CINXE.COM
Representation Varieties of Twisted Hopf Links | Mediterranean Journal of Mathematics
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="robots" content="max-image-preview:large"> <meta name="access" content="Yes"> <meta name="360-site-verification" content="1268d79b5e96aecf3ff2a7dac04ad990" /> <title>Representation Varieties of Twisted Hopf Links | Mediterranean Journal of Mathematics</title> <meta name="twitter:site" content="@SpringerLink"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Representation Varieties of Twisted Hopf Links"/> <meta name="twitter:description" content="Mediterranean Journal of Mathematics - In this paper, we study the representation theory of the fundamental group of the complement of a Hopf link with n twists. A general framework is described to..."/> <meta name="twitter:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Fig1_HTML.png"/> <meta name="journal_id" content="9"/> <meta name="dc.title" content="Representation Varieties of Twisted Hopf Links"/> <meta name="dc.source" content="Mediterranean Journal of Mathematics 2023 20:2"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Springer"/> <meta name="dc.date" content="2023-01-29"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2023 The Author(s)"/> <meta name="dc.rights" content="2023 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="In this paper, we study the representation theory of the fundamental group of the complement of a Hopf link with n twists. A general framework is described to analyze the $${{\,\textrm{SL}\,}}_r({\mathbb {C}})$$ -representation varieties of these twisted Hopf links as byproduct of a combinatorial problem and equivariant Hodge theory. As application, close formulas of their E-polynomials are provided for ranks 2 and 3, both for the representation and character varieties."/> <meta name="prism.issn" content="1660-5454"/> <meta name="prism.publicationName" content="Mediterranean Journal of Mathematics"/> <meta name="prism.publicationDate" content="2023-01-29"/> <meta name="prism.volume" content="20"/> <meta name="prism.number" content="2"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="30"/> <meta name="prism.copyright" content="2023 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://link.springer.com/article/10.1007/s00009-023-02300-w"/> <meta name="prism.doi" content="doi:10.1007/s00009-023-02300-w"/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/s00009-023-02300-w.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/article/10.1007/s00009-023-02300-w"/> <meta name="citation_journal_title" content="Mediterranean Journal of Mathematics"/> <meta name="citation_journal_abbrev" content="Mediterr. J. Math."/> <meta name="citation_publisher" content="Springer International Publishing"/> <meta name="citation_issn" content="1660-5454"/> <meta name="citation_title" content="Representation Varieties of Twisted Hopf Links"/> <meta name="citation_volume" content="20"/> <meta name="citation_issue" content="2"/> <meta name="citation_publication_date" content="2023/04"/> <meta name="citation_online_date" content="2023/01/29"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="30"/> <meta name="citation_article_type" content="Article"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1007/s00009-023-02300-w"/> <meta name="DOI" content="10.1007/s00009-023-02300-w"/> <meta name="size" content="1819105"/> <meta name="citation_doi" content="10.1007/s00009-023-02300-w"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/s00009-023-02300-w&api_key="/> <meta name="description" content="In this paper, we study the representation theory of the fundamental group of the complement of a Hopf link with n twists. A general framework is described"/> <meta name="dc.creator" content="González-Prieto, Ángel"/> <meta name="dc.creator" content="Muñoz, Vicente"/> <meta name="dc.subject" content="Mathematics, general"/> <meta name="citation_reference" content="citation_journal_title=Int. J. Math.; citation_title=E-polynomial of -character varieties of free groups; citation_author=S Cavazos, S Lawton; citation_volume=25; citation_publication_date=2014; citation_pages=1450058; citation_doi=10.1142/S0129167X1450058X; citation_id=CR1"/> <meta name="citation_reference" content="Chen, H., Yu, T.: The $$SL(2, {\mathbb{C}})$$ -character variety of the Borromean link, arXiv:2202.07429 "/> <meta name="citation_reference" content="citation_journal_title=Ann. Math.; citation_title=Varieties of group representations and splitting of 3-manifolds; citation_author=M Culler, P Shalen; citation_volume=2; citation_issue=117; citation_publication_date=1983; citation_pages=109-146; citation_doi=10.2307/2006973; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=Invent. Math.; citation_title=Plane curves associated to character varieties of 3-manifolds; citation_author=D Cooper, M Culler, H Gillet, D Long, P Shalen; citation_volume=118; citation_publication_date=1994; citation_pages=47-84; citation_doi=10.1007/BF01231526; citation_id=CR4"/> <meta name="citation_reference" content="Deligne, P.: Théorie de Hodge II, Publ. Math. I.H.E.S. 40 5–57 (1971)"/> <meta name="citation_reference" content="citation_journal_title=Math. Ann.; citation_title=The topology of moduli spaces of free group representations; citation_author=C Florentino, S Lawton; citation_volume=2; citation_issue=345; citation_publication_date=2009; citation_pages=453-489; citation_doi=10.1007/s00208-009-0362-4; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=Pac. J. Math.; citation_title=Singularities of free group character varieties; citation_author=C Florentino, S Lawton; citation_volume=260; citation_publication_date=2012; citation_pages=149-179; citation_doi=10.2140/pjm.2012.260.149; citation_id=CR7"/> <meta name="citation_reference" content="Florentino, C., Nozad, A., Zamora, A.: $$E$$ -polynomials of $$SL_n$$ and $$PGL_n$$ -character varieties of free groups, arXiv:1912.05852 "/> <meta name="citation_reference" content="citation_journal_title=Open Math.; citation_title=Hodge–Deligne polynomials of character varieties of free abelian groups; citation_author=C Florentino, J Silva; citation_volume=19; citation_publication_date=2021; citation_pages=338-362; citation_doi=10.1515/math-2021-0038; citation_id=CR9"/> <meta name="citation_reference" content="González-Prieto, A.: Pseudo-quotients of algebraic actions and their applications to character varieties, arXiv:1807.08540 "/> <meta name="citation_reference" content="citation_journal_title=Bull. Sci. Math.; citation_title=A lax monoidal Topological Quantum Field Theory for representation varieties; citation_author=A González-Prieto, M Logares, V Muñoz; citation_volume=161; citation_publication_date=2020; citation_doi=10.1016/j.bulsci.2020.102871; citation_id=CR11"/> <meta name="citation_reference" content="González-Prieto, A., Muñoz, V.: Motive of the $$SL_4$$ -character variety of torus knots. J. Algebra (2022). https://doi.org/10.1016/j.jalgebra.2022.06.008 "/> <meta name="citation_reference" content="citation_journal_title=Proc. Steklov Inst. Math.; citation_title=On the power structure over the Grothendieck ring of varieties and its applications; citation_author=S Gusein-Zade, I Luengo, A Melle-Hernández; citation_volume=258; citation_publication_date=2007; citation_pages=53-64; citation_doi=10.1134/S0081543807030066; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=Illinois J. Math.; citation_title=The -character variety of the figure eight knot; citation_author=M Heusener, V Muñoz, J Porti; citation_volume=60; citation_publication_date=2017; citation_pages=55-98; citation_id=CR14"/> <meta name="citation_reference" content="Huybrechts, D.: Fourier-Mukai transforms in algebraic geometry, Clarendon Press, (2006)"/> <meta name="citation_reference" content="Kauffman, L.: Statistical mechanics and the Jones polynomial, Contemporary Mathematics, (1988)"/> <meta name="citation_reference" content="citation_journal_title=Ann. Sc. Norm. Super. Pisa Cl. Sci.; citation_title=Twisted Alexander polynomials for irreducible -representations of torus knots; citation_author=T Kitano, T Morifuji; citation_volume=5; citation_issue=11; citation_publication_date=2012; citation_pages=395-406; citation_id=CR17"/> <meta name="citation_reference" content="citation_journal_title=J. Algebra; citation_title=Minimal affine coordinates for -character varieties of free groups; citation_author=S Lawton; citation_volume=320; citation_publication_date=2008; citation_pages=3773-3810; citation_doi=10.1016/j.jalgebra.2008.06.031; citation_id=CR18"/> <meta name="citation_reference" content="citation_journal_title=Pac. J. Math.; citation_title=E-polynomial of the -character variety of free groups; citation_author=S Lawton, V Muñoz; citation_volume=282; citation_publication_date=2016; citation_pages=173-202; citation_doi=10.2140/pjm.2016.282.173; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=Represent. Theory; citation_title=Varieties of characters, Algebr; citation_author=S Lawton, A Sikora; citation_volume=20; citation_publication_date=2017; citation_pages=1133-1141; citation_doi=10.1007/s10468-017-9679-y; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=Ann. Math.; citation_title=A representation of orientable combinatorial 3-manifolds; citation_author=W Lickorish; citation_volume=76; citation_publication_date=1962; citation_pages=531-540; citation_doi=10.2307/1970373; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=Rev. Mat. Complut.; citation_title=Hodge polynomials of -character varieties for curves of small genus; citation_author=M Logares, V Muñoz, P Newstead; citation_volume=26; citation_publication_date=2013; citation_pages=635-703; citation_doi=10.1007/s13163-013-0115-5; citation_id=CR22"/> <meta name="citation_reference" content="Lubotzky, A., Magid, A.: Varieties of representations of finitely generated groups, Mem. Am. Math. Soc. 58 (1985)"/> <meta name="citation_reference" content="citation_journal_title=Rocky Mountain J. Math.; citation_title=The SU(2)-character varieties of torus knots; citation_author=J Marínez, V Muñoz; citation_volume=2; citation_issue=45; citation_publication_date=2015; citation_pages=583-600; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Rev. Mat. Complut.; citation_title=The -character varieties of torus knots; citation_author=V Muñoz; citation_volume=22; citation_publication_date=2009; citation_pages=489-497; citation_doi=10.5209/rev_REMA.2009.v22.n2.16290; citation_id=CR25"/> <meta name="citation_reference" content="V. Muñoz and J. Porti, Geometry of the $$SL(3,{\mathbb{C}})$$ -character variety of torus knots, Algebraic Geometric Topology 16 (2016) 397–426. (also arXiv:1409.4784 )"/> <meta name="citation_reference" content="Rolfsen, D. Knots and links, Publish or Perish, (1990)"/> <meta name="citation_reference" content="citation_journal_title=Comm. Math. Phys.; citation_title=Quantum field theory and the Jones polynomial; citation_author=E Witten; citation_volume=121; citation_publication_date=1989; citation_pages=351-399; citation_doi=10.1007/BF01217730; citation_id=CR28"/> <meta name="citation_author" content="González-Prieto, Ángel"/> <meta name="citation_author_email" content="angelgonzalezprieto@ucm.es"/> <meta name="citation_author_institution" content="Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid, Spain"/> <meta name="citation_author_institution" content="Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid, Spain"/> <meta name="citation_author" content="Muñoz, Vicente"/> <meta name="citation_author_email" content="vicente.munoz@ucm.es"/> <meta name="citation_author_institution" content="Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid, Spain"/> <meta name="citation_author_institution" content="Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain"/> <meta name="format-detection" content="telephone=no"/> <meta name="citation_cover_date" content="2023/04/01"/> <meta property="og:url" content="https://link.springer.com/article/10.1007/s00009-023-02300-w"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="Representation Varieties of Twisted Hopf Links - Mediterranean Journal of Mathematics"/> <meta property="og:description" content="In this paper, we study the representation theory of the fundamental group of the complement of a Hopf link with n twists. A general framework is described to analyze the $${{\,\textrm{SL}\,}}_r({\mathbb {C}})$$ SL r ( C ) -representation varieties of these twisted Hopf links as byproduct of a combinatorial problem and equivariant Hodge theory. As application, close formulas of their E-polynomials are provided for ranks 2 and 3, both for the representation and character varieties."/> <meta property="og:image" content="https://static-content.springer.com/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Fig1_HTML.png"/> <meta name="format-detection" content="telephone=no"> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-3c86549cfc.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script type="text/javascript"> config = { env: 'live', site: '9.springer.com', siteWithPath: '9.springer.com' + window.location.pathname, twitterHashtag: '9', cmsPrefix: 'https://studio-cms.springernature.com/studio/', publisherBrand: 'Springer', mustardcut: false }; </script> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/s00009-023-02300-w","Page":"article","springerJournal":true,"Publishing Model":"Hybrid Access","page":{"attributes":{"environment":"live"}},"Country":"HK","japan":false,"doi":"10.1007-s00009-023-02300-w","Journal Id":9,"Journal Title":"Mediterranean Journal of Mathematics","imprint":"Birkhäuser","Keywords":"Hopf link, representation varieties, character varieties, E-polynomial, Primary 57K31, Secondary 14D20, 14C30","kwrd":["Hopf_link","representation_varieties","character_varieties","E-polynomial","Primary_57K31","Secondary_14D20","14C30"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"Y","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"open","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"vgzm.415900-10.1007-s00009-023-02300-w","Full HTML":"Y","Subject Codes":["SCM","SCM00009"],"pmc":["M","M00009"],"session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"1660-5454","pissn":"1660-5446"},"type":"Article","category":{"pmc":{"primarySubject":"Mathematics","primarySubjectCode":"M","secondarySubjects":{"1":"Mathematics, general"},"secondarySubjectCodes":{"1":"M00009"}},"sucode":"SC10","articleType":"Article"},"attributes":{"deliveryPlatform":"oscar"}},"Event Category":"Article"}]; </script> <script data-test="springer-link-article-datalayer"> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true } ], darwinAvailable: true } } }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <link rel="canonical" href="https://link.springer.com/article/10.1007/s00009-023-02300-w"/> <script type="application/ld+json">{"mainEntity":{"headline":"Representation Varieties of Twisted Hopf Links","description":"In this paper, we study the representation theory of the fundamental group of the complement of a Hopf link with n twists. A general framework is described to analyze the \n \n \n \n $${{\\,\\textrm{SL}\\,}}_r({\\mathbb {C}})$$\n \n -representation varieties of these twisted Hopf links as byproduct of a combinatorial problem and equivariant Hodge theory. As application, close formulas of their E-polynomials are provided for ranks 2 and 3, both for the representation and character varieties.","datePublished":"2023-01-29T00:00:00Z","dateModified":"2023-01-29T00:00:00Z","pageStart":"1","pageEnd":"30","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1007/s00009-023-02300-w","keywords":["Hopf link","representation varieties","character varieties","E-polynomial","Primary 57K31","Secondary 14D20","14C30","Mathematics","general"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Fig3_HTML.png"],"isPartOf":{"name":"Mediterranean Journal of Mathematics","issn":["1660-5454","1660-5446"],"volumeNumber":"20","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Springer International Publishing","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Ángel González-Prieto","affiliation":[{"name":"Universidad Complutense de Madrid","address":{"name":"Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Madrid, Spain","@type":"PostalAddress"},"@type":"Organization"},{"name":"Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)","address":{"name":"Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid, Spain","@type":"PostalAddress"},"@type":"Organization"}],"email":"angelgonzalezprieto@ucm.es","@type":"Person"},{"name":"Vicente Muñoz","affiliation":[{"name":"Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)","address":{"name":"Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid, Spain","@type":"PostalAddress"},"@type":"Organization"},{"name":"Universidad de Málaga","address":{"name":"Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> </head> <body class="" > <!-- Google Tag Manager (noscript) --> <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> <a class="c-skip-link" href="#main">Skip to main content</a> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1007/s00009-023-02300-w?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> <article lang="en" id="main" class="app-masthead__colour-18"> <section class="app-masthead " aria-label="article masthead"> <div class="app-masthead__container"> <div class="app-article-masthead u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="article" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs c-breadcrumbs--contrast" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/journal/9" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="article page" data-track-category="article" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Mediterranean Journal of Mathematics</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Article</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="article-title" data-article-title="">Representation Varieties of Twisted Hopf Links</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item"> Published: <time datetime="2023-01-29">29 January 2023</time> </li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span data-test="journal-volume">Volume 20</span>, article number <span data-test="article-number">89</span>, (<span data-test="article-publication-year">2023</span>) </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this article" data-track-category="article body" data-track-label="link">Cite this article</a> </li> </ul> <div class="app-article-masthead__buttons" data-test="download-article-link-wrapper" data-track-context="masthead"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s00009-023-02300-w.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> <p class="app-article-masthead__access"> <svg width="16" height="16" focusable="false" role="img" aria-hidden="true"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-check-filled-medium"></use></svg> You have full access to this <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link">open access</a> article</p> </div> </div> <div class="app-article-masthead__brand"> <a href="/journal/9" class="app-article-masthead__journal-link" data-track="click_journal_home" data-track-action="journal homepage" data-track-context="article page" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="159" srcset="https://media.springernature.com/w120/springer-static/cover-hires/journal/9?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/journal/9?as=webp 2x"> <img width="72" height="95" src="https://media.springernature.com/w72/springer-static/cover-hires/journal/9?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/journal/9?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title">Mediterranean Journal of Mathematics</span> </a> <a href="https://link.springer.com/journal/9/aims-and-scope" class="app-article-masthead__submission-link" data-track="click_aims_and_scope" data-track-action="aims and scope" data-track-context="article page" data-track-label="link"> Aims and scope <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> <a href="https://submission.nature.com/new-submission/9/3" class="app-article-masthead__submission-link" data-track="click_submit_manuscript" data-track-context="article masthead on springerlink article page" data-track-action="submit manuscript" data-track-label="link"> Submit manuscript <svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-arrow-right-medium"></use></svg> </a> </div> </div> </div> </section> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="u-serif js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container"> <div class="c-context-bar__title"> Representation Varieties of Twisted Hopf Links </div> <div data-test="inCoD" data-track-context="sticky banner"> <div class="c-pdf-container"> <div class="c-pdf-download u-clear-both u-mb-16"> <a href="/content/pdf/10.1007/s00009-023-02300-w.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="pdf-link" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="button" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-eds-i-download-medium"/></svg> </a> </div> </div> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-_ngel-Gonz_lez_Prieto-Aff1-Aff2" data-author-popup="auth-_ngel-Gonz_lez_Prieto-Aff1-Aff2" data-author-search="González-Prieto, Ángel" data-corresp-id="c1">Ángel González-Prieto<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff1">1</a>,<a href="#Aff2">2</a></sup> & </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Vicente-Mu_oz-Aff2-Aff3" data-author-popup="auth-Vicente-Mu_oz-Aff2-Aff3" data-author-search="Muñoz, Vicente">Vicente Muñoz</a><sup class="u-js-hide"><a href="#Aff2">2</a>,<a href="#Aff3">3</a></sup> </li></ul> <div data-test="article-metrics"> <ul class="app-article-metrics-bar u-list-reset"> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>1078 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-citations-medium"></use> </svg>2 <span class="app-article-metrics-bar__label">Citations</span></p> </li> <li class="app-article-metrics-bar__item"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-altmetric-medium"></use> </svg>2 <span class="app-article-metrics-bar__label">Altmetric</span></p> </li> <li class="app-article-metrics-bar__item app-article-metrics-bar__item--metrics"> <p class="app-article-metrics-bar__details"><a href="/article/10.1007/s00009-023-02300-w/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Explore all metrics <svg class="u-icon app-article-metrics-bar__arrow-icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-arrow-right-medium"></use> </svg></a></p> </li> </ul> </div> <div class="u-mt-32"> </div> </header> </div> <div data-article-body="true" data-track-component="article body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>In this paper, we study the representation theory of the fundamental group of the complement of a Hopf link with <i>n</i> twists. A general framework is described to analyze the <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_r({\mathbb {C}})\)</span>-representation varieties of these twisted Hopf links as byproduct of a combinatorial problem and equivariant Hodge theory. As application, close formulas of their <i>E</i>-polynomials are provided for ranks 2 and 3, both for the representation and character varieties.</p></div></div></section> <div data-test="cobranding-download"> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3Aplaceholder%2Fimages/placeholder-figure-springernature.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1134/S0021364018110048?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1134/S0021364018110048">On the Hopf-Induced Deformation of a Topological Locus </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">28 May 2018</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1007%2Fs10711-023-00777-z/MediaObjects/10711_2023_777_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s10711-023-00777-z?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/s10711-023-00777-z">Hyperbolic twisted torus links </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">19 February 2023</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3Aplaceholder%2Fimages/placeholder-figure-springernature.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/s00208-018-1659-y?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/s00208-018-1659-y">Twisted K-theoretic Gromov–Witten invariants </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__date">21 February 2018</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732358093, embedded_user: 'null' } }); </script> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=9" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1"><span class="c-article-section__title-number">1 </span>Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>This work studies a special type of algebraic invariants of 3-dimensional links. To be precise, given a link <span class="mathjax-tex">\(L \subset S^3\)</span> and a complex affine algebraic group <i>G</i>, we can form the so-called <i>G</i>-representation variety of the link</p><div id="Equ23" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R(L, G) = {{\,\textrm{Hom}\,}}(\pi _1(S^3-L), G), \end{aligned}$$</span></div></div><p>which parametrizes representations of the fundamental group of the link complement into <i>G</i>. This set can be naturally equipped with an algebraic structure in such a way that <i>R</i>(<i>L</i>, <i>G</i>) becomes a complex affine variety. In particular, its cohomology is endowed with a mixed Hodge structure from which we can compute the <i>E</i>-polynomial</p><div id="Equ24" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(R(L,G)) = \sum _{k,p,q} (-1)^k h_c^{k,p,q}(R(L,G)) \, u^pv^q \in {\mathbb {Z}}[u,v], \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\(h^{k,p,q}_{c}(R(L,G))= h^{p,q}(H_{c}^k(R(L,G)))=\dim {{\,\textrm{Gr}\,}}^{p}_{F}{{\,\textrm{Gr}\,}}^{W}_{p+q}H^{k}_{c}(R(L,G))\)</span> are the compactly supported Hodge numbers of <i>R</i>(<i>L</i>, <i>G</i>). In the case that <span class="mathjax-tex">\(h_c^{k,p,q}(R(L,G)) = 0\)</span> for <span class="mathjax-tex">\(p \ne q\)</span>, it is customary to write the <i>E</i>-polynomial in the variable <span class="mathjax-tex">\(q = uv\)</span>.</p><p>Since the fundamental group of the link complement does not vary under diffeotopy of the link, the <i>E</i>-polynomial <i>e</i>(<i>R</i>(<i>L</i>, <i>G</i>)) is an algebraic invariant of the link <i>L</i> up to link equivalence. This <i>E</i>-polynomial provides an invariant encoding the algebraic structure of the representation variety attached to <i>L</i>, and typically differs from other classical invariants of <i>L</i> such as its Jones polynomial [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Kauffman, L.: Statistical mechanics and the Jones polynomial, Contemporary Mathematics, (1988)" href="/article/10.1007/s00009-023-02300-w#ref-CR16" id="ref-link-section-d90372366e1157">16</a>] or its <i>A</i>-polynomial [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Cooper, D., Culler, M., Gillet, H., Long, D., Shalen, P.: Plane curves associated to character varieties of 3-manifolds. Invent. Math. 118, 47–84 (1994)" href="/article/10.1007/s00009-023-02300-w#ref-CR4" id="ref-link-section-d90372366e1164">4</a>]. In fact, the geometry of the representation variety has been exploited several times in the literature to prove striking results of 3-manifolds. For instance, in the foundational work of Culler and Shalen [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Culler, M., Shalen, P.: Varieties of group representations and splitting of 3-manifolds. Ann. Math. 2(117), 109–146 (1983)" href="/article/10.1007/s00009-023-02300-w#ref-CR3" id="ref-link-section-d90372366e1167">3</a>], the authors used some simple properties of the <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_2({\mathbb {C}})\)</span>-representation variety to provide new proofs of Thurston’s theorem stating that the space of hyperbolic structures on an acylindrical 3-manifold is compact, and of the Smith conjecture, which claims that any quotient with cyclic stabilizers of a closed oriented 3-manifold with non-trivial branch knot is not simply-connected [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Culler, M., Shalen, P.: Varieties of group representations and splitting of 3-manifolds. Ann. Math. 2(117), 109–146 (1983)" href="/article/10.1007/s00009-023-02300-w#ref-CR3" id="ref-link-section-d90372366e1214">3</a>, Section 5].</p><p>Representation varieties also play a central role in mathematical physics. In the very influential paper [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Witten, E.: Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121, 351–399 (1989)" href="/article/10.1007/s00009-023-02300-w#ref-CR28" id="ref-link-section-d90372366e1220">28</a>], Witten applied Chern–Simons theory to geometrically quantize <span class="mathjax-tex">\({{\,\textrm{SU}\,}}(2)\)</span>-representation varieties of knot complements, leading to a Topological Quantum Field Theory that computes the Jones polynomial of the knot. In some sense, our approach of looking at the <i>E</i>-polynomial of the representation variety can be understood as an alternative quantization of the representation varieties, more similar to Fourier–Mukai transforms in derived geometry [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="Huybrechts, D.: Fourier-Mukai transforms in algebraic geometry, Clarendon Press, (2006)" href="/article/10.1007/s00009-023-02300-w#ref-CR15" id="ref-link-section-d90372366e1261">15</a>], in the sense that it consists of a pull-push construction (with identity kernel), than to path integrals as arising in Chern–Simons theory [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 28" title="Witten, E.: Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121, 351–399 (1989)" href="/article/10.1007/s00009-023-02300-w#ref-CR28" id="ref-link-section-d90372366e1264">28</a>] (see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="González-Prieto, A., Logares, M., Muñoz, V.: A lax monoidal Topological Quantum Field Theory for representation varieties. Bull. Sci. Math. 161, 102871 (2020)" href="/article/10.1007/s00009-023-02300-w#ref-CR11" id="ref-link-section-d90372366e1268">11</a>] for more information).</p><p>For these reasons, the computation of the <i>E</i>-polynomials <i>e</i>(<i>R</i>(<i>L</i>, <i>G</i>)) has been object of intense research in the recent years. The representation variety of torus knots for <span class="mathjax-tex">\(G = {{\,\textrm{SL}\,}}_2({\mathbb {C}})\)</span> was studied in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 25" title="Muñoz, V.: The 
 
 
 
 $$SL(2,{\mathbb{C} })$$
 
 
 S
 L
 (
 2
 ,
 C
 )
 
 
 -character varieties of torus knots. Rev. Mat. Complut. 22, 489–497 (2009)" href="/article/10.1007/s00009-023-02300-w#ref-CR25" id="ref-link-section-d90372366e1338">25</a>], and for <span class="mathjax-tex">\(G={{\,\textrm{SU}\,}}(2)\)</span> in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Marínez, J., Muñoz, V.: The SU(2)-character varieties of torus knots. Rocky Mountain J. Math. 2(45), 583–600 (2015)" href="/article/10.1007/s00009-023-02300-w#ref-CR24" id="ref-link-section-d90372366e1381">24</a>]; whereas the <span class="mathjax-tex">\(G={{\,\textrm{SL}\,}}_3({\mathbb {C}})\)</span> case was accomplished in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="V. Muñoz and J. Porti, Geometry of the 
 
 
 
 $$SL(3,{\mathbb{C}})$$
 
 
 S
 L
 (
 3
 ,
 C
 )
 
 
 -character variety of torus knots, Algebraic Geometric Topology 16 (2016) 397–426. (also 
 arXiv:1409.4784
 
