CINXE.COM
Search results for: aromatic plants
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: aromatic plants</title> <meta name="description" content="Search results for: aromatic plants"> <meta name="keywords" content="aromatic plants"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="aromatic plants" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="aromatic plants"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2817</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: aromatic plants</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2817</span> Aromatic and Medicinal Plants in Morocco: Diversity and Socio-Economic Role</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Sghir%20Taleb">Mohammed Sghir Taleb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Morocco is characterized by a great richness and diversity in aromatic and medicinal plants and it has an ancestral knowledge in the use of plants for medicinal and cosmetic purposes. In effect, the poverty of riparian, specially, mountain populations have greatly contributed to the development of traditional pharmacopoeia in Morocco. The analysis of the bibliographic data showed that a large number of plants in Morocco are exploited for aromatic and medicinal purposes and several of them are commercialized internationally. However, these potentialities of aromatic and medicinal plants are currently subjected to climate change and strong human pressures: Collecting fruits, agriculture development, harvesting plants, urbanization, overgrazing... <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic" title="aromatic">aromatic</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal" title=" medicinal"> medicinal</a>, <a href="https://publications.waset.org/abstracts/search?q=plant" title=" plant"> plant</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a> </p> <a href="https://publications.waset.org/abstracts/68413/aromatic-and-medicinal-plants-in-morocco-diversity-and-socio-economic-role" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2816</span> Exploring the Traditional Uses of Aromatic Plants in Indonesian Culture, Medicine, and Spirituality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aida%20Humaira">Aida Humaira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aromatic plants hold an honored place in Indonesian culture, where they are deeply intertwined with everyday customs, rituals, and ceremonies. From the fragrant herbs and spices used in cooking to the aromatic incense burned in temples and homes, aromatic plants play multifaceted roles in enhancing well-being and fostering spiritual connections. These plants are valued not only for their pleasant aromas but also for their medicinal properties and symbolic meanings. This article aims to summarize the role of aromatic plants in Indonesian traditional culture, medicine, spirituality, and how it shifted to a modern version of aromatherapy. Traditional Indonesian medicine, known as Jamu, relies heavily on aromatic plants for their therapeutic benefits. Herbalists and traditional healers use a wide array of aromatic herbs, roots, barks, and resins to treat various ailments, ranging from digestive disorders and respiratory infections to skin conditions and reproductive issues. In conclusion, aromatic plants represent a cultural treasure with multifaceted uses and significance deeply rooted in Indonesia’s tradition. From their medicinal properties to their spiritual symbolism, these plants embody the interconnection of culture, nature, and well-being. Further research and collaboration are needed to document and preserve traditional knowledge surrounding Indonesian aromatic plants and ensure their continued recognition and sustainable utilization in the face of modernization and environmental challenges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20plants" title="aromatic plants">aromatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=indonesia" title=" indonesia"> indonesia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamu" title=" Jamu"> Jamu</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20medicine" title=" traditional medicine"> traditional medicine</a> </p> <a href="https://publications.waset.org/abstracts/184586/exploring-the-traditional-uses-of-aromatic-plants-in-indonesian-culture-medicine-and-spirituality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2815</span> Inventory of Aromatic and Medicinal Plants Used in Natural Cosmetics in Western Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faiza%20Chaib">Faiza Chaib</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasmina-Nadia%20Bendahmane"> Yasmina-Nadia Bendahmane</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Zohra%20Ghanemi"> Fatima Zohra Ghanemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to know the traditional use of aromatic and medicinal plants in natural cosmetics, we carried out an ethnobotanical study using an online quiz among the Algerian population residing mainly in western Algeria (Oran, Tlemcen, and Mostaganem). Our study identified 37 plant species used as cosmetic plants, divided into 9 botanical families. The families mainly used and the richest in species are the lamiaceae, the apiecea, and the rutaceae. Our study states that the 5 species with the highest frequency of use and highest citation value are lemon, chamomile, turmeric, garlic, and lavender. Lemon takes first place in the order of frequency. The plants listed have been listed in tables grouping the identification of plants by their scientific and vernacular names, frequency of use, parts used, parts of the body concerned, desired action, as well as the main traditional recipes. This study allowed us to highlight the importance of aromatic plants and to appreciate their traditional practices in natural cosmetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20plants" title="aromatic plants">aromatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=ethnobotanical%20survey" title=" ethnobotanical survey"> ethnobotanical survey</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20use" title=" traditional use"> traditional use</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20cosmetics" title=" natural cosmetics"> natural cosmetics</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=western%20Algeria" title=" western Algeria"> western Algeria</a> </p> <a href="https://publications.waset.org/abstracts/157765/inventory-of-aromatic-and-medicinal-plants-used-in-natural-cosmetics-in-western-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2814</span> Effect Mechanisms of Aromatic Plants: Effects on Intestinal Health and Broiler Feeding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Durna%20Aydin">Ozlem Durna Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Gultekin%20Yildiz"> Gultekin Yildiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotics are microbial metabolites with low molecular weight produced by fungi and algae, inhibiting the development of other microorganisms even in low growth. Antibiotics have been used as growth factors in animal feeds for many years. They prohibited; because of increased residue problem and increased resistance to antibiotics in bacteria due to prolonged use. Aromatic plants and extracts have attracted the attention of scientists nowadays due to positive reasons such as confidence of the community to the products those are coming from nature, desire to consume, and no residue problems. Plant extracts are obtained from aromatic plants, and they come forward with antifungal, antibacterial, antiviral, antioxidant and antilipidemic properties. It has been stated that intestinal histomorphology and microbiosis are positively affected by the use of plant extract in feeds. In the present day, aromatic plants and extracts are a remarkable research field with intriguing unknowns in the field of animal nutrition, and they continue to exist in the journal in vitro and in vivo studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20plant" title="aromatic plant">aromatic plant</a>, <a href="https://publications.waset.org/abstracts/search?q=broilers" title=" broilers"> broilers</a>, <a href="https://publications.waset.org/abstracts/search?q=extract%20mechanism%20of%20action" title=" extract mechanism of action"> extract mechanism of action</a>, <a href="https://publications.waset.org/abstracts/search?q=intestinal%20health" title=" intestinal health"> intestinal health</a> </p> <a href="https://publications.waset.org/abstracts/85014/effect-mechanisms-of-aromatic-plants-effects-on-intestinal-health-and-broiler-feeding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2813</span> Medicinal and Aromatic Plants of Ardanuç (Artvi̇n, Türki̇ye)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Emi%CC%87na%C4%9Fao%C4%9Flu">Özgür Emi̇nağaoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayal%20Akyildirim%20Be%C4%9Fen"> Hayal