CINXE.COM
Search results for: side weirs
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: side weirs</title> <meta name="description" content="Search results for: side weirs"> <meta name="keywords" content="side weirs"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="side weirs" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="side weirs"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2082</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: side weirs</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2082</span> Predicting Trapezoidal Weir Discharge Coefficient Using Evolutionary Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Roushanger">K. Roushanger</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Soleymanzadeh"> A. Soleymanzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Weirs are structures often used in irrigation techniques, sewer networks and flood protection. However, the hydraulic behavior of this type of weir is complex and difficult to predict accurately. An accurate flow prediction over a weir mainly depends on the proper estimation of discharge coefficient. In this study, the Genetic Expression Programming (GEP) approach was used for predicting trapezoidal and rectangular sharp-crested side weirs discharge coefficient. Three different performance indexes are used as comparing criteria for the evaluation of the model’s performances. The obtained results approved capability of GEP in prediction of trapezoidal and rectangular side weirs discharge coefficient. The results also revealed the influence of downstream Froude number for trapezoidal weir and upstream Froude number for rectangular weir in prediction of the discharge coefficient for both of side weirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discharge%20coefficient" title="discharge coefficient">discharge coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20expression%20programming" title=" genetic expression programming"> genetic expression programming</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20weir" title=" trapezoidal weir"> trapezoidal weir</a> </p> <a href="https://publications.waset.org/abstracts/61052/predicting-trapezoidal-weir-discharge-coefficient-using-evolutionary-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2081</span> General Formula for Water Surface Profile over Side Weir in the Combined, Trapezoidal and Exponential, Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Abdulrahman">Abdulrahman Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A side weir is a hydraulic structure set into the side of a channel. This structure is used for water level control in channels, to divert flow from a main channel into a side channel when the water level in the main channel exceeds a specific limit and as storm overflows from urban sewerage system. Computation of water surface over the side weirs is essential to determine the flow rate of the side weir. Analytical solutions for water surface profile along rectangular side weir are available only for the special cases of rectangular and trapezoidal channels considering constant specific energy. In this paper, a rectangular side weir located in a combined (trapezoidal with exponential) channel was considered. Expanding binominal series of integer and fraction powers and the using of reduction formula of cosine function integrals, a general analytical formula was obtained for water surface profile along a side weir in a combined (trapezoidal with exponential) channel. Since triangular, rectangular, trapezoidal and parabolic cross-sections are special cases of the combined cross section, the derived formula, is applicable to triangular, rectangular, trapezoidal cross-sections as analytical solution and semi-analytical solution to parabolic cross-section with maximum relative error smaller than 0.76%. The proposed solution should be a useful engineering tool for the evaluation and design of side weirs in open channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title="analytical solution">analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20channel" title=" combined channel"> combined channel</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20channel" title=" exponential channel"> exponential channel</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20weirs" title=" side weirs"> side weirs</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20channel" title=" trapezoidal channel"> trapezoidal channel</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20surface%20profile" title=" water surface profile"> water surface profile</a> </p> <a href="https://publications.waset.org/abstracts/59960/general-formula-for-water-surface-profile-over-side-weir-in-the-combined-trapezoidal-and-exponential-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2080</span> The Effect of the Side-Weir Crest Height to Scour in Clay-Sand Mixed Sediments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Saracoglu%20Varol">F. A. Saracoglu Varol</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Agacc%C4%B1oglu"> H. Agaccıoglu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental studies to investigate the depth of the scour conducted at a side-weir intersection located at the 1800 curved flume which located Hydraulic Laboratory of Yıldız Technical University, Istanbul, Turkey. Side weirs were located at the middle of the straight part of the main channel. Three different lengths (25, 40 and 50 cm) and three different weir crest height (7, 10 and 12 cm) of the side weir placed on the side weir station. There is no scour when the material is only kaolin. Therefore, the cohesive bed was prepared by properly mixing clay material (kaolin) with 31% sand in all experiments. Following 24h consolidation time, in order to observe the effect of flow intensity on the scour depth, experiments were carried out for five different upstream Froude numbers in the range of 0.33-0.81. As a result of this study the relation between scour depth and upstream flow intensity as a function of time have been established. The longitudinal velocities decreased along the side weir; towards the downstream due to overflow over the side-weirs. At the beginning, the scour depth increases rapidly with time and then asymptotically approached constant values in all experiments for all side weir dimensions as in non-cohesive sediment. Thus, the scour depth reached equilibrium conditions. Time to equilibrium depends on the approach flow intensity and the dimensions of side weirs. For different heights of the weir crest, dimensionless scour depths increased with increasing upstream Froude number. Equilibrium scour depths which formed 7 cm side-weir crest height were obtained higher than that of the 12 cm side-weir crest height. This means when side-weir crest height increased equilibrium scour depths decreased. Although the upstream side of the scour hole is almost vertical, the downstream side of the hole is inclined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay-sand%20mixed%20sediments" title="clay-sand mixed sediments">clay-sand mixed sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=scour" title=" scour"> scour</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20weir" title=" side weir"> side weir</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20structures" title=" hydraulic structures"> hydraulic structures</a> </p> <a href="https://publications.waset.org/abstracts/27481/the-effect-of-the-side-weir-crest-height-to-scour-in-clay-sand-mixed-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2079</span> Investigation of Flow Characteristics of Trapezoidal Side Weir in Rectangular Channel for Subcritical Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malkhan%20Thakur">Malkhan Thakur</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Deepak%20Kumar"> P. Deepak Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20S.