 )" href="/article/10.1007/s00009-023-02300-w#ref-CR26" id="ref-link-section-d90372366e1432">26</a>], and recently the case <span class="mathjax-tex">\(G={{\,\textrm{SL}\,}}_4({\mathbb {C}})\)</span> in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="González-Prieto, A., Muñoz, V.: Motive of the 
 
 
 
 $$SL_4$$
 
 
 S
 
 L
 4
 
 
 
 -character variety of torus knots. J. Algebra (2022). 
 https://doi.org/10.1016/j.jalgebra.2022.06.008
 
 " href="/article/10.1007/s00009-023-02300-w#ref-CR12" id="ref-link-section-d90372366e1484">12</a>] through a computer-aided proof. More exotic knots have also been studied, as the figure eight knot in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Heusener, M., Muñoz, V., Porti, J.: The 
 
 
 
 $$SL(3,{\mathbb{C} })$$
 
 
 S
 L
 (
 3
 ,
 C
 )
 
 
 -character variety of the figure eight knot. Illinois J. Math. 60, 55–98 (2017)" href="/article/10.1007/s00009-023-02300-w#ref-CR14" id="ref-link-section-d90372366e1487">14</a>]. However, despite of these advances for representation varieties of knots, almost nothing is known in the case of links. The most studied case is the character variety of trivial links, i.e. representations of the free group, addressed in works such as [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Florentino, C., Lawton, S.: The topology of moduli spaces of free group representations. Math. Ann. 2(345), 453–489 (2009)" href="/article/10.1007/s00009-023-02300-w#ref-CR6" id="ref-link-section-d90372366e1490">6</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="Florentino, C., Lawton, S.: Singularities of free group character varieties. Pac. J. Math. 260, 149–179 (2012)" href="/article/10.1007/s00009-023-02300-w#ref-CR7" id="ref-link-section-d90372366e1493">7</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Lawton, S.: Minimal affine coordinates for 
 
 
 
 $$SL(3, {\mathbb{C} })$$
 
 
 S
 L
 (
 3
 ,
 C
 )
 
 
 -character varieties of free groups. J. Algebra 320, 3773–3810 (2008)" href="/article/10.1007/s00009-023-02300-w#ref-CR18" id="ref-link-section-d90372366e1496">18</a>] (focused on the topology) and [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="Cavazos, S., Lawton, S.: E-polynomial of 
 
 
 
 $$SL_2({\mathbb{C} })$$
 
 
 S
 
 L
 2
 
 
 (
 C
 )
 
 
 
 -character varieties of free groups. Int. J. Math. 25, 1450058 (2014)" href="/article/10.1007/s00009-023-02300-w#ref-CR1" id="ref-link-section-d90372366e1500">1</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Florentino, C., Nozad, A., Zamora, A.: 
 
 
 
 $$E$$
 
 E
 
 -polynomials of 
 
 
 
 $$SL_n$$
 
 
 S
 
 L
 n
 
 
 
 and 
 
 
 
 $$PGL_n$$
 
 
 P
 G
 
 L
 n
 
 
 
 -character varieties of free groups, 
 arXiv:1912.05852
 
 " href="/article/10.1007/s00009-023-02300-w#ref-CR8" id="ref-link-section-d90372366e1503">8</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Lawton, S., Muñoz, V.: E-polynomial of the 
 
 
 
 $$SL(3, {\mathbb{C} })$$
 
 
 S
 L
 (
 3
 ,
 C
 )
 
 
 -character variety of free groups. Pac. J. Math. 282, 173–202 (2016)" href="/article/10.1007/s00009-023-02300-w#ref-CR19" id="ref-link-section-d90372366e1506">19</a>] (computing the <i>E</i>-polynomials). Very recently, more complicated links were studied, such as the twisted Alexander polynomial for the Borromean link in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Chen, H., Yu, T.: The 
 
 
 
 $$SL(2, {\mathbb{C}})$$
 
 
 S
 L
 (
 2
 ,
 C
 )
 
 
 -character variety of the Borromean link, 
 arXiv:2202.07429
 
 " href="/article/10.1007/s00009-023-02300-w#ref-CR2" id="ref-link-section-d90372366e1512">2</a>].</p><p>The aim of this work is to give the first steps towards an extension of the techniques to links. In particular, we shall focus on the “twisted” Hopf link <span class="mathjax-tex">\(H_n\)</span>, obtained by twisting a classical Hopf link with 2 crossings to get 2<i>n</i> crossings, as depicted in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s00009-023-02300-w#Fig1">1</a>.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s00009-023-02300-w/figures/1" rel="nofollow"><picture><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="686"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>The twisted Hopf link of <i>n</i> twists</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s00009-023-02300-w/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The fundamental group of the link complement of <span class="mathjax-tex">\(H_n\)</span> can be computed through a Wirtinger presentation (Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar6">3.1</a>) giving rise to the group <span class="mathjax-tex">\(\Gamma _n = \langle a, b \,|\, [a^n,b] = 1 \rangle \)</span>. Therefore, the associated <i>G</i>-representation variety is</p><div id="Equ25" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R(H_n, G) = \left\{ (A,B) \in G^2 \,|\, [A^n,B] = 1\right\} . \end{aligned}$$</span></div></div><p>In this sense, <span class="mathjax-tex">\(R(H_n, G)\)</span> should be understood as the variety counting “supercommuting” elements of <i>G</i>, generalizing the case <span class="mathjax-tex">\(n=1\)</span> of the usual Hopf link that corresponds to commuting elements, as studied in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Florentino, C., Silva, J.: Hodge–Deligne polynomials of character varieties of free abelian groups. Open Math. 19, 338–362 (2021)" href="/article/10.1007/s00009-023-02300-w#ref-CR9" id="ref-link-section-d90372366e1858">9</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Logares, M., Muñoz, V., Newstead, P.: Hodge polynomials of 
 
 
 
 $$SL(2,{\mathbb{C}})$$
 
 
 S
 L
 (
 2
 ,
 C
 )
 
 
 -character varieties for curves of small genus. Rev. Mat. Complut. 26, 635–703 (2013)" href="/article/10.1007/s00009-023-02300-w#ref-CR22" id="ref-link-section-d90372366e1861">22</a>].</p><p>One of the main challenges we face in the study of the geometry of <span class="mathjax-tex">\(R(H_n, G)\)</span> is the analysis of the map <span class="mathjax-tex">\(p_n: G \rightarrow G\)</span>, <span class="mathjax-tex">\(A \mapsto A^n\)</span>. In this paper, we propose to split this analysis into two different frameworks, that we call the <i>combinatorial</i> and the <i>geometric</i>. The combinatorial setting focuses on the study of the configuration space of possible eigenvalues, and how it can degenerate under the map <span class="mathjax-tex">\(p_n\)</span>. We will show in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec7">4.1</a> that understanding these degenerations can be done systematically, and eventually it is performed by means of a thorough application of the inclusion-exclusion principle.</p><p>The geometric setting is discussed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec8">4.2</a>, where we show how the <i>E</i>-polynomial of the representation variety can be obtained from the possible Jordan forms. To this aim, both the stabilizer of <span class="mathjax-tex">\(A^n\)</span> in <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_r({\mathbb {C}})\)</span> under the conjugacy action (to parametrize the possible matrices <i>B</i>) and the stabilizer of <i>A</i> (through the conjugacy orbit of the Jordan form) play a role. Moreover, in the cases in which the Jordan form is not unique, but only unique up to permutation of eigenvalues, we show how the quotient by the corresponding symmetric group can be computed via equivariant Hodge theory, as developed in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec4">2.2</a>.</p><p>To show the feasibility of this approach, we apply it to the cases of rank 2 (Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec9">5</a>) and rank 3 (Sects. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec13">7</a> and <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec15">8</a>), obtaining the main result of this paper.</p> <h3 class="c-article__sub-heading" id="FPar1">Theorem</h3> <p>The <i>E</i>-polynomials of the <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_r({\mathbb {C}})\)</span>-representation variety of the twisted Hopf link <span class="mathjax-tex">\(H_n\)</span> with <i>n</i> twists for ranks <span class="mathjax-tex">\(r = 2,3\)</span>, are the following.</p><div id="Equ26" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\big (R(H_n, {{\,\textrm{SL}\,}}_{2}({\mathbb {C}}))\big )&= \left( (n-1)q^2+ n q -n+5)\right) (q^3-q), \\ e\big (R(H_n, {{\,\textrm{SL}\,}}_{3}({\mathbb {C}}))\big )&=\, (q^3-1)(q^2-1)q^2 \Big ( \left\lfloor \frac{n}{2} \right\rfloor (q^2-q)(q^2-q-1) \\&\quad +\frac{1}{2}n^2 (q^7+2q^6+2q^5+q^4-3q^3-3q^2+2q)\\&\quad -\frac{1}{2}n (3q^7+6q^6-3q^4 -17q^3 \\&\quad -q^2+12q) + q^7+2q^6-q^5-2q^4\\&\quad -6q^3+2q^2+13q\Big ). \end{aligned}$$</span></div></div> <p>Additionally, in this paper we will go a step forward and also study the associated character varieties. The key point is that, if we want to obtain a genuine moduli space, we must identify isomorphic representations. This can be done by means of the GIT quotient of the representation variety <i>R</i>(<i>L</i>, <i>G</i>) under the adjoint action of <i>G</i>, giving rise to the so-called character variety</p><div id="Equ112" class="c-article-equation"><div class="c-article-equation__content"><img src="//media.springernature.com/lw176/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Equ112_HTML.png" class="u-display-block" alt=""></div></div><p>It is well known [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Lubotzky, A., Magid, A.: Varieties of representations of finitely generated groups, Mem. Am. Math. Soc. 58 (1985)" href="/article/10.1007/s00009-023-02300-w#ref-CR23" id="ref-link-section-d90372366e2903">23</a>] that every representation is equivalent, under the GIT quotient, to a semi-simple representation. The semi-simple representations are those that are direct sums of irreducible ones. Hence <span class="mathjax-tex">\({\mathfrak {M}}(L,G)\)</span> is stratified according to partitions of <i>r</i>, where <span class="mathjax-tex">\(G={{\,\textrm{SL}\,}}_r({\mathbb {C}})\)</span>, corresponding to representations that are sums of irreducible representations of the ranks given in the partition. The <i>E</i>-polynomial of the reducible locus <span class="mathjax-tex">\({\mathfrak {M}}^{\textrm{red}}(L,G)\)</span> is computed inductively from the irreducible representations of lower ranks.</p><p>In the case of the twisted Hopf link <span class="mathjax-tex">\(H_n\)</span>, to compute the <i>E</i>-polynomial <span class="mathjax-tex">\(e({\mathfrak {M}}^{\textrm{irr}}(H_n,G))\)</span> we use the characterization that a representation is irreducible when <i>A</i>, <i>B</i> do not both leave invariant a proper subspace. This strategy is accomplished for rank 2 (Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec12">6</a>) and rank 3 (Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec18">9</a>), leading to the following result.</p> <h3 class="c-article__sub-heading" id="FPar2">Theorem</h3> <p>The <i>E</i>-polynomials of the <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_r({\mathbb {C}})\)</span>-character variety of the twisted Hopf link <span class="mathjax-tex">\(H_n\)</span> with <i>n</i> twists for ranks <span class="mathjax-tex">\(r = 2,3\)</span>, are the following.</p><div id="Equ27" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\left( {\mathfrak {M}}(H_n, {{\,\textrm{SL}\,}}_{2}({\mathbb {C}}))\right)&= q^2+1+(n-1)(q^2-q+1), \\ e({\mathfrak {M}}(H_n, {{\,\textrm{SL}\,}}_3({\mathbb {C}})))&= q^{4} + \frac{1}{2} {\left( q^{6} + 2 q^{5} - 4 q^{4} + q^{3} + 3 q^{2} - 3 q + 2\right) } {\left( n^{2} - 3 n + 2\right) } \\&\quad - {\left( q^{3} - 2 q - 1\right) } \left\lfloor \frac{n-1}{2} \right\rfloor + 3 {\left( q^{4} - q^{3} + q^{2} - q + 1\right) } {\left( n - 1\right) } \\&\quad - (q^{2} + 1){\left( n - 2\right) } + q^{3}(n -1). \end{aligned}$$</span></div></div> <p>It is worth mentioning that the strategies of computation described in this paper are not restricted to low rank, and work verbatim for arbitrary rank. However, the combinatorial analysis becomes exponentially more involved with increasing rank, so the higher rank cases are untreatable with a direct counting. An interesting future work would be to algorithmize the procedure of solving the combinatorial problem, so that the higher rank cases could be addressed via a computer aided-proof, as done in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="González-Prieto, A., Muñoz, V.: Motive of the 
 
 
 
 $$SL_4$$
 
 
 S
 
 L
 4
 
 
 
 -character variety of torus knots. J. Algebra (2022). 
 https://doi.org/10.1016/j.jalgebra.2022.06.008
 
 " href="/article/10.1007/s00009-023-02300-w#ref-CR12" id="ref-link-section-d90372366e3750">12</a>] for torus knots.</p><p>Finally, we would like to point out that this work is cornerstone to the understanding of representation varieties of general 3-manifolds. Recall that the Lickorish–Wallace theorem [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="Lickorish, W.: A representation of orientable combinatorial 3-manifolds. Ann. Math. 76, 531–540 (1962)" href="/article/10.1007/s00009-023-02300-w#ref-CR21" id="ref-link-section-d90372366e3756">21</a>] states that any closed orientable connected 3-manifold can be obtained by applying Dehn surgery around a link <span class="mathjax-tex">\(L \subset S^3\)</span>. This highlights the importance of (i) studying representation varieties for general links, not only knots; and (ii) the key role that the maps <span class="mathjax-tex">\(p_n(A)=A^n\)</span> play in this project, since they appear as part of the automorphism of the fundamental group of the torus around which surgery takes place.</p></div></div></section><section data-title="Representation Varieties and Character Varieties"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2"><span class="c-article-section__title-number">2 </span>Representation Varieties and Character Varieties</h2><div class="c-article-section__content" id="Sec2-content"><p>Let <span class="mathjax-tex">\(\Gamma \)</span> be a finitely generated group, and let <i>G</i> be a complex reductive Lie group. A <i>representation</i> of <span class="mathjax-tex">\(\Gamma \)</span> in <i>G</i> is a homomorphism <span class="mathjax-tex">\(\rho : \Gamma \rightarrow G\)</span>. Consider a presentation <span class="mathjax-tex">\(\Gamma =\langle \gamma _1,\ldots , \gamma _k | \{r_{\lambda }\}_{\lambda \in \Lambda } \rangle \)</span>, where <span class="mathjax-tex">\(\Lambda \)</span> is the (possibly infinite) indexing set of relations of <span class="mathjax-tex">\(\Gamma \)</span>. Then <span class="mathjax-tex">\(\rho \)</span> is completely determined by the <i>k</i>-tuple <span class="mathjax-tex">\((A_1,\ldots , A_k)=(\rho (\gamma _1),\ldots , \rho (\gamma _k))\)</span> subject to the relations <span class="mathjax-tex">\(r_\lambda (A_1,\ldots , A_k)=\textrm{Id}\)</span>, for all <span class="mathjax-tex">\(\lambda \in \Lambda \)</span>. The <i>representation variety</i> is</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R(\Gamma ,G)= & {} \, {{\,\textrm{Hom}\,}}(\Gamma , G) \nonumber \\= & {} \, \{(A_1,\ldots , A_k) \in G^k \, | \, r_\lambda (A_1,\ldots , A_k)=\textrm{Id},\forall \lambda \, \}\subset G^{k}\, . \end{aligned}$$</span></div><div class="c-article-equation__number"> (1) </div></div><p>Therefore, <span class="mathjax-tex">\(R(\Gamma ,G)\)</span> is an affine algebraic set. Even though <span class="mathjax-tex">\(\Lambda \)</span> may be an infinite set, <span class="mathjax-tex">\( R(\Gamma ,G)\)</span> is defined by finitely many equations, as a consequence of the noetherianity of the coordinate ring of <span class="mathjax-tex">\(G^k\)</span>.</p><p>We say that two representations <span class="mathjax-tex">\(\rho \)</span> and <span class="mathjax-tex">\(\rho '\)</span> are equivalent if there exists <span class="mathjax-tex">\(g \in G\)</span> such that <span class="mathjax-tex">\(\rho '(\gamma )=g^{-1} \rho (\gamma ) g\)</span>, for every <span class="mathjax-tex">\(\gamma \in \Gamma \)</span>. The moduli space of representations, also known as the <i>character variety</i>, is the GIT quotient</p><div id="Equ113" class="c-article-equation"><div class="c-article-equation__content"><img src="//media.springernature.com/lw177/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Equ113_HTML.png" class="u-display-block" alt=""></div></div><p>Recall that by definition of the GIT quotient for an affine variety, if we write <span class="mathjax-tex">\( R(\Gamma ,G)={{\,\textrm{Spec}\,}}A\)</span>, then <span class="mathjax-tex">\(M (\Gamma ,G)={{\,\textrm{Spec}\,}}A^{G}\)</span>, where <span class="mathjax-tex">\(A^G\)</span> is the finitely generated <i>k</i>-algebra of invariant elements of <i>A</i> under the induced action of <i>G</i>.</p><p>A representation <span class="mathjax-tex">\(\rho \)</span> is <i>reducible</i> if there exists some proper linear subspace <span class="mathjax-tex">\(W\subset V\)</span> such that for all <span class="mathjax-tex">\(\gamma \in \Gamma \)</span> we have <span class="mathjax-tex">\(\rho (\gamma )(W)\subset W\)</span>; otherwise <span class="mathjax-tex">\(\rho \)</span> is <i>irreducible</i>. If <span class="mathjax-tex">\(\rho \)</span> is reducible, then there is a flag of subspaces <span class="mathjax-tex">\(0=W_0\subsetneq W_1\subsetneq \ldots \subsetneq W_r=V\)</span> such that <span class="mathjax-tex">\(\rho \)</span> leaves <span class="mathjax-tex">\(W_i\)</span> invariant, and it induces an irreducible representation <span class="mathjax-tex">\(\rho _i\)</span> in the quotient <span class="mathjax-tex">\(V_i=W_i/W_{i-1}\)</span>, <span class="mathjax-tex">\(i=1,\ldots ,r\)</span>. Then <span class="mathjax-tex">\(\rho \)</span> and <span class="mathjax-tex">\({\hat{\rho }}=\bigoplus \rho _i\)</span> define the same point in the quotient <span class="mathjax-tex">\({\mathfrak {M}}(\Gamma ,G)\)</span>. We say that <span class="mathjax-tex">\({\hat{\rho }}\)</span> is a semi-simple representation, and that <span class="mathjax-tex">\(\rho \)</span> and <span class="mathjax-tex">\({\hat{\rho }}\)</span> are S-equivalent. The space <span class="mathjax-tex">\({\mathfrak {M}}(\Gamma ,G)\)</span> parametrizes semi-simple representations [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Lubotzky, A., Magid, A.: Varieties of representations of finitely generated groups, Mem. Am. Math. Soc. 58 (1985)" href="/article/10.1007/s00009-023-02300-w#ref-CR23" id="ref-link-section-d90372366e5423">23</a>, Thm. 1.28] up to conjugation.</p><p>The name ‘character variety’ for <span class="mathjax-tex">\( {\mathfrak {M}}(\Gamma ,G)\)</span> is justified by the following fact. Suppose now that <span class="mathjax-tex">\(G={{\,\textrm{SL}\,}}_r({\mathbb {C}})\)</span>. Given a representation <span class="mathjax-tex">\(\rho : \Gamma \rightarrow G\)</span>, we define its <i>character</i> as the map <span class="mathjax-tex">\(\chi _\rho : \Gamma \rightarrow {\mathbb {C}}\)</span>, <span class="mathjax-tex">\(\chi _\rho (g)={{\,\textrm{tr}\,}}\rho (g)\)</span>. Note that two equivalent representations <span class="mathjax-tex">\(\rho \)</span> and <span class="mathjax-tex">\(\rho '\)</span> have the same character. There is a character map <span class="mathjax-tex">\(\chi : R(\Gamma ,G)\rightarrow {\mathbb {C}}^\Gamma \)</span>, <span class="mathjax-tex">\(\rho \mapsto \chi _\rho \)</span>, whose image</p><div id="Equ28" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathfrak {X}}(\Gamma ,G)=\chi (R(\Gamma ,G)) \end{aligned}$$</span></div></div><p>leads to a natural algebraic map</p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathfrak {M}}(\Gamma ,G)\rightarrow {\mathfrak {X}}(\Gamma ,G). \end{aligned}$$</span></div><div class="c-article-equation__number"> (2) </div></div><p>It turns out that this map is an isomorphism for <span class="mathjax-tex">\(G = {{\,\textrm{SL}\,}}_{r}({\mathbb {C}})\)</span> cf. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Lubotzky, A., Magid, A.: Varieties of representations of finitely generated groups, Mem. Am. Math. Soc. 58 (1985)" href="/article/10.1007/s00009-023-02300-w#ref-CR23" id="ref-link-section-d90372366e5960">23</a>, Chapter 1]. This is the same as to say that <span class="mathjax-tex">\(A^G\)</span> is generated by the traces <span class="mathjax-tex">\(\chi _\rho \)</span>, <span class="mathjax-tex">\(\rho \in R(\Gamma ,G)\)</span>. In other words, in this case <span class="mathjax-tex">\( {\mathfrak {M}}(\Gamma ,G)\)</span> is made of characters, justifying its name. However, for other reductive groups the map (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ2">2</a>) may not be an isomorphism, as for <span class="mathjax-tex">\(G = \textrm{SO}_2({\mathbb {C}})\)</span> [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="Florentino, C., Lawton, S.: Singularities of free group character varieties. Pac. J. Math. 260, 149–179 (2012)" href="/article/10.1007/s00009-023-02300-w#ref-CR7" id="ref-link-section-d90372366e6125">7</a>, Appendix A]. For a general discussion on this issue, see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Lawton, S., Sikora, A.: Varieties of characters, Algebr. Represent. Theory 20, 1133–1141 (2017)" href="/article/10.1007/s00009-023-02300-w#ref-CR20" id="ref-link-section-d90372366e6128">20</a>].</p><h3 class="c-article__sub-heading" id="Sec3"><span class="c-article-section__title-number">2.1 </span>Hodge Structures and <i>E</i>-Polynomials</h3><p>A pure Hodge structure of weight <i>k</i> consists of a finite dimensional complex vector space <i>H</i> with a real structure, and a decomposition <span class="mathjax-tex">\(H=\bigoplus _{k=p+q} H^{p,q}\)</span> such that <span class="mathjax-tex">\(H^{q,p}=\overline{H^{p,q}}\)</span>, the bar meaning complex conjugation on <i>H</i>. A Hodge structure of weight <i>k</i> gives rise to the so-called Hodge filtration, which is a descending filtration <span class="mathjax-tex">\(F^{p}=\bigoplus _{s\ge p}H^{s,k-s}\)</span>. We define <span class="mathjax-tex">\({{\,\textrm{Gr}\,}}^{p}_{F}(H):=F^{p}/ F^{p+1}=H^{p,k-p}\)</span>.</p><p>A mixed Hodge structure consists of a finite dimensional complex vector space <i>H</i> with a real structure, an ascending (weight) filtration <span class="mathjax-tex">\(\cdots \subset W_{k-1}\subset W_k \subset \cdots \subset H\)</span> (defined over <span class="mathjax-tex">\({\mathbb {R}}\)</span>) and a descending (Hodge) filtration <i>F</i> such that <i>F</i> induces a pure Hodge structure of weight <i>k</i> on each <span class="mathjax-tex">\({{\,\textrm{Gr}\,}}^{W}_{k}(H)=W_{k}/W_{k-1}\)</span>. We define <span class="mathjax-tex">\(H^{p,q}:= {{\,\textrm{Gr}\,}}^{p}_{F}{{\,\textrm{Gr}\,}}^{W}_{p+q}(H)\)</span> and write <span class="mathjax-tex">\(h^{p,q}\)</span> for the <i>Hodge number</i> <span class="mathjax-tex">\(h^{p,q} :=\dim H^{p,q}\)</span>.</p><p>Let <i>Z</i> be any quasi-projective algebraic variety (possibly non-smooth or non-compact). The cohomology groups <span class="mathjax-tex">\(H^k(Z)\)</span> and the cohomology groups with compact support <span class="mathjax-tex">\(H^k_c(Z)\)</span> are endowed with mixed Hodge structures [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Deligne, P.: Théorie de Hodge II, Publ. Math. I.H.E.S. 40 5–57 (1971)" href="/article/10.1007/s00009-023-02300-w#ref-CR5" id="ref-link-section-d90372366e6839">5</a>]. We define the <i>Hodge numbers</i> of <i>Z</i> by <span class="mathjax-tex">\(h^{k,p,q}_{c}(Z)= h^{p,q}(H_{c}^k(Z))=\dim {{\,\textrm{Gr}\,}}^{p}_{F}{{\,\textrm{Gr}\,}}^{W}_{p+q}H^{k}_{c}(Z)\)</span> . The <i>E</i>-polynomial is defined as</p><div id="Equ29" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(Z):=\sum _{p,q,k} (-1)^{k}h^{k,p,q}_{c}(Z) u^{p}v^{q}. \end{aligned}$$</span></div></div><p>The key property of Hodge–Deligne polynomials that permits their calculation is that they are additive for stratifications of <i>Z</i>. If <i>Z</i> is a complex algebraic variety and <span class="mathjax-tex">\(Z=\bigsqcup _{i=1}^{n}Z_{i}\)</span>, where all <span class="mathjax-tex">\(Z_i\)</span> are locally closed in <i>Z</i>, then <span class="mathjax-tex">\(e(Z)=\sum _{i=1}^{n}e(Z_{i})\)</span>. Also <span class="mathjax-tex">\(e(X\times Y)=e(X)e(Y)\)</span> or, more generally, <span class="mathjax-tex">\(e(X) = e(F)e(B)\)</span> for any fiber bundle <span class="mathjax-tex">\(F \rightarrow X \rightarrow B\)</span> in the Zariski topology [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="González-Prieto, A.: Pseudo-quotients of algebraic actions and their applications to character varieties, 
 arXiv:1807.08540
 
 " href="/article/10.1007/s00009-023-02300-w#ref-CR10" id="ref-link-section-d90372366e7434">10</a>, Proposition 4.6]. Moreover, by [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Logares, M., Muñoz, V., Newstead, P.: Hodge polynomials of 
 
 
 
 $$SL(2,{\mathbb{C}})$$
 
 
 S
 L
 (
 2
 ,
 C
 )
 
