CINXE.COM

Search results for: activated carbon adsorption

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: activated carbon adsorption</title> <meta name="description" content="Search results for: activated carbon adsorption"> <meta name="keywords" content="activated carbon adsorption"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="activated carbon adsorption" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="activated carbon adsorption"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4277</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: activated carbon adsorption</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4277</span> Adsorption of Chromium Ions from Aqueous Solution by Carbon Adsorbent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Heydari">S. Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sharififard"> H. Sharififard</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nabavinia"> M. Nabavinia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kiani"> H. Kiani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Parvizi"> M. Parvizi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid industrialization has led to increased disposal of heavy metals into the environment. Activated carbon adsorption has proven to be an effective process for the removal of trace metal contaminants from aqueous media. This paper was investigated chromium adsorption efficiency by commercial activated carbon. The sorption studied as a function of activated carbon particle size, dose of activated carbon and initial pH of solution. Adsorption tests for the effects of these factors were designed with Taguchi approach. According to the Taguchi parameter design methodology, L9 orthogonal array was used. Analysis of experimental results showed that the most influential factor was initial pH of solution. The optimum conditions for chromium adsorption by activated carbons were found to be as follows: Initial feed pH 6, adsorbent particle size 0.412 mm and activated carbon dose 6 g/l. Under these conditions, nearly %100 of chromium ions was adsorbed by activated carbon after 2 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium" title="chromium">chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/3442/adsorption-of-chromium-ions-from-aqueous-solution-by-carbon-adsorbent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4276</span> An Efficient Activated Carbon for Copper (II) Adsorption Synthesized from Indian Gooseberry Seed Shells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somen%20Mondal">Somen Mondal</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Kumar%20Majumder"> Subrata Kumar Majumder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of metal pollutants by efficient activated carbon is challenging research in the present-day scenario. In the present study, the characteristic features of an efficient activated carbon (AC) synthesized from Indian gooseberry seed shells for the copper (II) adsorption are reported. A three-step chemical activation method consisting of the impregnation, carbonization and subsequent activation is used to produce the activated carbon. The copper adsorption kinetics and isotherms onto the activated carbon were analyzed. As per present investigation, Indian gooseberry seed shells showed the BET surface area of 1359 m²/g. The maximum adsorptivity of the activated carbon at a pH value of 9.52 was found to be 44.84 mg/g at 30°C. The adsorption process followed the pseudo-second-order kinetic model along with the Langmuir adsorption isotherm. This AC could be used as a favorable and cost-effective copper (II) adsorbent in wastewater treatment to remove the metal contaminants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherm" title=" adsorption isotherm"> adsorption isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20model" title=" kinetic model"> kinetic model</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a> </p> <a href="https://publications.waset.org/abstracts/100344/an-efficient-activated-carbon-for-copper-ii-adsorption-synthesized-from-indian-gooseberry-seed-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4275</span> Decoloriation of Rhodamine-B Dye by Pseudomonas putida on Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20K.%20Ghosh">U. K. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ullhyan"> A. Ullhyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon prepared from mustard stalk was applied to decolorize Rhodamine-B dye bearing synthetic wastewater by simple adsorption and simultaneous adsorption and biodegradation (SAB) using Pseudomonas putida MTCC 1194. Results showed that percentage of Rhodamine-B dye removal was 82% for adsorption and 99.3% for SAB at pH 6.5, adsorbent dose 10 g/L and temperature 32ºC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=mustard%20stalk" title=" mustard stalk"> mustard stalk</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhodamine-B" title=" Rhodamine-B"> Rhodamine-B</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=SAB" title=" SAB"> SAB</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20putida" title=" Pseudomonas putida"> Pseudomonas putida</a> </p> <a href="https://publications.waset.org/abstracts/25637/decoloriation-of-rhodamine-b-dye-by-pseudomonas-putida-on-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4274</span> The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Turkmen">S. N. Turkmen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul"> N. Tugrul</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Derun"> E. M. Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Piskin"> S. Piskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20activation" title=" chemical activation"> chemical activation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate%20peel" title=" pomegranate peel"> pomegranate peel</a> </p> <a href="https://publications.waset.org/abstracts/26792/the-adsorption-of-zinc-metal-in-waste-water-using-zncl2-activated-pomegranate-peel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4273</span> Activated Carbons Prepared from Date Pits for Hydrogen Storage </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Belhachemi">M. Belhachemi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Monteiro%20de%20Castro"> M. Monteiro de Castro</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Casco"> M. Casco</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sep%C3%BAlveda-Escribano"> A. Sepúlveda-Escribano</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Rodr%C3%ADguez-Reinoso"> F. Rodríguez-Reinoso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, activated carbons were prepared from Algerian date pits using thermal activation with CO2 or steam. The prepared activated carbons were doped by vanadium oxide in order to increase the H2 adsorption capacity. The adsorbents were characterized by N2 and CO2 adsorption at 77 K and 273K, respectively. The hydrogen adsorption experiments were carried at 298K in the 0–100 bar pressure range using a volumetric equipment. The results show that the H2 adsorption capacity is influenced by the size and volume of micropores in the activated carbon adsorbent. Furthermore, vanadium doping of activated carbons has a slight positive effect on H2 storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage" title="hydrogen storage">hydrogen storage</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=vanadium%20doping" title=" vanadium doping"> vanadium doping</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/20659/activated-carbons-prepared-from-date-pits-for-hydrogen-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4272</span> Adsorption Studies of Lead from Aqueos Solutions on Cocount Shell Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20E.%20Sharaf%20El-Deen">G. E. Sharaf El-Deen</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20A.%20Sharaf%20El-Deen"> S. E. A. Sharaf El-Deen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon was prepared from coconut shell (ACS); a discarded agricultural waste was used to produce bioadsorbent through easy and environmental friendly processes. This activated carbon based biosorbent was evaluated for adsorptive removal of lead from water. The characterisation results showed this biosorbent had very high specific surface area and functional groups. The adsorption equilibrium data was well described by Langmuir, whilst kinetics data by pseudo-first order, pseudo-second order and Intraparticle diffusion models. The adsorption process could be described by the pseudo-second order kinetic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coconut%20shell" title="coconut shell">coconut shell</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherm%20and%20kinetics" title=" adsorption isotherm and kinetics"> adsorption isotherm and kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=lead%20removal" title=" lead removal"> lead removal</a> </p> <a href="https://publications.waset.org/abstracts/38679/adsorption-studies-of-lead-from-aqueos-solutions-on-cocount-shell-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4271</span> Evaluation of the Adsorption Adaptability of Activated Carbon Using Dispersion Force</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masao%20Fujisawa">Masao Fujisawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirohito%20Ikeda"> Hirohito Ikeda</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomonori%20Ohata"> Tomonori Ohata</a>, <a href="https://publications.waset.org/abstracts/search?q=Miho%20Yukawa"> Miho Yukawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatsumi%20Aki"> Hatsumi Aki</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kimura"> Takayoshi Kimura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We attempted to predict adsorption coefficients by utilizing dispersion energies. We performed liquid-phase free energy calculations based on gas-phase geometries of organic compounds using the DFT and studied the relationship between the adsorption of organic compounds by activated carbon and dispersion energies of the organic compounds. A linear correlation between absorption coefficients and dispersion energies was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20energy" title=" dispersion energy"> dispersion energy</a> </p> <a href="https://publications.waset.org/abstracts/50573/evaluation-of-the-adsorption-adaptability-of-activated-carbon-using-dispersion-force" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4270</span> Preparation of Activated Carbon from Lignocellulosic Precursor for Dyes Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mokaddem">H. Mokaddem</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Miroud"> D. Miroud</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Azouaou"> N. Azouaou</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Si-Ahmed"> F. Si-Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Sadaoui"> Z. Sadaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis and characterization of activated carbon from local lignocellulosic precursor (Algerian alfa) was carried out for the removal of cationic dyes from aqueous solutions. The effect of the production variables such as impregnation chemical agents, impregnation ratio, activation temperature and activation time were investigated. Carbon obtained using the optimum conditions (CaCl2/ 1:1/ 500°C/2H) was characterized by various analytical techniques scanning electron microscopy (SEM), infrared spectroscopic analysis (FTIR) and zero-point-of-charge (pHpzc). Adsorption tests of methylene blue on the optimal activated carbon were conducted. The effects of contact time, amount of adsorbent, initial dye concentration and pH were studied. The adsorption equilibrium examined using Langmuir, Freundlich, Temkin and Redlich–Peterson models reveals that the Langmuir model is most appropriate to describe the adsorption process. The kinetics of MB sorption onto activated carbon follows the pseudo-second order rate expression. The examination of the thermodynamic analysis indicates that the adsorption process is spontaneous (ΔG ° < 0) and endothermic (ΔH ° > 0), the positive value of the standard entropy shows the affinity between the activated carbon and the dye. The present study showed that the produced optimal activated carbon prepared from Algerian alfa is an effective low-cost adsorbent and can be employed as alternative to commercial activated carbon for removal of MB dye from aqueous solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20dyes" title=" cationic dyes"> cationic dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Algerian%20alfa" title=" Algerian alfa"> Algerian alfa</a> </p> <a href="https://publications.waset.org/abstracts/49655/preparation-of-activated-carbon-from-lignocellulosic-precursor-for-dyes-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4269</span> Isotherm Study for Phenol Removal onto GAC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lallan%20Singh%20Yadav">Lallan Singh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijay%20Kumar%20Mishra"> Bijay Kumar Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Mahapatra"> Manoj Kumar Mahapatra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar"> Arvind Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption data for phenol removal onto granular activated carbon were fitted to Langmuir and Freundlich isotherms. The adsorption capacity of phenol was estimated to be 16.12 mg/g at initial pH=5.7. The thermodynamics of adsorption process has also been determined in the present work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a>, <a href="https://publications.waset.org/abstracts/search?q=granular%20activated%20carbon" title=" granular activated carbon"> granular activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/8892/isotherm-study-for-phenol-removal-onto-gac" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">615</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4268</span> Removal of Copper(II) and Lead(II) from Aqueous Phase by Plum Stone Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serife%20Parlayici">Serife Parlayici</a>, <a href="https://publications.waset.org/abstracts/search?q=Erol%20Pehlivan"> Erol Pehlivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, plum stone shell activated carbon (PS-AC) was prepared to adsorb Cu(II) and Pb(II) ions in aqueous solutions. Some important parameters that influence the adsorption of metal ions such as pH, contact time and metal concentration have been systematically investigated in batch type reactors. The characterization of adsorbent is carried out by means of FTIR and SEM. It was found that the adsorption capacities of PS-AC were pH-dependent, and the optimal pH values were 4.5 and 5.0 for Cu(II) and Pb(II), respectively. The adsorption was rapid and the equilibrium was reached within 60 minutes to remove of Cu(II) and Pb(II) ions. The adsorption stability was studied in various doses of adsorbent. Langmuir, Freundlich and D-R adsorption models were used to describe adsorption equilibrium studies of PS-AC. Adsorption data showed that the adsorption of Cu(II) and Pb(II) is compatible with Langmuir isotherm model. The result showed that adsorption capacities calculated from the Langmuir isotherm were 33.22 mg/g and 57.80 mg/g for Cu(II) and Pb(II), respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plum-stone" title="plum-stone">plum-stone</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20and%20lead" title=" copper and lead"> copper and lead</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherms" title=" isotherms"> isotherms</a> </p> <a href="https://publications.waset.org/abstracts/71963/removal-of-copperii-and-leadii-from-aqueous-phase-by-plum-stone-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4267</span> Colour and Curcuminoids Removal from Turmeric Wastewater Using Activated Carbon Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nattawat%20Thongpraphai">Nattawat Thongpraphai</a>, <a href="https://publications.waset.org/abstracts/search?q=Anusorn%20Boonpoke"> Anusorn Boonpoke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to determine the removal of colour and curcuminoids