CINXE.COM
Search results for: optical polymers
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: optical polymers</title> <meta name="description" content="Search results for: optical polymers"> <meta name="keywords" content="optical polymers"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="optical polymers" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="optical polymers"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2315</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: optical polymers</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2105</span> Optical Characterization of Anisotropic Thiophene-Phenylene Co-Oligomer Micro Crystals by Spectroscopic Imaging Ellipsometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20R%C3%B6ling">Christian Röling</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Y.%20Poimanova"> Elena Y. Poimanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20V.%20Bruevich"> Vladimir V. Bruevich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here we demonstrate a non-destructive optical technique to localize and characterize single crystals of semiconductive organic materials – Spectroscopic Imaging Ellipsometry. With a combination of microscopy and ellipsometry, it is possible to characterize even micro-sized thin film crystals on plane surface regarding anisotropy, optical properties, crystalline domains and thickness. The semiconducting thiophene-phenylene co-oligomer 1,4-bis(5'-hexyl-[2,2'-bithiophen]-5-yl)benzene (dHex-TTPTT) crystals were grown by solvent based self-assembly technique on silicon substrate with 300 nm thermally silicon dioxide. The ellipsometric measurements were performed with an Ep4-SE (Accurion). In an ellipsometric high-contrast image of the complete sample, we have localized high-quality single crystals. After demonstrating the uniaxial anisotropy of the crystal by using Müller-Matrix imaging ellipsometry, we determined the optical axes by rotating the sample and performed spectroscopic measurements (λ = 400-700 nm) in 5 nm intervals. The optical properties were described by using a Lorentz term in the Ep4-Model. After determining the dispersion of the crystals, we converted a recorded Delta and Psi-map into a 2D thickness image. Based on a quantitative analysis of the resulting thickness map, we have calculated the height of a molecular layer (3.49 nm). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=ellipsometry" title=" ellipsometry"> ellipsometry</a>, <a href="https://publications.waset.org/abstracts/search?q=SCFET" title=" SCFET"> SCFET</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/61430/optical-characterization-of-anisotropic-thiophene-phenylene-co-oligomer-micro-crystals-by-spectroscopic-imaging-ellipsometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2104</span> Advanced Bio-Composite Materials Based on Biopolymer Blends and Cellulose Nanocrystals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Kassab">Zineb Kassab</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassima%20El%20Miri"> Nassima El Miri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Aboulkas"> A. Aboulkas</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20Barakat"> Abdellatif Barakat</a>, <a href="https://publications.waset.org/abstracts/search?q=Mounir%20El%20Achaby"> Mounir El Achaby</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, more attention has been given to biopolymers with a focus on sustainable development and environmental preservation. Following this tendency, the attempt has been made to replace polymers derived from petroleum with superior biodegradable polymers (biopolymers). In this context, biopolymers are considered potential replacements for conventional plastic materials. However, some of their properties must be improved for better competitiveness, especially regarding their mechanical, thermal and barrier properties. Bio-nanocomposite technology using nanofillers has already been proven as an effective way to produce new materials with specific properties and high performances. With the emergence of nanostructured bio-composite materials, incorporating elongated rod-like cellulose nanocrystals (CNC) has attracted more and more attention in the field of nanotechnology. This study is aimed to develop bio-composite films of biopolymer matrices [Carboxymethyle cellulose (CMC), Starch (ST), Chitosan (CS) and Polyvinyl alcohol (PVA)] reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at a nanometric scale from lignocellulosic fibers via sulfuric acid hydrolysis and then characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), confocal microscopy, infrared spectroscopy (IR), atomic force and transmission electron microscopies (AFM and TEM) techniques. The as extracted CNC were used as a reinforcing phase to produce a variety of bio-composite films at different CNC loading (0.5-10 wt %) with specific properties. The rheological properties of film-forming solutions (FFS) of bio-composites were studied, and their relation to the casting process was evaluated. Then, the structural, optical transparency, water vapor permeability, thermal stability and mechanical properties of all prepared bio-composite films were evaluated and studied in this report. The high performances of these bio-composite films are expected to have potential in biomaterials or packaging applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biopolymer%20composites" title="biopolymer composites">biopolymer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanocrystals" title=" cellulose nanocrystals"> cellulose nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20packaging" title=" food packaging"> food packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20fibers" title=" lignocellulosic fibers"> lignocellulosic fibers</a> </p> <a href="https://publications.waset.org/abstracts/72734/advanced-bio-composite-materials-based-on-biopolymer-blends-and-cellulose-nanocrystals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2103</span> Design of Replication System for Computer-Generated Hologram in Optical Component Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Hung%20Chen">Chih-Hung Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yih-Shyang%20Cheng"> Yih-Shyang Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Hsin%20Tu"> Yu-Hsin Tu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Holographic optical elements (HOEs) have recently been one of the most suitable components in optoelectronic technology owing to the requirement of the product system with compact size. Computer-generated holography (CGH) is a well-known technology for HOEs production. In some cases, a well-designed diffractive optical element with multifunctional components is also an important issue and needed for an advanced optoelectronic system. Spatial light modulator (SLM) is one of the key components that has great capability to display CGH pattern and is widely used in various applications, such as an image projection system. As mentioned to multifunctional components, such as phase and amplitude modulation of light, high-resolution hologram with multiple-exposure procedure is also one of the suitable candidates. However, holographic recording under multiple exposures, the diffraction efficiency of the final hologram is inevitably lower than that with single exposure process. In this study, a two-step holographic recording method, including the master hologram fabrication and the replicated hologram production, will be designed. Since there exist a reduction factor M² of diffraction efficiency in multiple-exposure holograms (M multiple exposures), so it seems that single exposure would be more efficient for holograms replication. In the second step of holographic replication, a stable optical system with one-shot copying is introduced. For commercial application, one may utilize this concept of holographic copying to obtain duplications of HOEs with higher optical performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=holographic%20replication" title="holographic replication">holographic replication</a>, <a href="https://publications.waset.org/abstracts/search?q=holography" title=" holography"> holography</a>, <a href="https://publications.waset.org/abstracts/search?q=one-shot%20copying" title=" one-shot copying"> one-shot copying</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20element" title=" optical element"> optical element</a> </p> <a href="https://publications.waset.org/abstracts/98438/design-of-replication-system-for-computer-generated-hologram-in-optical-component-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2102</span> The