Akyildirim Beğen</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eevval%20Sali%CC%87o%C4%9Flu"> Şevval Sali̇oğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Y%C3%BCksel"> Emrah Yüksel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was carried out in order to determine the scientific name, common name, local names, location, botanical characteristics, used parts, intended use, local usage patterns, usage in the literature of plant species used for medicinal and aromatic purposes in Ardanuç (Artvin, Türkiye) between 2020-2023 years. The research area is located in the A9 square according to Davis’s grid system and is phytogeographically located in the colchic subsection of the Euxine part of the Euro-Siberian flora area of the Holarctic region. As a result of the studies, it has been determined that 167 plant species belonging to 79 families are used for medicinal and aromatic purposes. The families that contain the most taxa in the research area are, respectively, Rosaceae (19 taxa), Asterecaeae (15 taxa), and Lamiaceae (14 taxa). It has been determined that the medicinal, aromatic plants of the Ardanuç region are mostly used in the treatment of diseases (59%), and the plants are mostly used in the treatment of diabetes (37%). It was determined that the most applied method in the internal use of plants was decoction (48%). As a result of the research, the most commonly used plants in different diseases are Sambucus nigra, Plantago lanceolata, Satureja hortensis, Hypericum perforatum, Juniperus communis. These plants are used in the treatment of many diseases, such as colds, cancer, anemia and diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ardanu%C3%A7" title="Ardanuç">Ardanuç</a>, <a href="https://publications.waset.org/abstracts/search?q=Artvin" title=" Artvin"> Artvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicinal%20and%20Aromatic%20plant" title=" Medicinal and Aromatic plant"> Medicinal and Aromatic plant</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%BCrkiye" title=" Türkiye"> Türkiye</a> </p> <a href="https://publications.waset.org/abstracts/171408/medicinal-and-aromatic-plants-of-ardanuc-artvin-turkiye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2812</span> Aromatic Medicinal Plant Classification Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsega%20Asresa%20Mengistu">Tsega Asresa Mengistu</a>, <a href="https://publications.waset.org/abstracts/search?q=Getahun%20Tigistu"> Getahun Tigistu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20and%20medicinal%20plants" title="aromatic and medicinal plants">aromatic and medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20convolutional%20neural%20network" title=" deep convolutional neural network"> deep convolutional neural network</a> </p> <a href="https://publications.waset.org/abstracts/149907/aromatic-medicinal-plant-classification-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2811</span> Medicinal and Aromatic Plants of Borcka (Artvin)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Emi%CC%87na%C4%9Fao%C4%9Flu">Özgür Emi̇nağaoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayal%20Akyildirim%20Be%C4%9Fen"> Hayal Akyildirim Beğen</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eevval%20Sali%CC%87o%C4%9Flu"> Şevval Sali̇oğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the plant used for purification and aromatic purposes by the public in Adagül, Akpınar, Alaca, Ambarlı, Arkaköy, Avcılar, Balcı, Civan, Demirciler, Düzköy, İbrikli, Kale, Kaynarca and Taraklı villages in Borcka (Artvin) district between 2020-2022. The purpose of the study, determining the surgical common and local names, regions, botanical features, used parts of plants, purpose of use, local usage intensive, and giving literature data. The research area is located on the A8 square according to Davis's grid system; its phytogeographic extensions are in the Holarctic regions, and the Euro-Siberian flora settlement is in the Colchic subsection of the Euxine region. In the research area, 71 personal questionnaires were applied. As a result of the surveys, it was determined that 93 plant species belonging to 44 families were used by the local people for purification and aromatic purposes. The families that contain the most taxa in the research area are, respectively, Rosaceae (15 taxa), Astericaeae (9 taxa), Lamiaceae (7 taxa), Crassulaceae (4 taxa). As a result of the survey studies, Plantago major L. is known by almost all participants. The most used plants were Allium scorodoprasum, Helichrysum arenarium, Alnus glutinosa subsp. barbata, Juglans regia, Tilia rubra subsp. caucasica, Picea orientalis, Urtica dioica. These plants are used in the treatment of many diseases. Some of these plants that grow in Borçka are used in different countries for the treatment of the same diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artvin" title="artvin">artvin</a>, <a href="https://publications.waset.org/abstracts/search?q=bor%C3%A7ka" title=" borçka"> borçka</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal" title=" medicinal"> medicinal</a>, <a href="https://publications.waset.org/abstracts/search?q=aromatic" title=" aromatic"> aromatic</a>, <a href="https://publications.waset.org/abstracts/search?q=plant" title=" plant"> plant</a> </p> <a href="https://publications.waset.org/abstracts/171395/medicinal-and-aromatic-plants-of-borcka-artvin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2810</span> The Study of Biodiversity of Thirty Two Families of Useful Plants Existed in Georgia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kacharava%20Tamar">Kacharava Tamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Korakhashvili%20Avtandil"> Korakhashvili Avtandil</a>, <a href="https://publications.waset.org/abstracts/search?q=Epitashvili%20Tinatin"> Epitashvili Tinatin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article deals with the database, which was created by the authors, related to biodiversity of some families of useful plants (medicinal, aromatic, spices, dye and poisonous) existing in Georgia considering important taxonomy. Our country is also rich with endemic genera. The results of monitoring of the phytogenetic resources to reveal perspective species and situation of endemic species and resources are also discussed in this paper. To get some new medicinal and preventive treatments using plant raw material in the phytomedicine, phytocosmetics and phytoculinary, the unique phytogenetic resources should be protected because the application of useful plants is becoming irreversible. This can be observed along with intensification and sustainable use of ethnobotanical traditions and promotion of phytoproduction based on the international requirements on biodiversity (Convention on Biological Diversity - CBD). Though Georgian phytopharmacy has the centuries-old traditions, today it is becoming the main concern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic" title="aromatic">aromatic</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal" title=" medicinal"> medicinal</a>, <a href="https://publications.waset.org/abstracts/search?q=poisonous" title=" poisonous"> poisonous</a>, <a href="https://publications.waset.org/abstracts/search?q=spicy" title=" spicy"> spicy</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20plants" title=" dye plants"> dye plants</a>, <a href="https://publications.waset.org/abstracts/search?q=endemic%20biodiversity" title=" endemic biodiversity"> endemic biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=endemic" title=" endemic"> endemic</a>, <a href="https://publications.waset.org/abstracts/search?q=ELISA" title=" ELISA"> ELISA</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a> </p> <a href="https://publications.waset.org/abstracts/99699/the-study-of-biodiversity-of-thirty-two-families-of-useful-plants-existed-in-georgia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2809</span> Equipping Organic Farming in Medicinal and Aromatic Plants: Central Institute of Medicinal and Aromatic Plants' Scientific Interventions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Kalra">Alok Kalra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Consumers and practitioners (medical herbalists, pharmacists, and aromatherapists) with strong and increased awareness about health and environment demand organically grown medicinal and aromatic plants (MAPs) to offer a valued product. As the system does not permit the use of synthetic fertilizers the use of nutrient rich organic manures is extremely important. CSIR-CIMAP has developed a complete recycling package for managing distillation and agro-waste of medicinal and aromatic plants for production of superior quality vermicompost involving microbes capable of producing high amounts of humic acid. The major benefits being faster composting period and nutrient rich vermicompost; a nutrient advantage of about 100-150% over the most commonly used organic manure (FYM). At CSIR-CIMAP, strains of microbial inoculants with multiple activities especially strains useful both as biofertilizers and biofungicide and consortia of microbes possessing diverse functional activities have been developed. CSIR-CIMAP has also initiated a program where a large number of accessions are being screened for identifying organic proficient genotypes in mints, ashwagandha, geranium and safed musli. Some of the natural plant growth promoters like calliterpenones from the plant Callicarpa macrophylla has been tested successfully for induction of rooting in stem cuttings and improving growth and yield of various crops. Some of the microbes especially the endophytes have even been identified improving the active constituents of medicinal and aromatic plants. The above said scientific interventions making organic farming a charming proposition would be discussed in details. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20agriculture" title="organic agriculture">organic agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20inoculants" title=" microbial inoculants"> microbial inoculants</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizers" title=" organic fertilizers"> organic fertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20plant%20growth%20promoters" title=" natural plant growth promoters"> natural plant growth promoters</a> </p> <a href="https://publications.waset.org/abstracts/60559/equipping-organic-farming-in-medicinal-and-aromatic-plants-central-institute-of-medicinal-and-aromatic-plants-scientific-interventions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2808</span> Antioxidant Potential of Methanolic Extracts of Four Indian Aromatic Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harleen%20Kaur">Harleen Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Richa"> Richa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants produce a large variety of secondary metabolites. Phenolics are the compounds that contain hydroxyl functional group on an aromatic ring. These are chemically heterogeneous compounds. Some are soluble only in organic solvents, some are water soluble and others are large insoluble polymers. Flavonoids are one of the largest classes of plant phenolics. The carbon skeleton of a flavonoid contains 15 carbons arranged in two aromatic rings connected by a three carbon ridge. Both phenolics and flavonoids are good natural antioxidants. Four Indian aromatic plants were selected for the study i.e, Achillea species, Jasminum primulinum, Leucas cephalotes and Leonotis nepetaefolia. All the plant species were collected from Chail region of Himachal Pradesh, India. The identifying features and anatomical studies were done of the part containing the essential oils. Phenolic cotent was estimated by Folin Ciocalteu’s method and flavonoids content by aluminium chloride method. Antioxidant property was checked by using DPPH method. Maximum antioxidant potential was found in Achillea species, followed by Leonotis nepetaefolia, Jaminum primulinum and Leucas cephalotes. Phenolics and flavonoids are important compounds that serve as defences against herbivores and pathogens. Others function in attracting pollinators and absorbing harmful radiations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidants" title="antioxidants">antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH" title=" DPPH"> DPPH</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a> </p> <a href="https://publications.waset.org/abstracts/37377/antioxidant-potential-of-methanolic-extracts-of-four-indian-aromatic-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2807</span> Egg Hatching Inhibition Activity of Volatile Oils Extracted from Some Medicinal and Aromatic Plants against Root-Knot Nematode Meloidogyne hapla</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20F.%20Felek">Anil F. Felek</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20M.%20Ozcan"> Mehmet M. Ozcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Faruk%20Akyazi"> Faruk Akyazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile oils of medicinal and aromatic plants are important for managing nematological problems in agriculture. In present study, volatile oils extracted from five medicinal and aromatic plants including Origanum onites (flower+steam+leaf), Salvia officinalis (leaf), Lippia citriodora (leaf+seed), Mentha spicata (leaf) and Mentha longifolia (leaf) were tested for egg hatching inhibition activity against root-knot nematode Meloidogyne hapla under laboratory conditions. The essential oils were extracted using water distillation method with a Clevenger system. For the homogenisation process of the oils, 2% gum arabic solution was used and 4 µl oils was added into 1ml filtered gum arabic solution to prepare the last stock solution. 5 ml of stock solution and 1 ml of M. hapla egg suspension (about 100 eggs) were added into petri dishes. Gum arabic solution was used as control. Seven days after exposure to oils at room temperature (26±2 °C), the cumulative hatched and unhatched eggs were counted under 40X inverted light microscope and Abbott’s formula was used to calculate egg hatching inhibition rates. As a result, the highest inhibition rate was found as 54% for O. onites. In addition, the other inhibition rates varied as 31.4%, 21.6%, 23.8%, 25.67% for the other plants, S. officinalis, M. longifolia, M. spicata and L. citriodora, respectively. Carvacrol was found as the main component (68.8%) of O. onites followed by Thujone 27.77% for S. officinalis, I-Menthone 76.92% for M. longifolia, Carvone 27.05% for M. spicata and Citral 19.32% for L. citriodora. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg%20hatching" title="egg hatching">egg hatching</a>, <a href="https://publications.waset.org/abstracts/search?q=Meloidogyne%20hapla" title=" Meloidogyne hapla"> Meloidogyne hapla</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20and%20aromatic%20plants" title=" medicinal and aromatic plants"> medicinal and aromatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=root-knot%20nematodes" title=" root-knot nematodes"> root-knot nematodes</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20oils" title=" volatile oils"> volatile oils</a> </p> <a href="https://publications.waset.org/abstracts/69105/egg-hatching-inhibition-activity-of-volatile-oils-extracted-from-some-medicinal-and-aromatic-plants-against-root-knot-nematode-meloidogyne-hapla" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2806</span> Study of the Allelopathic Effects of Certain Aromatic Plants on Grapevines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tinatin%20Shengelia">Tinatin Shengelia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mzia%20Beruashvili"> Mzia Beruashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In organic farming, including organic viticulture, biodiversity plays a crucial role. Properly selected ‘companion’ and helper plants create favorable conditions for the growth and development of the main crop. Additionally, they can provide protection from pests and diseases, suppress weeds, improve the crop’s visual and taste characteristics, enhance nutrient absorption from the soil, and, as a result of all these factors, increase yields. The use of companion plants is particularly relevant for organic farms, where the range of pesticides and fertilizers is significantly restricted by organic regulations, and they must be replaced with alternative, environmentally safe methods. Therefore, the aim of this research was to study the allelopathic effects of companion aromatic plants on grapevines. The research employed methods used in organic farming and the biological control of harmful organisms. The experiments were conducted in control and experimental plots, each with three replications on equal areas (50 m²). The allelopathic potential of medicinal hyssop (Hyssopus officinalis), basil (Ocimum basilicum), marigold or Imeretian saffron (Tagetes patula), and lavender (Lavandula angustifolia L.) was studied in vineyards located in the Mtskheta-Mtianeti and Kakheti regions. The impact of these plants on grapevines (Vitis vinifera L.) (variety Muscat petitgrain), their growth and development according to the BBCH scale, yields, and diseases caused by certain pathogenic microorganisms (downy mildew, powdery mildew, anthracnose) were determined. Additionally, the biological, agricultural, and economic efficiency of using these companion plants was assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=allelopathy" title=" allelopathy"> allelopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=aromatic%20plants" title=" aromatic plants"> aromatic plants</a> </p> <a href="https://publications.waset.org/abstracts/192919/study-of-the-allelopathic-effects-of-certain-aromatic-plants-on-grapevines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2805</span> Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsega%20Asresa">Tsega