 
 -character varieties for curves of small genus. Rev. Mat. Complut. 26, 635–703 (2013)" href="/article/10.1007/s00009-023-02300-w#ref-CR22" id="ref-link-section-d90372366e7437">22</a>, Remark 2.5] if <span class="mathjax-tex">\(G\rightarrow X\rightarrow B\)</span> is a principal fiber bundle with <i>G</i> a connected algebraic group, then <span class="mathjax-tex">\(e(X)=e(G)e(B)\)</span>.</p><p>When <span class="mathjax-tex">\(h_c^{k,p,q}=0\)</span> for <span class="mathjax-tex">\(p\ne q\)</span>, the polynomial <i>e</i>(<i>Z</i>) depends only on the product <i>uv</i>. This will happen in all the cases that we shall investigate here. In this situation, it is conventional to use the variable <span class="mathjax-tex">\(q=uv\)</span>. If this happens, we say that the variety is <i>of balanced type</i>. Some cases that we shall need are:</p><ul class="u-list-style-bullet"> <li> <p><span class="mathjax-tex">\(e({\mathbb {C}}^r)=q^r\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(e({\mathbb {C}}^*)=q-1\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(e({{\,\textrm{GL}\,}}_r({\mathbb {C}}))= (q^r-1)(q^r-q)\cdots (q^r-q^{r-1})\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(e({{\,\textrm{SL}\,}}_r({\mathbb {C}}))=e({{\,\textrm{PGL}\,}}_r({\mathbb {C}})) = (q^r-1)(q^r-q) \cdots (q^r-q^{r-2})q^{r-1}\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(e({\mathbb {P}}^r)=q^r+\ldots + q^2 + q+1\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(\textrm{Sym}^r({\mathbb {P}}^1)={\mathbb {P}}^r\)</span> hence <span class="mathjax-tex">\(e(\textrm{Sym}^r({\mathbb {P}}^1))=q^r+\ldots +q+1\)</span>.</p> </li> <li> <p>By [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Gusein-Zade, S., Luengo, I., Melle-Hernández, A.: On the power structure over the Grothendieck ring of varieties and its applications. Proc. Steklov Inst. Math. 258, 53–64 (2007)" href="/article/10.1007/s00009-023-02300-w#ref-CR13" id="ref-link-section-d90372366e8290">13</a>], we have that <span class="mathjax-tex">\(\zeta _{{\mathbb {P}}^n}(t)=\sum _{r\ge 0} e(\textrm{Sym}^r({\mathbb {P}}^n)) t^r\)</span> satisfies the formula </p><div id="Equ30" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \zeta _{{\mathbb {P}}^n}(t)=\prod _{i=0}^n \frac{1}{1-q^it}\, . \end{aligned}$$</span></div></div><p> From this, we extract <span class="mathjax-tex">\(e(\textrm{Sym}^2({\mathbb {P}}^2))=q^4+q^3+2q^2+q+1\)</span>, and <span class="mathjax-tex">\(e(\textrm{Sym}^3({\mathbb {P}}^2))=q^6+q^5+2q^4+2q^3+2q^2+q+1\)</span>.</p> </li> </ul><h3 class="c-article__sub-heading" id="Sec4"><span class="c-article-section__title-number">2.2 </span>Equivariant <i>E</i>-Polynomial</h3><p>We enhance the definition of <i>E</i>-polynomial to the case where there is an action of a finite group (see [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Lawton, S., Muñoz, V.: E-polynomial of the 
 
 
 
 $$SL(3, {\mathbb{C} })$$
 
 
 S
 L
 (
 3
 ,
 C
 )
 