%20Dikshit"> P. K. S. Dikshit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the hydraulic behavior of side weirs has been the subject of many investigations. Most of the studies have been in connection with specific problems and have involved models. This is perhaps understandable, since a generalized treatment is made difficult by the large number of possible variables to be used to define the problem. A variety of empirical head discharge relationships have been suggested for side weirs. These empirical approaches failed to adequately consider the actual situation, and produced equations applicable only in circumstances virtually identical to those of the experiment. The present investigation is targeted to study to a greater depth the effect of different trapezium angles of a trapezoidal side weir and study of water surface profile in spatially varied flow with decreasing discharge maintaining the main channel flow subcritical. On the basis of experiment, the relationship between upstream Froude number and coefficient of discharge has been established. All the characteristics of spatially varied flow with decreasing discharge have been studied and subsequently formulated. The scope of the present investigation has been basically limited to a one-dimensional model of flow for the purpose of analysis. A formulation has been derived using the theoretical concept of constant specific energy. Coefficient of discharge has been calculated and experimental results were presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weirs" title="weirs">weirs</a>, <a href="https://publications.waset.org/abstracts/search?q=subcritical%20flow" title=" subcritical flow"> subcritical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20channel" title=" rectangular channel"> rectangular channel</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20side%20weir" title=" trapezoidal side weir"> trapezoidal side weir</a> </p> <a href="https://publications.waset.org/abstracts/47362/investigation-of-flow-characteristics-of-trapezoidal-side-weir-in-rectangular-channel-for-subcritical-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2078</span> Investigating the Effect of the Shape of the Side Supports of the Gates of the Gotvand Reservoir Dam (from the Peak Overflows) on the Narrowing Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abbasi">M. Abbasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A spillway structure is used to pass excess water and floods from upstream or upstream to downstream or tributary. The spillway is considered one of the most key members of the dam, and the failure of many dams is attributed to the inefficiency of their spillway. Weirs should be selected as strong, reliable and high-performance structures, and weirs should be ready for use in all conditions and able to drain the flood so that we do not witness many casualties and financial losses when a flood occurs. The purpose of this study is to simulate the flow pattern passing over the peak spillway in order to optimize and adjust the height of the spillway walls. In this research, the effect of the shape of the side wings on the flow pattern over the peak spillways of the Gotvand reservoir dam was simulated and modelled using Flow3D software. In this research, side wings with rounded walls with six different approach angles were used. In addition, the different value of H/Hd was used to check the effect of the tank head. The results showed that with the constant H/Hd ratio and the increase of the approach angle of the side wing, the flow depth first decreases and then increases. These changes were the opposite regarding the depth average speed of the flow and the depth average concentration of the air entering the flow. At the same time, with the constant angle of approach of the side wing and with the increase of H/Hd ratio, the flow depth increases. In general, a correct understanding of the operation of overflows and a correct design can significantly reduce construction costs and solve flooding problems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20the%20shape" title="effect of the shape">effect of the shape</a>, <a href="https://publications.waset.org/abstracts/search?q=gotvand%20reservoir%20dam" title=" gotvand reservoir dam"> gotvand reservoir dam</a>, <a href="https://publications.waset.org/abstracts/search?q=narrowing%20coefficients" title=" narrowing coefficients"> narrowing coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=supports%20of%20the%20gates" title=" supports of the gates"> supports of the gates</a> </p> <a href="https://publications.waset.org/abstracts/175713/investigating-the-effect-of-the-shape-of-the-side-supports-of-the-gates-of-the-gotvand-reservoir-dam-from-the-peak-overflows-on-the-narrowing-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2077</span> River Analysis System Model for Proposed Weirs at Downstream of Large Dam, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Chuenchooklin">S. Chuenchooklin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was conducted in the Lower Ping River Basin downstream of the Bhumibol Dam and the Lower Wang River Basin in Tak Province, Thailand. Most of the tributary streams of the Ping can be considered as ungauged catchments. There are 10- pumping station installation at both river banks of the Ping in Tak Province. Recently, most of them could not fully operate due to the water amount in the river below the level that would be pumping, even though included water from the natural river and released flow from the Bhumibol Dam. The aim of this research was to increase the performance of those pumping stations using weir projects in the Ping. Therefore, the river analysis system model (HEC-RAS) was applied to study the hydraulic behavior of water surface profiles in the Ping River with both cases of existing conditions and proposed weirs during the violent flood in 2011 and severe drought in 2013. Moreover, the hydrologic modeling system (HMS) was applied to simulate lateral streamflow hydrograph from ungauged catchments of the Ping. The results of HEC-RAS model calibration with existing conditions in 2011 showed best trial roughness coefficient for the main channel of 0.026. The simulated water surface levels fitted to observation data with R2 of 0.8175. The model was applied to 3 proposed cascade weirs with 2.35 m in height and found surcharge water level only 0.27 m higher than the existing condition in 2011. Moreover, those weirs could maintain river water levels and increase of those pumping performances during less river flow in 2013. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title="HEC-RAS">HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=HMS" title=" HMS"> HMS</a>, <a href="https://publications.waset.org/abstracts/search?q=pumping%20stations" title=" pumping stations"> pumping stations</a>, <a href="https://publications.waset.org/abstracts/search?q=cascade%20weirs" title=" cascade weirs "> cascade weirs </a> </p> <a href="https://publications.waset.org/abstracts/12884/river-analysis-system-model-for-proposed-weirs-at-downstream-of-large-dam-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">390</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2076</span> Performance Evaluation of a Piano Key Weir</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Shaheer%20Ali">M. Shaheer Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Talib%20Mansoor"> Talib Mansoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Piano Key Weir (PKW) is a particular shape of labyrinth weir, using up- and/or downstream overhangs. The horizontal rectangular labyrinth shape allows to multiply the crest length for a given weir width. With the increasing demand of power, it is becoming greatly essential to increase the storage capacity of existing dams without neglecting their safety. The present aims at comparing the performance of piano key weirs in respect to the normal sharp-crested weirs. The discharge v/s head data for the piano key weir and normal sharp-crested weir obtained from the experimental study were compared and analysed using regression analysis. Piano key weir was found to perform doubly w.r.t a normal weir. The flow profiles show the parabolic nature of flow and the nappe interference in the inlet keys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crest%20length" title="crest length">crest length</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20profile" title=" flow profile"> flow profile</a>, <a href="https://publications.waset.org/abstracts/search?q=labyrinth%20weir" title=" labyrinth weir"> labyrinth weir</a>, <a href="https://publications.waset.org/abstracts/search?q=normal%20weir" title=" normal weir"> normal weir</a>, <a href="https://publications.waset.org/abstracts/search?q=nappe%20interference" title=" nappe interference"> nappe interference</a>, <a href="https://publications.waset.org/abstracts/search?q=overhangs" title=" overhangs"> overhangs</a>, <a href="https://publications.waset.org/abstracts/search?q=piano%20key%20weir" title=" piano key weir"> piano key weir</a> </p> <a href="https://publications.waset.org/abstracts/24326/performance-evaluation-of-a-piano-key-weir" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2075</span> Phase-Averaged Analysis of Three-Dimensional Vorticity in the Wake of Two Yawed Side-By-Side Circular Cylinders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Zhou">T. Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Mohd%20Razali"> S. F. Mohd Razali</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhou"> Y. Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Wang"> H. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Cheng"> L. Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wake flow behind two yawed side-by-side circular cylinders is investigated using a three-dimensional vorticity probe. Four yaw angles (α), namely, 0°, 15°, 30° and 45° and two cylinder spacing ratios T* of 1.7 and 3.0 were tested. For T* = 3.0, there exist two vortex streets and the cylinders behave as independent and isolated ones. The maximum contour value of the coherent stream-wise vorticity is only about 10% of that of the spanwise vorticity. With the increase of α, increases whereas decreases. At α = 45°, is about 67% of. For T* = 1.7, only a single peak is detected in the energy spectrum. The span-wise vorticity contours have an organized pattern only at α = 0°. The maximum coherent vorticity contours of and for T* = 1.7 are about 30% and 7% of those for T* = 3.0. The independence principle (IP) in terms of Strouhal numbers is applicable in both wakes when α< 40°. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20cylinder%20wake" title="circular cylinder wake">circular cylinder wake</a>, <a href="https://publications.waset.org/abstracts/search?q=vorticity" title=" vorticity"> vorticity</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20shedding" title=" vortex shedding"> vortex shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=side-by-side" title=" side-by-side"> side-by-side</a> </p> <a href="https://publications.waset.org/abstracts/4169/phase-averaged-analysis-of-three-dimensional-vorticity-in-the-wake-of-two-yawed-side-by-side-circular-cylinders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4169.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2074</span> Modeling Aeration of Sharp Crested Weirs by Using Support Vector Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Goel">Arun Goel </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper attempts to investigate the prediction of air entrainment rate and aeration efficiency of a free over-fall jets issuing from a triangular sharp crested weir by using regression based modelling. The empirical equations, support vector machine (polynomial and radial basis function) models and the linear regression techniques were applied on the triangular sharp crested weirs relating the air entrainment rate and the aeration efficiency to the input parameters namely drop height, discharge, and vertex angle. It was observed that there exists a good agreement between the measured values and the values obtained using empirical equations, support vector machine (Polynomial and rbf) models, and the linear regression techniques. The test results demonstrated that the SVM based (Poly & rbf) model also provided acceptable prediction of the measured values with reasonable accuracy along with empirical equations and linear regression techniques in modelling the air entrainment rate and the aeration efficiency of a free over-fall jets issuing from triangular sharp crested weir. Further sensitivity analysis has also been performed to study the impact of input parameter on the output in terms of air entrainment rate and aeration efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20entrainment%20rate" title="air entrainment rate">air entrainment rate</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolved%20oxygen" title=" dissolved oxygen"> dissolved oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=weir" title=" weir"> weir</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/3752/modeling-aeration-of-sharp-crested-weirs-by-using-support-vector-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2073</span> Application of Double Side Approach Method on Super Elliptical Winkler Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsiang-Wen%20Tang">Hsiang-Wen Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Ying%20Lo"> Cheng-Ying Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the static behavior of super elliptical Winkler plate is analyzed by applying the double side approach method. The lack of information about super elliptical Winkler plates is the motivation of this study and we use the double side approach method to solve this problem because of its superior ability on efficiently treating problems with complex boundary shape. The double side approach method has the advantages of high accuracy, easy calculation procedure and less calculation load required. Most important of all, it can give the error bound of the approximate solution. The numerical results not only show that the double side approach method works well on this problem but also provide us the knowledge of static behavior of super elliptical Winkler plate in practical use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20elliptical%20winkler%20plate" title="super elliptical winkler plate">super elliptical winkler plate</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20side%20approach%20method" title=" double side approach method"> double side approach method</a>, <a href="https://publications.waset.org/abstracts/search?q=error%20bound" title=" error bound"> error bound</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic" title=" mechanic"> mechanic</a> </p> <a href="https://publications.waset.org/abstracts/12635/application-of-double-side-approach-method-on-super-elliptical-winkler-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2072</span> A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20Tkacheva">Olga Tkacheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Arkhipov"> Pavel Arkhipov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Rudenko"> Alexey Rudenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Yurii%20Zaikov"> Yurii Zaikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm<sup>2</sup> in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13<sup>th</sup> hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na<sub>3</sub>AlF<sub>6</sub>, Na<sub>5</sub>Al<sub>3</sub>F<sub>14</sub>, Al<sub>2</sub>O<sub>3</sub>, and NaF<sup>.