Asresa</a>, <a href="https://publications.waset.org/abstracts/search?q=Getahun%20Tigistu"> Getahun Tigistu</a>, <a href="https://publications.waset.org/abstracts/search?q=Melaku%20Bayih"> Melaku Bayih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20medicinal%20plant" title="aromatic medicinal plant">aromatic medicinal plant</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a>, <a href="https://publications.waset.org/abstracts/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20classification" title=" plant classification"> plant classification</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20neural%20network" title=" residual neural network"> residual neural network</a> </p> <a href="https://publications.waset.org/abstracts/175749/multi-labeled-aromatic-medicinal-plant-image-classification-using-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2804</span> α-Amylase Inhibitory Activity of Some Tunisian Aromatic and Medicinal Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamdi%20Belfeki">Hamdi Belfeki</a>, <a href="https://publications.waset.org/abstracts/search?q=Belgacem%20Chandoul"> Belgacem Chandoul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mnasser%20Hassouna"> Mnasser Hassouna</a>, <a href="https://publications.waset.org/abstracts/search?q=Mondher%20Mejri"> Mondher Mejri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aqueous and ethanolic extracts of eight Tunisian aromatic and medicinal plants (TAMP) were characterized by studying their composition in polyphenols and also their antiradical and antioxidant capacities. In absence and in the presence of the various extracts, α-amylase from Bacillus subtlis activity, was measured in order to detect a potential inhibition. The total contents of polyphenols and flavonoid vary in function of TAMP and the mobile phase used for the extraction (distilled water or ethanol). The ethanolic extracts showed the most significant antiradical and antioxidant activities. Only the extracts from Coriandrum sativum showed a significant inhibiting effect on the α-amylase activity. This inhibiting capacity could be correlated with the chemical profile of the two extracts, due to the fact that they have the greatest amount of total flavonoid. The ethanolic extract has the most important antioxidant and anti-radicalizing activities among the sixteen extracts studied. The inhibition kinetics of the two coriander extracts were evaluated by pre-incubation method, using Lineweaver-Burk’s equation, obtained by linearization of Michaeilis-Menten’s expression. The results showed that both extracts exercised a competitive inhibition mechanism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-amylase" title="α-amylase">α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=aromatic%20and%20medicinal%20plants" title=" aromatic and medicinal plants"> aromatic and medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a> </p> <a href="https://publications.waset.org/abstracts/10661/a-amylase-inhibitory-activity-of-some-tunisian-aromatic-and-medicinal-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2803</span> Biodiversity And Ecosystem Services In Morocco: Current State And Human Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Taleb">Mohammed Taleb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Morocco is characterized by an important genetic diversity represented by a rich and varied flora with 5211 species and subspecies and many natural ecosystems. Biodiversity and natural ecosystems provide the local population with highly diversified services represented by aromatic and medicinal plants, forage plants, melliferous plants, firewood, lumber, mushrooms, etc. Ecosystem services are currently subject to many pressures: overgrazing and deforestation, climate change, including increased drought, urbanization and forest fire. Conscious of the risks that weigh on biodiversity and ecosystem services, Morocco had made an important effort to reverse the tendencies by developing a consistent biodiversity conservation strategy focused on in-situ and ex-situ conservation. This presentation will be focused on the current state of biodiversity and ecosystem services and their role for the human development and their decline under the action of different pressures (grazing, timber harvest, harvesting of medicinal and aromatic plants, charcoal making...) while emphasizing efforts constructed by Morocco to conserve and sustainably manage biodiversity and ecosystem services. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=morocco" title="morocco">morocco</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem%20services" title=" ecosystem services"> ecosystem services</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20population" title=" local population"> local population</a> </p> <a href="https://publications.waset.org/abstracts/168170/biodiversity-and-ecosystem-services-in-morocco-current-state-and-human-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2802</span> Basil Plants Attract and Benefit Generalist Lacewing Predator Ceraeochrysa cubana Hagen (Neuroptera: Chrysopidae) by Providing Nutritional Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michela%20C.%20Batista%20Matos">Michela C. Batista Matos</a>, <a href="https://publications.waset.org/abstracts/search?q=Madelaine%20Venzon"> Madelaine Venzon</a>, <a href="https://publications.waset.org/abstracts/search?q=Elem%20F.%20Martins"> Elem F. Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Erickson%20C.%20Freitas"> Erickson C. Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=Adenir%20V.%20Teodoro"> Adenir V. Teodoro</a>, <a href="https://publications.waset.org/abstracts/search?q=Maira%20C.%20M.%20Fonseca"> Maira C. M. Fonseca</a>, <a href="https://publications.waset.org/abstracts/search?q=Angelo%20Pallini"> Angelo Pallini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aromatic plant species are capable of producing and releasing volatile organic compounds spontaneously, which can repel or attract beneficial insects such as generalist predators of herbivores. Attractive plants could be used as crop companion plants to promote biological control of pests. In order to select such plants for future use in horticulture fields, we assessed the attractiveness of the aromatic plants Ocimum basilicum L. (basil), Mentha piperita L. (peppermint), Melissa officinalis L. (lemon balm) and Cordia verbenacea DC (black sage) to adults of the generalist lacewing predator Ceraeochrysa cubana Hagen (Neuroptera: Chrysopidae). This predator is commonly found in agroecosystems in Brazil and it feeds on aphids, mites, small caterpillars, insect eggs and scales. We further tested the effect of these plant species on the survival, development and oviposition of C. cubana. Finally, we evaluated the survival of larvae and adults of C. cubana when only flowers of basil were offered. Females of C. cubana were attracted to basil but not to the remaining aromatic plants. Larvae survival was higher when individuals had access only to basil leaf than when they had access to peppermint, lemon balm, black sage or water. Adult survival on leaf treatments and on water was no longer than three days. Flowers of basil enhanced predator larvae survival, yet they did not reach adulthood. Adults fed on basil flowers lived longer compared with water, but they did not reproduce. Basil is a promising aromatic plant species to be considered for conservation biological control programs. Besides being attractive to adults of the generalist predator, it benefits larvae and adults by providing nutritional resources when prey or other resources are absent. Financial support: CNPq, FAPEMIG and CAPES (Brazil). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basil" title="basil">basil</a>, <a href="https://publications.waset.org/abstracts/search?q=chrysopidae" title=" chrysopidae"> chrysopidae</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation%20biological%20control" title=" conservation biological control"> conservation biological control</a>, <a href="https://publications.waset.org/abstracts/search?q=companion%20plants" title=" companion plants"> companion plants</a> </p> <a href="https://publications.waset.org/abstracts/48742/basil-plants-attract-and-benefit-generalist-lacewing-predator-ceraeochrysa-cubana-hagen-neuroptera-chrysopidae-by-providing-nutritional-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2801</span> Depolymerised Natural Polysaccharides Enhance the Production of Medicinal and Aromatic Plants and Their Active Constituents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Masroor%20Akhtar%20Khan">M. Masroor Akhtar Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Moin%20Uddin"> Moin Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Lalit%20Varshney"> Lalit Varshney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, there has been a rapidly expanding interest in finding applications of natural polymers in view of value addition to agriculture. It is now being realized that radiation processing of natural polysaccharides can be beneficially utilized either to improve the existing methodologies used for processing the natural polymers or to impart value addition to agriculture by converting them into more useful form. Gamma-ray irradiation is employed to degrade and lower the molecular weight of some of the natural polysaccharides like alginates, chitosan and carrageenan into small sized oligomers. When these oligomers are applied to plants as foliar sprays, they elicit various kinds of biological and physiological activities, including promotion of plant growth, seed germination, shoot elongation, root growth, flower production, suppression of heavy metal stress, etc. Furthermore, application of these oligomers can shorten the harvesting period of various crops and help in reducing the use of insecticides and chemical fertilizers. In recent years, the oligomers of sodium alginate obtained by irradiating the latter with gamma-rays at 520 kGy dose are being employed. It was noticed that the oligomers derived from the natural polysaccharides could induce growth, photosynthetic efficiency, enzyme activities and most importantly the production of secondary metabolite in the plants like Artemisia annua, Beta vulgaris, Catharanthus roseus, Chrysopogon zizanioides, Cymbopogon flexuosus, Eucalyptus citriodora, Foeniculum vulgare, Geranium sp., Mentha arvensis, Mentha citrata, Mentha piperita, Mentha virdis, Papaver somniferum and Trigonella foenum-graecum. As a result of the application of these oligomers, the yield and/or contents of the active constituents of the aforesaid plants were significantly enhanced. The productivity, as well as quality of medicinal and aromatic plants, may be ameliorated by this novel technique in an economical way as a very little quantity of these irradiated (depolymerised) polysaccharides is needed. Further, this is a very safe technique, as we did not expose the plants directly to radiation. The radiation was used to depolymerize the polysaccharides into oligomers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title="essential oil">essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20and%20aromatic%20plants" title=" medicinal and aromatic plants"> medicinal and aromatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20production" title=" plant production"> plant production</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20processed%20polysaccharides" title=" radiation processed polysaccharides"> radiation processed polysaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20constituents" title=" active constituents"> active constituents</a> </p> <a href="https://publications.waset.org/abstracts/35869/depolymerised-natural-polysaccharides-enhance-the-production-of-medicinal-and-aromatic-plants-and-their-active-constituents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2800</span> Eucalyptus camendulensis and Its Drying Effect on Water and Essential Oil Content</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehani%20Mouna">Mehani Mouna</a>, <a href="https://publications.waset.org/abstracts/search?q=Segni%20Ladjel"> Segni Ladjel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicinal and aromatic plants are promising and are characterized by the biosynthesis of odorous molecules that make up the so-called essential oils (EO), which have long been known for their antiseptic and therapeutic activity in folk medicine. The objective of this study was to evaluate the influence of drying in the shade on the water content and on the content of essential oils extracted from leaves of Eucalyptus camendulensis for better quality control of medicinal and aromatic plants. The water content of the Eucalyptus camendulensis plant material decreases during the drying process. It increased from 100 % to 0.006 % for the drying in the shade after ten days. The moisture content is practically constant at the end of the drying period. The drying in the shade increases the concentration of essential oils of Eucalyptus camendulensis. When the leaves of Eucalyptus camendulensis plant are in the shade, the maximum of the essential oil content was obtained on the eighth days; the recorded value was 1.43% ± 0.01%. Beyond these periods, the content continuously drops in before stabilizing. The optimum drying time is between 6 and 9 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eucalyptus%20camendulensis" title="Eucalyptus camendulensis">Eucalyptus camendulensis</a>, <a href="https://publications.waset.org/abstracts/search?q=drying" title=" drying"> drying</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=content" title=" content"> content</a> </p> <a href="https://publications.waset.org/abstracts/36039/eucalyptus-camendulensis-and-its-drying-effect-on-water-and-essential-oil-content" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2799</span> The Seedlings Pea (Pisum Sativum L.) Have A High Potential To Be Used As A Promising Condidate For The Study Of Phytoremediation Mechanisms Following An Aromatic Polycyclic Hydrocarbon (Hap) Contamination Such As Naphtalene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agoun-bahar%20Salima">Agoun-bahar Salima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environmental variations to which plants are subjected require them to have a strong capacity for adaptation. Some plants are affected by pollutants and are used as pollution indicators; others have the capacity to block, extract, accumulate, transform or degrade the xenobiotic. The diversity of the legume family includes around 20 000 species and offers opportunities for exploitation through their agronomic, dietary and ecological interests. The lack of data on the bioavailability of the Aromatic Polycyclic Hydrocarbon (PAH) in polluted environments, as their passage in the food chains and on the effects of interaction with other pollutants, justifies priority research on this vast family of hydrocarbons. Naphthalene is a PAH formed from two aromatic rings, it is listed and classified as priority pollutant in the list of 16 PAH by the United States Environmental Protection Agency. The aim of this work was to determinate effect of naphthalene at different concentrations on morphological and physiological responses of pea seedlings. At the same time, the behavior of the pollutant in the soil and its fate at the different parts of plant (roots, stems, leaves and fruits) were also recorded by Gas Chromatography/ Mass Spectrometry (GC / MS). In it controlled laboratory studies, plants exposed to naphthalene were able to grow efficiently. From a quantitative analysis, 67% of the naphthalene was removed from the soil and then found on the leaves of the seedlings in just three weeks of cultivation. Interestingly, no trace of naphthalene or its derivatives were detected on the chromatograms corresponding to the dosage of the pollutant at the fruit level after ten weeks of cultivating the seedlings and this for all the pollutant concentrations used. The pea seedlings seem to tolerate the pollutant when it is applied to the soil. In conclusion, the pea represents an interesting biological model in the study of phytoremediation mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=naphtalene" title="naphtalene">naphtalene</a>, <a href="https://publications.waset.org/abstracts/search?q=PAH" title=" PAH"> PAH</a>, <a href="https://publications.waset.org/abstracts/search?q=Pea" title=" Pea"> Pea</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a> </p> <a href="https://publications.waset.org/abstracts/175692/the-seedlings-pea-pisum-sativum-l-have-a-high-potential-to-be-used-as-a-promising-condidate-for-the-study-of-phytoremediation-mechanisms-following-an-aromatic-polycyclic-hydrocarbon-hap-contamination-such-as-naphtalene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2798</span> Deficit Drip Irrigation in Organic Cultivation of Aromatic Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasileios%20A.%20Giouvanis">Vasileios A. Giouvanis</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20D.%20Papanikolaou"> Christos D. Papanikolaou</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitrios%20S.%20Dimakas"> Dimitrios S. Dimakas</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20A.