 
 -character variety of free groups. Pac. J. Math. 282, 173–202 (2016)" href="/article/10.1007/s00009-023-02300-w#ref-CR19" id="ref-link-section-d90372366e8731">19</a>, Section 2]).</p> <h3 class="c-article__sub-heading" id="FPar3">Definition 2.1</h3> <p>Let <i>X</i> be a complex quasi-projective variety on which a finite group <i>F</i> acts. Then <i>F</i> also acts on the cohomology <span class="mathjax-tex">\(H^*_c(X)\)</span> respecting the mixed Hodge structure. So <span class="mathjax-tex">\([H^*_c(X)]\in R(F)\)</span>, the representation ring of <i>F</i>. The <i>equivariant E-polynomial</i> is defined as</p><div id="Equ31" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e_F(X)=\sum _{p,q,k} (-1)^k [H^{k,p,q}_c(X)] \, u^pv^q \in R(F)[u,v]. \end{aligned}$$</span></div></div> <p>Note that the map <span class="mathjax-tex">\(\dim : R(F)\rightarrow {\mathbb {Z}}\)</span> recovers the usual <i>E</i>-polynomial as <span class="mathjax-tex">\(\dim (e_F(X))=e(X)\)</span>. Moreover, let <i>T</i> be the trivial representation. Let <span class="mathjax-tex">\(\ell \)</span> be the number of irreducible representations of <i>F</i>, which coincides with the number of conjugacy classes of <i>F</i>. Let <span class="mathjax-tex">\(T=T_1,T_2,\ldots , T_\ell \)</span> be the irreducible representations in <i>R</i>(<i>F</i>). Write <span class="mathjax-tex">\(e_F(X)= \sum _{j=1}^\ell a_j T_j\)</span>. Then <span class="mathjax-tex">\(e(X/F)= a_1\)</span>, the coefficient of <i>T</i> in <span class="mathjax-tex">\(e_F(X)\)</span>.</p><p>We need specifically the case of the symmetric group <span class="mathjax-tex">\(S_r\)</span>. For instance, for an action of <span class="mathjax-tex">\(S_2\)</span>, there are two irreducible representations <i>T</i>, <i>N</i>, where <i>T</i> is the trivial representation, and <i>N</i> is the non-trivial representation. Then <span class="mathjax-tex">\(e_{S_2}(X)=aT+bN\)</span>. Clearly <span class="mathjax-tex">\(e(X) = a+b\)</span>, <span class="mathjax-tex">\(e(X/S_2) = a\)</span>. Therefore,</p><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned}&e_{S_2}(X)=aT+bN, \\&a=e(X/S_2), \\&b=e(X)-e(X/S_2). \end{aligned} \end{aligned}$$</span></div><div class="c-article-equation__number"> (3) </div></div><p>Note that if <span class="mathjax-tex">\(X,X'\)</span> are spaces with <span class="mathjax-tex">\(S_2\)</span>-actions, then writing <span class="mathjax-tex">\(e_{S_2}(X)=aT+bN\)</span>, <span class="mathjax-tex">\(e_{S_2}(X')=a'T+b'N\)</span>, we have <span class="mathjax-tex">\(e_{S_2}(X\times X')= (aa'+bb') T+ (ab'+ba')N\)</span> and so <span class="mathjax-tex">\(e((X\times X')/S_2)=aa'+bb'\)</span>.</p><p>We shall use later also the case of the symmetric group <span class="mathjax-tex">\(F=S_3\)</span>. Denote by <span class="mathjax-tex">\(\alpha =(1,2,3)\)</span> the 3-cycle and <span class="mathjax-tex">\(\tau =(1,2)\)</span> a transposition. There are three irreducible representations <i>T</i>, <i>S</i>, <i>D</i>, where <i>T</i> is the trivial one, <i>S</i> is the sign representation, and <i>D</i> is the standard representation. The sign representation is one-dimensional <span class="mathjax-tex">\(S={\mathbb {R}}\)</span>, where <span class="mathjax-tex">\(\alpha \cdot x=x\)</span> and <span class="mathjax-tex">\(\tau \cdot x=-x\)</span>. The standard representation is two-dimensional <span class="mathjax-tex">\(D={\mathbb {R}}^2={\mathbb {C}}\)</span>, where <span class="mathjax-tex">\(\tau \cdot z={\overline{z}}\)</span>, <span class="mathjax-tex">\(\alpha \cdot z= e^{2\pi i/3} z\)</span>. The multiplicative table of <span class="mathjax-tex">\(R(S_3)\)</span> is easily checked to be given by</p><div id="Equ32" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} T\otimes T&=T,{} & {} T\otimes S =S, \\ T\otimes D&=D,{} & {} S\otimes S =T, \\ S\otimes D&=D,{} & {} D\otimes D =T +S + D. \end{aligned}$$</span></div></div><p>Let <i>X</i> be a variety with an <span class="mathjax-tex">\(S_3\)</span>-action. Then <span class="mathjax-tex">\(e_{S_3}(X) =a T+bS + cD\)</span>. Then <span class="mathjax-tex">\(e(X)=a+b+2c\)</span> and <span class="mathjax-tex">\(e(X/S_3)=a\)</span>. For the transposition <span class="mathjax-tex">\(\tau =(1,2)\in S_3\)</span>, we have <span class="mathjax-tex">\(T^\tau ={\mathbb {R}}\)</span>, <span class="mathjax-tex">\(S^\tau =0\)</span> and <span class="mathjax-tex">\(D^\tau ={\mathbb {R}}\)</span>. Thus, <span class="mathjax-tex">\(e(X/\langle \tau \rangle )=a+c\)</span>. This implies that</p><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned}&e_{S_3}(X) =a T+bS + cD , \\&a = e(X/S_3), \\&b= e(X)-2 e(X/\langle \tau \rangle )+e(X/S_3), \\&c = e(X/\langle \tau \rangle )- e(X/S_3). \end{aligned} \end{aligned}$$</span></div><div class="c-article-equation__number"> (4) </div></div><p>An interesting case that we will also apply in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec15">8</a> is the following.</p> <h3 class="c-article__sub-heading" id="FPar4">Proposition 2.2</h3> <p>Let <i>G</i> be a complex algebraic group equipped with an action of a finite group <span class="mathjax-tex">\(\rho : F \rightarrow Inn (G)\)</span> acting by inner automorphisms. If <i>G</i> is connected, then</p><div id="Equ33" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e_{F}(G) = e(G)T. \end{aligned}$$</span></div></div> <h3 class="c-article__sub-heading" id="FPar5">Proof</h3> <p>Since <span class="mathjax-tex">\(Inn (G) = G/Z(G)\)</span>, if <i>G</i> is connected then <span class="mathjax-tex">\(Inn (G)\)</span> also is so. Hence, any inner automorphism is connected to the identity through a path, meaning that any inner automorphism is homotopic to the identity. Then, for all <span class="mathjax-tex">\(\tau \in F\)</span>, the map <span class="mathjax-tex">\(\tau \cdot : G \rightarrow G\)</span> is null-homotopic, so it induces a trivial action in cohomology. <span class="mathjax-tex">\(\square \)</span></p> </div></div></section><section data-title="Twisted Hopf Links"><div class="c-article-section" id="Sec5-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec5"><span class="c-article-section__title-number">3 </span>Twisted Hopf Links</h2><div class="c-article-section__content" id="Sec5-content"><p>In this paper, we shall focus on the <i>twisted Hopf link</i>, which is the link formed by two circles knotted as the Hopf link but with <i>n</i> twists, as depicted in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s00009-023-02300-w#Fig2">2</a>. We will denote this knot by <span class="mathjax-tex">\(H_n\)</span>. Notice that the link <span class="mathjax-tex">\(H_1\)</span> is the usual Hopf link.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s00009-023-02300-w/figures/2" rel="nofollow"><picture><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="686"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>The twisted Hopf link of <i>n</i> twists with oriented strands</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s00009-023-02300-w/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <h3 class="c-article__sub-heading" id="FPar6">Proposition 3.1</h3> <p>The fundamental group of the (complement of the) twisted Hopf link with <span class="mathjax-tex">\(n \ge 1\)</span> twists is</p><div id="Equ34" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \Gamma _n:=\pi _1(S^3-H_n) = \langle a, b \,|\, [a^n,b] = 1 \rangle , \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\([a^n,b] = a^nba^{-n}b^{-1}\)</span> is the group commutator.</p> <h3 class="c-article__sub-heading" id="FPar7">Proof</h3> <p>Let us compute the Wirtinger presentation of the fundamental group of <span class="mathjax-tex">\(H_n\)</span>, which is a presentation of the fundamental group of the complement of a knot that can be obtained algorithmically from the crossings of a planar representation of the knot [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="Rolfsen, D. Knots and links, Publish or Perish, (1990)" href="/article/10.1007/s00009-023-02300-w#ref-CR27" id="ref-link-section-d90372366e11968">27</a>, Chapter III.D]. Let us orient the two strands of <span class="mathjax-tex">\(H_n\)</span> as shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s00009-023-02300-w#Fig2">2</a>. From these orientation, we observe that <span class="mathjax-tex">\(\pi _1(S^3-H_n)\)</span> is generated by 2<i>n</i> elements, namely <span class="mathjax-tex">\(x_1, y_1, \ldots , x_n, y_n\)</span>, corresponding to the 2<i>n</i> arcs of overpassing strands. For the relations, the knot has <i>n</i> double crossings of the form of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/article/10.1007/s00009-023-02300-w#Fig3">3</a>.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/article/10.1007/s00009-023-02300-w/figures/3" rel="nofollow"><picture><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Fig3_HTML.png" alt="figure 3" loading="lazy" width="590" height="791"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>A crossing of the <span class="mathjax-tex">\(H_n\)</span></p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/article/10.1007/s00009-023-02300-w/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>From each of these crossings, we obtain two relations <span class="mathjax-tex">\(y_kx_k = x_{k+1}y_k\)</span> and <span class="mathjax-tex">\(x_{k+1}y_k = y_{k+1}x_{k+1}\)</span> for <span class="mathjax-tex">\(k = 1, 2, \ldots , n\)</span>, writing <span class="mathjax-tex">\(x_{n+1} = x_1\)</span> and <span class="mathjax-tex">\(y_{n+1} = y_1\)</span>. Therefore, we get that</p><div id="Equ35" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} \pi _1(S^3-H_n)=&{} \langle x_1, y_1, \ldots , x_n, y_n \,|\, y_kx_k = x_{k+1}y_k, x_{k+1}y_k,\\&\,\, {} y_{k+1}x_{k+1} \text{ for } 1\le k \le n\rangle . \end{aligned} \end{aligned}$$</span></div></div><p>From this relations, we can solve for <span class="mathjax-tex">\(y_k\)</span> and <span class="mathjax-tex">\(x_k\)</span>, for <span class="mathjax-tex">\(k\ge 2\)</span>, from <span class="mathjax-tex">\(x_1\)</span> and <span class="mathjax-tex">\(y_1\)</span>. Thus, the group can be also written as</p><div id="Equ36" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \pi _1(S^3-H_n) \cong \langle x_1, y_1 \,|\, (x_1y_1)^n = (y_1x_1)^n\rangle . \end{aligned}$$</span></div></div><p>Making the change <span class="mathjax-tex">\(a = x_1y_1\)</span> and <span class="mathjax-tex">\(b = y_1\)</span> we get the desired presentation. <span class="mathjax-tex">\(\square \)</span></p> <h3 class="c-article__sub-heading" id="FPar8">Remark 3.2</h3> <p>For <span class="mathjax-tex">\(n = 1\)</span>, the group <span class="mathjax-tex">\(\pi _1(S^3-H_1) = {\mathbb {Z}}\times {\mathbb {Z}}\)</span> coincides with the fundamental group of the 2-dimensional torus, which is generated by two commuting elements. In some sense, <span class="mathjax-tex">\(\pi _1(S^3-H_n)\)</span> generalizes this result by considering ‘supercommutation’ relations instead, of the form <span class="mathjax-tex">\(a^nb=ba^n\)</span>.</p> <p>Using the description (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ1">1</a>) we directly get from Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar6">3.1</a> that the <i>G</i>-representation variety of the twisted Hopf link with <i>n</i> twists is</p><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R(\Gamma _n, G) = \left\{ (A, B) \in G^2 \,|\, [A^n,B] = 1\right\} . \end{aligned}$$</span></div><div class="c-article-equation__number"> (5) </div></div><p>To emphasize the role of the twisted Hopf link in the representation variety, throughout this paper we shall denote <span class="mathjax-tex">\(R(H_n, G) = R(\Gamma _n, G)\)</span>.</p></div></div></section><section data-title="The \({{\,\textrm{SL}\,}}_{r}({\mathbb {C}})\)-Representation Variety of the Twisted Hopf Link"><div class="c-article-section" id="Sec6-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec6"><span class="c-article-section__title-number">4 </span>The <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_{r}({\mathbb {C}})\)</span>-Representation Variety of the Twisted Hopf Link</h2><div class="c-article-section__content" id="Sec6-content"><h3 class="c-article__sub-heading" id="Sec7"><span class="c-article-section__title-number">4.1 </span>The Combinatorial Setting</h3><p>Given <span class="mathjax-tex">\(r \ge 1\)</span>, let us consider the space of possible eigenvalues of a matrix of <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_{r}({\mathbb {C}})\)</span>,</p><div id="Equ37" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \Delta ^r = \{(\alpha _1, \ldots , \alpha _r) \in ({\mathbb {C}}^*)^r \,|\, \alpha _1\cdots \alpha _r = 1\}. \end{aligned}$$</span></div></div><p>We can see <span class="mathjax-tex">\(\Delta ^r\)</span> as a (coarse) configuration space, which is naturally stratified by equalities <span class="mathjax-tex">\(\alpha _i=\alpha _j\)</span>. Here, we only need to consider a simple case of the Fulton–MacPherson stratification. Given an equivalence relation <span class="mathjax-tex">\(\sigma \)</span> on <span class="mathjax-tex">\(\{1, \ldots , r\}\)</span> (equivalently, a partition of the set <span class="mathjax-tex">\(\{1, \ldots , r\}\)</span>), let us denote by <span class="mathjax-tex">\(\Delta ^r_\sigma \subset \Delta ^r\)</span> the collection of <span class="mathjax-tex">\((\alpha _1, \ldots , \alpha _r)\)</span> such that <span class="mathjax-tex">\(\alpha _i = \alpha _j\)</span> if and only if <span class="mathjax-tex">\(i \sim _\sigma j\)</span>. Observe that if <span class="mathjax-tex">\(\sigma = \{\upsilon _1, \ldots , \upsilon _s\}\)</span>, then there is a natural action of the group <span class="mathjax-tex">\(S_\sigma := S_{t_1} \times \ldots \times S_{t_r}\)</span> on <span class="mathjax-tex">\(\Delta _\sigma ^r\)</span> by permutation of blocks, where <span class="mathjax-tex">\(t_i\)</span> is the number of subsets <span class="mathjax-tex">\(\upsilon _j\)</span> of size <span class="mathjax-tex">\(|\upsilon _j| = i\)</span>.</p><p>Two partitions <span class="mathjax-tex">\(\sigma = \{\upsilon _1, \ldots , \upsilon _s\}\)</span> and <span class="mathjax-tex">\(\sigma ' = \{\upsilon _1', \ldots , \upsilon _s'\}\)</span> (with the same number of equivalence classes) are said to be equivalent if there exists a permutation of <span class="mathjax-tex">\(\{1, \ldots , r\}\)</span> sending <span class="mathjax-tex">\(\upsilon _i\)</span> to <span class="mathjax-tex">\(\upsilon _i'\)</span> for all <i>i</i>. In this manner, if we relabel the indices in such a way that <span class="mathjax-tex">\(\upsilon _1 = \{1, \ldots , r_1\}, \upsilon _2 = \{r_1+1, \dots , r_1 + r_2\}\)</span> and so on, we have a simple description</p><div id="Equ38" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \Delta _\sigma ^r = \left\{ (\lambda _1, \lambda _2, \ldots , \lambda _s) \in ({\mathbb {C}}^*)^s \,|\, \lambda _1^{r_1} \lambda _2^{r_2} \ldots \lambda _s^{r_s} = 1, \lambda _i \ne \lambda _j \text { for } i \ne j\right\} . \end{aligned}$$</span></div></div> <h3 class="c-article__sub-heading" id="FPar9">Example 4.1</h3> <p>If <span class="mathjax-tex">\(\sigma = \{\{1,2,3\}, \{4\}, \{5,6,7\}\}\)</span>, then</p><div id="Equ39" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \Delta ^5_\sigma = \{(\lambda _1, \lambda _2, \lambda _3) \,|\, \lambda _1^3\lambda _2\lambda _3^3 = 1, \lambda _1 \ne \lambda _2, \lambda _1 \ne \lambda _3, \lambda _2 \ne \lambda _3\}, \end{aligned}$$</span></div></div><p>which is equipped with the action of <span class="mathjax-tex">\(S_\sigma = S_2\)</span> given by the map <span class="mathjax-tex">\((\lambda _1, \lambda _2, \lambda _3) \mapsto (\lambda _3, \lambda _2, \lambda _1)\)</span>. The partition <span class="mathjax-tex">\(\sigma \)</span> is equivalent, for instance, to the partition <span class="mathjax-tex">\(\sigma ' = \{\{1,2,3\}, \{4,5,6\}, \{7\}\}\)</span>.</p> <p>For <span class="mathjax-tex">\(n\ge 1\)</span>, there is a natural map <span class="mathjax-tex">\(p_n: \Delta ^r \rightarrow \Delta ^r\)</span> given by <span class="mathjax-tex">\(p_n(\alpha _1, \ldots , \alpha _r) = (\alpha _1^n, \ldots , \alpha _r^n)\)</span>. We say that <span class="mathjax-tex">\(\sigma '\)</span> <i>refines</i> <span class="mathjax-tex">\(\sigma \)</span> if the partition of <span class="mathjax-tex">\(\sigma '\)</span> is obtained from that of <span class="mathjax-tex">\(\sigma \)</span> by extra subdivisions. We indicate this as <span class="mathjax-tex">\(\sigma ' \rightarrow \sigma \)</span>. If <span class="mathjax-tex">\(\sigma '\)</span> is a refinement of <span class="mathjax-tex">\(\sigma \)</span>, let us denote</p><div id="Equ40" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \Delta ^r_{\sigma ' \rightarrow \sigma } = \Delta ^r_{\sigma '} \cap p_n^{-1}(\Delta ^r_{\sigma }). \end{aligned}$$</span></div></div><p>A key observation is that we can compute <span class="mathjax-tex">\(e(\Delta ^r_{\sigma ' \rightarrow \sigma })\)</span> recursively. For instance, for notational simplicity, let us suppose that <span class="mathjax-tex">\(\sigma = \{\upsilon _1, \ldots , \upsilon _s\}\)</span>, <span class="mathjax-tex">\(\sigma ' = \{\upsilon _1', \ldots , \upsilon _{s+t}'\}\)</span>, with <span class="mathjax-tex">\(\upsilon _{s} = \upsilon _{s}' \cup \upsilon _{s+1}' \cup \ldots \cup \upsilon _{s+t}'\)</span> and <span class="mathjax-tex">\(\upsilon _i = \upsilon _i'\)</span> for <span class="mathjax-tex">\(i < s\)</span>. In that case, we get that if <span class="mathjax-tex">\((\lambda _1, \ldots , \lambda _{s+t}) \in \Delta ^r_{\sigma ' \rightarrow \sigma }\)</span>, since <span class="mathjax-tex">\(\lambda _{s}^n = \lambda _{s+1}^n = \ldots = \lambda _{s+t}^n\)</span>, we must have <span class="mathjax-tex">\(\lambda _{s+k} = \lambda _s\varepsilon _k\)</span> for all <span class="mathjax-tex">\(k = 1, \ldots , t\)</span> and some pairwise different roots of unit <span class="mathjax-tex">\(\varepsilon _k \in \mu _{n}^*\)</span>. Here, we denote <span class="mathjax-tex">\(\mu _n=\{e^{2\pi i k /n} |\, k=0,1,\ldots , n-1\}\)</span> and <span class="mathjax-tex">\(\mu _n^* = \mu _n - \{1\}\)</span>. Hence,</p><div id="Equ41" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \Delta ^r_{\sigma ' \rightarrow \sigma } = \left\{ (\lambda _1, \ldots , \lambda _s, \varepsilon _1, \ldots , \varepsilon _t) \in ({\mathbb {C}}^*)^s \times (\mu _n^*)^t \,\left| \, \begin{matrix}\lambda _1^{r_1} \cdots \lambda _s^{r_s} \varepsilon _1^{r'_{s+1}} \ldots \varepsilon _t^{r'_{s+t}} = 1, \\ \lambda _i \ne \lambda _j \varepsilon \text { for } i \ne j, \varepsilon \in \mu _n , \\ \varepsilon _{k} \ne \varepsilon _{l} \text { for } k \ne l \end{matrix}\right. \right\} . \end{aligned}$$</span></div></div><p>Now, observe that if we remove any of the two later inequality conditions, we get a space of the form <span class="mathjax-tex">\(\Delta ^r_{{\tilde{\sigma }}' \rightarrow {\tilde{\sigma }}}\)</span> for some coarser <span class="mathjax-tex">\({\tilde{\sigma }}'\)</span> and <span class="mathjax-tex">\({\tilde{\sigma }}\)</span>. Therefore, we can simply compute the <i>E</i>-polynomial of the space</p><div id="Equ42" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \left\{ (\lambda _1, \ldots , \lambda _s, \varepsilon _1, \ldots , \varepsilon _t) \in ({\mathbb {C}}^*)^s \times (\mu _n^*)^t \,\left| \, \lambda _1^{r_1} \cdots \lambda _s^{r_s} \varepsilon _1^{r'_{s+1}} \ldots \varepsilon _t^{r'_{s+t}} = 1\right. \right\} , \end{aligned}$$</span></div></div><p>and then remove the strata corresponding to the different equalities using the inclusion–exclusion principle.</p><p>Finally, observe that the action of <span class="mathjax-tex">\(S_{\sigma '}\)</span> does not restrict to an action on <span class="mathjax-tex">\(\Delta ^r_{\sigma ' \rightarrow \sigma }\)</span>. Instead, we find that there is a maximal subgroup <span class="mathjax-tex">\(S_{\sigma ' \rightarrow \sigma } < S_{\sigma '}\)</span> acting on <span class="mathjax-tex">\(\Delta ^r_{\sigma ' \rightarrow \sigma }\)</span> namely, those permutations that preserve the refinement.</p><h3 class="c-article__sub-heading" id="Sec8"><span class="c-article-section__title-number">4.2 </span>The Geometric Setting</h3><p>In this section, we show how the combinatorial set-up previously developed can be used to control important strata that appear in the representation varieties of Hopf links. To control the Jordan structure of the matrices, we need the following definition.</p> <h3 class="c-article__sub-heading" id="FPar10">Definition 4.2</h3> <p>A <i>Jordan type</i> of rank <span class="mathjax-tex">\(r \ge 1\)</span> is a tuple <span class="mathjax-tex">\(\xi = (\sigma , \kappa )\)</span> where <span class="mathjax-tex">\(\sigma = \{\upsilon _1, \ldots , \upsilon _s\}\)</span> is a partition of <span class="mathjax-tex">\(\{1, \ldots , r\}\)</span> and <span class="mathjax-tex">\(\kappa = \{\tau _1, \ldots , \tau _s\}\)</span> is a collection where <span class="mathjax-tex">\(\tau _i\)</span> is a partition of <span class="mathjax-tex">\(\upsilon _i\)</span> into <i>linearly ordered</i> sets.</p> <p>A type <span class="mathjax-tex">\(\xi ' = (\sigma ', \kappa ')\)</span> is said to <i>refine</i> <span class="mathjax-tex">\(\xi = (\sigma , \kappa )\)</span>, and we shall denote it by <span class="mathjax-tex">\(\xi ' \rightarrow \xi \)</span>, if <span class="mathjax-tex">\(\sigma '\)</span> is a refinement of <span class="mathjax-tex">\(\sigma \)</span> and for any <span class="mathjax-tex">\(\upsilon _i \in \sigma \)</span> that decomposes as <span class="mathjax-tex">\(\upsilon _i = \upsilon _{i_1}' \cup \ldots \cup \upsilon _{i_t}'\)</span> in <span class="mathjax-tex">\(\sigma '\)</span> we have that <span class="mathjax-tex">\(\tau _i = \tau '_{i_1} \cup \ldots \cup \tau '_{i_t}\)</span>.</p> <p>The rationale behind a Jordan type is that it codifies the block structure of a Jordan matrix. On the one hand, the partition <span class="mathjax-tex">\(\sigma \)</span> identifies the multiplicities of the eigenvalues: each of the sets <span class="mathjax-tex">\(\upsilon _i\)</span> of the partition corresponds to a collection of equal eigenvalues (each number identifies the column of the eigenvalue). On the other hand, <span class="mathjax-tex">\(\kappa \)</span> determines the inner structure of the Jordan blocks for each eigenvalue: each set of the partition <span class="mathjax-tex">\(\tau _i\)</span> corresponds to a block of the Jordan matrix associated to an eigenvalue. The total order within this set is needed to identify the eigenvector column (the last element) and the off-diagonal elements of the Jordan form: if <i>a</i> is a successor of <i>b</i>, then there is a 1 at the (<i>a</i>, <i>b</i>)-entry of the matrix.</p> <h3 class="c-article__sub-heading" id="FPar11">Example 4.3</h3> <p>To clarify this association, let us provide several examples.</p><ul class="u-list-style-bullet"> <li> <p>The type <span class="mathjax-tex">\(\xi _1=\big (\sigma _1=\{ \{1,2\}, \{3,4\}, \{5,6\} \} ,\tau _1=\{ \{(1,2)\}\)</span>, <span class="mathjax-tex">\(\{(3), (4) \}, \{(5,6)\} \}\big )\)</span> corresponds to Jordan matrices of the form </p><div id="Equ114" class="c-article-equation"><div class="c-article-equation__content"><img src="//media.springernature.com/lw430/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Equ114_HTML.png" class="u-display-block" alt=""></div></div> </li> <li> <p>The type <span class="mathjax-tex">\(\xi _2=\big (\sigma _2=\{ \{1,2, 3,4\}, \{5,6\} \} ,\tau _2=\{ \{(1,2), (3), (4) \}, \{(5,6)\} \}\big )\)</span> corresponds to Jordan matrices of the form </p><div id="Equ115" class="c-article-equation"><div class="c-article-equation__content"><img src="//media.springernature.com/lw330/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Equ115_HTML.png" class="u-display-block" alt=""></div></div> </li> <li> <p>The type <span class="mathjax-tex">\(\xi _3=\big (\sigma _3=\{ \{1,5\}, \{3,4\}, \{2,6\} \} ,\tau _3=\{ \{(1,5)\}\)</span>, <span class="mathjax-tex">\(\{(3), (4) \}, \{(2,6)\} \}\big )\)</span> corresponds to Jordan matrices of the form </p><div id="Equ116" class="c-article-equation"><div class="c-article-equation__content"><img src="//media.springernature.com/lw430/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Equ116_HTML.png" class="u-display-block" alt=""></div></div> </li> </ul> <p>There is a natural action of the symmetric group <span class="mathjax-tex">\(S_r\)</span> on the set of types by ‘permutation of columns’: relabel each element of <span class="mathjax-tex">\(\{1, \ldots , r\}\)</span> according to the permutation both in <span class="mathjax-tex">\(\sigma \)</span> and <span class="mathjax-tex">\(\tau _i\)</span>. We will say that two types are <i>equivalent</i> if they lie in the same <span class="mathjax-tex">\(S_r\)</span>-orbit. Notice that, by definition, in principle, for a type <span class="mathjax-tex">\(\xi = (\sigma , \kappa )\)</span>, the partition <span class="mathjax-tex">\(\sigma \)</span> of <span class="mathjax-tex">\(\{1,\ldots , r\}\)</span> may not be into segments (i.e. equal eigenvalues may be sparse in the matrix). However, by ‘putting together’ the Jordan blocks, there always exists an equivalent type for which <span class="mathjax-tex">\(\sigma \)</span> and each <span class="mathjax-tex">\(\tau _i\)</span> are made of segments, and the total order in <span class="mathjax-tex">\(\tau _i\)</span> agrees with the natural order in <span class="mathjax-tex">\(\{1, \ldots , r\}\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar12">Example 4.4</h3> <p>The types <span class="mathjax-tex">\(\xi _1\)</span> and <span class="mathjax-tex">\(\xi _3\)</span> of Example <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar11">4.3</a> are equivalent under the permutation <span class="mathjax-tex">\(\varphi = (2\,5)\)</span>. However, <span class="mathjax-tex">\(\xi _1\)</span> and <span class="mathjax-tex">\(\xi _2\)</span> are not equivalent.</p> <p>Given a type <span class="mathjax-tex">\(\xi \)</span> of rank <i>r</i>, let us denote by <span class="mathjax-tex">\({\mathcal {A}}_\xi \)</span> the collection of Jordan matrices (with 1’s as off-diagonal elements according to the total orders given by <span class="mathjax-tex">\(\kappa \)</span>) of <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_{r}({\mathbb {C}})\)</span> whose block structure is <span class="mathjax-tex">\(\xi \)</span>. If we allow any non-zero off-diagonal element in the entries determined by <span class="mathjax-tex">\(\kappa \)</span>, we will refer to these matrices as generalized Jordan matrices. The space of generalized Jordan matrices will be denoted <span class="mathjax-tex">\({\mathcal {A}}^g_\xi \)</span>. We also consider <span class="mathjax-tex">\({\tilde{{\mathcal {A}}}}_{\xi } = {{\,\textrm{SL}\,}}_{r}({\mathbb {C}}) \cdot {\mathcal {A}}_\xi \)</span>, where the action is by conjugation. If we pick a collection <span class="mathjax-tex">\(\xi _1, \ldots , \xi _N\)</span> of non-equivalent representatives of all the types of rank <i>r</i>, we get a decomposition</p><div id="Equ43" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {{\,\textrm{SL}\,}}_{r}({\mathbb {C}}) = {\tilde{{\mathcal {A}}}}_{\xi _1} \sqcup \ldots \sqcup {\tilde{{\mathcal {A}}}}_{\xi _N}. \end{aligned}$$</span></div></div><p>Given a type <span class="mathjax-tex">\(\xi =(\sigma ,\kappa )\)</span>, we have a group <span class="mathjax-tex">\(S_\xi < S_\sigma \)</span>. This is the group of permutations of <span class="mathjax-tex">\(\sigma =(\upsilon _1,\ldots , \upsilon _s)\)</span> that permute blocks <span class="mathjax-tex">\(\upsilon _i\)</span> whose decompositions <span class="mathjax-tex">\(\tau _i\)</span> are equivalent (of the same number of sets and of the same sizes). The group <span class="mathjax-tex">\(S_\xi \)</span> acts on <span class="mathjax-tex">\({\mathcal {A}}_\xi \)</span> as follows: let <span class="mathjax-tex">\(\varphi \in S_\xi \)</span> and <span class="mathjax-tex">\(A\in {\mathcal {A}}_\xi \)</span>. So <span class="mathjax-tex">\(\varphi \)</span> is a permutation of the blocks <span class="mathjax-tex">\(\upsilon _i\)</span> of <span class="mathjax-tex">\(\sigma \)</span>, that is, of the eigenvalues <span class="mathjax-tex">\(\lambda _i\)</span>. For such eigenvalues, the Jordan forms match exactly since the corresponding decompositions <span class="mathjax-tex">\(\tau _i\)</span> are equivalent; therefore, the matrix <span class="mathjax-tex">\(A'\)</span> with the eigenvalues <span class="mathjax-tex">\(\lambda _{\varphi (i)}\)</span> lies in <span class="mathjax-tex">\({\mathcal {A}}_\xi \)</span> as well. Moreover, as this is given by a change of the basis by permutation of the vectors, there is a matrix <span class="mathjax-tex">\(P_\varphi \)</span> such that <span class="mathjax-tex">\(A'=P_\varphi ^{-1}AP_\varphi \)</span>. This <span class="mathjax-tex">\(P_\varphi \)</span> is well defined in <span class="mathjax-tex">\({{\,\textrm{PGL}\,}}_r({\mathbb {C}})/{{\,\textrm{Stab}\,}}(A)\)</span> (quotient by action on the left). The action on <span class="mathjax-tex">\({{\,\textrm{PGL}\,}}_r({\mathbb {C}})/{{\,\textrm{Stab}\,}}(A)\)</span> is by product of <span class="mathjax-tex">\(P_\varphi \)</span> on the right.