Next Generation of Mucoadhesive Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavia%20Laffleur">Flavia Laffleur</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Bernkop-Schn%C3%BCrch"> Andreas Bernkop-Schnürch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: This study was aimed to investigate preactivated thiomers for their mucoadhesive potential. Methods: Accordingly, chitosan-thioglycolic-mercaptonicotinamide conjugates (chitosan-TGA-MNA) were synthesized by the oxidative S-S coupling of chitosan-thioglycolic acid (chitosan-TGA) with 6-mercaptonicotin amide (MNA). Unmodified chitosan, chitosan-TGA (thiomers) and chitosan-TGA-MNA conjugates were compressed into test discs to investigate cohesive properties, cytotoxicity assays and mucoadhesion studies. Results: Due to the immobilization of MNA, the chitosan-TGA-MNA conjugates exhibit comparatively higher swelling properties and cohesive properties corresponding unmodified chitosan. On the rotating cylinder, discs based on chitosan-TGA-MNA conjugates displayed 3.1-fold improved mucoadhesion time compared to thiolated polymers. Tensile study results were found in good agreement with rotating cylinder results. Moreover, preactivated thiomers showed higher stability. All polymers were found non-toxic over Caco-2 cells. Conclusion: On the basis of achieved results the pre activated thiomeric therapeutic agent seems to represent a promising generation of mucoadhesive polymers which are safe to use for a prolonged residence time to target the mucosa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomedical%20application" title="biomedical application">biomedical application</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=thiomer" title=" thiomer "> thiomer </a> </p> <a href="https://publications.waset.org/abstracts/13831/the-next-generation-of-mucoadhesive-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2101</span> First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meriem%20Harmel">Meriem Harmel</a>, <a href="https://publications.waset.org/abstracts/search?q=Houari%20Khachai"> Houari Khachai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=fluoroperovskite" title=" fluoroperovskite"> fluoroperovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20structure" title=" electronic structure"> electronic structure</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/31764/first-principle-calculations-of-the-structural-and-optoelectronic-properties-of-cubic-perovskite-cssrf3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2100</span> The Optical Properties of CdS and Conjugated Cadmium Sulphide-Cowpea Chlorotic Mottle Virus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afiqah%20Shafify%20Amran">Afiqah Shafify Amran</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Aisyah%20Shamsudin"> Siti Aisyah Shamsudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Yuziana%20Mohd%20Yusof"> Nurul Yuziana Mohd Yusof</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cadmium Sulphide (CdS) from group II-IV quantum dots with good optical properties was successfully synthesized by using the simple colloidal method. Capping them with ligand Polyethylinamine (PEI) alters the surface defect of CdS while, thioglycolic acid (TGA) was added to the reaction as a stabilizer. Due to their cytotoxicity, we decided to conjugate them with the protein cage nanoparticles. In this research, we used capsid of Cowpea Chlorotic Mottle Virus (CCMV) to package the CdS because they have the potential to serve in drug delivery, cell targeting and imaging. Adding Sodium Hydroxide (NaOH) changes the pH of the systems hence the isoelectric charge is adjusted. We have characterized and studied the morphology and the optical properties of CdS and CdS-CCMV by transmitted electron microscopic (TEM), UV-Vis spectroscopy, photoluminescence spectroscopy, UV lamp and Fourier transform infrared spectroscopy (FTIR), respectively. The results obtained suggest that the protein cage nanoparticles do not affect the optical properties of CdS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium%20sulphide" title="cadmium sulphide">cadmium sulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=cowpea%20chlorotic%20mottle%20virus" title=" cowpea chlorotic mottle virus"> cowpea chlorotic mottle virus</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20cage%20nanoparticles" title=" protein cage nanoparticles"> protein cage nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20dots" title=" quantum dots"> quantum dots</a> </p> <a href="https://publications.waset.org/abstracts/62282/the-optical-properties-of-cds-and-conjugated-cadmium-sulphide-cowpea-chlorotic-mottle-virus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2099</span> Electron Density Analysis and Nonlinear Optical Properties of Zwitterionic Compound </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Chouaih">A. Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhalima"> N. Benhalima</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Boukabcha"> N. Boukabcha</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rahmani"> R. Rahmani</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzaoui"> F. Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zwitterionic compounds have received the interest of chemists and physicists due to their applications as nonlinear optical materials. Recently, zwitterionic compounds exhibiting high nonlinear optical activity have been investigated. In this context, the molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. In this crystal, the molecules form dimers via intermolecular hydrogen bonds. The dimers are further linked by C–H...O hydrogen bonds into chains along the c crystallographic axis. This study has also allowed us to determine various nonlinear optical properties such as molecular electrostatic potential, polarizability, and hyperpolarizability of the title compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20compounds" title="organic compounds">organic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=polarizability" title=" polarizability"> polarizability</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperpolarizability" title=" hyperpolarizability"> hyperpolarizability</a>, <a href="https://publications.waset.org/abstracts/search?q=dipole%20moment" title=" dipole moment"> dipole moment</a> </p> <a href="https://publications.waset.org/abstracts/26077/electron-density-analysis-and-nonlinear-optical-properties-of-zwitterionic-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2098</span> Simulation Modelling of the Transmission of Concentrated Solar Radiation through Optical Fibres to Thermal Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahou">M. Rahou</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20J.%20Andrews"> A. J. Andrews</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Rosengarten"> G. Rosengarten</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main challenges in high-temperature solar thermal applications transfer concentrated solar radiation to the load with minimum energy loss and maximum overall efficiency. The use of a solar concentrator in conjunction with bundled optical fibres has potential advantages in terms of transmission energy efficiency, technical feasibility and cost-effectiveness compared to a conventional heat transfer system employing heat exchangers and a heat transfer fluid. In this paper, a theoretical and computer simulation method is described to estimate the net solar radiation transmission from a solar concentrator into and through optical fibres to a thermal application at the end of the fibres over distances of up to 100 m. A key input to the simulation is the angular distribution of radiation intensity at each point across the aperture plane of the optical fibre. This distribution depends on the optical properties of the solar concentrator, in this case, a parabolic mirror with a small secondary mirror with a common focal point and a point-focus Fresnel lens to give a collimated beam that pass into the optical fibre bundle. Since solar radiation comprises a broad band of wavelengths with very limited spatial coherence over the full range of spectrum only ray tracing models absorption within the fibre and reflections at the interface between core and cladding is employed, assuming no interference between rays. The intensity of the radiation across the exit plane of the fibre is found by integrating across all directions and wavelengths. Results of applying the simulation model to a parabolic concentrator and point-focus Fresnel lens with typical optical fibre bundle will be reported, to show how the energy transmission varies with the length of fibre. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrated%20radiation" title="concentrated radiation">concentrated radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20bundle" title=" fibre bundle"> fibre bundle</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20dish" title=" parabolic dish"> parabolic dish</a>, <a href="https://publications.waset.org/abstracts/search?q=fresnel%20lens" title=" fresnel lens"> fresnel lens</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission" title=" transmission"> transmission</a> </p> <a href="https://publications.waset.org/abstracts/19298/simulation-modelling-of-the-transmission-of-concentrated-solar-radiation-through-optical-fibres-to-thermal-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2097</span> Electronic, Optical, and Thermodynamic Properties of a Quantum Spin Liquid Candidate NaRuO₂: Ab-initio Investigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bouhmouche">A. Bouhmouche</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Rhrissi"> I. Rhrissi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Jabar"> A. Jabar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Moubah"> R. Moubah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum spin liquids (QSLs), known for their competing interactions that prevent conventional ordering, exhibit emergent phenomena and exotic properties resulting from quantum correlations. Despite these recent advancements in QSLs, a significant portion of the optical and thermodynamic properties in the Kagome lattice remains unknown. In addition, the thermodynamic phenomenology of NaRuO₂ bears a resemblance to that of highly frustrated magnets. Here, we employed ab-initio calculations to explore the electronic, optical and thermodynamic properties of NaRuO₂, a new QSL candidate. NaRuO₂ was identified as a semiconductor with a small bandgap energy of 0.69 eV. Our results reveal huge anisotropic optical properties, in which a distinct refractive index within the ab-plane indicating an impressive birefringent character of the NaRuO₂ system and a significant enhancement of the optical absorption coefficient and optical conductivity in the in-plane with respect to the c-axis. The investigation also examines the electronic anisotropy of the gap energy; by applying strain, the gap energy displays significant variations in the ab-plane compared to the out-of-plane direction. Conversely, calculations of the thermodynamic properties reveal a low thermal conductivity (2.5-0.5 W.m-¹. K-¹) and specific heat, which suggests the existence of strong interactions among the NaRuO₂ quantum spins. The linear specific heat behavior observed in NaRuO₂ suggests the fractionalization of electrons and the presence of a spinons Fermi surface. These findings hold promising potential for future quantum applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20spin%20liquids" title="quantum spin liquids">quantum spin liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title=" anisotropy"> anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid-DFT" title=" hybrid-DFT"> hybrid-DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=applied%20strain" title=" applied strain"> applied strain</a>, <a href="https://publications.waset.org/abstracts/search?q=optoelectronic%20and%20thermodynamic%20properties" title=" optoelectronic and thermodynamic properties"> optoelectronic and thermodynamic properties</a> </p> <a href="https://publications.waset.org/abstracts/193006/electronic-optical-and-thermodynamic-properties-of-a-quantum-spin-liquid-candidate-naruo2-ab-initio-investigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2096</span> Rapid Monitoring of Earthquake Damages Using Optical and SAR Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Gharechelou">Saeid Gharechelou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryutaro%20Tateishi"> Ryutaro Tateishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquake is an inevitable catastrophic natural disaster. The damages of buildings and man-made structures, where most of the human activities occur are the major cause of casualties from earthquakes. A comparison of optical and SAR data is presented in the case of Kathmandu valley which was hardly shaken by 2015-Nepal Earthquake. Though many existing researchers have conducted optical data based estimated or suggested combined use of optical and SAR data for improved accuracy, however finding cloud-free optical images when urgently needed are not assured. Therefore, this research is specializd in developing SAR based technique with the target of rapid and accurate geospatial reporting. Should considers that limited time available in post-disaster situation offering quick computation exclusively based on two pairs of pre-seismic and co-seismic single look complex (SLC) images. The InSAR coherence pre-seismic, co-seismic and post-seismic was used to detect the change in damaged area. In addition, the ground truth data from field applied to optical data by random forest classification for detection of damaged area. The ground truth data collected in the field were used to assess the accuracy of supervised classification approach. Though a higher accuracy obtained from the optical data then integration by optical-SAR data. Limitation of cloud-free images when urgently needed for earthquak evevent are and is not assured, thus further research on improving the SAR based damage detection is suggested. Availability of very accurate damage information is expected for channelling the rescue and emergency operations. It is expected that the quick reporting of the post-disaster damage situation quantified by the rapid earthquake assessment should assist in channeling the rescue and emergency operations, and in informing the public about the scale of damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sentinel-1A%20data" title="Sentinel-1A data">Sentinel-1A data</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat-8" title=" Landsat-8"> Landsat-8</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20damage" title=" earthquake damage"> earthquake damage</a>, <a href="https://publications.waset.org/abstracts/search?q=InSAR" title=" InSAR"> InSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=rapid%20damage%20monitoring" title=" rapid damage monitoring"> rapid damage monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=2015-Nepal%20earthquake" title=" 2015-Nepal earthquake"> 2015-Nepal earthquake</a> </p> <a href="https://publications.waset.org/abstracts/75778/rapid-monitoring-of-earthquake-damages-using-optical-and-sar-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2095</span> Bi-Lateral Comparison between NIS-Egypt and NMISA-South Africa for the Calibration of an Optical Time Domain Reflectometer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osama%20Terra">Osama Terra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariesa%20Nel"> Mariesa Nel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Hussein"> Hatem Hussein</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calibration of Optical Time Domain Reflectometer (OTDR) has a crucial role for the accurate determination of fault locations and the accurate calculation of loss budget of long-haul optical fibre links during installation and repair. A comparison has been made between the Egyptian National Institute for Standards (NIS-Egypt) and the National Metrology institute of South Africa (NMISA-South Africa) for the calibration of an OTDR. The distance and the attenuation scales of a transfer OTDR have been calibrated by both institutes using their standards according to the standard IEC 61746-1 (2009). The results of this comparison have been compiled in this report. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OTDR%20calibration" title="OTDR calibration">OTDR calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=recirculating%20loop" title=" recirculating loop"> recirculating loop</a>, <a href="https://publications.waset.org/abstracts/search?q=concatenated%20method" title=" concatenated method"> concatenated method</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20fiber" title=" standard fiber"> standard fiber</a> </p> <a href="https://publications.waset.org/abstracts/56991/bi-lateral-comparison-between-nis-egypt-and-nmisa-south-africa-for-the-calibration-of-an-optical-time-domain-reflectometer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56991.