%20Sakellariou-Makrantonaki"> Maria A. Sakellariou-Makrantonaki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In countries with limited water resources, where the irrigation demands are higher than the 70% of the total water use, the demand for fresh water increases while the quality of this natural resource is downgraded. The aromatic and pharmaceutical plants hold a high position in the culture of the most civilizations through the centuries. The ‘Mountain Tea,’ species of the Greek flora, is part of a series of aromatic plants and herbs that are famous for their pharmaceutical properties as well as their byproducts and their essential oils. The aim of this research was to study the effects of full and deficit irrigation on the growing and productive characteristics of organically cultivated ‘Mountain Tea’ (Sideritis raeseri). The research took place at the University of Thessaly farm in Velestino, Magnesia - Central Greece, during the year 2017, which was the third growing season. The experiment consisted of three treatments in three replications. The experimental design was a fully randomized complete block. Surface drip irrigation was used to irrigate the experimental plots. In the first treatment, the 75% (deficit irrigation) of the daily water needs was applied. In the second treatment, the 100% (full irrigation) of the daily water needs was applied. The third treatment was not irrigated (rainfed). The crop water needs were calculated according to the daily measured evapotranspiration (ETc) using the Penman-Monteith method (FAO 56). The plants’ height, fresh and dry biomass production were measured. The results showed that only the irrigated ‘Mountain Tea’ can be cultivated at low altitude areas with satisfactory results. Moreover, there are no statistically significant differences (P < 0.05) at the growing and productive characteristics between full and deficit irrigation treatments, which proves that by deficit irrigation, an important amount of irrigation water can be saved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mountain%20tea" title="mountain tea">mountain tea</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20drip%20irrigation" title=" surface drip irrigation"> surface drip irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title=" deficit irrigation"> deficit irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20saving" title=" water saving"> water saving</a> </p> <a href="https://publications.waset.org/abstracts/87754/deficit-drip-irrigation-in-organic-cultivation-of-aromatic-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2797</span> An Efficient and Low Cost Protocol for Rapid and Mass in vitro Propagation of Hyssopus officinalis L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ira%20V.%20Stancheva">Ira V. Stancheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ely%20G.%20Zayova"> Ely G. Zayova</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20P.%20Geneva"> Maria P. Geneva</a>, <a href="https://publications.waset.org/abstracts/search?q=Marieta%20G.%20Hristozkova"> Marieta G. Hristozkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyudmila%20I.%20Dimitrova"> Lyudmila I. Dimitrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20I.%20Petrova"> Maria I. Petrova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study describes a highly efficient and low-cost protocol for rapid and mass in vitro propagation of medicinal and aromatic plant species (Hyssopus officinalis L., Lamiaceae). Hyssop is an important aromatic herb used for its medicinal values because of its antioxidant, anti-inflammatory and antimicrobial properties. The protocol for large-scale multiplication of this aromatic plant was developed using young stem tips explants. The explants were sterilized with 0.04% mercuric chloride (HgCl₂) solution for 20 minutes and washing three times with sterile distilled water in 15 minutes. The cultural media was full and half strength Murashige and Skoog medium containing indole-3-butyric acid. Full and ½ Murashige and Skoog media without auxin were used as controls. For each variant 20 glass tubes with two plants were used. In each tube two tip and nodal explants were inoculated. Maximum shoot and root number were obtained on ½ Murashige and Skoog medium supplemented with 0.1 mg L-1 indole-3-butyric acid at the same time after four weeks of culture. The number of shoots per explant and shoot height were considered. The data on rooting percentage, the number of roots per plant and root length were collected after the same cultural period. The highest percentage of survival 85% for this medicinal plant was recorded in mixture of soil, sand and perlite (2:1:1 v/v/v). This mixture was most suitable for acclimatization of all propagated plants. Ex vitro acclimatization was carried out at 24±1 °C and 70% relative humidity under 16 h illuminations (50 μmol m⁻²s⁻¹). After adaptation period, the all plants were transferred to the field. The plants flowered within three months after transplantation. Phenotypic variations in the acclimatized plants were not observed. An average of 90% of the acclimatized plants survived after transferring into the field. All the in vitro propagated plants displayed normal development under the field conditions. Developed in vitro techniques could provide a promising alternative tool for large-scale propagation that increases the number of homologous plants for field cultivation. Acknowledgments: This study was conducted with financial support from National Science Fund at the Bulgarian Ministry of Education and Science, Project DN06/7 17.12.16. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyssopus%20officinalis%20L." title="Hyssopus officinalis L.">Hyssopus officinalis L.</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20vitro%20culture" title=" in vitro culture"> in vitro culture</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20propagation" title=" micro propagation"> micro propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=acclimatization" title=" acclimatization"> acclimatization</a> </p> <a href="https://publications.waset.org/abstracts/70897/an-efficient-and-low-cost-protocol-for-rapid-and-mass-in-vitro-propagation-of-hyssopus-officinalis-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2796</span> Phytochemical Composition and Biological Activities of the Vegetal Extracts of Six Aromatic and Medicinal Plants of Algerian Flora and Their Uses in Food and Pharmaceutical Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ziani%20Borhane%20Eddine%20Cherif">Ziani Borhane Eddine Cherif</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazzi%20Mohamed"> Hazzi Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouhouche%20Fazia"> Mouhouche Fazia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vegetal extracts of aromatic and medicinal plants start to have much of interest like potential sources of natural bioactive molecules. Many features are conferred by the nature of the chemical function of their major constituents (phenol, alcohol, aldehyde, cetone). This biopotential lets us to focalize on the study of three main biological activities, the antioxidant, antibiotic and insecticidal activities of six Algerian aromatic plants in the aim of making in evidence by the chromatographic analysis (CPG and CG/SM) the phytochemical compounds implicating in this effects. The contents of Oxygenated monoterpenes represented the most prominent group of constituents in the majority of plants. However, the α-Terpineol (28,3%), Carvacrol (47,3%), pulégone (39,5%), Chrysanthenone (27,4%), Thymol 23,9%, γ-Terpinene 23,9% and 2-Undecanone(94%) were the main components. The antioxyding activity of the Essential oils and no-volatils extracts was evaluated in vitro using four tests: inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) radical-scavenging activity (ABTS•+), the thiobarbituric acid reactive substances (TBARS) assays and the reducing power. The measures of the IC50 of these natural compounds revealed potent activity (between 254.64-462.76mg.l-1), almost similar to that of BHT, BHA, Tocopherol and Ascorbic acid (126,4-369,1 mg.l-1) and so far than the Trolox one (IC50= 2,82mg.l-1). Furthermore, three ethanol extracts were found to be remarkably effective toward DPPH and ABTS inhibition, compared to chemical antioxidant BHA and BHT (IC = 9.8±0.1 and 28±0.7 mg.l-1, respectively); for reducing power test it has also exhibited high activity. The study on the insecticidal activity effect by contact, inhalation, fecundity and fertility of Callosobruchus maculatus and Tribolium confusum showed a strong potential biocide reaching 95-100% mortality only after 24 hours. The antibiotic activity of our essential oils were evaluated by a qualitative study (aromatogramme) and quantitative (MIC, MBC and CML) on four bacteria (Gram+ and Gram-) and one strain of pathogenic yeast, the results of these tests showed very interesting action than that induced by the same reference antibiotics (Gentamycin, and Nystatin Ceftatidine) such that the inhibition diameters and MIC values for tested microorganisms were in the range of 23–58 mm and 0.015–0.25%(v/v) respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20plants" title="aromatic plants">aromatic plants</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=no-volatils%20extracts" title=" no-volatils