future studies on R. ferrugineus CTL domain proteins for better understanding of insect immunity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20invasion" title="biological invasion">biological invasion</a>, <a href="https://publications.waset.org/abstracts/search?q=c-type%20lectin" title=" c-type lectin"> c-type lectin</a>, <a href="https://publications.waset.org/abstracts/search?q=insect%20immunity" title=" insect immunity"> insect immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhynchophorus%20ferrugineus%20Oliver" title=" Rhynchophorus ferrugineus Oliver"> Rhynchophorus ferrugineus Oliver</a> </p> <a href="https://publications.waset.org/abstracts/118350/molecular-characterization-and-identification-of-c-type-lectin-in-red-palm-weevil-rhynchophorus-ferrugineus-oliver" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> A Viable Approach for Biological Detoxification of Non Edible Oil Seed Cakes and Their Utilization in Food Production Using Aspergillus Niger</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshitij%20Bhardwaj">Kshitij Bhardwaj</a>, <a href="https://publications.waset.org/abstracts/search?q=R.K.%20Trivedi"> R.K. Trivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shipra%20Dixit"> Shipra Dixit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We used biological detoxification method that converts toxic residue waste of Jatropha curcas oil seeds (non edible oil seed) into industrial bio-products and animal feed material. Present study describes the complete degradation of phorbol esters by Aspergillus Niger strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in 15 days under the optimized SSF conditions viz deoiled cake 5.0 gm moistened with 5.0 ml distilled water; inoculum 2 ml of overnight grown Aspergillus niger; incubated at 30◦ C, pH 7.0. This method simultaneously induces the production of Protease enzyme by Aspergillus Niger which has high potential to be used in feedstuffs .The maximum Protease activities obtained were 709.16 mg/ml in Jatropha curcas oil seed cake. The protein isolate had small amounts of phorbol esters, phytic acid, and saponin without any lectin. Its minimum and maximum solubility were at pH 4.0&12.0. Water and oil binding capacities were 3.22 g water/g protein and 1.86 ml oil/g protein respectively.Emulsion activity showed high values in a range of basic pH. We concluded that Jatropha Curcas seed cake has a potential to be used as a novel source of functional protein for food or feed applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20fermentation" title="solid state fermentation">solid state fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Jatropha%20curcas" title=" Jatropha curcas"> Jatropha curcas</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20seed%20cake" title=" oil seed cake"> oil seed cake</a>, <a href="https://publications.waset.org/abstracts/search?q=phorbol%20ester" title=" phorbol ester"> phorbol ester</a> </p> <a href="https://publications.waset.org/abstracts/14869/a-viable-approach-for-biological-detoxification-of-non-edible-oil-seed-cakes-and-their-utilization-in-food-production-using-aspergillus-niger" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Glyco-Conjugated Gold Nanorods Based Biosensor for Optical Detection and Photothermal Ablation of Food Borne Bacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shimayali%20Kaushal">Shimayali Kaushal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitesh%20Priyadarshi"> Nitesh Priyadarshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Kumar%20Singhal"> Nitin Kumar Singhal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food borne bacterial species have been identified as major pathogens in most of the severe pathogen-related diseases among humans which result in great loss to human health and food industry. Conventional methods like plating and enzyme-linked immune sorbent assay (ELISA) are time-consuming, laborious and require specialized instruments. Nanotechnology has emerged as a great field in case of rapid detection of pathogens in recent years. The AuNRs material has good electro-optical properties due to its larger light absorption band and scattering in surface plasmon resonance wavelength regions. By exploiting the sugar-based adhesion properties of microorganism, we can use the glycoconjugates capped gold nanorods as a potential nanobiosensor to detect the foodborne pathogen. In the present study, polyethylene glycol (PEG) coated gold nanorods (AuNRs) were prepared and functionalized with different types of carbohydrates and further characterized by UV-Visible spectrophotometry, dynamic light scattering (DLS), transmission electron microscopy (TEM). The reactivity of above said nano-biosensor was probed by lectin binding assay and also by different strains of foodborne bacteria by using spectrophotometric and microscopic techniques. Due to the specific interaction of probe with foodborne bacteria (Escherichia coli, Pseudomonas aeruginosa), our nanoprobe has shown significant and selective ablation of targeted bacteria. Our findings suggest that our nanoprobe can be an ideal candidate for selective optical detection of food pathogens and can reduce loss to the food industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glyco-conjugates" title="glyco-conjugates">glyco-conjugates</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanorods" title=" gold nanorods"> gold nanorods</a>, <a href="https://publications.waset.org/abstracts/search?q=nanobiosensor" title=" nanobiosensor"> nanobiosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoprobe" title=" nanoprobe"> nanoprobe</a> </p> <a href="https://publications.waset.org/abstracts/102816/glyco-conjugated-gold-nanorods-based-biosensor-for-optical-detection-and-photothermal-ablation-of-food-borne-bacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> The Role of Immunologic Diamonds in Dealing with Mycobacterium Tuberculosis; Responses of Immune Cells in Affliction to the Respiratory Tuberculosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Mohammad%20Amin%20Mousavi%20Sagharchi">Seyyed Mohammad Amin Mousavi Sagharchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Javanroudi"> Elham Javanroudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Tuberculosis (TB) is a known disease with hidden features caused by Mycobacterium tuberculosis (MTB). This disease, which is one of the 10 deadliest in the world, has caused millions of deaths in recent decades. Furthermore, TB is responsible for infecting about 30% population of world. Like any infection, TB can activate the immune system by locating and colonization in the human body, especially in the alveoli. TB is granulomatosis, so MTB can absorb the host’s immune cells and other cells to form granuloma. Method: Different databases (e.g., PubMed) were recruited to prepare this paper and fulfill our goals to search and find effective papers and investigations. Results: Immune response to MTB is related to T cell killers and contains CD1, CD4, and CD8 T lymphocytes. CD1 lymphocytes can recognize glycolipids, which highly exist in the Mycobacterial fatty cell wall. CD4 lymphocytes and macrophages form granuloma, and it is the main line of immune response to Mycobacteria. On the other hand, CD8 cells have cytolytic function for directly killing MTB by secretion of granulysin. Other functions and secretion to the deal are interleukin-12 (IL-12) by induction of expression interferon-γ (INF-γ) for macrophages activation and creating a granuloma, and tumor necrosis factor (TNF) by promoting macrophage phagolysosomal fusion. Conclusion: Immune cells in battle with MTB are macrophages, dendritic cells (DCs), neutrophils, and natural killer (NK) cells. These immune cells can recognize the Mycobacterium by various receptors, including Toll-like receptors (TLRs), Nod-like receptors (NLRs), and C-type lectin receptors (CLRs) located in the cell surface. In human alveoli exist about 50 dendritic macrophages, which have close communication with other immune cells in the circulating system and epithelial cells to deal with Mycobacteria. Against immune cells, MTB handles some factors (e.g., cordfactor, O-Ag, lipoarabinomannan, sulfatides, and adenylate cyclase) and practical functions (e.g., inhibition of macrophages). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mycobacterium%20tuberculosis" title="mycobacterium tuberculosis">mycobacterium tuberculosis</a>, <a href="https://publications.waset.org/abstracts/search?q=immune%20responses" title=" immune responses"> immune responses</a>, <a href="https://publications.waset.org/abstracts/search?q=immunological%20mechanisms" title=" immunological mechanisms"> immunological mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20tuberculosis" title=" respiratory tuberculosis"> respiratory tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/165031/the-role-of-immunologic-diamonds-in-dealing-with-mycobacterium-tuberculosis-responses-of-immune-cells-in-affliction-to-the-respiratory-tuberculosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Triplex Detection of Pistacia vera, Arachis hypogaea and Pisum sativum in Processed Food Products Using Probe Based PCR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erg%C3%BCn%20%C5%9Eakalar">Ergün Şakalar</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eeyma%20%C3%96z%C3%A7irak%20Erg%C3%BCn"> Şeyma Özçirak Ergün</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Yalazi%CC%87"> Emrah Yalazi̇</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Altinkaya"> Emine Altinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Cengiz%20Ata%C5%9Fo%C4%9Flu"> Cengiz Ataşoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, food allergies which cause serious health problems affect to public health around the world. Foodstuffs which contain allergens are either intentionally used as ingredients or are encased as contaminant in food products. The prevalence of clinical allergy to peanuts and nuts is estimated at about 0.4%-1.1% of the adult population, representing the allergy to pistachio the 7% of the cases of tree nut causing allergic reactions. In order to protect public health and enforce the legislation, methods for sensitive analysis of pistachio and peanut contents in food are required. Pea, pistachio and peanut are used together, to reduce the cost in food production such as baklava, snack foods.DNA technology-based methods in food analysis are well-established and well-roundedtools for species