</p><p>Now, we consider the map</p><div id="Equ44" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} p_n: {{\,\textrm{SL}\,}}_{r}({\mathbb {C}}) \rightarrow {{\,\textrm{SL}\,}}_{r}({\mathbb {C}}) , \quad p_n(A) = A^n, \end{aligned}$$</span></div></div><p>and we set</p><div id="Equ45" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned}&{{\mathcal {A}}}_{\xi ' \rightarrow \xi } = {\mathcal {A}}^g_{\xi '} \cap p_n^{-1}({\mathcal {A}}_{\xi }) , \\&{\tilde{{\mathcal {A}}}}_{\xi ' \rightarrow \xi } = {{\,\textrm{SL}\,}}_{r}({\mathbb {C}}) \cdot {{\mathcal {A}}}_{\xi ' \rightarrow \xi }. \end{aligned} \end{aligned}$$</span></div></div><p>Moreover, if <span class="mathjax-tex">\(\xi '\)</span> refines <span class="mathjax-tex">\(\xi \)</span>, then there is a group <span class="mathjax-tex">\(S_{\xi ' \rightarrow \xi }\)</span> of permutations of <span class="mathjax-tex">\(\xi '\)</span> (that is, permutations <span class="mathjax-tex">\(\varphi \)</span> of <span class="mathjax-tex">\(\sigma '\)</span> that respect the blocks of <span class="mathjax-tex">\(\xi '\)</span>) that induce permutations of <span class="mathjax-tex">\(\xi \)</span> (it is enough that they induce a permutation on <span class="mathjax-tex">\(\sigma \)</span> under the refinement <span class="mathjax-tex">\(\sigma '\rightarrow \sigma \)</span>).</p> <h3 class="c-article__sub-heading" id="FPar13">Example 4.5</h3> <p>Suppose we have types <span class="mathjax-tex">\(\xi '=\big (\sigma '=\{ \{1,2\}, \{3,4\}, \{(5),(6)\} \} ,\tau '=\{ \{(1,2)\}\)</span>, <span class="mathjax-tex">\(\{3,4 \}, \{(5,6)\} \}\big )\)</span>, <span class="mathjax-tex">\(\xi =\big (\sigma =\{ \{1,2, 3,4\}, \{5,6\} \} ,\tau =\{ \{(1,2), (3), (4) \}, \{(5,6)\} \}\big )\)</span> (cf. Example <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar11">4.3</a>). So <span class="mathjax-tex">\(\xi '\rightarrow \xi \)</span>. This corresponds to matrices</p><div id="Equ117" class="c-article-equation"><div class="c-article-equation__content"><img src="//media.springernature.com/lw499/springer-static/image/art%3A10.1007%2Fs00009-023-02300-w/MediaObjects/9_2023_2300_Equ117_HTML.png" class="u-display-block" alt=""></div></div><p>The group <span class="mathjax-tex">\(S_{\xi '} =S_2\)</span> permuting <span class="mathjax-tex">\(\{1,2\}\)</span> and <span class="mathjax-tex">\(\{5,6\}\)</span>, whereas <span class="mathjax-tex">\(S_{\xi '\rightarrow \xi }=\{1\}\)</span>. Note also that <span class="mathjax-tex">\(S_{\sigma '}=S_3\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar14">Lemma 4.6</h3> <p>For any types <span class="mathjax-tex">\(\xi = (\sigma , \kappa )\)</span> and <span class="mathjax-tex">\(\xi ' = (\sigma ', \kappa ')\)</span> we have that <span class="mathjax-tex">\({\mathcal {A}}_{\xi ' \rightarrow \xi } = \emptyset \)</span> if <span class="mathjax-tex">\(\xi '\)</span> does not refine <span class="mathjax-tex">\(\xi \)</span>, and <span class="mathjax-tex">\({\mathcal {A}}_{\xi ' \rightarrow \xi } \cong \Delta ^r_{\sigma ' \rightarrow \sigma }\)</span> if it does.</p> <h3 class="c-article__sub-heading" id="FPar15">Proof</h3> <p>A direct computation shows that, since taking powers preserves the Jordan block structure, if <span class="mathjax-tex">\(A \in {\mathcal {A}}^g_{\xi '}\)</span>, then <span class="mathjax-tex">\(A^n\)</span> can only lie in strata of the form <span class="mathjax-tex">\({\mathcal {A}}^g_{\xi }\)</span> when <span class="mathjax-tex">\(\xi '\)</span> refines <span class="mathjax-tex">\(\xi \)</span>. Hence, <span class="mathjax-tex">\(p_n^{-1}({\mathcal {A}}_{\xi }) \cap {\mathcal {A}}^g_{\xi '} = \emptyset \)</span> if <span class="mathjax-tex">\(\xi '\)</span> does not refine <span class="mathjax-tex">\(\xi \)</span>.</p> <p>On the other hand, given <span class="mathjax-tex">\(A \in {\mathcal {A}}_{\xi ' \rightarrow \xi }\)</span> with <span class="mathjax-tex">\(\xi '\)</span> refining <span class="mathjax-tex">\(\xi \)</span>, we observe that the off-diagonal elements of <i>A</i> are fixed to coincide with the Jordan structure. In this manner, the only freedom we have is to choose the eigenvalues of <i>A</i>, and this is precisely <span class="mathjax-tex">\( \Delta ^r_{\sigma ' \rightarrow \sigma }\)</span>. <span class="mathjax-tex">\(\square \)</span></p> <p>Let us denote by</p><div id="Equ46" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R(H_n, {{\,\textrm{SL}\,}}_{r}({\mathbb {C}}))_{\xi \rightarrow \xi '} := \left\{ (A, B) \in {\tilde{{\mathcal {A}}}}_{\xi ' \rightarrow \xi } \times {{\,\textrm{SL}\,}}_{r}({\mathbb {C}}) \,|\, [A^n,B] = \textrm{Id}\right\} . \end{aligned}$$</span></div></div><p>Observe that we have a natural stratification</p><div id="Equ47" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R(H_n, {{\,\textrm{SL}\,}}_{r}({\mathbb {C}})) = \bigsqcup _{\xi ', \xi } R(H_n,{{\,\textrm{SL}\,}}_{r}({\mathbb {C}}))_{\xi ' \rightarrow \xi } , \end{aligned}$$</span></div></div><p>where each of the indices <span class="mathjax-tex">\(\xi '\)</span> and <span class="mathjax-tex">\(\xi \)</span> runs over a collection of non-equivalent representatives of all the types of rank <i>r</i>. We denote by <span class="mathjax-tex">\({{\,\textrm{Stab}\,}}(\xi ')\)</span> the stabilizer in <span class="mathjax-tex">\({{\,\textrm{PGL}\,}}_{r}({\mathbb {C}})\)</span> of any matrix of <span class="mathjax-tex">\({\mathcal {A}}_{\xi '}\)</span>, and <span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi )\)</span> the stabilizer in <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_{r}({\mathbb {C}})\)</span> of any matrix of <span class="mathjax-tex">\({\mathcal {A}}_{\xi }\)</span>. Note that the action of an element <span class="mathjax-tex">\(\varphi \in S_{\xi '\rightarrow \xi }\)</span> is by permutation of columns in either <span class="mathjax-tex">\({{\,\textrm{PGL}\,}}_r({\mathbb {C}})\)</span>, <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_r({\mathbb {C}})\)</span>, <span class="mathjax-tex">\({{\,\textrm{PGL}\,}}_{r}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi ')\)</span> and <span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi )\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar16">Proposition 4.7</h3> <p>For any types <span class="mathjax-tex">\(\xi = (\sigma , \kappa )\)</span> and <span class="mathjax-tex">\(\xi ' = (\sigma ', \kappa ')\)</span>, we have that</p><div id="Equ48" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R(H_n, {{\,\textrm{SL}\,}}_{r}({\mathbb {C}}))_{\xi ' \rightarrow \xi } \cong \left( {\mathcal {A}}_{\xi ' \rightarrow \xi } \times \big ({{\,\textrm{PGL}\,}}_{r}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi ')\big ) \times \widetilde{{{\,\textrm{Stab}\,}}}(\xi ) \right) / S_{\xi ' \rightarrow \xi } . \end{aligned}$$</span></div></div> <h3 class="c-article__sub-heading" id="FPar17">Proof</h3> <p>Take <span class="mathjax-tex">\((A, B) \in {\tilde{{\mathcal {A}}}}_{\xi ' \rightarrow \xi } \times {{\,\textrm{SL}\,}}_{r}({\mathbb {C}})\)</span> such that <span class="mathjax-tex">\([A^n,B] = \textrm{Id}\)</span>. Then <span class="mathjax-tex">\(A \in {{\,\textrm{SL}\,}}_r({\mathbb {C}}) \cdot {\mathcal {A}}_{\xi ' \rightarrow \xi }\)</span>, that is <span class="mathjax-tex">\(A=P^{-1}A_0P\)</span>, with <span class="mathjax-tex">\(A_0\in {\mathcal {A}}_{\xi ' \rightarrow \xi }={\mathcal {A}}^g_{\xi '} \cap p_n^{-1}({\mathcal {A}}_{\xi })\)</span>, i.e. <span class="mathjax-tex">\(A_0\in {\mathcal {A}}^g_{\xi '}\)</span> and <span class="mathjax-tex">\(A_0^n\in {\mathcal {A}}_{\xi }\)</span>. The matrix <i>P</i> is determined up to <span class="mathjax-tex">\({{\,\textrm{Stab}\,}}(A_0)\)</span>. On the other hand, <i>B</i> commutes with <span class="mathjax-tex">\(A^n=P^{-1}A_0^n P\)</span>, hence <span class="mathjax-tex">\(B_0=P B P^{-1}\)</span> lies in <span class="mathjax-tex">\({{\,\textrm{Stab}\,}}(A_0^n)={\widetilde{{{\,\textrm{Stab}\,}}}}(\xi )\)</span>.</p> <p>The pair (<i>A</i>, <i>B</i>) is determined by <span class="mathjax-tex">\((A_0,P,B_0)\)</span>. This is not unique, the matrix <span class="mathjax-tex">\(A_0\)</span> can be changed by an equivalent matrix <span class="mathjax-tex">\(A_0'\)</span> via an element <span class="mathjax-tex">\(\varphi \in S_{\xi '}\)</span>. The associated triple is <span class="mathjax-tex">\((A_0'=P_\varphi ^{-1}A_0P_\varphi , P'=P_\varphi ^{-1}P, B_0'=P_\varphi ^{-1}B_0 P_\varphi )\)</span>. In order for <span class="mathjax-tex">\(B_0'\)</span> to lie in the stabilizer of a matrix of <span class="mathjax-tex">\({\mathcal {A}}_\xi \)</span>, it is needed that whenever two eigenvalues <span class="mathjax-tex">\(\lambda _i,\lambda _j\)</span> satisfy <span class="mathjax-tex">\(\lambda _i^n=\lambda _j^n\)</span>, the permutation <span class="mathjax-tex">\(\varphi \)</span> moves then to eigenvalues <span class="mathjax-tex">\(\lambda _i',\lambda _j'\)</span> such that <span class="mathjax-tex">\((\lambda _i')^n=(\lambda _j')^n\)</span>. This means that <span class="mathjax-tex">\(\varphi \)</span> respects the partition <span class="mathjax-tex">\(\sigma \)</span>, that is, it lies in <span class="mathjax-tex">\(S_{\xi '\rightarrow \xi }\)</span>. <span class="mathjax-tex">\(\square \)</span></p> </div></div></section><section data-title="Representation Variety of the Twisted Hopf Link of Rank 2"><div class="c-article-section" id="Sec9-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec9"><span class="c-article-section__title-number">5 </span>Representation Variety of the Twisted Hopf Link of Rank 2</h2><div class="c-article-section__content" id="Sec9-content"><p>In this section, we shall compute the <i>E</i>-polynomial of the <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_{2}({\mathbb {C}})\)</span>-representation variety of the twisted Hopf link <span class="mathjax-tex">\(H_n\)</span>, that is, the space <span class="mathjax-tex">\(R(H_n,{{\,\textrm{SL}\,}}_2({\mathbb {C}}))\)</span>. For that purpose, we analyze the combinatorial and geometric settings as outlined in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec6">4</a>.</p><h3 class="c-article__sub-heading" id="Sec10"><span class="c-article-section__title-number">5.1 </span>Combinatorial Setting</h3><p>In rank 2 we have only 2 possible partitions, up to equivalence. These are</p><div id="Equ49" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sigma _1 = \{\{1,2\}\}, \qquad \sigma _{2} = \{\{1\},\{2\}\}. \end{aligned}$$</span></div></div><p>The first one corresponds to <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_2({\mathbb {C}})\)</span> matrices with equal eigenvalues, and the second one with distinct eigenvalues. Hence, we have</p><div id="Equ50" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(\Delta ^2_{\sigma _1})&= e(\{\lambda \in {\mathbb {C}}^*|\, \lambda ^2 = 1\}) = e(\mu _2)=2, \\ e(\Delta ^2_{\sigma _2})&= e(\{(\lambda _1, \lambda _2) \in ({\mathbb {C}}^*)^2\,|\, \lambda _1\lambda _2 = 1, \lambda _1 \ne \lambda _2\}) = e({\mathbb {C}}^* - \Delta ^2_{\sigma _1})\\&= e({\mathbb {C}}^* - \mu _2)=q-3. \end{aligned}$$</span></div></div><p>Only the stratum <span class="mathjax-tex">\(\Delta ^2_{\sigma _2}\)</span> has a non-trivial action of <span class="mathjax-tex">\(S_2\)</span>, given by <span class="mathjax-tex">\((\lambda _1, \lambda _2) \mapsto (\lambda _2, \lambda _1)\)</span>.</p><p>For the degenerations, we have <span class="mathjax-tex">\(e(\Delta ^2_{\sigma _1 \rightarrow \sigma _1}) = e(\Delta ^2_{\sigma _1}) = e(\mu _2) = 2\)</span>. In addition,</p><div id="Equ51" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\left( \Delta ^2_{\sigma _2 \rightarrow \sigma _1}\right)&= e\left( \{(\lambda _1, \lambda _2) \in ({\mathbb {C}}^*)^2\,| \, \lambda _1\lambda _2 = 1, \lambda _1 \ne \lambda _2, \lambda _1^n = \lambda _2^n\}\right) \\&= e\left( \{(\lambda _1, \varepsilon ) \in {\mathbb {C}}^* \times \mu _n\,|\, \lambda _1^2\varepsilon = 1, \varepsilon \ne 1\}\right) \\&= e\left( \{(\lambda _1, \varepsilon ) \in {\mathbb {C}}^* \times \mu _n\,|\, \lambda _1^2\varepsilon = 1\}\right) - e\left( \{\lambda _1 \in {\mathbb {C}}^* \,|\, \lambda _1^2 = 1\}\right) \\&= e\left( \mu _{2n}\right) - e\left( \mu _2\right) = 2n-2. \end{aligned}$$</span></div></div><p>And</p><div id="Equ52" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\left( \Delta ^2_{\sigma _2 \rightarrow \sigma _2}\right)&= e\left( \{(\lambda _1, \lambda _2) \in ({\mathbb {C}}^*)^2\,| \, \lambda _1\lambda _2 = 1, \lambda _1 \ne \lambda _2, \lambda _1^n \ne \lambda _2^n\}\right) \\&= e\left( \Delta ^2_{\sigma _2}\right) - e\left( \{(\lambda _1, \lambda _2) \in ({\mathbb {C}}^*)^2\,| \, \lambda _1\lambda _2 = 1, \lambda _1 \ne \lambda _2, \lambda _1^n = \lambda _2^n\}\right) \\&= q-3 - e\left( \Delta ^2_{\sigma _2 \rightarrow \sigma _1}\right) = q-3 - (2n-2) = q-2n-1. \end{aligned}$$</span></div></div><p>Now, let us analyze the quotients by <span class="mathjax-tex">\(S_2\)</span>. Recall that the action of <span class="mathjax-tex">\(S_2\)</span> on <span class="mathjax-tex">\({\mathbb {C}}^*\)</span> given by <span class="mathjax-tex">\(\lambda \mapsto \lambda ^{-1}\)</span> has quotient <span class="mathjax-tex">\({\mathbb {C}}^*/S_2 ={\mathbb {C}}\)</span>, given by the invariant function <span class="mathjax-tex">\(s=\lambda +\lambda ^{-1}\)</span>. We have that</p><div id="Equ53" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(\Delta ^2_{\sigma _2}/S_2)&= e(({\mathbb {C}}^* - \mu _2)/S_2) = e({\mathbb {C}}-\{\pm 2\})=q-2. \\ e\left( \Delta ^2_{\sigma _2 \rightarrow \sigma _1}/S_2\right)&= e\left( \mu _{2n}/S_2\right) - e\left( \Delta ^2_{\sigma _1}/S_2\right) = n+1-2=n-1.\\ e\left( \Delta ^2_{\sigma _2 \rightarrow \sigma _2}/S_2\right)&= e\left( \Delta ^2_{\sigma _2}/S_2\right) - e\left( \Delta ^2_{\sigma _2 \rightarrow \sigma _1}/S_2\right) = (q-2) - (n-1) = q-n-1. \end{aligned}$$</span></div></div><p>Therefore, using (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ3">3</a>) we get the equivariant <i>E</i>-polynomials:</p><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} e_{S_2}(\Delta ^2_{\sigma _2})&= (q-2)T - N. \\ e_{S_2}\left( \Delta ^2_{\sigma _2 \rightarrow \sigma _1}\right)&= (n-1)T + (n-1)N.\\ e_{S_2}\left( \Delta ^2_{\sigma _2 \rightarrow \sigma _2}\right)&= (q-n-1) T -n N. \end{aligned} \end{aligned}$$</span></div><div class="c-article-equation__number"> (6) </div></div><h3 class="c-article__sub-heading" id="Sec11"><span class="c-article-section__title-number">5.2 </span>Geometric Setting</h3><p>From the two partitions <span class="mathjax-tex">\(\sigma _1\)</span> and <span class="mathjax-tex">\(\sigma _2\)</span>, we can create three types (up to equivalence), namely</p><div id="Equ54" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \xi _1 = (\sigma _1, \{1,2\}), \qquad \xi _2 = (\sigma _1, \{(1,2)\}), \qquad \xi _3 = (\sigma _2, \{\{1\}, \{2\}\}). \end{aligned}$$</span></div></div><p>Recall that <span class="mathjax-tex">\(\xi _1\)</span> is the type of the diagonalizable matrices with equal eigenvalues (namely, <span class="mathjax-tex">\(\pm \textrm{Id}\)</span>), <span class="mathjax-tex">\(\xi _2\)</span> is the type of the two Jordan type matrices <span class="mathjax-tex">\(J_{\pm }={\tiny \left( \begin{array}{cc} \pm 1 &{} 0 \\ 1 &{}\pm 1 \end{array}\right) }\)</span>, and <span class="mathjax-tex">\(\xi _3\)</span> is the type of diagonalizable matrices with different eigenvalues.</p><p>Denote <span class="mathjax-tex">\(R_{\xi _i \rightarrow \xi _j}= R(H_n,{{\,\textrm{SL}\,}}_2({\mathbb {C}}))_{\xi _i \rightarrow \xi _j}\)</span>. Taking into account that the only refinement relations are <span class="mathjax-tex">\(\xi _i \rightarrow \xi _i\)</span>, <span class="mathjax-tex">\(i=1,2,3\)</span>, and <span class="mathjax-tex">\(\xi _3 \rightarrow \xi _1\)</span>, we have</p><div id="Equ55" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R(H_n,{{\,\textrm{SL}\,}}_2({\mathbb {C}})) = R_{\xi _1 \rightarrow \xi _1} \sqcup R_{\xi _2 \rightarrow \xi _2} \sqcup R_{\xi _3 \rightarrow \xi _3} \sqcup R_{\xi _3 \rightarrow \xi _1}. \end{aligned}$$</span></div></div><p>Counting for each stratum we have the following:</p><ul class="u-list-style-bullet"> <li> <p>By Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar14">4.6</a> and Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar16">4.7</a>, </p><div id="Equ56" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R_{\xi _1 \rightarrow \xi _1} = \Delta ^2_{\sigma _1 \rightarrow \sigma _1} \times \big ( {{\,\textrm{PGL}\,}}_{2}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _1) \big ) \times {\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _1). \end{aligned}$$</span></div></div><p> Now <span class="mathjax-tex">\({{\,\textrm{Stab}\,}}(\xi _1) ={{\,\textrm{PGL}\,}}_2({\mathbb {C}})\)</span>, <span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _1) = {{\,\textrm{SL}\,}}_{2}({\mathbb {C}})\)</span> and <span class="mathjax-tex">\(e(\Delta ^2_{\sigma _1 \rightarrow \sigma _1})=2\)</span>, hence </p><div id="Equ57" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\left( R_{\xi _1 \rightarrow \xi _1}\right) = e(\Delta ^2_{\sigma _1 \rightarrow \sigma _1}) e({{\,\textrm{SL}\,}}_{2}({\mathbb {C}})) = 2(q^3-q). \end{aligned}$$</span></div></div> </li> <li> <p>We have also </p><div id="Equ58" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R_{\xi _2 \rightarrow \xi _2} = \Delta ^2_{\sigma _1 \rightarrow \sigma _1}\times \big ( {{\,\textrm{PGL}\,}}_{2}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _2)\big )\times {\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _2). \end{aligned}$$</span></div></div><p> Now <span class="mathjax-tex">\({{\,\textrm{Stab}\,}}(\xi _2) ={\tiny \left\{ \left( \begin{array}{cc} 1 &{} 0 \\ a &{} 1\end{array}\right) \right\} } \cong {\mathbb {C}}\)</span> and <span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _2) ={\tiny \left\{ \left( \begin{array}{cc} \pm 1 &{} 0 \\ a &{} \pm 1\end{array}\right) \right\} } \cong {\mathbb {C}}\times \mu _2\)</span>. Hence, </p><div id="Equ59" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\left( R_{\xi _2 \rightarrow \xi _2}\right) = e(\Delta ^2_{\sigma _1 \rightarrow \sigma _1}) \frac{q^3-q}{q} \, 2q = 4(q^3-q). \end{aligned}$$</span></div></div> </li> <li> <p>We continue with <span class="mathjax-tex">\( R_{\xi _3 \rightarrow \xi _3}={\tilde{R}}_{\xi _3 \rightarrow \xi _3} /S_2\)</span>, with </p><div id="Equ60" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\tilde{R}}_{\xi _3 \rightarrow \xi _3} = \Delta ^2_{\sigma _2 \rightarrow \sigma _2}\times \big ( {{\,\textrm{PGL}\,}}_{2}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _3)\big ) \times {\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _3). \end{aligned}$$</span></div></div><p> To compute this, note that <span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _3) = {\tiny \left\{ \left( \begin{array}{cc} \alpha &{} 0 \\ 0 &{} \alpha ^{-1} \end{array}\right) \right\} } \cong {\mathbb {C}}^*\)</span>. The action of <span class="mathjax-tex">\(S_2\)</span> is given by <span class="mathjax-tex">\(\alpha \mapsto \alpha ^{-1}\)</span>. the quotient <span class="mathjax-tex">\({\mathbb {C}}^*/S_2\cong {\mathbb {C}}\)</span> via the invariant function <span class="mathjax-tex">\(s=\alpha +\alpha ^{-1}\)</span>. So <span class="mathjax-tex">\(e({\mathbb {C}}^*/S_2)=q\)</span>, and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ3">3</a>) yields the equivariant <i>E</i>-polynomial </p><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e_{S_2}({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _3))= qT-N . \end{aligned}$$</span></div><div class="c-article-equation__number"> (7) </div></div><p> Also <span class="mathjax-tex">\({{\,\textrm{PGL}\,}}_2({\mathbb {C}})/{{\,\textrm{Stab}\,}}(\xi _3)={{\,\textrm{PGL}\,}}_2({\mathbb {C}})/{\mathcal {D}}\)</span>, where <span class="mathjax-tex">\({\mathcal {D}}\)</span> are the diagonal matrices. So <span class="mathjax-tex">\({{\,\textrm{PGL}\,}}_2({\mathbb {C}})/{\mathcal {D}}\cong ({\mathbb {P}}^1)^2-\Delta \)</span>, where <span class="mathjax-tex">\(\Delta ={\mathbb {P}}^1\)</span> is the diagonal. Hence, <span class="mathjax-tex">\(e({{\,\textrm{PGL}\,}}_2({\mathbb {C}})/{\mathcal {D}})=(q+1)^2-(q+1)=q^2+q\)</span>. For the <span class="mathjax-tex">\(S_2\)</span>-quotient, we have <span class="mathjax-tex">\(({{\,\textrm{PGL}\,}}_2({\mathbb {C}})/{\mathcal {D}})/S_2 \cong \textrm{Sym}^2({\mathbb {P}}^1)-\Delta \)</span>, where <span class="mathjax-tex">\(\Delta ={\mathbb {P}}^1\)</span>. Hence, <span class="mathjax-tex">\(e(({{\,\textrm{PGL}\,}}_2({\mathbb {C}})/{\mathcal {D}})/S_2)= (q^2+q+1)-(q+1)=q^2\)</span>. Using (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ3">3</a>), this produces the equivariant <i>E</i>-polynomial </p><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e_{S_2}({{\,\textrm{PGL}\,}}_2({\mathbb {C}})/{\mathcal {D}})= q^2T + qN . \end{aligned}$$</span></div><div class="c-article-equation__number"> (8) </div></div><p> Using the equivariant <i>E</i>-polynomial of <span class="mathjax-tex">\(\Delta ^2_{\sigma _2 \rightarrow \sigma _2}\)</span> in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ6">6</a>), and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ7">7</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ8">8</a>), we have </p><div id="Equ61" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e_{S_2}\big ({\tilde{R}}_{\xi _3 \rightarrow \xi _3} \big )&= ((q-n-1) T -n N) \otimes (q^2 T + qN) \otimes (qT-N) \\&= \left( (q-n-1)(q^3-q)\right) T - n(q^3-q)N. \end{aligned}$$</span></div></div><p> Therefore, <span class="mathjax-tex">\(e(R_{\xi _3 \rightarrow \xi _3})= (q-n-1)(q^3-q)\)</span>, the coefficient of <i>T</i> in the expression above.</p> </li> <li> <p>We end up with <span class="mathjax-tex">\(R_{\xi _3 \rightarrow \xi _1}={\tilde{R}}_{\xi _3 \rightarrow \xi _1}/S_2\)</span>, where </p><div id="Equ62" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\tilde{R}}_{\xi _3 \rightarrow \xi _1} = \Delta ^2_{\sigma _2 \rightarrow \sigma _1} \times \big ({{\,\textrm{PGL}\,}}_{2}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _3) \big )\times {\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _1). \end{aligned}$$</span></div></div><p> By Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar4">2.2</a>, <span class="mathjax-tex">\(e_{S_2}({{\,\textrm{SL}\,}}_2({\mathbb {C}}))=(q^3-q)T\)</span>. Using (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ6">6</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ8">8</a>), we get </p><div id="Equ63" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e_{S_2}( {\tilde{R}}_{\xi _3 \rightarrow \xi _1})&= ((n-1) T + (n-1) N) \otimes (q^2 T + qN) \otimes (q^3-q)T\\&= (n-1)(q^3-q)(q^2+q) T + (n-1)(q^3-q)(q^2+q)N, \end{aligned}$$</span></div></div><p> which produces <span class="mathjax-tex">\(e( R_{\xi _3 \rightarrow \xi _1}) =(n-1)(q^3-q)(q^2+q)\)</span>.</p> </li> </ul><p>Adding up all the contributions we finally get</p><div id="Equ64" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e \big (R(H_n,{{\,\textrm{SL}\,}}_2({\mathbb {C}}))\big ) = \left( (n-1)q^2+ n q -n+5)\right) (q^3-q). \end{aligned}$$</span></div></div></div></div></section><section data-title="Rank 2 Character Variety of the Twisted Hopf Link"><div class="c-article-section" id="Sec12-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec12"><span class="c-article-section__title-number">6 </span>Rank 2 Character Variety of the Twisted Hopf Link</h2><div class="c-article-section__content" id="Sec12-content"><p>In this section, we compute the <i>E</i>-polynomial <span class="mathjax-tex">\(e({\mathfrak {M}}(H_n,G))\)</span>, for <span class="mathjax-tex">\(G={{\,\textrm{SL}\,}}_2({\mathbb {C}})\)</span>. First, we deal with reducible representations (<i>A</i>, <i>B</i>). These are S-equivalent to representations of the form</p><div id="Equ65" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \left( \left( \begin{array}{cc} \lambda &{} 0 \\ 0 &{} \lambda ^{-1} \end{array} \right) , \left( \begin{array}{cc} \mu &{} 0 \\ 0 &{} \mu ^{-1} \end{array} \right) \right) , \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\((\lambda ,\mu ) \in ({\mathbb {C}}^*)^2\)</span>. These are defined modulo the action <span class="mathjax-tex">\((\lambda ,\mu ) \sim (\lambda ^{-1},\mu ^{-1})\)</span>. The equivariant <i>E</i>-polynomial of <span class="mathjax-tex">\({\mathbb {C}}^*\)</span> is <span class="mathjax-tex">\(e_{S_2}({\mathbb {C}}^*)=qT-N\)</span>. Hence <span class="mathjax-tex">\(e_{S_2}(({\mathbb {C}}^*)^2)=(qT-N)^2=(q^2+1)T -2q N\)</span>, and</p><div id="Equ66" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e({\mathfrak {M}}^{\textrm{red}}(H_n,G)) = q^2+1. \end{aligned}$$</span></div></div><p>Now we move to the irreducible representations, which form a space <span class="mathjax-tex">\(R^{\textrm{irr}}(H_n,G)\subset R(H_n,G)\)</span>. As the action is free, <span class="mathjax-tex">\({\mathfrak {M}}^{\textrm{irr}}(H_n,G)=R^{\textrm{irr}}(H_n,G)/{{\,\textrm{PGL}\,}}_2({\mathbb {C}})\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar18">Lemma 6.1</h3> <p>Let <span class="mathjax-tex">\(r\ge 2\)</span>. </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">(1)</span> <p>For a type <span class="mathjax-tex">\(\xi \)</span> and <span class="mathjax-tex">\(G={{\,\textrm{SL}\,}}_r({\mathbb {C}})\)</span>, the space <span class="mathjax-tex">\(R^{\textrm{irr}}(H_n,G)_{\xi \rightarrow \xi }=\emptyset \)</span>.</p> </li> <li> <span class="u-custom-list-number">(2)</span> <p>For types <span class="mathjax-tex">\(\xi '\rightarrow \xi \)</span>, if they are not diagonalizable, then <span class="mathjax-tex">\(R^{\textrm{irr}}(H_n,G)_{\xi ' \rightarrow \xi }=\emptyset \)</span>.</p> </li> <li> <span class="u-custom-list-number">(3)</span> <p>For a type <span class="mathjax-tex">\(\xi \)</span> not corresponding to a multiple of the identity, <span class="mathjax-tex">\(R^{\textrm{irr}}(H_n,G)_{\xi ' \rightarrow \xi }=\emptyset \)</span>.</p> </li> </ol> <h3 class="c-article__sub-heading" id="FPar19">Proof</h3> <ol class="u-list-style-none"> <li> <span class="u-custom-list-number">(1)</span> <p>Let <span class="mathjax-tex">\((A,B) \in R(H_n,G)_{\xi \rightarrow \xi }\)</span>, then <i>A</i> and <span class="mathjax-tex">\(A^n\)</span> are of the same type. Therefore, the eigenvectors of <i>A</i> and <span class="mathjax-tex">\(A^n\)</span> are the same. If <i>A</i> and <span class="mathjax-tex">\(A^n\)</span> are a multiple of the identity, then any vector subspace <span class="mathjax-tex">\(W\subsetneq {\mathbb {C}}^r\)</span> fixed by <i>B</i> is also fixed by <i>A</i>. Otherwise, take an eigenvalue <span class="mathjax-tex">\(\lambda \)</span> of <i>A</i> such that the eigenspace <span class="mathjax-tex">\(W=E_\lambda (A)=E_{\lambda ^n}(A^n) \subsetneq {\mathbb {C}}^r\)</span> is a proper subspace. Now <span class="mathjax-tex">\([A^n,B]=\textrm{Id}\)</span> implies that <span class="mathjax-tex">\(B(W) =W\)</span>, and hence (<i>A</i>, <i>B</i>) is a reducible representation.</p> </li> <li> <span class="u-custom-list-number">(2)</span> <p>Let <span class="mathjax-tex">\((A,B) \in R(H_n,G)_{\xi ' \rightarrow \xi }\)</span>, and suppose that <span class="mathjax-tex">\(\lambda \)</span> is an eigenvalue of <i>A</i> such that the Jordan <span class="mathjax-tex">\(\lambda \)</span>-block is not diagonal. Then <span class="mathjax-tex">\(E_\lambda (A)\)</span> is a proper subspace of the <span class="mathjax-tex">\(\lambda \)</span>-block, and hence </p><div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} W=E_{\lambda ^n}(A^n) =\bigoplus _{\varepsilon \in \mu _n} E_{\lambda \varepsilon }(A) \subsetneq {\mathbb {C}}^r\, . \end{aligned}$$</span></div><div class="c-article-equation__number"> (9) </div></div><p> Again <span class="mathjax-tex">\([A^n,B]=\textrm{Id}\)</span> implies that <span class="mathjax-tex">\(B(W) =W\)</span>, and hence (<i>A</i>, <i>B</i>) is a reducible representation.