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2094</span> Measurement of Acoustic Loss in Nano-Layered Coating Developed for Thermal Noise Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Cesarini">E. Cesarini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Lorenzini"> M. Lorenzini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Cardarelli"> R. Cardarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chao"> S. Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Coccia"> E. Coccia</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Fafone"> V. Fafone</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Minenkow"> Y. Minenkow</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nardecchia"> I. Nardecchia</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20M.%20Pinto"> I. M. Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rocchi"> A. Rocchi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sequino"> V. Sequino</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Taranto"> C. Taranto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Structural relaxation processes in optical coatings represent a fundamental limit to the sensitivity of gravitational waves detectors, MEMS, optical metrology and entangled state experiments. To face this problem, many research lines are now active, in particular the characterization of new materials and novel solutions to be employed as coatings in future gravitational wave detectors. Nano-layered coating deposition is among the most promising techniques. We report on the measurement of acoustic loss of nm-layered composites (Ti<sub>2</sub>O/SiO<sub>2</sub>), performed with the GeNS nodal suspension, compared with sputtered λ/4 thin films nowadays employed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechanical%20measurement" title="mechanical measurement">mechanical measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomaterials" title=" nanomaterials"> nanomaterials</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20coating" title=" optical coating"> optical coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20noise" title=" thermal noise"> thermal noise</a> </p> <a href="https://publications.waset.org/abstracts/45331/measurement-of-acoustic-loss-in-nano-layered-coating-developed-for-thermal-noise-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2093</span> Investigation about Structural and Optical Properties of Bulk and Thin Film of 1H-CaAlSi by Density Functional Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Babaeipour">M. Babaeipour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vejdanihemmat"> M. Vejdanihemmat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical properties of bulk and thin film of 1H-CaAlSi for two directions (1,0,0) and (0,0,1) were studied. The calculations are carried out by Density Functional Theory (DFT) method using full potential. GGA approximation was used to calculate exchange-correlation energy. The calculations are performed by WIEN2k package. The results showed that the absorption edge is shifted backward 0.82eV in the thin film than the bulk for both directions. The static values of the real part of dielectric function for four cases were obtained. The static values of the refractive index for four cases are calculated too. The reflectivity graphs have shown an intensive difference between the reflectivity of the thin film and the bulk in the ultraviolet region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1H-CaAlSi" title="1H-CaAlSi">1H-CaAlSi</a>, <a href="https://publications.waset.org/abstracts/search?q=absorption" title=" absorption"> absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk" title=" bulk"> bulk</a>, <a href="https://publications.waset.org/abstracts/search?q=optical" title=" optical"> optical</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/30993/investigation-about-structural-and-optical-properties-of-bulk-and-thin-film-of-1h-caalsi-by-density-functional-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2092</span> Design of a Compact Herriott Cell for Heat Flux Measurement Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20G.%20Ram%C3%ADrez-Chavarr%C3%ADa">R. G. Ramírez-Chavarría</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S%C3%A1nchez-P%C3%A9rez"> C. Sánchez-Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Argueta-D%C3%ADaz"> V. Argueta-Díaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present the design of an optical device based on a Herriott multi-pass cell fabricated on a small sized acrylic slab for heat flux measurements using the deflection of a laser beam propagating inside the cell. The beam deflection is produced by the heat flux conducted to the acrylic slab due to a gradient in the refractive index. The use of a long path cell as the sensitive element in this measurement device, gives the possibility of high sensitivity within a small size device. We present the optical design as well as some experimental results in order to validate the device’s operation principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20flux" title="heat flux">heat flux</a>, <a href="https://publications.waset.org/abstracts/search?q=Herriott%20cell" title=" Herriott cell"> Herriott cell</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20beam%20deflection" title=" optical beam deflection"> optical beam deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a> </p> <a href="https://publications.waset.org/abstracts/31146/design-of-a-compact-herriott-cell-for-heat-flux-measurement-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2091</span> Development of Soft 3D Printing Materials for Textile Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Chung%20Marven%20Chick">Chi-Chung Marven Chick</a>, <a href="https://publications.waset.org/abstracts/search?q=Chu-Po%20Ho"> Chu-Po Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Sau-Chuen%20Joe%20Au"> Sau-Chuen Joe Au</a>, <a href="https://publications.waset.org/abstracts/search?q=Wing-Fai%20Sidney%20Wong"> Wing-Fai Sidney Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Wai%20Kan"> Chi-Wai Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, 3D printing becomes popular process for manufacturing, especially has special attention in textile applications. However, there are various types of 3D printing materials, including plastic, resin, rubber, ceramics, gold, platinum, silver, iron, titanium but not all these materials are suitable for textile application. Generally speaking, 3D printing of textile mainly uses thermoplastic polymers such as acrylonitrile butadiene styrene (ABS), polylactide (PLA), polycaprolactone (PCL), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol-modified (PETG), polystyrene (PS), polypropylene (PP). Due to the characteristics of the polymers, 3D printed textiles usually have low air permeability and poor comfortable. Therefore, in this paper, we will review the possible materials suitable for textile application with desired physical and mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20materials" title=" 3D printing materials"> 3D printing materials</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/184118/development-of-soft-3d-printing-materials-for-textile-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2090</span> One Dimensional Magneto-Plasmonic Structure Based On Metallic Nano-Grating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Hamidi">S. M. Hamidi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zamani"> M. Zamani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magneto-plasmonic (MP) structures have turned into essential tools for the amplification of magneto-optical (MO) responses via the combination of MO activity and surface Plasmon resonance (SPR). Both the plasmonic and the MO properties of the resulting MP structure become interrelated because the SPR of the metallic medium. This interconnection can be modified the wave vector of surface plasmon polariton (SPP) in MP multilayer [1] or enhanced the MO activity [2- 3] and also modified the sensor responses [4]. There are several types of MP structures which are studied to enhance MO response in miniaturized configuration. In this paper, we propose a new MP structure based on the nano-metal grating and we investigate the MO and optical properties of this new structure. Our new MP structure fabricate by DC magnetron sputtering method and our home made MO experimental setup use for characterization of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magneto-plasmonic%20structures" title="Magneto-plasmonic structures">Magneto-plasmonic structures</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-optical%20effect" title=" magneto-optical effect"> magneto-optical effect</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-garting" title=" nano-garting"> nano-garting</a> </p> <a href="https://publications.waset.org/abstracts/19371/one-dimensional-magneto-plasmonic-structure-based-on-metallic-nano-grating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2089</span> Assessment of Green Dendritic Hyperbranched Nanocomposites Viscosity Index Improvers in One Pot Step</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rasha%20S.