</sup>5CaF<sub>2</sub><sup>.</sup>AlF<sub>3</sub>. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20distribution" title="alumina distribution">alumina distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20electrolyzer" title=" aluminum electrolyzer"> aluminum electrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=cryolie-alumina%20electrolyte" title=" cryolie-alumina electrolyte"> cryolie-alumina electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20ledge" title=" side ledge"> side ledge</a> </p> <a href="https://publications.waset.org/abstracts/118301/a-study-of-the-alumina-distribution-in-the-lab-scale-cell-during-aluminum-electrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2071</span> Advanced Fuzzy Control for a Doubly Fed Induction Generator in Wind Energy Conversion Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20Kumat%20T.">Santhosh Kumat T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Priya%20E."> Priya E.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control of a doubly fed induction generator by fuzzy is described. The active and reactive power can be controlled by rotor and grid side converters with fuzzy controller. The main objective is to maintain constant voltage and frequency at the output of the generator. However the Line Side Converter (LSC) can be controlled to supply up to 50% of the required reactive current. When the crowbar is not activated the DFIG can supply reactive power from the rotor side through the machine as well as through the LSC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doubly%20Fed%20Induction%20Generator%20%28DFIG%29" title="Doubly Fed Induction Generator (DFIG)">Doubly Fed Induction Generator (DFIG)</a>, <a href="https://publications.waset.org/abstracts/search?q=Rotor%20Side%20Converter%20%28RSC%29" title=" Rotor Side Converter (RSC)"> Rotor Side Converter (RSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Grid%20Side%20Converter%20%28GSC%29" title=" Grid Side Converter (GSC)"> Grid Side Converter (GSC)</a>, <a href="https://publications.waset.org/abstracts/search?q=Wind%20Energy%20Conversion%20Systems%20%28WECS%29" title=" Wind Energy Conversion Systems (WECS)"> Wind Energy Conversion Systems (WECS)</a> </p> <a href="https://publications.waset.org/abstracts/21552/advanced-fuzzy-control-for-a-doubly-fed-induction-generator-in-wind-energy-conversion-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2070</span> A Survey on Countermeasures of Cache-Timing Attack on AES Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Settana%20M.%20Abdulh">Settana M. Abdulh</a>, <a href="https://publications.waset.org/abstracts/search?q=Naila%20A.%20Sadalla"> Naila A. Sadalla</a>, <a href="https://publications.waset.org/abstracts/search?q=Yaseen%20H.%20Taha"> Yaseen H. Taha</a>, <a href="https://publications.waset.org/abstracts/search?q=Howaida%20Elshoush"> Howaida Elshoush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Side channel attacks are based on side channel information, which is information that is leaked from encryption systems. This includes timing information, power consumption as well as electromagnetic or even sound leaking which can exploited by an attacker. Implementing side channel attacks are possible if and only if an attacker has access to a cryptosystem. In this case, the attacker can exploit bad implementation in software or hardware which is not controlled by encryption implementer. Thus, he/she will represent a real threat to the security system. Several countermeasures have been proposed to eliminate side channel information vulnerability.Cache timing attack is a special type of side channel attack. Here, timing information is collected and analyzed by an attacker to guess sensitive information such as encryption key or plaintext. This paper reviews the technique applied in this attack and surveys the countermeasures against it, evaluating the feasibility and usability of each. Based on this evaluation, finally we pose several recommendations about using these countermeasures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AES%20algorithm" title="AES algorithm">AES algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20channel%20attack" title=" side channel attack"> side channel attack</a>, <a href="https://publications.waset.org/abstracts/search?q=cache%20timing%20attack" title=" cache timing attack"> cache timing attack</a>, <a href="https://publications.waset.org/abstracts/search?q=cache%20timing%20countermeasure" title=" cache timing countermeasure"> cache timing countermeasure</a> </p> <a href="https://publications.waset.org/abstracts/17652/a-survey-on-countermeasures-of-cache-timing-attack-on-aes-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2069</span> Iris Detection on RGB Image for Controlling Side Mirror</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norzalina%20Othman">Norzalina Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Na%E2%80%99imy%20Wan"> Nurul Na’imy Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Azliza%20Mohd%20Rusli"> Azliza Mohd Rusli</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Noor%20Syahirah%20Meor%20Idris"> Wan Noor Syahirah Meor Idris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iris detection is a process where the position of the eyes is extracted from the face images. It is a current method used for many applications such as for security purpose and drowsiness detection. This paper proposes the use of eyes detection in controlling side mirror of motor vehicles. The eyes detection method aims to make driver easy to adjust the side mirrors automatically. The system will determine the midpoint coordinate of eyes detection on RGB (color) image and the input signal from y-coordinate will send it to controller in order to rotate the angle of side mirror on vehicle. The eye position was cropped and the coordinate of midpoint was successfully detected from the circle of iris detection using Viola Jones detection and circular Hough transform methods on RGB image. The coordinate of midpoint from the experiment are tested using controller to determine the angle of rotation on the side mirrors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iris%20detection" title="iris detection">iris detection</a>, <a href="https://publications.waset.org/abstracts/search?q=midpoint%20coordinates" title=" midpoint coordinates"> midpoint coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=RGB%20images" title=" RGB images"> RGB images</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20mirror" title=" side mirror"> side mirror</a> </p> <a href="https://publications.waset.org/abstracts/8133/iris-detection-on-rgb-image-for-controlling-side-mirror" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2068</span> Influence of Mooring Conditions on Side-By-Side Offloading System Safety Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Shengnan">Liu Shengnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Liping"> Sun Liping</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Jianxun"> Zhu Jianxun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on three dimensional potential flow theory, hydrodynamic response analysis is carried on the multi floating bodies system composed of FPSO moored with yoke and shuttle tanker. It considered hydrodynamic interaction between FPSO and shuttle tanker, interaction between the hull and yoke mooring systems, hawsers, fenders, and then focuses on hawsers of the side-by-side offloading system. The influence of hawsers parameters on system safety is studied in respects of hawser stiffness, length and