</p> </li> <li> <span class="u-custom-list-number">(3)</span> <p>The last item is similar, taking <span class="mathjax-tex">\(\lambda \)</span> an eigenvalue of <i>A</i>, then <i>W</i> defined in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ9">9</a>) is also a proper subspace of <span class="mathjax-tex">\({\mathbb {C}}^r\)</span>. <span class="mathjax-tex">\(\square \)</span></p> </li> </ol> <p>This result implies that for <span class="mathjax-tex">\(G={{\,\textrm{SL}\,}}_2({\mathbb {C}})\)</span> we only have to look at <span class="mathjax-tex">\(R^{\textrm{irr}}_{\xi _3 \rightarrow \xi _1}\)</span>. Take an irreducible <span class="mathjax-tex">\((A,B) \in R^{\textrm{irr}}_{\xi _3 \rightarrow \xi _1}\)</span>. The matrix <i>A</i> can be put in diagonal form with eigenvalues <span class="mathjax-tex">\((\lambda ,\lambda \varepsilon )\)</span>, <span class="mathjax-tex">\(\lambda ^n = \pm 1\)</span>, <span class="mathjax-tex">\(\lambda ^2\varepsilon =1\)</span>, <span class="mathjax-tex">\(\lambda \ne \pm 1\)</span>. This is the same as to say <span class="mathjax-tex">\(\lambda \in \mu _{2n}-\mu _2\)</span>. The action of interchanging eigenvalues is an <span class="mathjax-tex">\(S_2\)</span>-action free on <span class="mathjax-tex">\(\mu _{2n}-\mu _2\)</span>. Therefore there are <span class="mathjax-tex">\(n-1\)</span> possibilities. Taking a suitable basis, then</p><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} (A,B)= \left( \left( \begin{array}{cc} \lambda &{} 0 \\ 0 &{} \lambda \varepsilon \end{array} \right) , \left( \begin{array}{cc} a &{} b \\ c &{} d \end{array} \right) \right) , \end{aligned}$$</span></div><div class="c-article-equation__number"> (10) </div></div><p>As the pair is irreducible, then (1, 0) and (0, 1) are not eigenvectors of <i>B</i>, or equivalently, <span class="mathjax-tex">\(b,c\ne 0\)</span>. This is the same as <span class="mathjax-tex">\(bc\ne 0\)</span>. The action of <span class="mathjax-tex">\({\mathcal {D}}\subset {{\,\textrm{PGL}\,}}_2({\mathbb {C}})\)</span> moves <span class="mathjax-tex">\((b,c)\mapsto (\varpi ^{2} b, \varpi ^{-2}c)\)</span>, so we can set <span class="mathjax-tex">\(b=1\)</span>, and hence <span class="mathjax-tex">\(c=1-ad\)</span>. Summing up,</p><div id="Equ67" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {\mathfrak {M}}^{\textrm{irr}}(H_n,G)) \cong \big (\mu _{2n}-\mu _2\big )/S_2 \times \{(a,d) \in {\mathbb {C}}^2 \, | \, ad \ne 1\}. \end{aligned}$$</span></div></div><p>The set <span class="mathjax-tex">\(ad=1\)</span> is a hyperbola, isomorphic to <span class="mathjax-tex">\({\mathbb {C}}^*\)</span>. Therefore</p><div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e({\mathfrak {M}}^{\textrm{irr}}(H_n,G))=(n-1)(q^2-q+1). \end{aligned}$$</span></div><div class="c-article-equation__number"> (11) </div></div><p>Finally</p><div id="Equ68" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e({\mathfrak {M}}(H_n,{{\,\textrm{SL}\,}}_2({\mathbb {C}})))=q^2+1+(n-1)(q^2-q+1). \end{aligned}$$</span></div></div></div></div></section><section data-title="Rank 3 Representation Variety of the Twisted Hopf Link: Combinatorial Setting"><div class="c-article-section" id="Sec13-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec13"><span class="c-article-section__title-number">7 </span>Rank 3 Representation Variety of the Twisted Hopf Link: Combinatorial Setting</h2><div class="c-article-section__content" id="Sec13-content"><p>In this section and the next one, we shall compute the <i>E</i>-polynomial of the <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_{3}({\mathbb {C}})\)</span>-representation variety of the twisted Hopf link <span class="mathjax-tex">\(H_n\)</span>. For that purpose, we will analyze the combinatorial and geometric settings as described in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec6">4</a>. We start in this section by analyzing the combinatorial setting.</p><p>Let <span class="mathjax-tex">\(G={{\,\textrm{SL}\,}}_3({\mathbb {C}})\)</span>. In this rank, up to equivalence, we have 3 possible partitions, namely</p><div id="Equ12" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sigma _1 = \{\{1,2,3\}\}, \qquad \sigma _{2} = \{\{1,2\},\{3\}\}, \qquad \sigma _3 = \{\{1\}, \{2\}, \{3\}\}. \end{aligned}$$</span></div><div class="c-article-equation__number"> (12) </div></div><p>They correspond to the configurations</p><div id="Equ69" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \Delta ^3_{\sigma _1}&= \{\lambda _1 \in ({\mathbb {C}}^*)^3\,|\, \lambda _1^3 = 1\} = \mu _3, \\ \Delta ^3_{\sigma _2}&= \{(\lambda _1, \lambda _2) \in ({\mathbb {C}}^*)^2\,|\, \lambda _1^2\lambda _2 = 1, \lambda _1\ne \lambda _2\} = {\mathbb {C}}^* - \Delta ^3_{\sigma _1} = {\mathbb {C}}^* - \mu _3, \\ \Delta ^3_{\sigma _3}&= \{(\lambda _1, \lambda _2, \lambda _3) \in {\mathbb {C}}^*|\, \lambda _1\lambda _2\lambda _3 = 1, \lambda _1\ne \lambda _2\ne \lambda _3\ne \lambda _1\}. \end{aligned}$$</span></div></div><p>Only the stratum <span class="mathjax-tex">\(\Delta ^3_{\sigma _3}\)</span> is equipped with a non-trivial action. In this case, <span class="mathjax-tex">\(S_3\)</span> acts on <span class="mathjax-tex">\(\Delta ^3_{\sigma _3}\)</span> by permutation of <span class="mathjax-tex">\(\lambda _1, \lambda _2\)</span> and <span class="mathjax-tex">\(\lambda _3\)</span>. First, <span class="mathjax-tex">\(\Delta ^3_{\sigma _3}\cong ({\mathbb {C}}^*)^2- \big ( \{(\lambda _1,\lambda _1)\}\cup \{(\lambda _1,\lambda _1^{-2})\}\cup \{(\lambda _1^{-2},\lambda _1)\}\big )\)</span>. The curves intersect in 3 points <span class="mathjax-tex">\(\{(\varpi ,\varpi )| \varpi \in \mu _3\}\)</span>, therefore</p><div id="Equ70" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(\Delta ^3_{\sigma _3})=(q-1)^2-3(q-1)+3\cdot 3-3= q^2-5q+10. \end{aligned}$$</span></div></div><p>With respect to the refinements, for those over <span class="mathjax-tex">\(\sigma _1\)</span> we have</p><div id="Equ71" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\left( \Delta ^3_{\sigma _1 \rightarrow \sigma _1}\right)&= e\left( \Delta ^3_{\sigma _1}\right) = 3. \\ e\left( \Delta ^3_{\sigma _2 \rightarrow \sigma _1}\right)&= e\left( \{(\lambda _1, \varepsilon ) \in {\mathbb {C}}^* \times \mu _n \,|\, \lambda _1^3\varepsilon = 1, \varepsilon \ne 1\}\right) \\&= e\left( \{(\lambda _1, \varepsilon ) \in {\mathbb {C}}^* \times \mu _n \,|\, \lambda _1^3\varepsilon = 1\}\right) - e\left( \{\lambda _1 \in {\mathbb {C}}^* \,|\, \lambda _1^3 = 1\}\right) \\&= e(\mu _{3n}) - e(\mu _3) = 3n-3. \\ e\left( \Delta ^3_{\sigma _3 \rightarrow \sigma _1}\right)&= e\left( \{(\lambda _1, \varepsilon _1, \varepsilon _2) \in {\mathbb {C}}^* \times (\mu _n)^2 \,|\, \lambda _1^3\varepsilon _1\varepsilon _2 = 1, \varepsilon _1 \ne 1, \varepsilon _2 \ne 1, \varepsilon _1 \ne \varepsilon _2\}\right) \\&= e\left( \{(\lambda _1^3\varepsilon _1\varepsilon _2 = 1\}\right) - e\left( \{\lambda _1^3\varepsilon _2 = 1, \varepsilon _1=1\}\right) - e\left( \{\lambda _1^3\varepsilon _1 = 1, \varepsilon _2=1\}\right) \\& - e\left( \{\lambda _1^3\varepsilon _1^2 = 1, \varepsilon _1=\varepsilon _2\}\right) + 3\,e\left( \{\lambda _1^3 = 1, \varepsilon _1=\varepsilon _2=1\}\right) \\& - e\left( \{\lambda _1^3 = 1, \varepsilon _1=\varepsilon _2=1\}\right) \\&= e(\mu _{3n} \times \mu _n) - e(\mu _{3n}) - e(\mu _{3n}) - e(\mu _{3n})+ 3\,e(\mu _3) - e(\mu _3)\\&= 3n^2 - 9n +6. \end{aligned}$$</span></div></div><p>Moreover, for those over <span class="mathjax-tex">\(\sigma _2\)</span> we have</p><div id="Equ72" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\left( \Delta ^3_{\sigma _2 \rightarrow \sigma _2}\right)&= e\left( \{(\lambda _1, \lambda _2) \in ({\mathbb {C}}^*)^2 \,|\, \lambda _1^2\lambda _2 = 1, \lambda _1^n \ne \lambda _2^n\}\right) \\&= e\left( \Delta ^3_{\sigma _2}\right) - e\left( \Delta ^3_{\sigma _2 \rightarrow \sigma _1}\right) = (q-4) - (3n-3) = q-3n-1. \\ e\left( \Delta ^3_{\sigma _3 \rightarrow \sigma _2}\right)&= e\big ( \{(\lambda _1, \lambda _2, \varepsilon ) \in ({\mathbb {C}}^*)^2 \times \mu _n^* \,|\, \lambda _1^2\lambda _2\varepsilon = 1, \lambda _2 \ne \lambda _1\epsilon , \forall \epsilon \in \mu _n\} \big ) \\&= e(\{\lambda _1^2\lambda _2\varepsilon =1\}) - e(\{\epsilon \lambda _1^3\varepsilon =1,\epsilon \in \mu _n, \varepsilon \in \mu _n^*\}) \\&= e({\mathbb {C}}^* \times \mu _n^*) - e(\mu _{3n}\times \mu _n^*) = (n-1)(q-3n-1). \end{aligned}$$</span></div></div><p>Finally, to compute <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _3}\)</span>, let us consider the three possible partitions equivalent to <span class="mathjax-tex">\(\sigma _2\)</span>, namely</p><div id="Equ73" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \sigma _2 = \{\{1,2\},\{3\}\}, \qquad \sigma _2' = \{\{1\},\{2,3\}\}, \qquad \sigma _2'' = \{\{1,3\},\{2\}\}. \end{aligned}$$</span></div></div><p>Notice that we have a decomposition</p><div id="Equ13" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} \Delta ^3_{\sigma _3} = \Delta ^3_{\sigma _3\rightarrow \sigma _3} \sqcup \Delta ^3_{\sigma _3\rightarrow \sigma _2} \sqcup \Delta ^3_{\sigma _3\rightarrow \sigma _2'} \sqcup \Delta ^3_{\sigma _3\rightarrow \sigma _2''} \sqcup \Delta ^3_{\sigma _3\rightarrow \sigma _1}. \end{aligned}\nonumber \\ \end{aligned}$$</span></div><div class="c-article-equation__number"> (13) </div></div><p>Since <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _2} \cong \Delta ^3_{\sigma _3\rightarrow \sigma _2'} \cong \Delta ^3_{\sigma _3\rightarrow \sigma _2''}\)</span>, we get</p><div id="Equ74" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\left( \Delta ^3_{\sigma _3 \rightarrow \sigma _3}\right)&= e\left( \Delta ^3_{\sigma _3}\right) - 3e\left( \Delta ^3_{\sigma _3 \rightarrow \sigma _2}\right) - e\left( \Delta ^3_{\sigma _3\rightarrow \sigma _1}\right) \\&= q^2 - (3n + 2)q +6n^2 + 3n +1. \end{aligned}$$</span></div></div><h3 class="c-article__sub-heading" id="Sec14"><span class="c-article-section__title-number">7.1 </span>Equivariant <i>E</i>-polynomials</h3><p>First, let us analyze the action of <span class="mathjax-tex">\(S_3\)</span> on <span class="mathjax-tex">\(\Delta ^3_{\sigma _3}\)</span>. For the quotient <span class="mathjax-tex">\(\Delta ^3_{\sigma _3}/S_3\)</span>, we note that <span class="mathjax-tex">\( ({\mathbb {C}}^*)^2/S_3\)</span> is parametrized by <span class="mathjax-tex">\((s=\lambda _1+\lambda _2+\lambda _3, p=\lambda _1\lambda _2+\lambda _1\lambda _3+\lambda _2\lambda _3)\in {\mathbb {C}}^2\)</span>. The image of the three lines that we have to remove in <span class="mathjax-tex">\(\Delta ^2_{\sigma _3}\)</span> is just one line <span class="mathjax-tex">\({\mathbb {C}}^*\)</span> in <span class="mathjax-tex">\(\Delta ^3_{\sigma _3}/S_3\)</span>, so <span class="mathjax-tex">\(e(\Delta ^3_{\sigma _3}/S_3)=q^2-q+1\)</span>. Finally, <span class="mathjax-tex">\(\Delta ^3_{\sigma _3}/\langle \tau \rangle \)</span> is parametrized by <span class="mathjax-tex">\((u=\lambda _1+\lambda _2, v=\lambda _1\lambda _2) \in {\mathbb {C}}\times {\mathbb {C}}^*\)</span>, removing the lines <span class="mathjax-tex">\(\{(\lambda _1, \lambda _1)\} \cup \{(\lambda _1,\lambda _1^{-2})\}\)</span>, which intersect in 3 points. Thus <span class="mathjax-tex">\(e(\Delta ^3_{\sigma _3}/\langle \tau \rangle )=q^2-q-2(q-1)+3=q^2-3q+5\)</span>. This produces:</p><div id="Equ14" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e_{S^3}(\Delta ^3_{\sigma _3}) = (q^2-q+1) T+ S + (-2q+4)D. \end{aligned}$$</span></div><div class="c-article-equation__number"> (14) </div></div><p>The configuration spaces with actions are <span class="mathjax-tex">\(\Delta ^3_{\sigma _3 \rightarrow \sigma _1}\)</span>, <span class="mathjax-tex">\(\Delta ^3_{\sigma _3 \rightarrow \sigma _2}\)</span> and <span class="mathjax-tex">\(\Delta ^3_{\sigma _3 \rightarrow \sigma _3}\)</span>, which can be analyzed as follows.</p><ul class="u-list-style-bullet"> <li> <p>For the first one, we observe that the action of <span class="mathjax-tex">\(S_3\)</span> and <span class="mathjax-tex">\(\tau =(1,2)\)</span> on <span class="mathjax-tex">\(\Delta ^3_{\sigma _3 \rightarrow \sigma _1}\)</span> are free (they interchange different eigenvalues). Since <span class="mathjax-tex">\(\Delta ^3_{\sigma _3 \rightarrow \sigma _1}\)</span> is just a finite collection of points, we directly get that <span class="mathjax-tex">\(e\left( \Delta ^3_{\sigma _3 \rightarrow \sigma _1}/S_3\right) = (3n^2 - 9n +6)/6 = \frac{1}{2} (n^2 - 3n + 2)\)</span> and <span class="mathjax-tex">\(e\left( \Delta ^3_{\sigma _3 \rightarrow \sigma _1}/\langle \tau \rangle \right) = \frac{1}{2} (3n^2 - 9n +6)\)</span>. Therefore, using (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ4">4</a>) we have </p><div id="Equ15" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} e_{S_3}\left( \Delta ^3_{\sigma _3 \rightarrow \sigma _1}\right)&= \frac{1}{2} \left( n^2 - 3n + 2\right) T + \frac{1}{2} \left( n^2 - 3n + 2\right) S \nonumber \\ {}&\quad + (n^2 - 3n + 2)D. \end{aligned}\nonumber \\ \end{aligned}$$</span></div><div class="c-article-equation__number"> (15) </div></div> </li> <li> <p>For the second space, observe that the action of <span class="mathjax-tex">\(S_3\)</span> on <span class="mathjax-tex">\(\Delta ^3_{\sigma _3}\)</span> does not restrict to <span class="mathjax-tex">\(\Delta ^3_{\sigma _3 \rightarrow \sigma _2}\)</span>. Instead, the acting subgroup is <span class="mathjax-tex">\(S_{\sigma _3 \rightarrow \sigma _2} = \langle \tau \rangle < S_3\)</span> with action given by <span class="mathjax-tex">\(\tau \cdot (\lambda _1, \lambda _1 \varepsilon , \lambda _2) = (\lambda _1 \varepsilon , \lambda _1, \lambda _2)\)</span>, in terms of the eigenvalues, or equivalently, <span class="mathjax-tex">\(\tau \cdot (\lambda _1, \lambda _2, \varepsilon ) = (\lambda _1\varepsilon , \lambda _2, \varepsilon ^{-1})\)</span> on <span class="mathjax-tex">\(({\mathbb {C}}^*)^2\times \mu _n^*\)</span>. Let us focus first on the natural extension of this action to <span class="mathjax-tex">\(\{\lambda _1^2\lambda _2\varepsilon =1\} \cong {\mathbb {C}}^* \times \mu _{n}^*\)</span>, given as <span class="mathjax-tex">\(\tau \cdot (\lambda _1, \varepsilon ) = (\lambda _1\varepsilon , \varepsilon ^{-1})\)</span>. These are <span class="mathjax-tex">\(n-1\)</span> different punctured lines and the action depends on the value of <span class="mathjax-tex">\(\varepsilon \)</span>. If <span class="mathjax-tex">\(\varepsilon = -1\)</span> (which can only happen if <i>n</i> is even) the action is <span class="mathjax-tex">\(\lambda _1 \mapsto -\lambda _1\)</span> whose quotient is <span class="mathjax-tex">\({\mathbb {C}}^*\)</span>; for <span class="mathjax-tex">\(\varepsilon \ne \pm 1\)</span>, the action interchanges the pair of lines <span class="mathjax-tex">\({\mathbb {C}}^* \times \{\varepsilon \}\)</span> to <span class="mathjax-tex">\({\mathbb {C}}^* \times \{\varepsilon ^{-1}\}\)</span> so the quotient is just one of them. In this way, </p><div id="Equ75" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(({\mathbb {C}}^* \times \mu _n^*)/\langle \tau \rangle ) = \left\lfloor \frac{n}{2} \right\rfloor (q-1), \end{aligned}$$</span></div></div><p> where <span class="mathjax-tex">\(\left\lfloor x \right\rfloor \)</span> is the floor function (the greatest integer less than or equal to <i>x</i>). Now we have to remove, <span class="mathjax-tex">\(\{\epsilon \lambda _1^3\varepsilon =1, \epsilon \in \mu _n,\varepsilon \in \mu _n^*\} \cong \mu _{3n}\times \mu _n^*\)</span>, and the action is <span class="mathjax-tex">\(\tau \cdot (\lambda _1, \varepsilon )=(\lambda _1\varepsilon , \varepsilon ^{-1})\)</span>. If <span class="mathjax-tex">\(\varepsilon \ne -1\)</span>, the action is clearly free, and if <span class="mathjax-tex">\(\varepsilon =-1\)</span> then the action is free as well. Hence this accounts form <span class="mathjax-tex">\(3n(n-1)/2\)</span> points. Therefore, putting all together we get </p><div id="Equ76" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\left( \Delta ^3_{\sigma _3 \rightarrow \sigma _2} / \langle \tau \rangle \right)&= \left\lfloor \frac{n}{2} \right\rfloor (q-1) - \frac{3}{2}n(n-1). \end{aligned}$$</span></div></div><p> Thus, we finally find that </p><div id="Equ16" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e_{S_2}\left( \Delta ^3_{\sigma _3 \rightarrow \sigma _2}\right)= & {} \left( \left\lfloor \frac{n}{2} \right\rfloor (q-1) - \frac{3n(n-1)}{2} \right) T \nonumber \\{} & {} + \left( \left\lfloor \frac{n-1}{2} \right\rfloor (q-1) - \frac{3n(n-1)}{2} \right) N. \end{aligned}$$</span></div><div class="c-article-equation__number"> (16) </div></div> </li> <li> <p>To study the remaining configuration, <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _3}\)</span>, observe that regarding decomposition (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ13">13</a>) the action of <span class="mathjax-tex">\(S_3\)</span> on <span class="mathjax-tex">\(\Delta ^3_{\sigma _3}\)</span> leaves invariant <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _3}\)</span>, <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _1}\)</span>, and <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _2} \sqcup \Delta ^3_{\sigma _3\rightarrow \sigma _2'} \sqcup \Delta ^3_{\sigma _3\rightarrow \sigma _2''} \)</span>. For this later action, we have </p><div id="Equ77" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \left( \Delta ^3_{\sigma _3\rightarrow \sigma _2} \sqcup \Delta ^3_{\sigma _3\rightarrow \sigma _2'} \sqcup \Delta ^3_{\sigma _3\rightarrow \sigma _2''} \right) /S_3 = \Delta ^3_{\sigma _3\rightarrow \sigma _2} / \langle \tau \rangle . \end{aligned}$$</span></div></div><p> Hence, using the previous computations we get </p><div id="Equ78" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\left( \Delta ^3_{\sigma _3\rightarrow \sigma _3}/S_3\right)&= e\left( \Delta ^3_{\sigma _3}/S_3\right) - e\left( \Delta ^3_{\sigma _3\rightarrow \sigma _2} / \langle \tau \rangle \right) - e\left( \Delta ^3_{\sigma _3\rightarrow \sigma _1}/S_3\right) \\&= q^{2} - q - \left\lfloor \frac{n}{2} \right\rfloor (q-1) + n^2. \end{aligned}$$</span></div></div><p> Similarly, for the action of <span class="mathjax-tex">\(\tau \)</span> we have that <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _3}\)</span>, <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _2} \)</span> and <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _1}\)</span> are invariant, whereas it permutes <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _2'}\)</span> and <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _2''}\)</span>. Hence, </p><div id="Equ79" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \left( \Delta ^3_{\sigma _3\rightarrow \sigma _2'} \sqcup \Delta ^3_{\sigma _3\rightarrow \sigma _2''} \right) /\langle \tau \rangle = \Delta ^3_{\sigma _3\rightarrow \sigma _2'} \cong \Delta ^3_{\sigma _3\rightarrow \sigma _2}, \end{aligned}$$</span></div></div><p> and therefore </p><div id="Equ80" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e\left( \Delta ^3_{\sigma _3\rightarrow \sigma _3}/\langle \tau \rangle \right)&= e\left( \Delta ^3_{\sigma _3}/\langle \tau \rangle \right) - e\left( \Delta ^3_{\sigma _3\rightarrow \sigma _2} / \langle \tau \rangle \right) - e\left( \Delta ^3_{\sigma _3\rightarrow \sigma _2}\right) \\&\quad - e\left( \Delta ^3_{\sigma _3\rightarrow \sigma _1}/\langle \tau \rangle \right) \\&= q^{2} -\left\lfloor \frac{3n+4}{2} \right\rfloor (q-1) + 3n^2-1. \end{aligned}$$</span></div></div><p> In this way, using (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ4">4</a>), we get </p><div id="Equ17" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} e_{S_3}\left( \Delta ^3_{\sigma _3\rightarrow \sigma _3}\right) =&\left( q^{2} - q - \left\lfloor \frac{n}{2} \right\rfloor (q-1) + n^2 \right) T - \left( \left\lfloor \frac{n-1}{2} \right\rfloor (q-1)- n^2 \right) S \nonumber \\ {}&- \left( (n+1) (q-1) - 2n^2 \right) D. \end{aligned}\nonumber \\ \end{aligned}$$</span></div><div class="c-article-equation__number"> (17) </div></div> </li> </ul></div></div></section><section data-title="Rank 3 Representation Variety of the Twisted Hopf Link: Geometric setting"><div class="c-article-section" id="Sec15-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec15"><span class="c-article-section__title-number">8 </span>Rank 3 Representation Variety of the Twisted Hopf Link: Geometric setting</h2><div class="c-article-section__content" id="Sec15-content"><p>From the three partitions <span class="mathjax-tex">\(\sigma _1,\sigma _2,\sigma _3\)</span> in (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ12">12</a>), we can create six types (up to equivalence), namely</p><div id="Equ81" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}&\xi _1 = (\sigma _1, \{1,2,3\}), \quad \xi _2 = (\sigma _1, \{(1,2),3\}), \quad \xi _3 = (\sigma _1, \{(1,2,3)\}), \\&\xi _4=(\sigma _2, \{\{1,2\},3\}), \quad \xi _5=(\sigma _2,\{\{(1,2)\},3\}), \quad \xi _6 = (\sigma _3,\{\{1\},\{2\},\{3\} \}). \end{aligned}$$</span></div></div><p>The type <span class="mathjax-tex">\(\xi _j\)</span> is given by the matrix <span class="mathjax-tex">\(A_j\)</span>, <span class="mathjax-tex">\(j=1,2,3,4,5,6\)</span>, where</p><ul class="u-list-style-bullet"> <li> <p><span class="mathjax-tex">\(A_1=\left( \begin{array}{ccc} \lambda _1 &{} 0 &{} 0 \\ 0&{} \lambda _1 &{} 0 \\ 0 &{} 0&{} \lambda _1 \end{array} \right) \)</span>, with <span class="mathjax-tex">\(\lambda _1\in \mu _3\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(A_2=\left( \begin{array}{ccc} \lambda _1 &{} 0 &{} 0 \\ 1&{} \lambda _1 &{} 0 \\ 0 &{} 0&{} \lambda _1 \end{array} \right) \)</span>, with <span class="mathjax-tex">\(\lambda _1\in \mu _3\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(A_3=\left( \begin{array}{ccc} \lambda _1 &{} 0 &{} 0 \\ 1&{} \lambda _1 &{} 0 \\ 0 &{} 1&{} \lambda _1 \end{array} \right) \)</span>, with <span class="mathjax-tex">\(\lambda _1\in \mu _3\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(A_4=\left( \begin{array}{ccc} \lambda _1 &{} 0 &{} 0 \\ 0&{} \lambda _1 &{} 0 \\ 0 &{} 0&{} \lambda _2 \end{array} \right) \)</span>, with <span class="mathjax-tex">\(\lambda _1\ne \lambda _2\)</span>. Here <span class="mathjax-tex">\(\lambda _2=\lambda _1^{-2}\)</span>, so <span class="mathjax-tex">\(\lambda _1\in {\mathbb {C}}^*-\mu _3\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(A_5=\left( \begin{array}{ccc} \lambda _1 &{} 0 &{} 0 \\ 1&{} \lambda _1 &{} 0 \\ 0 &{} 0&{} \lambda _2 \end{array} \right) \)</span>, with <span class="mathjax-tex">\(\lambda _2=\lambda _1^{-2}\)</span>, and <span class="mathjax-tex">\(\lambda _1\in {\mathbb {C}}^*-\mu _3\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(A_6=\left( \begin{array}{ccc} \lambda _1 &{} 0 &{} 0 \\ 0&{} \lambda _2 &{} 0 \\ 0 &{} 0&{} \lambda _3 \end{array} \right) \)</span>, with <span class="mathjax-tex">\(\lambda _i\ne \lambda _j\)</span> for <span class="mathjax-tex">\(i\ne j\)</span>, <span class="mathjax-tex">\(\lambda _1\lambda _2\lambda _3=1\)</span>.</p> </li> </ul><p>Only in the case <span class="mathjax-tex">\(\xi _6\)</span> we have an action of the group <span class="mathjax-tex">\(S_3\)</span> given by the permutation of the eigenvalues <span class="mathjax-tex">\(\lambda _i\)</span>.</p><p>Denote <span class="mathjax-tex">\(R_{\xi _i\rightarrow \xi _j}=R(H_n,{{\,\textrm{SL}\,}}_3({\mathbb {C}}))_{\xi _i\rightarrow \xi _j}\)</span>. Taking into account the possible refinement relations, we have</p><div id="Equ82" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R(H_n,{{\,\textrm{SL}\,}}_3({\mathbb {C}})) = R_{\xi _4 \rightarrow \xi _1} \sqcup R_{\xi _6 \rightarrow \xi _4} \sqcup R_{\xi _6 \rightarrow \xi _1}\sqcup R_{\xi _5 \rightarrow \xi _2} \sqcup \bigsqcup _{1\le i\le 6} R_{\xi _i \rightarrow \xi _i}. \end{aligned}$$</span></div></div><p>Using Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar16">4.7</a>, we have</p><div id="Equ18" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R_{\xi _i \rightarrow \xi _j} \cong \left( {\mathcal {A}}_{\xi _i \rightarrow \xi _j} \times \big ({{\,\textrm{PGL}\,}}_{3}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _i)\big ) \times {\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _j) \right) / S_{\xi _i \rightarrow \xi _j} . \end{aligned}$$</span></div><div class="c-article-equation__number"> (18) </div></div><h3 class="c-article__sub-heading" id="Sec16"><span class="c-article-section__title-number">8.1 </span>The Stabilizers</h3><p>We start by studying <span class="mathjax-tex">\({{\,\textrm{PGL}\,}}_{3}({\mathbb {C}})/{{\,\textrm{Stab}\,}}(\xi _i)\)</span> and <span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _j)\)</span>. Recall that <span class="mathjax-tex">\(e({{\,\textrm{PGL}\,}}_3({\mathbb {C}}))=e({{\,\textrm{SL}\,}}_3({\mathbb {C}}))= (q^3-1)(q^3-q)q^2\)</span>.</p><ul class="u-list-style-bullet"> <li> <p><span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _1)={{\,\textrm{SL}\,}}_3({\mathbb {C}})\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _2)=\left\{ { \left( \begin{array}{ccc} \beta _1 &{} 0 &{} 0 \\ a&{} \beta _1 &{} b \\ c &{} 0&{} \beta _1^{-2} \end{array} \right) }\Big |\beta _1\in {\mathbb {C}}^*\right\} \cong {\mathbb {C}}^*\times {\mathbb {C}}^3\)</span>. Then <span class="mathjax-tex">\(e({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _2))=(q-1)q^3\)</span>, and <span class="mathjax-tex">\(e({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{{\,\textrm{Stab}\,}}(\xi _2))= (q^3-1)(q+1)\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _3)=\left\{ { \left( \begin{array}{ccc} \beta _1 &{} 0 &{} 0 \\ a&{} \beta _1 &{} 0 \\ b &{} a&{} \beta _1 \end{array} \right) }\Big |\beta _1\in \mu _3\right\} \cong \mu _3 \times {\mathbb {C}}^2\)</span>. Thus <span class="mathjax-tex">\(e({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _3))=3q^2\)</span>, <span class="mathjax-tex">\({{\,\textrm{Stab}\,}}(\xi _3)=q^2\)</span>, and <span class="mathjax-tex">\(e({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{{\,\textrm{Stab}\,}}(\xi _3))=(q^3-1)(q^2-1)q\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _4)=\left\{ { \left( \begin{array}{c|c} B' &{} 0 \\ 0&{} (\det B')^{-1} \end{array} \right) }\Big | B'\in {{\,\textrm{GL}\,}}_2({\mathbb {C}})\right\} \)</span>. Thus <span class="mathjax-tex">\(e({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _4))=(q^2-1)(q^2-q)\)</span>, and <span class="mathjax-tex">\(e({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{{\,\textrm{Stab}\,}}(\xi _4))= (q^2+q+1)q^2\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _5)=\left\{ { \left( \begin{array}{ccc} \beta _1 &{} 0 &{} 0 \\ a&{} \beta _1 &{} 0 \\ 0 &{} 0&{} \beta _1^{-2} \end{array} \right) }\Big |\beta _1\in {\mathbb {C}}^*\right\} \cong {\mathbb {C}}^*\times {\mathbb {C}}\)</span>. Thus <span class="mathjax-tex">\(e({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _5))=q(q-1)\)</span>, and <span class="mathjax-tex">\(e({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{{\,\textrm{Stab}\,}}(\xi _5))=(q^3-1)(q^3+q^2)\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _6)=\left\{ {\left( \begin{array}{ccc} \beta _1 &{} 0 &{} 0 \\ 0&{} \beta _2 &{} 0 \\ 0 &{} 0&{} \beta _3 \end{array} \right) } \Big | \beta _1\beta _2\beta _3=1\right\} ={\mathcal {D}}\cong \Delta ^3_{\sigma _3}= ({\mathbb {C}}^*)^2\)</span>. Then <span class="mathjax-tex">\(e({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _6))=(q-1)^2\)</span>, and <span class="mathjax-tex">\(e({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{{\,\textrm{Stab}\,}}(\xi _6))=(q^2+q+1)(q+1)q^3\)</span>.