%20Kamal">Rasha S. Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Reham%20I.%20El-Shazly"> Reham I. El-Shazly</a>, <a href="https://publications.waset.org/abstracts/search?q=Reem%20K.%20Farag"> Reem K. Farag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green nano-branched structural compounds were synthesized by adding 1% by weight of clay nanoparticle to different moles ratios of either dodecyl acrylate or triethylenetetramine using a simple one-pot method. The synthesized nano polymers were provided with different terminations. In order to confirm the chemical structure of the produced nanocomposites, FTIR and 1HNMR spectroscopy were performed. Additionally, Dynamic Light Scattering (DLS) analysis was used to assess the size and dispersion of the produced branching nano polymers. Using a Gel-permeation chromatograph, the molecular weights of the produced modified green nano hyperbranched polymer with various terminations were determined. the prepared nano samples with different molar feed ratios dodecyl acrylate: triethylenetetramine (DDA: TETA) was designed as An, Bn, Cn, Dn and En. Moreover, the synthesized compounds are expressed as viscosity index improvers (VII); The VI rises when prepared additive concentrations in the solution improve, as does the VI as prepared hyperbranched polymers' triethylenetetramine content rises, and the most effective VI is (E). All of the synthesized green hyperbranched nanocomposites have Newtonian rheological behavior as their rheological behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20hyperbranched%20polymer" title="green hyperbranched polymer">green hyperbranched polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=DLS" title=" DLS"> DLS</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity%20index%20improver" title=" viscosity index improver"> viscosity index improver</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20addition" title=" Michael addition"> Michael addition</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20clay" title=" nano clay"> nano clay</a> </p> <a href="https://publications.waset.org/abstracts/163224/assessment-of-green-dendritic-hyperbranched-nanocomposites-viscosity-index-improvers-in-one-pot-step" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2088</span> Eradication of Gram-Positive Bacteria by Photosensitizers Immobilized in Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Nisnevitch">Marina Nisnevitch</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Valkov"> Anton Valkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Faina%20Nakonechny"> Faina Nakonechny</a>, <a href="https://publications.waset.org/abstracts/search?q=Kate%20Adar%20Raik"> Kate Adar Raik</a>, <a href="https://publications.waset.org/abstracts/search?q=Yamit%20Mualem"> Yamit Mualem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photosensitizers are dye compounds belonging to various chemical groups that in all the cases have a developed structure of conjugated double bonds. Under illumination with visible light, the photosensitizers are excited and transfer the absorbed energy to the oxygen dissolved in an aqueous phase, leading to production of a reactive oxygen species which cause irreversible damage to bacterial cells. When immobilized onto a solid phase, photosensitizers preserve their antibacterial properties. In the present study, photosensitizers were immobilized in polyethylene or propylene and tested for antimicrobial activity against Gram-positive S. aureus, S. epidermidis and Streptococcus sp. For this purpose, water-soluble photosensitizers, Rose Bengal sodium salt, and methylene blue as well as water-insoluble hematoporphyrin and Rose Bengal lactone, were immobilized by dissolution in melted polymers to yield 3 mm diameter rods and 3-5 mm beads. All four photosensitizers were found to be effective in the eradication of Gram-positive bacteria under illumination by a white luminescent lamp or sunlight. The immobilized photosensitizers can be applied for continuous water disinfection; they can be easily removed at the end of the treatment and reused. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20polymers" title="antimicrobial polymers">antimicrobial polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=gram-positive%20bacteria" title=" gram-positive bacteria"> gram-positive bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization%20of%20photosensitizers" title=" immobilization of photosensitizers"> immobilization of photosensitizers</a>, <a href="https://publications.waset.org/abstracts/search?q=photodynamic%20antibacterial%20activity" title=" photodynamic antibacterial activity"> photodynamic antibacterial activity</a> </p> <a href="https://publications.waset.org/abstracts/46641/eradication-of-gram-positive-bacteria-by-photosensitizers-immobilized-in-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46641.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2087</span> Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beena%20Sethi">Beena Sethi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimetry" title=" differential scanning calorimetry"> differential scanning calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=feedstock%20recycling" title=" feedstock recycling"> feedstock recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetric%20analysis" title=" thermogravimetric analysis"> thermogravimetric analysis</a> </p> <a href="https://publications.waset.org/abstracts/44154/recycling-of-polymers-in-the-presence-of-nanocatalysts-a-green-approach-towards-sustainable-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2086</span> Compact Low Loss Design of SOI 1x2 Y-Branch Optical Power Splitter with S-Bend Waveguide and Study on the Variation of Transmitted Power with Various Waveguide Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagaraju%20Pendam">Nagaraju Pendam</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20P.%20Vardhani"> C. P. Vardhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple technology–compatible design of silicon-on-insulator based 1×2 optical power splitter is proposed. For developing large area Opto-electronic Silicon-on-Insulator (SOI) devices, the power splitter is a key passive device. The SOI rib- waveguide dimensions (height, width, and etching depth, refractive indices, length of waveguide) leading simultaneously to single mode propagation. In this paper a low loss optical power splitter is designed by using R Soft cad tool and simulated by Beam propagation method, here s-bend waveguides proposed. We concentrate changing the refractive index difference, branching angle, width of the waveguide, free space wavelength of the waveguide and observing transmitted power, effective refractive index in the designed waveguide, and choosing the best simulated results to be fabricated on silicon-on insulator platform. In this design 1550 nm free spacing are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beam%20propagation%20method" title="beam propagation method">beam propagation method</a>, <a href="https://publications.waset.org/abstracts/search?q=insertion%20loss" title=" insertion loss"> insertion loss</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20power%20splitter" title=" optical power splitter"> optical power splitter</a>, <a href="https://publications.waset.org/abstracts/search?q=rib%20waveguide" title=" rib waveguide"> rib waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=transmitted%20power" title=" transmitted power"> transmitted power</a> </p> <a href="https://publications.waset.org/abstracts/16984/compact-low-loss-design-of-soi-1x2-y-branch-optical-power-splitter-with-s-bend-waveguide-and-study-on-the-variation-of-transmitted-power-with-various-waveguide-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">663</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2085</span> Interfacial Adhesion and Properties Improvement of Polyethylene/Thermoplastic Starch Blend Compatibilized by Stearic Acid-Grafted-Starch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nattaporn%20Khanoonkon">Nattaporn Khanoonkon</a>, <a href="https://publications.waset.org/abstracts/search?q=Rangrong%20Yoksan"> Rangrong Yoksan</a>, <a href="https://publications.waset.org/abstracts/search?q=Amod%20A.