arrangement. Through analysis in different environment conditions and two typical loading conditions, it can be found that a better safety performance can be achieved through these three ways including enlarging the number of hawsers as well as the stiffness of hawsers, changing the length and arrangement of hawsers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yoke%20mooring" title="yoke mooring">yoke mooring</a>, <a href="https://publications.waset.org/abstracts/search?q=side-by-side%20offloading" title=" side-by-side offloading"> side-by-side offloading</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20floating%20body" title=" multi floating body"> multi floating body</a>, <a href="https://publications.waset.org/abstracts/search?q=hawser" title=" hawser"> hawser</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/8155/influence-of-mooring-conditions-on-side-by-side-offloading-system-safety-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2067</span> Crater Pattern on the Moon and Origin of the Moon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xuguang%20Leng">Xuguang Leng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crater pattern on the Moon indicates the Moon was captured by Earth in the more recent years, disproves the theory that the Moon was born as a satellite to the Earth. The Moon was tidal locked since it became the satellite of the Earth. Moon’s near side is shielded by Earth from asteroid/comet collisions, with the center of the near side most protected. Yet the crater pattern on the Moon is fairly random, with no distinguishable empty spot/strip, no distinguishable difference near side vs. far side. Were the Moon born as Earth’s satellite, there would be a clear crater free spot, or strip should the tial lock shifts over time, on the near side; and far more craters on the far side. The nonexistence of even a vague crater free spot on the near side of the Moon indicates the capture was a more recent event. Given Earth’s much larger mass and sphere size over the Moon, Earth should have collided with asteroids and comets in much higher frequency, resulting in significant mass gain over the lifespan. Earth’s larger mass and magnetic field are better at retaining water and gas from solar wind’s stripping effect, thus accelerating the mass gain. A dwarf planet Moon can be pulled closer and closer to the Earth over time as Earth’s gravity grows stronger, eventually being captured as a satellite. Given enough time, it is possible Earth’s mass would be large enough to cause the Moon to collide with Earth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moon" title="moon">moon</a>, <a href="https://publications.waset.org/abstracts/search?q=origin" title=" origin"> origin</a>, <a href="https://publications.waset.org/abstracts/search?q=crater" title=" crater"> crater</a>, <a href="https://publications.waset.org/abstracts/search?q=pattern" title=" pattern"> pattern</a> </p> <a href="https://publications.waset.org/abstracts/149225/crater-pattern-on-the-moon-and-origin-of-the-moon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2066</span> Modified Side Plate Design to Suppress Lateral Torsional Buckling of H-Beam for Seismic Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Erwin">Erwin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Cheng%20Chen"> Cheng-Cheng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20J.%20Salim"> Charles J. Salim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the method to solve the lateral torsional buckling (LTB) problem is by using side plates to increased the buckling resistance of the beam. Some modifications in designing the side plates are made in this study to simplify the construction in the field and reduce the cost. At certain region, side plates are not added: (1) At the beam end to preserve some spaces for bolt installation, but the beam is strengthened by adding cover plate at both flanges and (2) at the middle span of the beam where the moment is smaller. Three small scale full span beam specimens are tested under cyclic loading to investigate the LTB resistant and the ductility of the proposed design method. Test results show that the LTB deformation can be effectively suppressed and very high ductility level can be achieved. Following the test, a finite element analysis (FEA) model is established and is verified using the test results. An intensive parametric study is conducted using the established FEA model. The analysis reveals that the length of side plates is the most important parameter determining the performance of the beam and the required side plates length is determined by some parameters which are (1) beam depth to flange width ratio, (2) beam slenderness ratio (3) strength and thickness of the side plates, (4) compactness of beam web and flange, and (5) beam yield strength. At the end of the paper, a design formula to calculate the required side plate length is suggested. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cover%20plate" title="cover plate">cover plate</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20design" title=" earthquake resistant design"> earthquake resistant design</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20torsional%20buckling" title=" lateral torsional buckling"> lateral torsional buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20plate" title=" side plate"> side plate</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a> </p> <a href="https://publications.waset.org/abstracts/96206/modified-side-plate-design-to-suppress-lateral-torsional-buckling-of-h-beam-for-seismic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2065</span> The Droplet Generation and Flow in the T-Shape Microchannel with the Side Wall Fluctuation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Pang">Yan Pang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Wang"> Xiang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaomiao%20Liu"> Zhaomiao Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Droplet microfluidics, in which nanoliter to picoliter droplets acted as individual compartments, are common to a diverse array of applications such as analytical chemistry, tissue engineering, microbiology and drug discovery. The droplet generation in a simplified two dimension T-shape microchannel with the main channel width of 50 μm and the side channel width of 25 μm, is simulated to investigate effects of the forced fluctuation of the side wall on the droplet generation and flow. The periodic fluctuations are applied on a length of the side wall in the main channel of the T-junction with the deformation shape of the double-clamped beam acted by the uniform force, which varies with the flow time and fluctuation periods, forms and positions. The fluctuations under most of the conditions expand the distribution range of the droplet size but have a little effect on the average size, while the shape of the fixed side wall changes the average droplet size chiefly. Droplet sizes show a periodic pattern along the relative time when the fluctuation is forced on the side wall near the T-junction. The droplet emerging frequency is not varied by the fluctuation of the side wall under the same flow rate and geometry conditions. When the fluctuation period is similar with the droplet emerging period, the droplet size shows a nice stability as the no fluctuation case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=droplet%20generation" title="droplet generation">droplet generation</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet%20size" title=" droplet size"> droplet size</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20flied" title=" flow flied"> flow flied</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20fluctuation" title=" forced fluctuation"> forced