</p> </li> </ul><p>Only in the case of <span class="mathjax-tex">\(\xi _6\)</span> there is an action of <span class="mathjax-tex">\(S_3\)</span>. Let us give the equivariant <i>E</i>-polynomials. The quotient <span class="mathjax-tex">\({\mathcal {D}}/S_3\)</span> is parametrized by <span class="mathjax-tex">\((s=\beta _1+\beta _2+\beta _3, p=\beta _1\beta _2+\beta _1\beta _3+\beta _2\beta _3)\in {\mathbb {C}}^2\)</span>, hence <span class="mathjax-tex">\(e({\mathcal {D}}/S_3)=q^2\)</span>. Also <span class="mathjax-tex">\(\Delta ^3_{\sigma _3}/\langle \tau \rangle = ({\mathbb {C}}^*/{\mathbb {Z}}_2)\times {\mathbb {C}}^* \cong {\mathbb {C}}\times {\mathbb {C}}^*\)</span>, parametrized by <span class="mathjax-tex">\(u=\beta _1+\beta _2\)</span>, <span class="mathjax-tex">\(v=\beta _1\beta _2\)</span>, <span class="mathjax-tex">\(\beta _3=v^{-1}\)</span>, and hence <span class="mathjax-tex">\(e({\mathcal {D}}/\langle \tau \rangle )=q^2-q\)</span>. All together (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ4">4</a>) yields</p><div id="Equ19" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e_{S_3}({\mathcal {D}})= q^2 T+ S -q D. \end{aligned}$$</span></div><div class="c-article-equation__number"> (19) </div></div><p>The quotient <span class="mathjax-tex">\({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}}\)</span> is parametrized by the column vectors of the matrix in <span class="mathjax-tex">\({{\,\textrm{GL}\,}}_3({\mathbb {C}})\)</span> up to scalar. This means that</p><div id="Equ83" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} {{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}}=\{([v_1],[v_2],[v_3]) \in ({\mathbb {P}}^2)^3 \text { linearly independent}\}= ({\mathbb {P}}^2)^3- {\mathcal {L}}, \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\({\mathcal {L}}\)</span> is the subspace of three linearly dependent points of <span class="mathjax-tex">\({\mathbb {P}}^2\)</span>. This is <span class="mathjax-tex">\({\mathcal {L}}={\mathcal {L}}^0 \sqcup {\mathcal {L}}^1\)</span>, according to whether they are coincident, or they span a line. In the first case <span class="mathjax-tex">\({\mathcal {L}}^0\cong {\mathbb {P}}^2\)</span>, and in the second, <span class="mathjax-tex">\({\mathcal {L}}^1 \cong {{\,\textrm{Gr}\,}}({\mathbb {P}}^1,{\mathbb {P}}^2) \times (({\mathbb {P}}^1)^3-{\mathcal {L}}^0)\)</span>, given by choosing a line and three not-all-equal points of it. The Grassmannian of lines is the dual projective plane, so</p><div id="Equ84" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e( {{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}})&= (q^2+q+1)^3\\&\quad - \Big ((q^2+q+1) + (q^2+q+1)((q+1)^3-(q+1)) \Big ) \\&= q^6+2q^5+2q^4+q^3. \end{aligned}$$</span></div></div><p>This agrees with <span class="mathjax-tex">\(e({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}})=(q^3-1)(q^3-q)q^2/(q-1)^2\)</span>.</p><p>For the quotient, <span class="mathjax-tex">\(({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}})/S_3 = \textrm{Sym}^3({\mathbb {P}}^2)- {\mathcal {L}}\)</span>, where now <span class="mathjax-tex">\({\mathcal {L}}={\mathbb {P}}^2 \sqcup ({{\,\textrm{Gr}\,}}({\mathbb {P}}^1, {\mathbb {P}}^2) \times (\textrm{Sym}^3({\mathbb {P}}^1)-{\mathbb {P}}^1))\)</span>. Then</p><div id="Equ85" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}})/S_3) =&\, (q^6+q^5+2q^4+2q^3+2q^2+q+1) \\ {}&- \Big ((q^2+q+1) + (q^2+q+1)((q^3+q^2+q+1)-(q+1)) \Big ) \\ =&\, q^6. \end{aligned}$$</span></div></div><p>Finally, <span class="mathjax-tex">\(({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}})/\langle \tau \rangle = \textrm{Sym}^2({\mathbb {P}}^2) \times {\mathbb {P}}^2 - {\mathcal {L}}\)</span>, where <span class="mathjax-tex">\({\mathcal {L}}={\mathbb {P}}^2 \sqcup ( {{\,\textrm{Gr}\,}}({\mathbb {P}}^1, {\mathbb {P}}^2) \times (\textrm{Sym}^2({\mathbb {P}}^1)\times {\mathbb {P}}^1-{\mathbb {P}}^1))\)</span>. Therefore,</p><div id="Equ86" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}})/\langle \tau \rangle ) =&\, (q^4+q^3+2q^2+q+1)(q^2+q+1) \\&- \Big ((q^2+q+1) + (q^2+q+1)((q^2+q+1)(q+1)-(q+1)) \Big ) \\ =&\, q^6+q^5+q^4. \end{aligned}$$</span></div></div><p>All together, understanding <span class="mathjax-tex">\(S_2 = \langle \tau \rangle \)</span>, this gives</p><div id="Equ20" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} e_{S_3}({{\,\text {PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}}) = q^6 T+q^3 S + (q^5+q^4)D, \end{aligned} \end{aligned}$$</span></div><div class="c-article-equation__number"> (20) </div></div><div id="Equ21" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned} e_{S_2}({{\,\text {PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}}) = (q^6+q^5+q^4) T+ (q^5 + q^4 + q^3)N. \end{aligned} \end{aligned}$$</span></div><div class="c-article-equation__number"> (21) </div></div><p>Finally, for the action of <span class="mathjax-tex">\(S_3\)</span> on <span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _1)= {{\,\textrm{SL}\,}}_3({\mathbb {C}})\)</span> and the action of <span class="mathjax-tex">\(S_2\)</span> on <span class="mathjax-tex">\({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _4) \cong {{\,\textrm{GL}\,}}_2({\mathbb {C}})\)</span>, by Proposition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar4">2.2</a> we have that</p><div id="Equ22" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e_{S_3}({{\,\textrm{SL}\,}}_3({\mathbb {C}})) = (q^8 - q^6 - q^5 + q^3)T, \quad e_{S_2}({{\,\textrm{GL}\,}}_2({\mathbb {C}})) = (q^4-q^3-q^2+q) T .\nonumber \\ \end{aligned}$$</span></div><div class="c-article-equation__number"> (22) </div></div> <h3 class="c-article__sub-heading" id="FPar20">Remark 8.1</h3> <p>There is a locally trivial fibration <span class="mathjax-tex">\({\mathcal {D}}\rightarrow {{\,\textrm{SL}\,}}_3({\mathbb {C}}) \rightarrow {{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}}\)</span>. This is an equivariant fibration, which can be seen as follows: the base <span class="mathjax-tex">\(B={{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}}\)</span> parametrizes subsets of 3 non-collinear points in <span class="mathjax-tex">\({\mathbb {P}}^2\)</span>, which is an open subset of <span class="mathjax-tex">\(\textrm{Sym}^3({\mathbb {P}}^2)\)</span>. Given one triplet, there is a line <span class="mathjax-tex">\(\ell \subset {\mathbb {P}}^2\)</span> missing it, hence it lies in <span class="mathjax-tex">\(\textrm{Sym}^3 ({\mathbb {P}}^2- \ell )\)</span>. The fibration over <span class="mathjax-tex">\(B\cap \textrm{Sym}^3 ({\mathbb {P}}^2- \ell )\)</span> is trivial and <span class="mathjax-tex">\(S_3\)</span>-invariant, which shows the claim. In particular, it holds <span class="mathjax-tex">\(e_{S_3}({{\,\textrm{SL}\,}}_3({\mathbb {C}}))= e_{S_3}({\mathcal {D}}) \otimes e_{S_3}({{\,\textrm{PGL}\,}}_3({\mathbb {C}})/{\mathcal {D}})\)</span>. This can also be checked from (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ19">19</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ20">20</a>). Similar observations apply for <span class="mathjax-tex">\({{\,\textrm{GL}\,}}_2({\mathbb {C}})\)</span>.</p> <h3 class="c-article__sub-heading" id="Sec17"><span class="c-article-section__title-number">8.2 </span>Adding Up All Contributions</h3><p>Now we move to the computation of the <i>E</i>-polynomials of the strata (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ18">18</a>). For <span class="mathjax-tex">\(i=1,\ldots , 5\)</span>, we have</p><div id="Equ87" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} R_{\xi _i \rightarrow \xi _i} \cong \Delta ^3_{\sigma _{(i)} \rightarrow \sigma _{(i)}} \times \big ({{\,\textrm{PGL}\,}}_{3}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _i)\big ) \times {\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _i) , \end{aligned}$$</span></div></div><p>using Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar14">4.6</a>, where <span class="mathjax-tex">\(\sigma _{(i)}\)</span> denotes the partition associated to <span class="mathjax-tex">\(\xi _i\)</span>. Therefore</p><ul class="u-list-style-bullet"> <li> <p><span class="mathjax-tex">\(e(R_{\xi _1 \rightarrow \xi _1} )=e( \Delta ^3_{\sigma _1 \rightarrow \sigma _1}) e({{\,\textrm{PGL}\,}}_3({\mathbb {C}}))= 3(q^3-1)(q^3-q)q^2\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(e(R_{\xi _2\rightarrow \xi _2} )=e( \Delta ^3_{\sigma _1 \rightarrow \sigma _1}) e({{\,\textrm{PGL}\,}}_3({\mathbb {C}})) =3(q^3-1)(q^3-q)q^2\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(e(R_{\xi _3\rightarrow \xi _3} )=e( \Delta ^3_{\sigma _1 \rightarrow \sigma _1}) 3\,e({{\,\textrm{PGL}\,}}_3({\mathbb {C}}))= 9(q^3-1)(q^3-q)q^2\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(e(R_{\xi _4 \rightarrow \xi _4} )=e( \Delta ^3_{\sigma _2 \rightarrow \sigma _2}) e({{\,\textrm{PGL}\,}}_3({\mathbb {C}})) =(q-3n-1)(q^3-1)(q^3-q)q^2\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(e(R_{\xi _5 \rightarrow \xi _5} )=e( \Delta ^3_{\sigma _2 \rightarrow \sigma _2}) e({{\,\textrm{PGL}\,}}_3({\mathbb {C}})) =(q-3n-1)(q^3-1)(q^3-q)q^2\)</span>.</p> </li> </ul><p>The remaining five strata are analyzed one by one:</p><ul class="u-list-style-bullet"> <li> <p><span class="mathjax-tex">\(R_{\xi _5 \rightarrow \xi _2} \cong \Delta ^3_{\sigma _2 \rightarrow \sigma _1} \times \big ({{\,\textrm{PGL}\,}}_{3}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _5)\big ) \times {\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _2)\)</span>, hence </p><div id="Equ88" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(R_{\xi _5 \rightarrow \xi _2})&=e( \Delta ^3_{\sigma _2 \rightarrow \sigma _1}) e\big ({{\,\textrm{PGL}\,}}_{3}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _5)\big ) e({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _2)) \\&=(3n-3) (q^3-1)(q^3+q^2)(q-1)q^3. \end{aligned}$$</span></div></div> </li> <li> <p><span class="mathjax-tex">\(R_{\xi _4 \rightarrow \xi _1} \cong \Delta ^3_{\sigma _2 \rightarrow \sigma _1} \times \big ({{\,\textrm{PGL}\,}}_{3}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _4)\big ) \times {\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _1)\)</span>, therefore </p><div id="Equ89" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(R_{\xi _4 \rightarrow \xi _1})&=e( \Delta ^3_{\sigma _2 \rightarrow \sigma _1}) e\big ({{\,\textrm{PGL}\,}}_{3}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _4)\big ) e({\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _1)) \\&=(3n-3) (q^2+q+1)q^2(q^3-1)(q^2-1)q^3. \end{aligned}$$</span></div></div> </li> <li> <p><span class="mathjax-tex">\(R_{\xi _6 \rightarrow \xi _1} \cong {\tilde{R}}_{\xi _6 \rightarrow \xi _1}/S_3\)</span>, where <span class="mathjax-tex">\({\tilde{R}}_{\xi _6 \rightarrow \xi _1} \cong \Delta ^3_{\sigma _3 \rightarrow \sigma _1} \times \big ({{\,\textrm{PGL}\,}}_{3}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _6)\big ) \times {\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _1) = \Delta ^3_{\sigma _3 \rightarrow \sigma _1} \times \big ({{\,\textrm{PGL}\,}}_{3}({\mathbb {C}})/ {\mathcal {D}}\big ) \times {{\,\textrm{SL}\,}}_3({\mathbb {C}})\)</span>. By (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ15">15</a>), (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ20">20</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ22">22</a>), we have </p><div id="Equ90" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}{} & {} e_{S_3}({\tilde{R}}_{\xi _6 \rightarrow \xi _1}) = \left( \frac{n^2 - 3n + 2}{2} T + \frac{n^2 - 3n + 2}{2}S + (n^2 - 3n + 2)D \right) \\{} & {} \qquad \qquad \quad \qquad \otimes ( q^6 T+q^3 S + (q^5+q^4)D ) \otimes (q^8 - q^6 - q^5 + q^3)T . \end{aligned}$$</span></div></div><p> Taking the <i>T</i>-component, </p><div id="Equ91" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(R_{\xi _6 \rightarrow \xi _1})&= \frac{n^2-3n+2}{2} (q^3-1)^2 (q+1)^2 q^6 . \end{aligned}$$</span></div></div> </li> <li> <p><span class="mathjax-tex">\(R_{\xi _6 \rightarrow \xi _4} \cong {\tilde{R}}_{\xi _6 \rightarrow \xi _4}/S_2\)</span>, where <span class="mathjax-tex">\(R_{\xi _6 \rightarrow \xi _4} \cong \Delta ^3_{\sigma _3 \rightarrow \sigma _2} \times \big ({{\,\textrm{PGL}\,}}_{3}({\mathbb {C}})/ {{\,\textrm{Stab}\,}}(\xi _6)\big ) \times {\widetilde{{{\,\textrm{Stab}\,}}}}(\xi _4)\)</span>. By (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ16">16</a>), (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ21">21</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ22">22</a>) we have </p><div id="Equ92" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} \begin{aligned}e_{S_2}({\tilde{R}}_{\xi _6 \rightarrow \xi _4})&= \left( \left( \left\lfloor \frac{n}{2} \right\rfloor (q-1) - \frac{3n(n-1)}{2} \right) T\right. \\ {}&\left. \qquad + \left( \left\lfloor \frac{n-1}{2} \right\rfloor (q-1) - \frac{3n(n-1)}{2} \right) N\right) \\ {}&\qquad \otimes \left( (q^6+q^5+q^4) T+ (q^5 + q^4 + q^3)N\right) \otimes (q^4-q^3-q^2+q) T. \end{aligned} \end{aligned}$$</span></div></div><p> Taking the <i>T</i>-component, </p><div id="Equ93" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(R_{\xi _6 \rightarrow \xi _4}) =&\, q^4 (q^3-1)(q^2-1) \Big ( \left\lfloor \frac{n}{2} \right\rfloor (q-1)^2\\&-\frac{3n^2-5n+2}{2} (q-1) -3n(n-1)\Big ). \end{aligned}$$</span></div></div> </li> <li> <p><span class="mathjax-tex">\(R_{\xi _6 \rightarrow \xi _6} ={\tilde{R}}_{\xi _6 \rightarrow \xi _6}/S_3\)</span>, where <span class="mathjax-tex">\({\tilde{R}}_{\xi _6\rightarrow \xi _6} \cong \Delta ^3_{\sigma _3 \rightarrow \sigma _3} \times \big ({{\,\textrm{PGL}\,}}_{3}({\mathbb {C}})/ {\mathcal {D}}\big ) \times {\mathcal {D}}\)</span>. By (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ17">17</a>), (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ20">20</a>) and (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ19">19</a>) we have </p><div id="Equ94" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}&e_{S_3}( {\tilde{R}}_{\xi _6 \rightarrow \xi _6}) = \Big ( \left( q^{2} - q - \left\lfloor \frac{n}{2} \right\rfloor (q-1) + n^2 \right) T\\&\qquad - \left( \left\lfloor \frac{n-1}{2} \right\rfloor (q-1)- n^2 \right) S - \left( (n+1) (q-1) - 2n^2 \right) D \Big )\\&\qquad \otimes \left( q^6 T+q^3 S + (q^5+q^4)D\right) \otimes \left( q^2 T+ S -q D\right) . \end{aligned}$$</span></div></div><p> Taking the <i>T</i>-component, </p><div id="Equ95" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(R_{\xi _6 \rightarrow \xi _6})&= \left( q^{2} - q - \left\lfloor \frac{n}{2} \right\rfloor (q-1) + n^2 \right) (q^8-q^6-q^5+q^3) \end{aligned}$$</span></div></div> </li> </ul><p>Adding up all the contributions, we finally get</p><div id="Equ96" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned}&e\big (R(H_n, {{\,\textrm{SL}\,}}_{3}({\mathbb {C}}))\big ) =\, (q^3-1)(q^2-1)q^2 \Big ( \left\lfloor \frac{n}{2} \right\rfloor (q^2-q)(q^2-q-1) \\&\qquad +\frac{1}{2}n^2 (q^7+2q^6+2q^5+q^4-3q^3-3q^2+2q)\\&\qquad -\frac{1}{2}n (3q^7+6q^6-3q^4 -17q^3 \\&\qquad -q^2+12q) + q^7+2q^6-q^5-2q^4-6q^3+2q^2+13q\Big ). \end{aligned}$$</span></div></div></div></div></section><section data-title="Rank 3 Character Variety of the Twisted Hopf Link"><div class="c-article-section" id="Sec18-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec18"><span class="c-article-section__title-number">9 </span>Rank 3 Character Variety of the Twisted Hopf Link</h2><div class="c-article-section__content" id="Sec18-content"><p>We end up with the computation of <span class="mathjax-tex">\(e({\mathfrak {M}}(H_n,G))\)</span>, for <span class="mathjax-tex">\(G={{\,\textrm{SL}\,}}_3({\mathbb {C}})\)</span>. First, we deal with reducible representations (<i>A</i>, <i>B</i>). The ones of type (1, 1, 1) are the direct sums of three one-dimensional representations. This means that</p><div id="Equ97" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} (A,B)= \left( \left( \begin{array}{ccc} \lambda _1 &{}0 &{} 0 \\ 0 &{} \lambda _2 &{}0 \\ 0 &{}0&{}\lambda _3 \end{array} \right) , \left( \begin{array}{ccc} \mu _1 &{}0 &{} 0 \\ 0 &{} \mu _2 &{}0 \\ 0 &{}0&{}\mu _3 \end{array} \right) \right) , \end{aligned}$$</span></div></div><p>which is parametrized by <span class="mathjax-tex">\(({\mathcal {D}})^2/S_3\)</span>. Using (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ19">19</a>), we take the <i>T</i>-component of <span class="mathjax-tex">\(e_{S_3}(({\mathcal {D}})^2)=e_{S_3}({\mathcal {D}})^2=(q^2T+S-qD)^2\)</span>, which is</p><div id="Equ98" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e({\mathfrak {M}}^{\textrm{red}}_{1,1,1}(H_n,G))= e(({\mathcal {D}})^2/S_3)= q^4+ q^2 + 1\,. \end{aligned}$$</span></div></div><p>Next, we consider the reducible representations of type (2, 1). Then</p><div id="Equ99" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} (A,B)= \left( \left( \begin{array}{c|c} A_1 &{}0 \\ \hline 0 &{} \lambda _1 \end{array} \right) , \left( \begin{array}{c|c} B_1 &{}0 \\ \hline 0 &{} \mu _1 \end{array} \right) \right) , \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\(\lambda _1=(\det A_1)^{-1}\)</span>, <span class="mathjax-tex">\(\mu _1=(\det B_1)^{-1}\)</span>, and <span class="mathjax-tex">\((A_1,B_1)\)</span> is an irreducible <span class="mathjax-tex">\({{\,\textrm{GL}\,}}_2({\mathbb {C}})\)</span>-representation. The computation is similar to the case of <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_2({\mathbb {C}})\)</span> in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="/article/10.1007/s00009-023-02300-w#Sec12">6</a>. Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar18">6.1</a> applies here, and we only have to see at the reductions <span class="mathjax-tex">\(\xi _3\rightarrow \xi _1\)</span>. Therefore <span class="mathjax-tex">\((A_1,B_1)\)</span> can be put on the form (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/article/10.1007/s00009-023-02300-w#Equ10">10</a>), where <span class="mathjax-tex">\(\lambda \in {\mathbb {C}}^*\)</span>, <span class="mathjax-tex">\(\varepsilon \in \mu _n^*\)</span>, <span class="mathjax-tex">\(bc\ne 0\)</span>, <span class="mathjax-tex">\(ad-bc\ne 0\)</span>. Here, we find two options. </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">(1)</span> <p>If <span class="mathjax-tex">\(\varepsilon \ne -1\)</span> (which happens always if <i>n</i> is odd), then the <span class="mathjax-tex">\(S_2\)</span>-action sends <span class="mathjax-tex">\(\varepsilon \mapsto \varepsilon ^{-1}\)</span>. The quotient of one of such sets is parametrized by <span class="mathjax-tex">\(({{\,\textrm{GL}\,}}_2({\mathbb {C}})-\{bc=0\})/{\mathbb {C}}^*\)</span>, whose <i>E</i>-polynomial is <span class="mathjax-tex">\((q^2-q+1)(q-1)=q^3-2q^2+2q-1\)</span>.</p> </li> <li> <span class="u-custom-list-number">(2)</span> <p>If <span class="mathjax-tex">\(\varepsilon =-1\)</span> then we have to quotient by the swap of the eigenvalues, which yields the space <span class="mathjax-tex">\((({{\,\textrm{GL}\,}}_2({\mathbb {C}})-\{bc=0\})/{\mathbb {C}}^*)/S_2\)</span>. Let us consider the fibration </p><div id="Equ100" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} F=\{(a,d) \,|\, ad \ne bc+1\} \rightarrow {{\,\textrm{GL}\,}}_2({\mathbb {C}})-\{bc=0\} \rightarrow B=\{(b,c) \,|\, bc\ne 0\}. \end{aligned}$$</span></div></div><p> Note that the action of <span class="mathjax-tex">\({\mathbb {C}}^*\)</span> is only on <i>B</i>, <span class="mathjax-tex">\((b,c)\mapsto (b\varpi ^2, c\varpi ^{-2})\)</span>. The quotient is <span class="mathjax-tex">\(B/{\mathbb {C}}^* \cong {\mathbb {C}}^*\)</span> with <span class="mathjax-tex">\(S_2\)</span>-action <span class="mathjax-tex">\(\alpha \mapsto \alpha ^{-1}\)</span>, whence <span class="mathjax-tex">\(e_{S^2}(B/{\mathbb {C}}^*)=qT-N\)</span>. For the fiber, <span class="mathjax-tex">\(S_2\)</span> swaps (<i>a</i>, <i>d</i>), hence the quotient is parametrized by <span class="mathjax-tex">\(s=a+d\)</span>, <span class="mathjax-tex">\(p=ad \ne bc+1\)</span>, so <span class="mathjax-tex">\(e(F/S_2)=q(q-1)\)</span>, and thus <span class="mathjax-tex">\(e_{S^2}(F)=(q^2-q)T+N\)</span>. Therefore we get </p><div id="Equ101" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e_{S_2}(({{\,\textrm{GL}\,}}_2({\mathbb {C}})-\{bc=0\})/{\mathbb {C}}^*)&= e_{S_2}(B/{\mathbb {C}}^*) e_{S_2}(F) \\&=(q^3-q^2-1)T+ (2q-q^2)N. \end{aligned}$$</span></div></div> </li> </ol><p>All together, we have</p><div id="Equ102" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e({\mathfrak {M}}^{\textrm{red}}_{2,1}(H_n,G))&= \left\lfloor \frac{n-1}{2} \right\rfloor (q^3-2q^2+2q-1)\\&\quad + \Big (n-1-2\left\lfloor \frac{n-1}{2} \right\rfloor \Big )(q^3-q^2-1)\\&= (n-1)(q^3-q^2-1) - \left\lfloor \frac{n-1}{2} \right\rfloor (q^3-2q-1)\,. \end{aligned}$$</span></div></div><p>Now we move to <span class="mathjax-tex">\({\mathfrak {M}}^{\textrm{irr}}(H_n,G)\)</span>. For the irreducible representations, Lemma <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="/article/10.1007/s00009-023-02300-w#FPar18">6.1</a> implies that the only non-empty strata are <span class="mathjax-tex">\(R^{\textrm{irr}}_{\xi _4\rightarrow \xi _1}\)</span> and <span class="mathjax-tex">\(R^{\textrm{irr}}_{\xi _6\rightarrow \xi _1}\)</span>. We start with <span class="mathjax-tex">\((A,B)\in R^{\textrm{irr}}_{\xi _6\rightarrow \xi _1}\)</span>. Choosing a suitable basis,</p><div id="Equ103" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} (A,B)= \left( \left( \begin{array}{ccc} \lambda _1 &{}0 &{} 0 \\ 0 &{} \lambda _2 &{}0 \\ 0 &{}0&{}\lambda _3 \end{array} \right) , \left( \begin{array}{ccc} a &{} b &{} c \\ d &{} e &{} f \\ g &{} h &{} i \end{array} \right) \right) , \end{aligned}$$</span></div></div><p>modulo the action of <span class="mathjax-tex">\({\mathcal {D}}=({\mathbb {C}}^*)^2\)</span>. As <span class="mathjax-tex">\(\lambda _1^n=\lambda _2^n=\lambda _3^n=\varpi \)</span>, <span class="mathjax-tex">\(\varpi ^3=1\)</span>, <span class="mathjax-tex">\(\lambda _i\ne \lambda _j\)</span> for <span class="mathjax-tex">\(i\ne j\)</span>, the count of matrices is given by <span class="mathjax-tex">\(\Delta ^3_{\sigma _3\rightarrow \sigma _1}/S_3\)</span>, i.e. <span class="mathjax-tex">\(\frac{1}{2} (n^2-3n+2)\)</span> points. In order for (<i>A</i>, <i>B</i>) to be irreducible, they cannot leave invariant a line (that is, no column of <i>B</i> is the coordinate vector) or a plane (that is, no row of <i>B</i> is the coordinate vector). We count the contribution:</p><ul class="u-list-style-bullet"> <li> <p><span class="mathjax-tex">\(d\ne 0\)</span> and <span class="mathjax-tex">\(g\ne 0\)</span>. Using the action of <span class="mathjax-tex">\({\mathcal {D}}\)</span>, we arrange <span class="mathjax-tex">\(d=1, g=1\)</span>. The space of such matrices in <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_3({\mathbb {C}})\)</span> has <i>E</i>-polynomial <span class="mathjax-tex">\(q(q^3-q)q^2\)</span>. Now we have to remove <span class="mathjax-tex">\(U_1=\{b=c=0\}\)</span>, <span class="mathjax-tex">\(U_2=\{b=h=0\}\)</span>, <span class="mathjax-tex">\(U_3=\{c=f=0\}\)</span>. Denote <span class="mathjax-tex">\(U_{ij}=U_i\cap U_j\)</span>. Note that <span class="mathjax-tex">\(U_{23}=U_{123}\)</span>. The contribution is: </p><div id="Equ104" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(U_1\cup U_2 \cup U_3 )&= e(U_1)+ e(U_2)+ e(U_3 ) - e(U_{12})- e(U_{13}) \\&= (q^2-1)(q^2-q) + q^2(q^2-q) + q^2(q^2-q) - q(q-1)^2- q(q-1)^2 \\&= 3 q^{4} - 5 q^{3} + 3 q^{2} - q. \end{aligned}$$</span></div></div><p> Hence the <i>E</i>-polynomial of this stratum is <span class="mathjax-tex">\(q^{6} - 4 q^{4} + 5 q^{3} - 3 q^{2} + q\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(d\ne 0\)</span> and <span class="mathjax-tex">\(g=0\)</span>. It must be <span class="mathjax-tex">\(h\ne 0\)</span>. We can arrange <span class="mathjax-tex">\(d=1\)</span>, <span class="mathjax-tex">\(h=1\)</span>. Then <i>B</i> has determinant <span class="mathjax-tex">\(c+aei-bi-af=1\)</span>, so <i>c</i> is fixed. Therefore the space of such matrices in <span class="mathjax-tex">\({{\,\textrm{SL}\,}}_3({\mathbb {C}})\)</span> has <i>E</i>-polynomial <span class="mathjax-tex">\(q^5\)</span>. Now we remove <span class="mathjax-tex">\(U_1=\{b=c=0\}\)</span>, <span class="mathjax-tex">\(U_2=\{c=0,f=0\}\)</span>. The contribution is: </p><div id="Equ105" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e(U_1\cup U_2 )&= e(U_1)+ e(U_2) - e(U_{12}) \\ {}&= q(q^2-q) + q(q^2-q)-(q-1)^2 \\&=2q^3-3q^2+2q-1. \end{aligned}$$</span></div></div><p> Thus the <i>E</i>-polynomial of this stratum is <span class="mathjax-tex">\(q^5-2q^3+3q^2-2q+1\)</span>.</p> </li> <li> <p><span class="mathjax-tex">\(d=0\)</span>, <span class="mathjax-tex">\(g\ne 0\)</span>. This is analogous to the previous one. It has <i>E</i>-polynomial <span class="mathjax-tex">\(q^5-2q^3+3q^2-2q+1\)</span>.</p> </li> </ul><p>Adding up,</p><div id="Equ106" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e({\mathfrak {M}}^{\textrm{irr}}_{\xi _6\rightarrow \xi _1} )= \frac{1}{2} (n^2-3n+2)(q^{6} + 2 q^{5} - 4 q^{4} + q^{3} + 3 q^{2} - 3 q + 2). \end{aligned}$$</span></div></div><p>We end up with <span class="mathjax-tex">\((A,B)\in R^{\textrm{irr}}_{\xi _4\rightarrow \xi _1}\)</span>. Choosing a suitable basis,</p><div id="Equ107" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} (A,B)= \left( \left( \begin{array}{ccc} \lambda &{}0 &{} 0 \\ 0 &{} \lambda &{}0 \\ 0 &{}0&{}\lambda \varepsilon \end{array} \right) , \left( \begin{array}{c|c} B_1 &{} \begin{array}{c} c \\ f \end{array} \\ g \,\,\, h &{} i \end{array} \right) \right) , \end{aligned}$$</span></div></div><p>where <span class="mathjax-tex">\(\varepsilon =\lambda ^{-3}\)</span>, <span class="mathjax-tex">\(\lambda \in \mu _{3n}- \mu _3\)</span>. This space is modulo the action of <span class="mathjax-tex">\({{\,\textrm{PGL}\,}}_2({\mathbb {C}})\times {\mathbb {C}}^*\)</span>. The action of <span class="mathjax-tex">\({{\,\textrm{PGL}\,}}_2({\mathbb {C}})\)</span> conjugates <span class="mathjax-tex">\(B_1\)</span>, therefore we can put it in Jordan form. There are two options:</p><ul class="u-list-style-bullet"> <li> <p><span class="mathjax-tex">\(B_1\)</span> is diagonalizable. Therefore we can put </p><div id="Equ108" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} B=\left( \begin{array}{ccc} a &{} 0 &{} c \\ 0 &{} e &{} f \\ g &{} h &{} i \end{array} \right) . \end{aligned}$$</span></div></div><p> It must be <span class="mathjax-tex">\(g\ne 0\)</span>, <span class="mathjax-tex">\(h\ne 0\)</span>, <span class="mathjax-tex">\(c\ne 0\)</span> and <span class="mathjax-tex">\(f\ne 0\)</span>. With the residual action of <span class="mathjax-tex">\({\mathcal {D}}={\mathbb {C}}^*\times {\mathbb {C}}^*\)</span>, we can arrange <span class="mathjax-tex">\(g=1\)</span>, <span class="mathjax-tex">\(h=1\)</span>. No eigenvector of <i>A</i> of the form (<i>x</i>, <i>y</i>, 0) should be eigenvector of <i>B</i>, which translates into <span class="mathjax-tex">\(a\ne e\)</span>. Also, no invariant plane of the form <span class="mathjax-tex">\(\langle (x,y,0),(0,0,1)\rangle \)</span> should be invariant for <i>B</i>, which also means <span class="mathjax-tex">\(a\ne e\)</span>. Now we distinguish two cases: </p><ol class="u-list-style-none"> <li> <span class="u-custom-list-number">1.</span> <p><span class="mathjax-tex">\(a,e\ne 0\)</span>. Then the condition <span class="mathjax-tex">\(\det B=1\)</span> says that <i>i</i> is given in terms of <span class="mathjax-tex">\((a,e,c,f) \in (({\mathbb {C}}^*)^2-\Delta )\times ({\mathbb {C}}^*)^2\)</span>. There is an action of <span class="mathjax-tex">\(S_2\)</span> swapping eigenvalues of <span class="mathjax-tex">\(B_1\)</span>, that is <span class="mathjax-tex">\((a,e,c,f) \mapsto (e,a, f,c)\)</span>. The equivariant <i>E</i>-polynomials are: <span class="mathjax-tex">\(e_{S_2}(({\mathbb {C}}^*)^2-\Delta ) =(q^2-2q+1)T-(q-1)N\)</span>, <span class="mathjax-tex">\(e_{S_2}(({\mathbb {C}}^*)^2=(q^2-q)T-(q-1)N\)</span>. This gives the final <i>E</i>-polynomial <span class="mathjax-tex">\((q^2-q)(q^2-2q+1)+(q-1)^2= q^4-3q^3+4q^2-3q+1\)</span>.</p> </li> <li> <span class="u-custom-list-number">2.</span> <p><span class="mathjax-tex">\(a=0\)</span>, <span class="mathjax-tex">\(e\ne 0\)</span> (and there is no swapping of eigenvalues now). Then the parameters are <span class="mathjax-tex">\((c,f,i)\in ({\mathbb {C}}^*)^2\times {\mathbb {C}}\)</span>, and <span class="mathjax-tex">\(e=c^{-1}\)</span>. The <i>E</i>-polynomial is <span class="mathjax-tex">\((q-1)^2q\)</span>.