differentiation, allergen detection. Especially, the probe-based TaqMan real-time PCR assay can amplify target DNA with efficiency, specificity, and sensitivity.In this study, pistachio, peanut and pea were finely ground and three separate series of triplet mixtures containing 0.1, 1, 10, 100, 1000, 10,000 and 100,000 mg kg-1 of each sample were prepared for each series, to a final weight of 100 g. DNA from reference samples and industrial products was successfully extracted with the GIDAGEN® Multi-Fast DNA Isolation Kit. TaqMan probes were designed for triplex determination of ITS, Ara h 3 and pea lectin genes which are specific regions for identification pistachio, peanut and pea, respectively.The real-time PCR as quantitative detected pistachio, peanut and pea in these mixtures down to the lowest investigated level of 0.1, 0.1 and 1 mg kg-1, respectively. Also, the methods reported here are capable of detecting of as little as 0.001% level of peanut DNA, 0,000001% level of pistachio DNA and 0.000001% level of pea DNA. We accomplish that the quantitative triplex real-time PCR method developed in this study canbe applied to detect pistachio, peanut and peatraces for three allergens at once in commercial food products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allergens" title="allergens">allergens</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA" title=" DNA"> DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20PCR" title=" real-time PCR"> real-time PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=TaqMan%20probe" title=" TaqMan probe"> TaqMan probe</a> </p> <a href="https://publications.waset.org/abstracts/53016/triplex-detection-of-pistacia-vera-arachis-hypogaea-and-pisum-sativum-in-processed-food-products-using-probe-based-pcr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Strategies of Drug Discovery in Insects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaaeddeen%20M.%20Seufi">Alaaeddeen M. Seufi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many have been published on therapeutic derivatives from living organisms including insects. In addition to traditional maggot therapy, more than 900 therapeutic products were isolated from insects. Most people look at insects as enemies and others believe that insects are friends. Many beneficial insects rather than Honey Bees, Silk Worms and Shellac insect could insure human-insect friendship. In addition, insects could be MicroFactories, Biosensors or Bioreactors. InsectFarm is an amazing example of the applied research that transfers insects from laboratory to market by Prof Mircea Ciuhrii and co-workers. They worked for 18 years to derive therapeutics from insects. Their research resulted in production of more than 30 commercial medications derived from insects (e.g. Imunomax, Noblesse, etc.). Two general approaches were followed to discover drugs from living organisms. Some laboratories preferred biochemical approach to purify components of the innate immune system of insects and insect metabolites as well. Then the purified components could be tested for many therapeutic trials. Other researchers preferred molecular approach based on proteomic studies. Components of the innate immune system of insects were then tested for their medical activities. Our Laboratory team preferred to induce insect immune system (using oral, topical and injection routes of administration), then a transcriptomic study was done to discover the induced genes and to identify specific biomarkers that can help in drug discovery. Biomarkers play an important role in medicine and in drug discovery and development as well. Optimum biomarker development and application will require a team approach because of the multifaceted nature of biomarker selection, validation, and application. This team uses several techniques such as pharmacoepidemiology, pharmacogenomics, and functional proteomics; bioanalytical development and validation; modeling and simulation to improve and refine drug development. Our Achievements included the discovery of four components of the innate immune system of Spodoptera littoralis and Musca domestica. These components were designated as SpliDef (defesin), SpliLec (lectin), SpliCec (cecropin) and MdAtt (attacin). SpliDef, SpliLec and MdAtt were confirmed as antimicrobial peptides, while SpliCec was additionally confirmed as anticancer peptide. Our current research is going on to achieve something in antioxidants and anticoagulants from insects. Our perspective is to achieve something in the mass production of prototypes of our products and to reach it to the commercial level. These achievements are the integrated contributions of everybody in our team staff. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMPs" title="AMPs">AMPs</a>, <a href="https://publications.waset.org/abstracts/search?q=insect" title=" insect"> insect</a>, <a href="https://publications.waset.org/abstracts/search?q=innate%20immunitty" title=" innate immunitty"> innate immunitty</a>, <a href="https://publications.waset.org/abstracts/search?q=therappeutics" title=" therappeutics"> therappeutics</a> </p> <a href="https://publications.waset.org/abstracts/38537/strategies-of-drug-discovery-in-insects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10