fluctuation</a> </p> <a href="https://publications.waset.org/abstracts/65282/the-droplet-generation-and-flow-in-the-t-shape-microchannel-with-the-side-wall-fluctuation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2064</span> Low Profile Wide-Band Broad Side RMSA Suitable for On-Board Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qaisar%20Fraz">Qaisar Fraz</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Jafar"> H. M. Jafar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojeeb%20Bin%20Ihsan"> Mojeeb Bin Ihsan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents simulation and experimen-tal results for wide band U-shaped side slots loaded linearly polarized rectangular microstrip antenna with broad side radiation characteristics suitable for onboard applications. The structure has been evolved in rugged and compact form to make it suitable for on-board applications. In addition to U-shaped central slot, pair of parallel narrow slots has been embedded close to non-radiating edges. The size and shape of these side slots have been optimized to improve the matching at upper frequency of the band. The impedance bandwidth of 34.8% as compared to 2-5% bandwidth of conventional microstrip antenna has been achieved. The frequency ratio of the two well-matched operating sections is found to be f2 / f1=1.33. The experimental results are in good agreement with the numerical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20profile%20antennas" title="low profile antennas">low profile antennas</a>, <a href="https://publications.waset.org/abstracts/search?q=u-slot%20antennas" title=" u-slot antennas"> u-slot antennas</a>, <a href="https://publications.waset.org/abstracts/search?q=broad%20band%20antennas" title=" broad band antennas"> broad band antennas</a>, <a href="https://publications.waset.org/abstracts/search?q=broad-side%20radiation%20pattern" title=" broad-side radiation pattern"> broad-side radiation pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20gain%20antennas" title=" high gain antennas"> high gain antennas</a> </p> <a href="https://publications.waset.org/abstracts/39884/low-profile-wide-band-broad-side-rmsa-suitable-for-on-board-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39884.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2063</span> Side Effects of Dental Whitening: Published Data from the Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilma%20Robo">Ilma Robo</a>, <a href="https://publications.waset.org/abstracts/search?q=Saimir%20Heta"> Saimir Heta</a>, <a href="https://publications.waset.org/abstracts/search?q=Emela%20Dalloshi"> Emela Dalloshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevila%20Alliu"> Nevila Alliu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vera%20Ostreni"> Vera Ostreni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dental whitening process, beyond the fact that it is a mini-invasive dental treatment, has effects on the dental structure, or on the pulp of the tooth, where it is applied. The electronic search was performed using keywords to find articles published within the last 10 years about side effects, assessed as such, of minimally invasive dental bleaching treatment. Methodology: In selected articles, the other aim of the study was to evaluate the side effects of bleaching based on the percentage and type of solution used, where the latter was evaluated on the basic solution used for bleaching. Results: The side effects of bleaching are evaluated in selected articles depending on the method of bleaching application, which means it is carried out with recommended solutions, or with mixtures of alternative solutions or substances based on Internet information. Short conclusion: The dental bleaching process has side effects which have not yet been definitively evaluated, experimentally in large samples of individuals or animals (mice or cattle) to arrive at accurate numerical conclusions. The trend of publications about this topic is increasing in recent years, as long as the trend for aesthetic facial treatments, including dental ones, is increasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teeth%20whitening" title="teeth whitening">teeth whitening</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20effects" title=" side effects"> side effects</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20teeth" title=" permanent teeth"> permanent teeth</a>, <a href="https://publications.waset.org/abstracts/search?q=formed%20dental%20apex" title=" formed dental apex"> formed dental apex</a> </p> <a href="https://publications.waset.org/abstracts/182709/side-effects-of-dental-whitening-published-data-from-the-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2062</span> The Effect of Tool Type on Surface Morphology of FSJ Joint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yongfang%20Deng">Yongfang Deng</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunwen%20Zuo"> Dunwen Zuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An attempt is made here to join 2024 aluminum alloy plate by friction stir joining (FSJ) using different types of tools. Joint surface morphology was observed, and both arc line spacing and flash were measured. Study is carried out on the effect of pin, shoulder and eccentricity of the tool on the surface topography of the joint and the formation of the joint surface topography is analyzed. It is found that, eccentric squeezing action of the tool is the mainly motive power to form arc lines contour and flash structure. Little flash appears in the advancing side but with severe deformation, while the flash in the retreating side is heavy but with soft deformation. The pin of tool has a deep impact on the flash on the advancing side of the joints. Shoulder can widen the arc lines, refine arcs structure, reduce flash in the retreat side, but will increase the flash in the advancing side. Increasing the amount of eccentricity, it has litter effect on the arc line spacing but will destroy the arc lines morphology in the joint surface and promote the formation of filamentous flash structure in the joint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FSJ" title="FSJ">FSJ</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20morphology" title=" surface morphology"> surface morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=tool" title=" tool"> tool</a>, <a href="https://publications.waset.org/abstracts/search?q=joint" title=" joint "> joint </a> </p> <a href="https://publications.waset.org/abstracts/29621/the-effect-of-tool-type-on-surface-morphology-of-fsj-joint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2061</span> Estimation of Coefficient of Discharge of Side Trapezoidal Labyrinth Weir Using Group Method of Data Handling Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Ansari">M. A. Ansari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hussain"> A. Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uddin"> A. Uddin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A side weir is a flow diversion structure provided in the side wall of a channel to divert water from the main channel to a branch channel. The trapezoidal labyrinth weir is a special type of weir in which crest length of the weir is increased to pass higher discharge. Experimental and numerical studies related to the coefficient of discharge of trapezoidal labyrinth weir in an open channel have been presented in the present study. Group Method of Data Handling (GMDH) with the transfer function of quadratic polynomial has been used to predict the coefficient of discharge for the side trapezoidal labyrinth weir. A new model is developed for coefficient of discharge of labyrinth weir by regression method. Generalized models for predicting the coefficient of discharge for labyrinth weir using Group Method of Data Handling (GMDH) network have also been developed. The prediction based on GMDH model is more satisfactory than those given by traditional regression equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discharge%20coefficient" title="discharge coefficient">discharge coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20method%20of%20data%20handling" title=" group method of data handling"> group method of data handling</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel" title=" open channel"> open channel</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20labyrinth%20weir" title=" side labyrinth weir"> side labyrinth weir</a> </p> <a href="https://publications.waset.org/abstracts/115809/estimation-of-coefficient-of-discharge-of-side-trapezoidal-labyrinth-weir-using-group-method-of-data-handling-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2060</span> Pultrusion of Side by Side Glass/Polypropylene Fibers: Study of Flexural and Shear Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behrooz%20Ataee">Behrooz Ataee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Golzar"> Mohammad Golzar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of using side by side (SBS) hybrid yarn in pultrusion thermoplastic method is reprisal the effect of high viscosity in melted thermoplastic and reduction of distance between reinforced fiber and melted thermoplastic. SBS hybrid fiber yarn composed of thermoplastic fibers and fiber reinforcement should be produced in the preparation of pultruded thermoplastic composites prepreg to reach better impregnation. An experimental set-up was designed and built to pultrude continues polypropylene and glass fiber to get obtain a suitable impregnated round prepregs. In final stage, the round prepregs come together to produce rectangular profile. Higher fiber volume fraction produces higher void volume fraction, however the second stage of the production process of rectangular profile and the cold die decrease 50% of the void volume fraction. Results show that whit increasing void volume fraction, flexural and shear strength decrease. Also, under certain conditions of parameters the pultruded profiles exhibit better flexural and shear strength. The pulling speed seems to have the greatest influence on the profile quality. In addition, adding cold die strongly increases the surface quality of rectangular profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20pultrusion" title="thermoplastic pultrusion">thermoplastic pultrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20pultrusion" title=" hybrid pultrusion"> hybrid pultrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=side-by-side%20fibers" title=" side-by-side fibers"> side-by-side fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=impregnation" title=" impregnation"> impregnation</a> </p> <a href="https://publications.waset.org/abstracts/57363/pultrusion-of-side-by-side-glasspolypropylene-fibers-study-of-flexural-and-shear-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2059</span> The Relationship of the Dentate Nucleus with the Pyramid of Vermis: A Microneurosurgical Anatomical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20K.%20S.%20Annayappa">Santhosh K. S. Annayappa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nupur%20Pruthi"> Nupur Pruthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The region of dentate nucleus is a common site for various pathologies like hematomas, tumours, etc. We aimed to study in detail the relationship of this region with the vermis, especially the pyramid using microscopic fibre dissection technique. To achieve this aim, 20 cerebellar hemispheres were studied from the 11 cerebellums. Dissection was performed using wooden spatulas and micro dissectors under a microscope following Klingler’s preservation technique. The relationship between the pyramid of vermis and the dentate nucleus was studied in detail. A similar relationship was studied on the MRI of randomly selected trigeminal neuralgia patients and correlated with anatomical findings. Results show the mean distance of the lateral margin of the dentate nucleus from the midline on anatomic specimens was 21.4 ± 1.8 mm (19-25 mm) and 23.4 ± 3.4 mm (15-29 mm) on right and left side, respectively. Similar measurements made on the MRI were 22.97 ± 2.0 mm (20.03-26.15 mm) on the right side and 23.98 ± 2.1 mm (21.47-27.67 mm) on the left side. The amount of white matter dissection required to reach the dentate nucleus at the pyramidal attachment area was 7.3 ± 1.0 mm (6-9 mm) on the right side and 6.8 ± 1.4 mm (5-10 mm) on the left side. It was concluded that the pyramid of vermis has a constant relationship with the dentate nucleus and can be used as an excellent landmark during surgery to localise the dentate nucleus on the suboccipital surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fiber%20dissection" title="fiber dissection">fiber dissection</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20neurosurgery" title=" micro neurosurgery"> micro neurosurgery</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20dentate%20nucleus%20of%20cerebellum" title=" the dentate nucleus of cerebellum"> the dentate nucleus of cerebellum</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20pyramid%20of%20vermis" title=" the pyramid of vermis"> the pyramid of vermis</a> </p> <a href="https://publications.waset.org/abstracts/102046/the-relationship-of-the-dentate-nucleus-with-the-pyramid-of-vermis-a-microneurosurgical-anatomical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2058</span> Design of Non-uniform Circular Antenna Arrays Using Firefly Algorithm for Side Lobe Level Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Ram">Gopi Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Durbadal%20Mandal"> Durbadal Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Kar"> Rajib Kar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sakti%20Prasad%20Ghoshal"> Sakti Prasad Ghoshal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A design problem of non-uniform circular antenna arrays for maximum reduction of both the side lobe level (SLL) and first null beam width (FNBW) is dealt with. This problem is modeled as a simple optimization problem. The method of Firefly algorithm (FFA) is used to determine an optimal set of current excitation weights and antenna inter-element separations that provide radiation pattern with maximum SLL reduction and much improvement on FNBW as well. Circular array antenna laid on x-y plane is assumed. FFA is applied on circular arrays of 8-, 10-, and 12- elements. Various simulation results are presented and hence performances of side lobe and FNBW are analyzed. Experimental results show considerable reductions of both the SLL and FNBW with respect to those of the uniform case and some standard algorithms GA, PSO, and SA applied to the same problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20arrays" title="circular arrays">circular arrays</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20null%20beam%20width" title=" first null beam width"> first null beam width</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20lobe%20level" title=" side lobe level"> side lobe level</a>, <a href="https://publications.waset.org/abstracts/search?q=FFA" title=" FFA"> FFA</a> </p> <a href="https://publications.waset.org/abstracts/4066/design-of-non-uniform-circular-antenna-arrays-using-firefly-algorithm-for-side-lobe-level-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2057</span> Select-Low and Select-High Methods for the Wheeled Robot Dynamic States Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bogus%C5%82aw%20Schreyer">Bogusław Schreyer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper enquires on the two methods of the wheeled robot braking torque control. Those two methods are applied when the adhesion coefficient under left side wheels is different from the adhesion coefficient under the right side wheels. In case of the select-low (SL) method the braking torque on both wheels is controlled by the signals originating from the wheels on the side of the lower adhesion. In the select-high (SH) method the torque is controlled by the signals originating from the wheels on the side of the higher adhesion. The SL method is securing stable and secure robot behaviors during the braking process. However, the efficiency of this method is relatively low. The SH method is more efficient in terms of time and braking distance but in some situations may cause wheels blocking. It is important to monitor the velocity of all wheels and then take a decision about the braking torque distribution accordingly. In case of the SH method the braking torque slope may require significant decrease in order to avoid wheel blocking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=select-high" title="select-high">select-high</a>, <a href="https://publications.waset.org/abstracts/search?q=select-low" title=" select-low"> select-low</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20distribution" title=" torque distribution"> torque distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=wheeled%20robots" title=" wheeled robots"> wheeled robots</a> </p> <a href="https://publications.waset.org/abstracts/134319/select-low-and-select-high-methods-for-the-wheeled-robot-dynamic-states-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2056</span> Mixed Traffic Speed–Flow Behavior under Influence of Road Side Friction and Non-Motorized Vehicles: A Comparative Study of Arterial Roads in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chetan%20R.%20Patel">Chetan R. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20J.%20Joshi"> G. J. Joshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is carried out on six lane divided urban arterial road in Patna and Pune city of India. Both the road having distinct differences in terms of the vehicle composition and the road side parking. Arterial road in Patan city has 33% of non-motorized mode, whereas Pune arterial road dominated by 65% of Two wheeler. Also road side parking is observed in Patna city. The field studies using vidiographic techniques are carried out for traffic data collection. Data are extracted for one minute duration for vehicle composition, speed variation and flow rate on selected arterial road of the two cities. Speed flow relationship is developed and capacity is determine. Equivalency factor in terms of dynamic car unit is determine to represent the vehicle is single unit. The variation in the capacity due to side friction, presence of non motorized traffic and effective utilization of lane width is compared at concluding remarks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arterial%20road" title="arterial road">arterial road</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20equivalency%20factor" title=" dynamic equivalency factor"> dynamic equivalency factor</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20non%20motorized%20mode" title=" effect of non motorized mode"> effect of non motorized mode</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20friction" title=" side friction"> side friction</a> </p> <a href="https://publications.waset.org/abstracts/16039/mixed-traffic-speed-flow-behavior-under-influence-of-road-side-friction-and-non-motorized-vehicles-a-comparative-study-of-arterial-roads-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2055</span> Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCrol%20%C3%96nal">Gürol Önal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Din%C3%A7er"> Kevser Dinçer</a>, <a href="https://publications.waset.org/abstracts/search?q=Salih%20Yayla"> Salih Yayla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Polymer%20Electrolyte%20Membrane%20%28PEM%29" title=" Polymer Electrolyte Membrane (PEM)"> Polymer Electrolyte Membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20method" title=" spin method"> spin method</a> </p> <a href="https://publications.waset.org/abstracts/8063/experimental-investigation-of-performance-anode-side-of-pem-fuel-cell-with-spin-method-coated-with-yszsdc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2054</span> Accelerating Side Channel Analysis with Distributed and Parallelized Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyunghee%20Oh">Kyunghee Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Dooho%20Choi"> Dooho Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DPA" title="DPA">DPA</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20computing" title=" distributed computing"> distributed computing</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelized%20processing" title=" parallelized processing"> parallelized processing</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20channel%20analysis" title=" side channel analysis"> side channel analysis</a> </p> <a href="https://publications.waset.org/abstracts/9204/accelerating-side-channel-analysis-with-distributed-and-parallelized-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2053</span> Investigating Message Timing Side Channel Attacks on Networks on Chip with Ring Topology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Davey">Mark Davey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Communications on a Network on Chip (NoC) produce timing information, i.e., network injection delays, packet traversal times, throughput metrics, and other attributes relating to the traffic being sent across the chip. The security requirements of a platform encompass each node to operate with confidentiality, integrity, and availability (ISO 27001). Inherently, a shared NoC interconnect is exposed to analysis of timing patterns created by contention for the network components, i.e., links and switches/routers. This phenomenon is defined as information leakage, which represents a ‘side channel’ of sensitive information that can be correlated to platform activity. The key algorithm presented in this paper evaluates how an adversary can control two platform neighbouring nodes of a target node to obtain sensitive information about communication with the target node. The actual information obtained is the period value of a periodic task communication. This enacts a breach of the expected confidentiality of a node operating in a multiprocessor platform. An experimental investigation of the side channel is undertaken to judge the level and significance of inferred information produced by access times to the NoC. Results are presented with a series of expanding task set scenarios to evaluate the efficacy of the side channel detection algorithm as the network load increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embedded%20systems" title="embedded systems">embedded systems</a>, <a href="https://publications.waset.org/abstracts/search?q=multiprocessor" title=" multiprocessor"> multiprocessor</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20on%20chip" title=" network on chip"> network on chip</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20channel" title=" side channel"> side channel</a> </p> <a href="https://publications.waset.org/abstracts/171019/investigating-message-timing-side-channel-attacks-on-networks-on-chip-with-ring-topology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171019.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=69">69</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=70">70</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=side%20weirs&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>