</p> </li> </ol> </li> <li> <p><span class="mathjax-tex">\(B_1\)</span> is not diagonalizable. Therefore we can put </p><div id="Equ109" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} B=\left( \begin{array}{ccc} a &{} 0 &{} c \\ 1 &{} a &{} f \\ g &{} h &{} i \end{array} \right) . \end{aligned}$$</span></div></div><p> There is a residual action of <span class="mathjax-tex">\(\tiny \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ x &{} 1 &{} 0 \\ 0 &{} 0 &{} y \end{array} \right) \)</span>. As it must be <span class="mathjax-tex">\(h\ne 0\)</span>, we can arrange <span class="mathjax-tex">\(h=1\)</span>, and also <span class="mathjax-tex">\(g=0\)</span>. The irreducibility means that (0, 1, 0), (0, 0, 1) are not eigenvectors of <i>B</i>, and <span class="mathjax-tex">\(\langle (1,0,0),(0,1,0)\rangle \)</span> and <span class="mathjax-tex">\(\langle (0,1,0), (0,0,1)\rangle \)</span> are not invariant planes of <i>B</i>. This translates into <span class="mathjax-tex">\(c\ne 0\)</span>. The determinant condition is <span class="mathjax-tex">\(\det B= a^2 i+c-af =1\)</span>, so <i>c</i> is determined, and the space is <span class="mathjax-tex">\(\{(a,i,f) | \, a^2i-af\ne 1\}\)</span>. For <span class="mathjax-tex">\(a\ne 0\)</span>, this is <span class="mathjax-tex">\({\mathbb {C}}^2- {\mathbb {C}}\)</span>; and for <span class="mathjax-tex">\(a=0\)</span>, it is <span class="mathjax-tex">\({\mathbb {C}}^2\)</span>. So the <i>E</i>-polynomial is <span class="mathjax-tex">\((q-1)(q^2-q)+q^2=q^3-q^2+q\)</span>.</p> </li> </ul><p>Adding up, this amounts to <span class="mathjax-tex">\(q^4-q^3+q^2-q+1\)</span>, and taking into account the possible values of <span class="mathjax-tex">\(\lambda \)</span> we get</p><div id="Equ110" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e({\mathfrak {M}}^{\textrm{irr}}_{\xi _4\rightarrow \xi _1} )=(3n-3) (q^4-q^3+q^2-q+1). \end{aligned}$$</span></div></div><p>Putting all together we finally get</p><div id="Equ111" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\begin{aligned} e({\mathfrak {M}}(H_n, {{\,\textrm{SL}\,}}_3({\mathbb {C}})))&= q^{4} + \frac{1}{2} {\left( q^{6} + 2 q^{5} - 4 q^{4} + q^{3} + 3 q^{2} - 3 q + 2\right) } {\left( n^{2} - 3 n + 2\right) } \\&\quad - {\left( q^{3} - 2 q - 1\right) } \left\lfloor \frac{n-1}{2} \right\rfloor + 3 {\left( q^{4} - q^{3} + q^{2} - q + 1\right) } {\left( n - 1\right) } \\&\quad - (q^{2} + 1){\left( n - 2\right) } + q^{3}(n -1). \end{aligned}$$</span></div></div></div></div></section> </div> <section data-title="Data Availability Statement"><div class="c-article-section" id="data-availability-statement-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="data-availability-statement">Data Availability Statement</h2><div class="c-article-section__content" id="data-availability-statement-content"> <p>This work has no associated data.</p> </div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">Cavazos, S., Lawton, S.: E-polynomial of <span class="mathjax-tex">\(SL_2({\mathbb{C} })\)</span>-character varieties of free groups. Int. J. Math. <b>25</b>, 1450058 (2014)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1142/S0129167X1450058X" data-track-item_id="10.1142/S0129167X1450058X" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1142%2FS0129167X1450058X" aria-label="Article reference 1" data-doi="10.1142/S0129167X1450058X">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1325.14065" aria-label="MATH reference 1">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&title=E-polynomial%20of%20%24%24SL_2%28%7B%5Cmathbb%7BC%7D%20%7D%29%24%24%20S%20L%202%20%28%20C%20%29%20-character%20varieties%20of%20free%20groups&journal=Int.%20J.%20Math.&doi=10.1142%2FS0129167X1450058X&volume=25&publication_year=2014&author=Cavazos%2CS&author=Lawton%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Chen, H., Yu, T.: The <span class="mathjax-tex">\(SL(2, {\mathbb{C}})\)</span>-character variety of the Borromean link, <a href="http://arxiv.org/abs/2202.07429" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/2202.07429">arXiv:2202.07429</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Culler, M., Shalen, P.: Varieties of group representations and splitting of 3-manifolds. Ann. Math. <b>2</b>(117), 109–146 (1983)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2307/2006973" data-track-item_id="10.2307/2006973" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2307%2F2006973" aria-label="Article reference 3" data-doi="10.2307/2006973">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=683804" aria-label="MathSciNet reference 3">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0529.57005" aria-label="MATH reference 3">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&title=Varieties%20of%20group%20representations%20and%20splitting%20of%203-manifolds&journal=Ann.%20Math.&doi=10.2307%2F2006973&volume=2&issue=117&pages=109-146&publication_year=1983&author=Culler%2CM&author=Shalen%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Cooper, D., Culler, M., Gillet, H., Long, D., Shalen, P.: Plane curves associated to character varieties of 3-manifolds. Invent. Math. <b>118</b>, 47–84 (1994)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF01231526" data-track-item_id="10.1007/BF01231526" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF01231526" aria-label="Article reference 4" data-doi="10.1007/BF01231526">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=1288467" aria-label="MathSciNet reference 4">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0842.57013" aria-label="MATH reference 4">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&title=Plane%20curves%20associated%20to%20character%20varieties%20of%203-manifolds&journal=Invent.%20Math.&doi=10.1007%2FBF01231526&volume=118&pages=47-84&publication_year=1994&author=Cooper%2CD&author=Culler%2CM&author=Gillet%2CH&author=Long%2CD&author=Shalen%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Deligne, P.: Théorie de Hodge II, Publ. Math. I.H.E.S. 40 5–57 (1971)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">Florentino, C., Lawton, S.: The topology of moduli spaces of free group representations. Math. Ann. <b>2</b>(345), 453–489 (2009)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s00208-009-0362-4" data-track-item_id="10.1007/s00208-009-0362-4" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s00208-009-0362-4" aria-label="Article reference 6" data-doi="10.1007/s00208-009-0362-4">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2529483" aria-label="MathSciNet reference 6">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1200.14093" aria-label="MATH reference 6">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&title=The%20topology%20of%20moduli%20spaces%20of%20free%20group%20representations&journal=Math.%20Ann.&doi=10.1007%2Fs00208-009-0362-4&volume=2&issue=345&pages=453-489&publication_year=2009&author=Florentino%2CC&author=Lawton%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">Florentino, C., Lawton, S.: Singularities of free group character varieties. Pac. J. Math. <b>260</b>, 149–179 (2012)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2140/pjm.2012.260.149" data-track-item_id="10.2140/pjm.2012.260.149" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2140%2Fpjm.2012.260.149" aria-label="Article reference 7" data-doi="10.2140/pjm.2012.260.149">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3001789" aria-label="MathSciNet reference 7">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1264.14064" aria-label="MATH reference 7">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&title=Singularities%20of%20free%20group%20character%20varieties&journal=Pac.%20J.%20Math.&doi=10.2140%2Fpjm.2012.260.149&volume=260&pages=149-179&publication_year=2012&author=Florentino%2CC&author=Lawton%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Florentino, C., Nozad, A., Zamora, A.: <span class="mathjax-tex">\(E\)</span>-polynomials of <span class="mathjax-tex">\(SL_n\)</span> and <span class="mathjax-tex">\(PGL_n\)</span>-character varieties of free groups, <a href="http://arxiv.org/abs/1912.05852" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1912.05852">arXiv:1912.05852</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Florentino, C., Silva, J.: Hodge–Deligne polynomials of character varieties of free abelian groups. Open Math. <b>19</b>, 338–362 (2021)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1515/math-2021-0038" data-track-item_id="10.1515/math-2021-0038" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1515%2Fmath-2021-0038" aria-label="Article reference 9" data-doi="10.1515/math-2021-0038">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4261777" aria-label="MathSciNet reference 9">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1478.14077" aria-label="MATH reference 9">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&title=Hodge%E2%80%93Deligne%20polynomials%20of%20character%20varieties%20of%20free%20abelian%20groups&journal=Open%20Math.&doi=10.1515%2Fmath-2021-0038&volume=19&pages=338-362&publication_year=2021&author=Florentino%2CC&author=Silva%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">González-Prieto, A.: Pseudo-quotients of algebraic actions and their applications to character varieties, <a href="http://arxiv.org/abs/1807.08540" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1807.08540">arXiv:1807.08540</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">González-Prieto, A., Logares, M., Muñoz, V.: A lax monoidal Topological Quantum Field Theory for representation varieties. Bull. Sci. Math. <b>161</b>, 102871 (2020)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.bulsci.2020.102871" data-track-item_id="10.1016/j.bulsci.2020.102871" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.bulsci.2020.102871" aria-label="Article reference 11" data-doi="10.1016/j.bulsci.2020.102871">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=4099357" aria-label="MathSciNet reference 11">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1441.57031" aria-label="MATH reference 11">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="http://scholar.google.com/scholar_lookup?&title=A%20lax%20monoidal%20Topological%20Quantum%20Field%20Theory%20for%20representation%20varieties&journal=Bull.%20Sci.%20Math.&doi=10.1016%2Fj.bulsci.2020.102871&volume=161&publication_year=2020&author=Gonz%C3%A1lez-Prieto%2CA&author=Logares%2CM&author=Mu%C3%B1oz%2CV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">González-Prieto, A., Muñoz, V.: Motive of the <span class="mathjax-tex">\(SL_4\)</span>-character variety of torus knots. J. Algebra (2022). <a href="https://doi.org/10.1016/j.jalgebra.2022.06.008" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1016/j.jalgebra.2022.06.008">https://doi.org/10.1016/j.jalgebra.2022.06.008</a></p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Gusein-Zade, S., Luengo, I., Melle-Hernández, A.: On the power structure over the Grothendieck ring of varieties and its applications. Proc. Steklov Inst. Math. <b>258</b>, 53–64 (2007)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1134/S0081543807030066" data-track-item_id="10.1134/S0081543807030066" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1134%2FS0081543807030066" aria-label="Article reference 13" data-doi="10.1134/S0081543807030066">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2400523" aria-label="MathSciNet reference 13">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1222.14007" aria-label="MATH reference 13">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&title=On%20the%20power%20structure%20over%20the%20Grothendieck%20ring%20of%20varieties%20and%20its%20applications&journal=Proc.%20Steklov%20Inst.%20Math.&doi=10.1134%2FS0081543807030066&volume=258&pages=53-64&publication_year=2007&author=Gusein-Zade%2CS&author=Luengo%2CI&author=Melle-Hern%C3%A1ndez%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Heusener, M., Muñoz, V., Porti, J.: The <span class="mathjax-tex">\(SL(3,{\mathbb{C} })\)</span>-character variety of the figure eight knot. Illinois J. Math. <b>60</b>, 55–98 (2017)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3665172" aria-label="MathSciNet reference 14">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1373.57014" aria-label="MATH reference 14">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&title=The%20%24%24SL%283%2C%7B%5Cmathbb%7BC%7D%20%7D%29%24%24%20S%20L%20%28%203%20%2C%20C%20%29%20-character%20variety%20of%20the%20figure%20eight%20knot&journal=Illinois%20J.%20Math.&volume=60&pages=55-98&publication_year=2017&author=Heusener%2CM&author=Mu%C3%B1oz%2CV&author=Porti%2CJ"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Huybrechts, D.: Fourier-Mukai transforms in algebraic geometry, Clarendon Press, (2006)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Kauffman, L.: Statistical mechanics and the Jones polynomial, Contemporary Mathematics, (1988)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Kitano, T., Morifuji, T.: Twisted Alexander polynomials for irreducible <span class="mathjax-tex">\(SL(2,{\mathbb{C} })\)</span>-representations of torus knots. Ann. Sc. Norm. Super. Pisa Cl. Sci. <b>5</b>(11), 395–406 (2012)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3011996" aria-label="MathSciNet reference 17">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1255.57014" aria-label="MATH reference 17">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&title=Twisted%20Alexander%20polynomials%20for%20irreducible%20%24%24SL%282%2C%7B%5Cmathbb%7BC%7D%20%7D%29%24%24%20S%20L%20%28%202%20%2C%20C%20%29%20-representations%20of%20torus%20knots&journal=Ann.%20Sc.%20Norm.%20Super.%20Pisa%20Cl.%20Sci.&volume=5&issue=11&pages=395-406&publication_year=2012&author=Kitano%2CT&author=Morifuji%2CT"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Lawton, S.: Minimal affine coordinates for <span class="mathjax-tex">\(SL(3, {\mathbb{C} })\)</span>-character varieties of free groups. J. Algebra <b>320</b>, 3773–3810 (2008)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.jalgebra.2008.06.031" data-track-item_id="10.1016/j.jalgebra.2008.06.031" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.jalgebra.2008.06.031" aria-label="Article reference 18" data-doi="10.1016/j.jalgebra.2008.06.031">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2457722" aria-label="MathSciNet reference 18">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1157.14030" aria-label="MATH reference 18">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&title=Minimal%20affine%20coordinates%20for%20%24%24SL%283%2C%20%7B%5Cmathbb%7BC%7D%20%7D%29%24%24%20S%20L%20%28%203%20%2C%20C%20%29%20-character%20varieties%20of%20free%20groups&journal=J.%20Algebra&doi=10.1016%2Fj.jalgebra.2008.06.031&volume=320&pages=3773-3810&publication_year=2008&author=Lawton%2CS"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Lawton, S., Muñoz, V.: E-polynomial of the <span class="mathjax-tex">\(SL(3, {\mathbb{C} })\)</span>-character variety of free groups. Pac. J. Math. <b>282</b>, 173–202 (2016)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2140/pjm.2016.282.173" data-track-item_id="10.2140/pjm.2016.282.173" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2140%2Fpjm.2016.282.173" aria-label="Article reference 19" data-doi="10.2140/pjm.2016.282.173">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3463428" aria-label="MathSciNet reference 19">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1335.14003" aria-label="MATH reference 19">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&title=E-polynomial%20of%20the%20%24%24SL%283%2C%20%7B%5Cmathbb%7BC%7D%20%7D%29%24%24%20S%20L%20%28%203%20%2C%20C%20%29%20-character%20variety%20of%20free%20groups&journal=Pac.%20J.%20Math.&doi=10.2140%2Fpjm.2016.282.173&volume=282&pages=173-202&publication_year=2016&author=Lawton%2CS&author=Mu%C3%B1oz%2CV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Lawton, S., Sikora, A.: Varieties of characters, Algebr. Represent. Theory <b>20</b>, 1133–1141 (2017)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10468-017-9679-y" data-track-item_id="10.1007/s10468-017-9679-y" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10468-017-9679-y" aria-label="Article reference 20" data-doi="10.1007/s10468-017-9679-y">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3707908" aria-label="MathSciNet reference 20">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1400.14123" aria-label="MATH reference 20">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&title=Varieties%20of%20characters%2C%20Algebr&journal=Represent.%20Theory&doi=10.1007%2Fs10468-017-9679-y&volume=20&pages=1133-1141&publication_year=2017&author=Lawton%2CS&author=Sikora%2CA"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">Lickorish, W.: A representation of orientable combinatorial 3-manifolds. Ann. Math. <b>76</b>, 531–540 (1962)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.2307/1970373" data-track-item_id="10.2307/1970373" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.2307%2F1970373" aria-label="Article reference 21" data-doi="10.2307/1970373">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=151948" aria-label="MathSciNet reference 21">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0106.37102" aria-label="MATH reference 21">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&title=A%20representation%20of%20orientable%20combinatorial%203-manifolds&journal=Ann.%20Math.&doi=10.2307%2F1970373&volume=76&pages=531-540&publication_year=1962&author=Lickorish%2CW"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Logares, M., Muñoz, V., Newstead, P.: Hodge polynomials of <span class="mathjax-tex">\(SL(2,{\mathbb{C}})\)</span>-character varieties for curves of small genus. Rev. Mat. Complut. <b>26</b>, 635–703 (2013)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s13163-013-0115-5" data-track-item_id="10.1007/s13163-013-0115-5" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s13163-013-0115-5" aria-label="Article reference 22" data-doi="10.1007/s13163-013-0115-5">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3068615" aria-label="MathSciNet reference 22">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1334.14006" aria-label="MATH reference 22">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&title=Hodge%20polynomials%20of%20%24%24SL%282%2C%7B%5Cmathbb%7BC%7D%7D%29%24%24%20S%20L%20%28%202%20%2C%20C%20%29%20-character%20varieties%20for%20curves%20of%20small%20genus&journal=Rev.%20Mat.%20Complut.&doi=10.1007%2Fs13163-013-0115-5&volume=26&pages=635-703&publication_year=2013&author=Logares%2CM&author=Mu%C3%B1oz%2CV&author=Newstead%2CP"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">Lubotzky, A., Magid, A.: Varieties of representations of finitely generated groups, Mem. Am. Math. Soc. <b>58</b> (1985)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">Marínez, J., Muñoz, V.: The SU(2)-character varieties of torus knots. Rocky Mountain J. Math. <b>2</b>(45), 583–600 (2015)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=3356629" aria-label="MathSciNet reference 24">MathSciNet</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&title=The%20SU%282%29-character%20varieties%20of%20torus%20knots&journal=Rocky%20Mountain%20J.%20Math.&volume=2&issue=45&pages=583-600&publication_year=2015&author=Mar%C3%ADnez%2CJ&author=Mu%C3%B1oz%2CV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">Muñoz, V.: The <span class="mathjax-tex">\(SL(2,{\mathbb{C} })\)</span>-character varieties of torus knots. Rev. Mat. Complut. <b>22</b>, 489–497 (2009)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.5209/rev_REMA.2009.v22.n2.16290" data-track-item_id="10.5209/rev_REMA.2009.v22.n2.16290" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.5209%2Frev_REMA.2009.v22.n2.16290" aria-label="Article reference 25" data-doi="10.5209/rev_REMA.2009.v22.n2.16290">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=2553945" aria-label="MathSciNet reference 25">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?1182.14007" aria-label="MATH reference 25">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&title=The%20%24%24SL%282%2C%7B%5Cmathbb%7BC%7D%20%7D%29%24%24%20S%20L%20%28%202%20%2C%20C%20%29%20-character%20varieties%20of%20torus%20knots&journal=Rev.%20Mat.%20Complut.&doi=10.5209%2Frev_REMA.2009.v22.n2.16290&volume=22&pages=489-497&publication_year=2009&author=Mu%C3%B1oz%2CV"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">V. Muñoz and J. Porti, Geometry of the <span class="mathjax-tex">\(SL(3,{\mathbb{C}})\)</span>-character variety of torus knots, Algebraic Geometric Topology <b>16</b> (2016) 397–426. (also <a href="http://arxiv.org/abs/1409.4784" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="http://arxiv.org/abs/1409.4784">arXiv:1409.4784</a>)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">Rolfsen, D. Knots and links, Publish or Perish, (1990)</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">Witten, E.: Quantum field theory and the Jones polynomial. Comm. Math. Phys. <b>121</b>, 351–399 (1989)</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/BF01217730" data-track-item_id="10.1007/BF01217730" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/BF01217730" aria-label="Article reference 28" data-doi="10.1007/BF01217730">Article</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="mathscinet reference" data-track-action="mathscinet reference" href="http://www.ams.org/mathscinet-getitem?mr=990772" aria-label="MathSciNet reference 28">MathSciNet</a> <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="math reference" data-track-action="math reference" href="http://www.emis.de/MATH-item?0667.57005" aria-label="MATH reference 28">MATH</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&title=Quantum%20field%20theory%20and%20the%20Jones%20polynomial&journal=Comm.%20Math.%20Phys.&doi=10.1007%2FBF01217730&volume=121&pages=351-399&publication_year=1989&author=Witten%2CE"> Google Scholar</a> </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s00009-023-02300-w?format=refman&flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section data-title="Acknowledgements"><div class="c-article-section" id="Ack1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Ack1">Acknowledgements</h2><div class="c-article-section__content" id="Ack1-content"><p>We are grateful to Joan Porti for useful correspondence. The first author is partially supported by Madrid Government (Comunidad de Madrid - Spain) under the Multiannual Agreement with the Universidad Complutense de Madrid in the line Research Incentive for Young PhDs, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation) through the project PR27/21-029 and by Project MCI (Spain) PID2019-106493RB-I00. The second author is partially supported by Project MCI (Spain) PID2020-118452GB-I00.</p></div></div></section><section data-title="Funding"><div class="c-article-section" id="Fun-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Fun">Funding</h2><div class="c-article-section__content" id="Fun-content"><p>Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.</p></div></div></section><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza Ciencias 3, 28040, Madrid, Spain</p><p class="c-article-author-affiliation__authors-list">Ángel González-Prieto</p></li><li id="Aff2"><p class="c-article-author-affiliation__address">Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/Nicolás Cabrera 13-15, 28049, Madrid, Spain</p><p class="c-article-author-affiliation__authors-list">Ángel González-Prieto & Vicente Muñoz</p></li><li id="Aff3"><p class="c-article-author-affiliation__address">Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos S/N, 29071, Málaga, Spain</p><p class="c-article-author-affiliation__authors-list">Vicente Muñoz</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-_ngel-Gonz_lez_Prieto-Aff1-Aff2"><span class="c-article-authors-search__title u-h3 js-search-name">Ángel González-Prieto</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=%C3%81ngel%20Gonz%C3%A1lez-Prieto" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=%C3%81ngel%20Gonz%C3%A1lez-Prieto" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22%C3%81ngel%20Gonz%C3%A1lez-Prieto%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Vicente-Mu_oz-Aff2-Aff3"><span class="c-article-authors-search__title u-h3 js-search-name">Vicente Muñoz</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Vicente%20Mu%C3%B1oz" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Vicente%20Mu%C3%B1oz" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Vicente%20Mu%C3%B1oz%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:angelgonzalezprieto@ucm.es">Ángel González-Prieto</a>.</p></div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><h3 class="c-article__sub-heading">Publisher's Note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Representation%20Varieties%20of%20Twisted%20Hopf%20Links&author=%C3%81ngel%20Gonz%C3%A1lez-Prieto%20et%20al&contentID=10.1007%2Fs00009-023-02300-w&copyright=The%20Author%28s%29&publication=1660-5446&publicationDate=2023-01-29&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/s00009-023-02300-w" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/s00009-023-02300-w" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">González-Prieto, Á., Muñoz, V. Representation Varieties of Twisted Hopf Links. <i>Mediterr. J. Math.</i> <b>20</b>, 89 (2023). https://doi.org/10.1007/s00009-023-02300-w</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/s00009-023-02300-w?format=refman&flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2022-02-22">22 February 2022</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Revised<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2022-08-22">22 August 2022</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-01-09">09 January 2023</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2023-01-29">29 January 2023</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/s00009-023-02300-w</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><h3 class="c-article__sub-heading">Keywords</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Hopf%20link&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">Hopf link</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=representation%20varieties&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">representation varieties</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=character%20varieties&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">character varieties</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=E-polynomial&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">E-polynomial</a></span></li></ul><h3 class="c-article__sub-heading">Mathematics Subject Classification</h3><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Primary%2057K31&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">Primary 57K31</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Secondary%2014D20&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">Secondary 14D20</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=14C30&facet-discipline="Mathematics"" data-track="click" data-track-action="view keyword" data-track-label="link">14C30</a></span></li></ul><div data-component="article-info-list"></div></div></div></div></div></section> </div> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div class="app-card-service" data-test="article-checklist-banner"> <div> <a class="app-card-service__link" data-track="click_presubmission_checklist" data-track-context="article page top of reading companion" data-track-category="pre-submission-checklist" data-track-action="clicked article page checklist banner test 2 old version" data-track-label="link" href="https://beta.springernature.com/pre-submission?journalId=9" data-test="article-checklist-banner-link"> <span class="app-card-service__link-text">Use our pre-submission checklist</span> <svg class="app-card-service__link-icon" aria-hidden="true" focusable="false"><use xlink:href="#icon-eds-i-arrow-right-small"></use></svg> </a> <p class="app-card-service__description">Avoid common mistakes on your manuscript.</p> </div> <div class="app-card-service__icon-container"> <svg class="app-card-service__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-clipboard-check-medium"></use> </svg> </div> </div> <div data-test="collections"> </div> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu><div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-MPU1" class="div-gpt-ad grade-c-hide" data-pa11y-ignore data-gpt data-gpt-unitpath="/270604982/springerlink/9/article" data-gpt-sizes="300x250" data-test="MPU1-ad" data-gpt-targeting="pos=MPU1;articleid=s00009-023-02300-w;"> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> </article> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">© 2024 Springer Nature</p> </div> </div> </footer> </div> </body> </html>