extracts"> no-volatils extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20molecules" title=" bioactive molecules"> bioactive molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticidal%20activity" title=" insecticidal activity"> insecticidal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20activity" title=" antibiotic activity"> antibiotic activity</a> </p> <a href="https://publications.waset.org/abstracts/11363/phytochemical-composition-and-biological-activities-of-the-vegetal-extracts-of-six-aromatic-and-medicinal-plants-of-algerian-flora-and-their-uses-in-food-and-pharmaceutical-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2795</span> Optimal Production Planning in Aromatic Coconuts Supply Chain Based on Mixed-Integer Linear Programming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaimongkol%20Limpianchob">Chaimongkol Limpianchob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work addresses the problem of production planning that arises in the production of aromatic coconuts from Samudsakhorn province in Thailand. The planning involves the forwarding of aromatic coconuts from the harvest areas to the factory, which is classified into two groups; self-owned areas and contracted areas, the decisions of aromatic coconuts flow in the plant, and addressing a question of which warehouse will be in use. The problem is formulated as a mixed-integer linear programming model within supply chain management framework. The objective function seeks to minimize the total cost including the harvesting, labor and inventory costs. Constraints on the system include the production activities in the company and demand requirements. Numerical results are presented to demonstrate the feasibility of coconuts supply chain model compared with base case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20coconut" title="aromatic coconut">aromatic coconut</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20planning" title=" production planning"> production planning</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed-integer%20linear%20programming" title=" mixed-integer linear programming"> mixed-integer linear programming</a> </p> <a href="https://publications.waset.org/abstracts/6619/optimal-production-planning-in-aromatic-coconuts-supply-chain-based-on-mixed-integer-linear-programming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2794</span> Preparation and Characterization of Copper-Nanoparticle on Extracted Carrageenan and Its Catalytic Activity for Reducing Aromatic Nitro Group</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vida%20Jodaeian">Vida Jodaeian</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Sani"> Behzad Sani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper nanoparticles were successfully synthesized and characterized on green-extracted Carrageenan from seaweed by precipitation method without using any supporter and template with precipitation method. The crystallinity, optical properties, morphology, and composition of products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transforms infrared (FT-IR) spectroscopy. The effects of processing parameters on the size and shape of Cu- nanostructures such as effect of pH were investigated. It is found that the reaction at lower pH values (acidic) could not be completed and pH = 8.00 was the best pH value to prepare very fine nanoparticles. They as synthesized Cu-nanoparticles were used as catalysts for the reduction of aromatic nitro compounds in presence of NaBH4. The results showed that Cu-nanoparticles are very active for reduction of these nitro aromatic compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title="nanoparticles">nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=carrageenan" title=" carrageenan"> carrageenan</a>, <a href="https://publications.waset.org/abstracts/search?q=seaweed" title=" seaweed"> seaweed</a>, <a href="https://publications.waset.org/abstracts/search?q=nitro%20aromatic%20compound" title=" nitro aromatic compound"> nitro aromatic compound</a> </p> <a href="https://publications.waset.org/abstracts/31613/preparation-and-characterization-of-copper-nanoparticle-on-extracted-carrageenan-and-its-catalytic-activity-for-reducing-aromatic-nitro-group" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2793</span> Study on the Treatment of Waste Water Containing Nitrogen Heterocyclic Aromatic Hydrocarbons by Phenol-Induced Microbial Communities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhichao%20Li">Zhichao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This project has treated the waste-water that contains the nitrogen heterocyclic aromatic hydrocarbons, by using the phenol-induced microbial communities. The treatment of nitrogen heterocyclic aromatic hydrocarbons is a difficult problem for coking waste-water treatment. Pyridine, quinoline and indole are three kinds of most common nitrogen heterocyclic compounds in the f, and treating these refractory organics biologically has always been a research focus. The phenol-degrading bacteria can be used in the enhanced biological treatment effectively, and has a good treatment effect. Therefore, using the phenol-induced microbial communities to treat the coking waste-water can remove multiple pollutants concurrently, and improve the treating efficiency of coking waste-water. Experiments have proved that the phenol-induced microbial communities can degrade the nitrogen heterocyclic ring aromatic hydrocarbon efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenol" title="phenol">phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20heterocyclic%20aromatic%20hydrocarbons" title=" nitrogen heterocyclic aromatic hydrocarbons"> nitrogen heterocyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol-degrading%20bacteria" title=" phenol-degrading bacteria"> phenol-degrading bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20communities" title=" microbial communities"> microbial communities</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20treatment%20technology" title=" biological treatment technology"> biological treatment technology</a> </p> <a href="https://publications.waset.org/abstracts/78438/study-on-the-treatment-of-waste-water-containing-nitrogen-heterocyclic-aromatic-hydrocarbons-by-phenol-induced-microbial-communities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2792</span> Solar-Powered Smart Irrigation System as an Adaptation Strategy under Climate Change: A Case Study to Develop Medicinal Security Based on Ancestral Knowledge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luisa%20Cabezas">Luisa Cabezas</a>, <a href="https://publications.waset.org/abstracts/search?q=Karol%20Leal"> Karol Leal</a>, <a href="https://publications.waset.org/abstracts/search?q=Harold%20Mendoza"> Harold Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Trochez"> Fabio Trochez</a>, <a href="https://publications.waset.org/abstracts/search?q=Angel%20Lozada"> Angel Lozada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to the 2030 Agenda for Sustainable Development Goals (SDG) in which equal importance is given to economic, social, and environmental dimensions where the equality and dignity of each human person is placed at the center of discussion, changing the development concept for one with more responsibility with the environment. It can be found that the energy and food systems are deeply entangled, and they are transversal to the 17 proposed SDG. In this order of ideas, a research project is carried out at Unidad Central del Valle del Cauca (UCEVA) with these two systems in mind, on one hand the energy transition and, on the other hand the transformation of agri-food systems. This project it could be achieved by automation and control irrigation system of medicinal, aromatic, and condimentary plants (MACP) area within the UCEVA Agroecological Farm and located in rural area of Tulua municipality (Valle del Cauca Department, Colombia). This system have allowed to stablish a remote monitoring of MACP area, including MACP moisture measurement, and execute the required system actions. In addition, the electrical system of irrigation control system is powered by a scalable photovoltaic solar energy system based on its specifications. Thus, the developed system automates and control de irrigation system, which is energetically self-sustainable and allows to satisfy the MACP area requirements. Is important to highlight that at MACP area, several medicinal, aromatic, and condimentary plants species are preserved to become primary sources for the pharmaceutical industry and, in many occasions, the only medicines for many communities. Therefore, preserve medicinal plants area would generates medicinal security and preserve cultural heritage as these plants are part of ancestral knowledge that penetrate academic and research communities at UCEVA campus to other society sectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancestral%20knowledge" title="ancestral knowledge">ancestral knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title=" medicinal plants"> medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a> </p> <a href="https://publications.waset.org/abstracts/147478/solar-powered-smart-irrigation-system-as-an-adaptation-strategy-under-climate-change-a-case-study-to-develop-medicinal-security-based-on-ancestral-knowledge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2791</span> Documentation of Traditional Knowledge on Wild Medicinal Plants of Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nahla%20S.