%20Ogale"> Amod A. Ogale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyethylene (PE) is one of the most petroleum-based thermoplastic materials used in many applications including packaging due to its cheap, light-weight, chemically inert and capable to be converted into various shapes and sizes of products. Although PE is a commercially potential material, its non-biodegradability caused environmental problems. At present, bio-based polymers become more interesting owing to its bio-degradability, non-toxicity, and renewability as well as being eco-friendly. Thermoplastic starch (TPS) is a bio-based and biodegradable plastic produced from the plasticization of starch under applying heat and shear force. In many researches, TPS was blended with petroleum-based polymers including PE in order to reduce the cost and the use of those polymers. However, the phase separation between hydrophobic PE and hydrophilic TPS limited the amount of TPS incorporated. The immiscibility of two different polarity polymers can be diminished by adding compatibilizer. PE-based compatibilizers, e.g. polyethylene-grafted-maleic anhydride, polyethylene-co-vinyl alcohol, etc. have been applied for the PE/TPS blend system in order to improve their miscibility. Until now, there is no report about the utilization of starch-based compatibilizer for PE/TPS blend system. The aims of the present research were therefore to synthesize a new starch-based compatibilizer, i.e. stearic acid-grafted starch (SA-g-starch) and to study the effect of SA-g-starch on chemical interaction, morphological properties, tensile properties and water vapor as well as oxygen barrier properties of the PE/TPS blend films. PE/TPS blends without and with incorporating SA-g-starch with a content of 1, 3 and 5 part(s) per hundred parts of starch (phr) were prepared using a twin screw extruder and then blown into films using a film blowing machine. Incorporating 1 phr and 3 phr of SA-g-starch could improve miscibility of the two polymers as confirmed from the reduction of TPS phase size and the good dispersion of TPS phase in PE matrix. In addition, the blend containing SA-g-starch with contents of 1 phr and 3 phr exhibited higher tensile strength and extensibility, as well as lower water vapor and oxygen permeabilities than the naked blend. The above results suggested that SA-g-starch could be potentially applied as a compatibilizer for the PE/TPS blend system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blend" title="blend">blend</a>, <a href="https://publications.waset.org/abstracts/search?q=compatibilizer" title=" compatibilizer"> compatibilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene" title=" polyethylene"> polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20starch" title=" thermoplastic starch"> thermoplastic starch</a> </p> <a href="https://publications.waset.org/abstracts/28960/interfacial-adhesion-and-properties-improvement-of-polyethylenethermoplastic-starch-blend-compatibilized-by-stearic-acid-grafted-starch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28960.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2084</span> Mixture of Polymers and Coating Fullerene Soft Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Bouzina">L. Bouzina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bensafi"> A. Bensafi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Duval"> M. Duval</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Mathis"> C. Mathis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rawiso"> M. Rawiso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the stability and structural properties of mixtures of model nanoparticles and non-adsorbing polymers in the 'protein limit', where the size of polymers exceeds the particle size substantially. We have synthesized in institute (Charles Sadron Strasbourg) model nanoparticles by coating fullerene C60 molecules with low molecular weight polystyrene (PS) chains (6 PS chains with a degree of polymerization close to 25 and 50 are grafted on each fullerene C60 molecule. We will present a Small Angle Neutron scattering (SANS) study of Tetrahydrofuran (THF) solutions involving long polystyrene (PS) chains and fullerene (C60) nanoparticles. Long PS chains and C60 nanoparticles with different arm lengths were synthesized either hydrogenated or deuteriated. They were characterized through Size Exclusion Chromatography (SEC) and Quasielastic Light Scattering (QLS). In this way, the solubility of the C60 nanoparticles in the usual good solvents of PS was controlled. SANS experiments were performed by use of the contrast variation method in order to measure the partial scattering functions related to both components. They allow us to obtain information about the dispersion state of the C60 nanoparticles as well as the average conformation of the long PS chains. Specifically, they show that the addition of long polymer chains leads to the existence of an additional attractive interaction in between soft nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fulleren%20nanoparticles" title="fulleren nanoparticles">fulleren nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20angle%20neutron%20scattering" title=" small angle neutron scattering"> small angle neutron scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility" title=" solubility "> solubility </a> </p> <a href="https://publications.waset.org/abstracts/28932/mixture-of-polymers-and-coating-fullerene-soft-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28932.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2083</span> Antibacterial Activity of Trans-Cinnamaldehyde and Geraniol and Their Potential as Ingredients of Biocidal Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daria%20Olkiewicz">Daria Olkiewicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Walczak"> Maciej Walczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the biocidal effects of trans-cinnamaldehyde (a main component of cinnamon oil) and geraniol (a constituent of Pelargonium graveolens essential oil) are presented. The activity of the combination of trans-cinnamaldehyde and geraniol was tested against 3 bacterial strains: Staphylococcus aureus ATCC6538 (Gramm+), Escherichia coli ATCC8739 (Gramm-, Lac+) and Pseudomonas aeruginosa KKP 991(Gramm-, Lac-). The biocidal activity of trans-cinnamaldehyde-geraniol mixture against bacteria mentioned above was evaluated by disk-diffusion method. The model strains were exposed on 1, 2.5, 5 and 10 mg of trans-cinnamaldehyde-geraniol mixture per disk, and all strains were susceptible to this combination of plant compounds. For all microorganisms, also Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) were estimated. For Staphylococcus aureus MIC was 0.0625 mg/ml of the trans-cinnamaldehyde and geraniol mixture, and MBC was 1.25 mg/ml; For Escherichia coli MIC=0.5 mg/ml, MBC=1 mg/ml, and finally Pseudomonas aeruginosa was inhibited in 0.5 mg/ml, and minimal biocidal concentration of tested mixture for it was 1.25 mg/ml. There are also reports about the synergistic working of trans-cinnamaldehyde and geraniol against microorganisms and the antimicrobial activity of polymers enriched with trans-cinnamaldehyde or geraniol, therefore the successful development and introduction to the today life of biocidal polymer enriched with trans-cinnamaldehyde and geraniol are possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=biocidal%20polymers" title=" biocidal polymers"> biocidal polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=geraniol" title=" geraniol"> geraniol</a>, <a href="https://publications.waset.org/abstracts/search?q=trans-cinnamaldehyde" title=" trans-cinnamaldehyde"> trans-cinnamaldehyde</a> </p> <a href="https://publications.waset.org/abstracts/128636/antibacterial-activity-of-trans-cinnamaldehyde-and-geraniol-and-their-potential-as-ingredients-of-biocidal-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2082</span> Fabrication of LiNbO₃ Based Conspicuous Nanomaterials for Renewable Energy Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riffat%20Kalsoom">Riffat Kalsoom</a>, <a href="https://publications.waset.org/abstracts/search?q=Qurat-Ul-Ain%20Javed"> Qurat-Ul-Ain Javed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical and dielectric properties of lithium niobates have made them the fascinating materials to be used in optical industry for device formation such as Q and optical switching. Synthesis of lithium niobates was carried out by solvothermal process with and without temperature fluctuation at 200°C for 4 hrs, and behavior of properties for different durations was also examined. Prepared samples of LiNbO₃ were examined in a way as crystallographic phases by using XRD diffractometer, morphology by scanning electron microscope (SEM), absorption by UV-Visible Spectroscopy and dielectric measurement by impedance analyzer. A structural change from trigonal to spherical shape was observed by changing the time of reaction. Crystallite size decreases by the temperature fluctuation and increasing reaction time. Band gap decreases whereas dielectric constant and dielectric loss was increased with increasing time of reaction. Trend of AC conductivity is explained by Joschner’s power law. Due to these significant properties, it finds its applications in devices, such as cells, Q switching and optical switching for laser and gigahertz frequencies, respectively and these applications depend on the industrial demands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20niobates" title="lithium niobates">lithium niobates</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20devices" title=" renewable energy devices"> renewable energy devices</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20structure" title=" controlled structure"> controlled structure</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20fluctuations" title=" temperature fluctuations"> temperature fluctuations</a> </p> <a href="https://publications.waset.org/abstracts/93681/fabrication-of-linbo3-based-conspicuous-nanomaterials-for-renewable-energy-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2081</span> Pyramidal Lucas-Kanade Optical Flow Based Moving Object Detection in Dynamic Scenes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyojin%20Lim">Hyojin Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuong%20Nguyen%20Khac"> Cuong Nguyen Khac</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeongyu%20Choi"> Yeongyu Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho-Youl%20Jung"> Ho-Youl Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a simple moving object detection, which is based on motion vectors obtained from pyramidal Lucas-Kanade optical flow. The proposed method detects moving objects such as pedestrians, the other vehicles and some obstacles at the front-side of the host vehicle, and it can provide the warning to the driver. Motion vectors are obtained by using pyramidal Lucas-Kanade optical flow, and some outliers are eliminated by comparing the amplitude of each vector with the pre-defined threshold value. The background model is obtained by calculating the mean and the variance of the amplitude of recent motion vectors in the rectangular shaped local region called the cell. The model is applied as the reference to classify motion vectors of moving objects and those of background. Motion vectors are clustered to rectangular regions by using the unsupervised clustering K-means algorithm. Labeling method is applied to label groups which is close to each other, using by distance between each center points of rectangular. Through the simulations tested on four kinds of scenarios such as approaching motorbike, vehicle, and pedestrians to host vehicle, we prove that the proposed is simple but efficient for moving object detection in parking lots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=moving%20object%20detection" title="moving object detection">moving object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20scene" title=" dynamic scene"> dynamic scene</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20flow" title=" optical flow"> optical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=pyramidal%20optical%20flow" title=" pyramidal optical flow"> pyramidal optical flow</a> </p> <a href="https://publications.waset.org/abstracts/50958/pyramidal-lucas-kanade-optical-flow-based-moving-object-detection-in-dynamic-scenes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2080</span> Synthesis and Study of Properties of Polyaniline/Nickel Sulphide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okpaneje%20Onyinye%20Theresa">Okpaneje Onyinye Theresa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugwu%20Laeticia%20Udodiri"> Ugwu Laeticia Udodiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Okereke%20Ngozi%20Agatha"> Okereke Ngozi Agatha</a>, <a href="https://publications.waset.org/abstracts/search?q=Okoli%20Nonso%20Livinus"> Okoli Nonso Livinus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is on the synthesis and study of the optical characterization of polyaniline/nickel sulphide nanocomposite. Polyaniline (PANI) and nickel sulphide (NiS) nanoparticles were synthesized by oxidative chemical polymerization and sol-gel method. The polyaniline nickel sulphide nanocomposites with various concentrations of NiS were synthesized by in-situ polymerization of aniline monomer. In each case, the nickel sulphide nanoparticles were uniformly dispersed in the aniline hydrochloride before the initiation of oxidative chemical polymerization using ammonium persulphate. The samples formed were subjected to optical characterization using an ultraviolet (UV)-visible light (VIS) spectrophotometer (model: 756S UV – VIS). Optical analysis of the synthesized nanoparticles and nanocomposites showed absorption of radiation within VIS regions. The Tauc model was used to obtain the optical band gap. Energy band gap values of PANI and NiS were found to be 2.50 eV and 1.95 eV, respectively. PANI/NiSnanocomposites has an energy band gap that decreased from 2.25 eV to 1.90 eV as the amount of NiS increased (from 0.5g to 2.0g). These optical results showed that these nanocomposites are potential materials to be considered in solar cells and optoelectronics devices. The structural analysis confirmed the formation of polyaniline and hexagonal nickel sulphide with an average crystallite size of 25.521 nm, while average crystallite sizes of PANI/NiSnanocomposites ranged from 19.458 nm to 25.108 nm. Average particle sizes obtained from the SEM images ranged from 23.24 nm to 51.88 nm. Compositional results confirmed the presence of desired elements that made up the nanoparticles and nanocomposites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title="polyaniline">polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20sulphide" title=" nickel sulphide"> nickel sulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline-nickel%20sulphide%20nanocomposite" title=" polyaniline-nickel sulphide nanocomposite"> polyaniline-nickel sulphide nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20characterization" title=" optical characterization"> optical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20properties" title=" morphological properties"> morphological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=compositional%20properties" title=" compositional properties"> compositional properties</a> </p> <a href="https://publications.waset.org/abstracts/153743/synthesis-and-study-of-properties-of-polyanilinenickel-sulphide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2079</span> Influence of Strong Optical Feedback on Frequency Chirp and Lineshape Broadening in High-Speed Semiconductor Laser</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20Ahmed">Moustafa Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fumio%20Koyama"> Fumio Koyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Directly-modulated semiconductor lasers, including edge-emitting and vertical-cavity surface-emitting lasers, have received considerable interest recently for use in data transmitters in cost-effective high-speed data centers, metro, and access networks. Optical feedback has been proved as an efficient technique to boost the modulation bandwidth and enhance the speed of the semiconductor laser. However, both the laser linewidth and frequency chirping in directly-modulated lasers are sensitive to both intensity modulation and optical feedback. These effects along width fiber dispersion affect the transmission bit rate and distance in single-mode fiber links. In this work, we continue our recent research on directly-modulated semiconductor lasers with modulation bandwidth in the millimeter-wave band by introducing simultaneous modeling and simulations on both the frequency chirping and lineshape broadening. The lasers are operating under strong optical feedback. The model takes into account the multiple reflections of laser reflections of laser radiation in the external cavity. The analyses are given in terms of the chirp-to-modulated power ratio, and the results are shown for the possible dynamic states of continuous wave, period-1 oscillation, and chaos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chirp" title="chirp">chirp</a>, <a href="https://publications.waset.org/abstracts/search?q=linewidth" title=" linewidth"> linewidth</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20feedback" title=" optical feedback"> optical feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20laser" title=" semiconductor laser"> semiconductor laser</a> </p> <a href="https://publications.waset.org/abstracts/79640/influence-of-strong-optical-feedback-on-frequency-chirp-and-lineshape-broadening-in-high-speed-semiconductor-laser" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79640.