%20Abdel-Azim">Nahla S. Abdel-Azim</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20A.%20Shams"> Khaled A. Shams</a>, <a href="https://publications.waset.org/abstracts/search?q=Elsayed%20A.%20Omer"> Elsayed A. Omer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Sakr"> Mahmoud M. Sakr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medicinal plants play a significant role in the health care system in Egypt. Knowledge developed over the years by people is mostly unrecorded and orally passes on from one generation to the next. This knowledge is facing the danger of becoming extinct. Therefore there is an urgent need to document the medicinal and aromatic plants associated with traditional knowledge. The Egyptian Encyclopedia of wild medicinal plants (EEWMP) is the first attempt to collect most of the basic elements of the medicinal plant resources of Egypt and their traditional uses. It includes scientific data on about 500 medicinal plants in the form of monographs. Each monograph contains all available information and scientific data on the selected species including the following: names, description, distribution, parts used, habitat, conservational status, active or major chemical constituents, folk medicinal uses and heritage resources, pharmacological and biological activities, authentication, pharmaceutical products, and cultivation. The DNA bar-coding is also included (when available). A brief Arabic summary is given for every monograph. This work revealed the diversity in plant parts used in the treatment of different ailments. In addition, the traditional knowledge gathered can be considered a good starting point for effective in situ and ex-situ conservation of endangered plant species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=encyclopedia" title="encyclopedia">encyclopedia</a>, <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plant" title=" medicinal plant"> medicinal plant</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20medicine" title=" traditional medicine"> traditional medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=wild%20flora" title=" wild flora"> wild flora</a> </p> <a href="https://publications.waset.org/abstracts/110623/documentation-of-traditional-knowledge-on-wild-medicinal-plants-of-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2790</span> Bioremediation of PAHs-Contaminated Soil Using Land Treatment Processes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Eskandary">Somaye Eskandary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycyclic aromatic hydrocarbons (PAHs) are present in crude oil and its derivatives contaminate soil and also increase carcinogen and mutagen contamination, which is a concern for researchers. Land farming is one of the methods that remove pollutants from the soil by native microorganisms. It seems that this technology is cost-effective, environmentally friendly and causes less debris problem to be disposed. This study aimed to refine the polycyclic aromatic hydrocarbons from oil-contaminated soil using the land farming method. In addition to examine the concentration of polycyclic aromatic hydrocarbons by GC-FID, some characteristics such as soil microbial respiration and dehydrogenase, peroxidase, urease, acid and alkaline phosphatase enzyme concentration were also measured. The results showed that after land farming process the concentrations of some polycyclic aromatic hydrocarbons dropped to 50 percent. The results showed that the enzyme concentration is reduced by reducing the concentration of hydrocarbons and microbial respiration. These results emphasize the process of land farming for removal of polycyclic aromatic hydrocarbons from soil by indigenous microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title="soil contamination">soil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20microorganisms" title=" native microorganisms"> native microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20enzymes" title=" soil enzymes"> soil enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20respiration" title=" microbial respiration"> microbial respiration</a>, <a href="https://publications.waset.org/abstracts/search?q=carcinogen" title=" carcinogen"> carcinogen</a> </p> <a href="https://publications.waset.org/abstracts/5748/bioremediation-of-pahs-contaminated-soil-using-land-treatment-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2789</span> Study of Polycyclic Aromatic Hydrocarbons Biodegradation by Bacterial Isolated from Contaminated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Abdessemed">Z. Abdessemed</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Messa%C3%A2dia"> N. Messaâdia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Houhamdi"> M. Houhamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The PAH (Polycyclic Aromatic Hydrocarbons) represent a persistent source of pollution for oil field soils. Their degradation, essentially dominated by the aerobic bacterial and fungal flora, exhibits certain aspects for remediation of these soils microbial oxygenases have, as their substrates, a large range of PAH. The variety and the performance of these enzymes allow the initiation of the biodegradation of any PAH through many different metabolic pathways. These pathways are very important for the recycling of the PAH in the biosphere, where substances supposed indigestible by living organisms are rapidly transformed into simples compounds, directly assimilated by the intermediate metabolism of other microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbons" title="polycyclic aromatic hydrocarbons">polycyclic aromatic hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20oxygenases" title=" microbial oxygenases"> microbial oxygenases</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20pathways" title=" metabolic pathways"> metabolic pathways</a> </p> <a href="https://publications.waset.org/abstracts/26452/study-of-polycyclic-aromatic-hydrocarbons-biodegradation-by-bacterial-isolated-from-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2788</span> Removal of Aromatic Fractions of Natural Organic Matter from Synthetic Water Using Aluminium Based Electrocoagulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tanwi%20Priya">Tanwi Priya</a>, <a href="https://publications.waset.org/abstracts/search?q=Brijesh%20Kumar%20Mishra"> Brijesh Kumar Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Occurrence of aromatic fractions of Natural Organic Matter (NOM) led to formation of carcinogenic disinfection by products such as trihalomethanes in chlorinated water. In the present study, the efficiency of aluminium based electrocoagulation on the removal of prominent aromatic groups such as phenol, hydrophobic auxochromes, and carboxyl groups from NOM enriched synthetic water has been evaluated using various spectral indices. The effect of electrocoagulation on turbidity has also been discussed. The variation in coagulation performance as a function of pH has been studied. Our result suggests that electrocoagulation can be considered as appropriate remediation approach to reduce trihalomethanes formation in water. It has effectively reduced hydrophobic fractions from NOM enriched low turbid water. The charge neutralization and enmeshment of dispersed colloidal particles inside metallic hydroxides is the possible mechanistic approach in electrocoagulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20fractions" title="aromatic fractions">aromatic fractions</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocoagulation" title=" electrocoagulation"> electrocoagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20organic%20matter" title=" natural organic matter"> natural organic matter</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20indices" title=" spectral indices"> spectral indices</a> </p> <a href="https://publications.waset.org/abstracts/71237/removal-of-aromatic-fractions-of-natural-organic-matter-from-synthetic-water-using-aluminium-based-electrocoagulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=93">93</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=94">94</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=aromatic%20plants&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>