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2078</span> Analysis of Nonlinear Pulse Propagation Characteristics in Semiconductor Optical Amplifier for Different Input Pulse Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suchi%20Barua">Suchi Barua</a>, <a href="https://publications.waset.org/abstracts/search?q=Narottam%20Das"> Narottam Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Sven%20Nordholm"> Sven Nordholm</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Razaghi"> Mohammad Razaghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents nonlinear pulse propagation characteristics for different input optical pulse shapes with various input pulse energy levels in semiconductor optical amplifiers. For simulation of nonlinear pulse propagation, finite-difference beam propagation method is used to solve the nonlinear Schrödinger equation. In this equation, gain spectrum dynamics, gain saturation are taken into account which depends on carrier depletion, carrier heating, spectral-hole burning, group velocity dispersion, self-phase modulation and two photon absorption. From this analysis, we obtained the output waveforms and spectra for different input pulse shapes as well as for different input energies. It shows clearly that the peak position of the output waveforms are shifted toward the leading edge which due to the gain saturation of the SOA for higher input pulse energies. We also analyzed and compared the normalized difference of full-width at half maximum for different input pulse shapes in the SOA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite-difference%20beam%20propagation%20method" title="finite-difference beam propagation method">finite-difference beam propagation method</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20shape" title=" pulse shape"> pulse shape</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20propagation" title=" pulse propagation"> pulse propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor%20optical%20amplifier" title=" semiconductor optical amplifier"> semiconductor optical amplifier</a> </p> <a href="https://publications.waset.org/abstracts/20730/analysis-of-nonlinear-pulse-propagation-characteristics-in-semiconductor-optical-amplifier-for-different-input-pulse-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">608</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2077</span> Radiative Reactions Analysis at the Range of Astrophysical Energies </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Amar">A. Amar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Analysis of the elastic scattering of protons on <sup>10</sup>B nuclei has been done in the framework of the optical model and single folding model at the beam energies up to 17 MeV. We could enhance the optical potential parameters using Esis88 Code, as well as SPI GENOA Code. Linear relationship between volume real potential (V<sub>0</sub>) and proton energy (E<sub>p</sub>) has been obtained. Also, surface imaginary potential W<sub>D</sub> is proportional to the proton energy (E<sub>p</sub>) in the range 0.400 and 17 MeV. The radiative reaction <sup>10</sup>B(p,γ)<sup>11</sup>C has been analyzed using potential model. A comparison between <sup>10</sup>B(p,γ)<sup>11</sup>C and <sup>6</sup>Li(p,γ)<sup>7</sup>Be has been made. Good agreement has been found between theoretical and experimental results in the whole range of energy. The radiative resonance reaction <sup>7</sup>Li(p,γ)<sup>8</sup>Be has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20scattering%20of%20protons%20on%2010B%20nuclei" title="elastic scattering of protons on 10B nuclei">elastic scattering of protons on 10B nuclei</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20potential%20parameters" title=" optical potential parameters"> optical potential parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=potential%20model" title=" potential model"> potential model</a>, <a href="https://publications.waset.org/abstracts/search?q=radiative%20reaction" title=" radiative reaction"> radiative reaction</a> </p> <a href="https://publications.waset.org/abstracts/88571/radiative-reactions-analysis-at-the-range-of-astrophysical-energies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2076</span> Low-Complex, High-Fidelity Two-Grades Cyclo-Olefin Copolymer (COC) Based Thermal Bonding Technique for Sealing a Thermoplastic Microfluidic Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Prada">Jorge Prada</a>, <a href="https://publications.waset.org/abstracts/search?q=Christina%20Cordes"> Christina Cordes</a>, <a href="https://publications.waset.org/abstracts/search?q=Carsten%20Harms"> Carsten Harms</a>, <a href="https://publications.waset.org/abstracts/search?q=Walter%20Lang"> Walter Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of microfluidic-based biosensors over the last years has shown an increasing employ of thermoplastic polymers as constitutive material. Their low-cost production, high replication fidelity, biocompatibility and optical-mechanical properties are sought after for the implementation of disposable albeit functional lab-on-chip solutions. Among the range of thermoplastic materials on use, the Cyclo-Olefin Copolymer (COC) stands out due to its optical transparency, which makes it a frequent choice as manufacturing material for fluorescence-based biosensors. Moreover, several processing techniques to complete a closed COC microfluidic biosensor have been discussed in the literature. The reported techniques differ however in their implementation, and therefore potentially add more or less complexity when using it in a mass production process. This work introduces and reports results on the application of a purely thermal bonding process between COC substrates, which were produced by the hot-embossing process, and COC foils containing screen-printed circuits. The proposed procedure takes advantage of the transition temperature difference between two COC grades foils to accomplish the sealing of the microfluidic channels. Patterned heat injection to the COC foil through the COC substrate is applied, resulting in consistent channel geometry uniformity. Measurements on bond strength and bursting pressure are shown, suggesting that this purely thermal bonding process potentially renders a technique which can be easily adapted into the thermoplastic microfluidic chip production workflow, while enables a low-cost as well as high-quality COC biosensor manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclo-olefin%20copolymer" title=" cyclo-olefin copolymer"> cyclo-olefin copolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20embossing" title=" hot embossing"> hot embossing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20bonding" title=" thermal bonding"> thermal bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastics" title=" thermoplastics"> thermoplastics</a> </p> <a href="https://publications.waset.org/abstracts/90848/low-complex-high-fidelity-two-grades-cyclo-olefin-copolymer-coc-based-thermal-bonding-technique-for-sealing-a-thermoplastic-microfluidic-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=7" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=7">7</a></li> <li class="page-item active"><span class="page-link">8</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=11">11</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=77">77</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=78">78</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=optical%20polymers&page=9" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>