from turmeric wastewater using granular activated carbon (GAC) adsorption. The adsorption isotherm and kinetic behavior of colour and curcuminoids was invested using batch and fixed bed columns tests. The results indicated that the removal efficiency of colour and curcuminoids were 80.13 and 78.64%, respectively at 8 hr of equilibrium time. The adsorption isotherm of colour and curcuminoids were well fitted with the Freundlich adsorption model. The maximum adsorption capacity of colour and curcuminoids were 130 Pt-Co/g and 17 mg/g, respectively. The continuous experiment data showed that the exhaustion concentration of colour and curcuminoids occurred at 39 hr of operation time. The adsorption characteristic of colour and curcuminoids from turmeric wastewater by GAC can be described by the Thomas model. The maximum adsorption capacity obtained from kinetic approach were 39954 Pt-Co/g and 0.0516 mg/kg for colour and curcuminoids, respectively. Moreover, the decrease of colour and curcuminoids concentration during the service time showed a similar trend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=turmeric" title=" turmeric"> turmeric</a>, <a href="https://publications.waset.org/abstracts/search?q=colour" title=" colour"> colour</a>, <a href="https://publications.waset.org/abstracts/search?q=curcuminoids" title=" curcuminoids"> curcuminoids</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a> </p> <a href="https://publications.waset.org/abstracts/26353/colour-and-curcuminoids-removal-from-turmeric-wastewater-using-activated-carbon-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4266</span> Efficiency of Modified Granular Activated Carbon Coupled with Membrane Bioreactor for Trace Organic Contaminants Removal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mousaab%20Alrhmoun">Mousaab Alrhmoun</a>, <a href="https://publications.waset.org/abstracts/search?q=Magali%20Casellas"> Magali Casellas</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Baudu"> Michel Baudu</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Dagot"> Christophe Dagot </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to improve removal of trace organic contaminants dissolved in activated sludge by the process of filtration with membrane bioreactor combined with modified activated carbon, for a maximum removal of organic compounds characterized by low molecular weight. Special treatment was conducted in laboratory on activated carbon. Tow reaction parameters: The pH of aqueous middle and the type of granular activated carbon were very important to improve the removal and to motivate the electrostatic Interactions of organic compounds with modified activated carbon in addition to physical adsorption, ligand exchange or complexation on the surface activated carbon. The results indicate that modified activated carbon has a strong impact in removal 21 of organic contaminants and in percentage of 100% of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20micropolluants" title=" organic micropolluants"> organic micropolluants</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20bioreactor" title=" membrane bioreactor"> membrane bioreactor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a> </p> <a href="https://publications.waset.org/abstracts/3910/efficiency-of-modified-granular-activated-carbon-coupled-with-membrane-bioreactor-for-trace-organic-contaminants-removal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4265</span> Application of Nitric Acid Modified Cocos nucifera, Pennisetum glaucum and Sorghum bicolor Activated Carbon for Adsorption of H₂S Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20N.%20Ali">Z. N. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Babatunde"> O. A. Babatunde</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Garba"> S. Garba</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20S.%20Haruna"> H. M. S. Haruna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potency of modified and unmodified activated carbons prepared from shells of Cocos nucifera (coconut shell), straws of Pennisetum glaucum (millet) and Sorghum bicolor (sorghum) for adsorption of hydrogen sulphide gas were investigated using an adsorption apparatus (stainless steel cylinder) at constant temperature (ambient temperature). The adsorption equilibria states were obtained when the pressure indicated on the pressure gauge remained constant. After modification with nitric acid, results of the scanning electron microscopy of the unmodified and modified activated carbons showed that HNO3 greatly improved the formation of micropores and mesopores on the activated carbon surface. The adsorption of H2S gas was found to be highest in modified Cocos nucifera activated carbon with maximum monolayer coverage of 28.17 mg/g, and the adsorption processes were both physical and chemical with the physical process being predominant. The adsorption data were well fitted into the Langmuir isotherm model with the adsorption capacities of the activated carbons in the order modified Cocos nucifera > modified Pennisetum glaucum > modified Sorghum bicolor > unmodified Cocos nucifera > unmodified Pennisetum glaucum > unmodified Sorghum bicolour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption" title="activated carbon adsorption">activated carbon adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sulphide" title=" hydrogen sulphide"> hydrogen sulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20acid" title=" nitric acid"> nitric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel%20cylinder" title=" stainless steel cylinder"> stainless steel cylinder</a> </p> <a href="https://publications.waset.org/abstracts/83242/application-of-nitric-acid-modified-cocos-nucifera-pennisetum-glaucum-and-sorghum-bicolor-activated-carbon-for-adsorption-of-h2s-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4264</span> The Adsorption of Perfluorooctanoic Acid on Coconut Shell Activated Carbons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Premrudee%20Kanchanapiya">Premrudee Kanchanapiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Supachai%20Songngam"> Supachai Songngam</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanapol%20Tantisattayakul"> Thanapol Tantisattayakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Perfluorooctanoic acid (PFOA) is one of per- and polyfluoroalkyl substances (PFAS) that have increasingly attracted concerns due to their global distribution in environment, persistence, high bioaccumulation, and toxicity. It is important to study the effective treatment to remove PFOA from contaminated water. The feasibility of using commercial coconut shell activated carbon produced in Thailand to remove PFOA from water was investigated with regard to their adsorption kinetics and isotherms of powder activated carbon (PAC-325) and granular activated carbon (GAC-20x50). Adsorption kinetic results show that the adsorbent size significantly affected the adsorption rate of PFOA, and GAC-20x50 required at least 100 h to achieve the equilibrium, much longer than 3 h for PAC-325. Two kinetic models were fitted to the experimental data, and the pseudo-second-order model well described the adsorption of PFOA on both PAC-325 and GAC-20x50. PAC-325 trended to adsorb PFOA faster than GAC-20x50, and testing with the shortest adsorption times (5 min) still yielded substantial PFOA removal (~80% for PAC-325). The adsorption isotherms show that the adsorption capacity of PAC-325 was 0.80 mmol/g, which is 83 % higher than that for GAC-20x50 (0.13 mmol/g), according to the Langmuir fitting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perfluorooctanoic%20acid" title="perfluorooctanoic acid">perfluorooctanoic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=PFOA" title=" PFOA"> PFOA</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20shell%20activated%20carbons" title=" coconut shell activated carbons"> coconut shell activated carbons</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment "> water treatment </a> </p> <a href="https://publications.waset.org/abstracts/130473/the-adsorption-of-perfluorooctanoic-acid-on-coconut-shell-activated-carbons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4263</span> Adsorption Isotherm, Kinetic and Mechanism Studies of Some Substituted Phenols from Aqueous Solution by Jujuba Seeds Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Benturki">O. Benturki</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Benturki"> A. Benturki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbon was prepared from Jujube seeds by chemical activation with potassium hydroxide (KOH), followed by pyrolysis at 800°C. Batch studies were conducted for kinetic, thermodynamic and equilibrium studies on the adsorption of phenol (P) and 2-4 dichlorophenol (2-4 DCP) from aqueous solution, than the adsorption capacities followed the order of 2-4 dichlorophenol > phenol. The operating variables studied were initial phenols concentration, contact time, temperature and solution pH. Results show that the pH value of 7 is favorable for the adsorption of phenols. The sorption data have been analyzed using Langmuir and Freundlich isotherms. The isotherm data followed Langmuir Model. The adsorption processes conformed to the pseudo-second-order rate kinetics. Thermodynamic parameters such as enthalpy, entropy and Gibb’s free energy changes were also calculated and it was found that the sorption of phenols by Jujuba seeds activated carbon was a spontaneous process The maximum adsorption efficiency of phenol and 2-4 dichlorophenol was 142.85 mg.g−1 and 250 mg.g−1, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherms" title=" isotherms"> isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=Jujuba%20seeds" title=" Jujuba seeds"> Jujuba seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=phenols" title=" phenols"> phenols</a>, <a href="https://publications.waset.org/abstracts/search?q=langmuir" title=" langmuir "> langmuir </a> </p> <a href="https://publications.waset.org/abstracts/17568/adsorption-isotherm-kinetic-and-mechanism-studies-of-some-substituted-phenols-from-aqueous-solution-by-jujuba-seeds-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4262</span> Comparative Evaluation of Kinetic Model of Chromium and Lead Uptake from Aqueous Solution by Activated Balanitesaegyptiaca Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Umar%20Manko">Mohammed Umar Manko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of batch experiments were conducted in order to investigate the feasibility of Balanitesaegyptiaca seeds based activated carbon as compared with industrial activated carbon for the removal of chromium and lead ions from aqueous solution by the adsorption process within 30 to 150 minutes contact time. The activated samples were prepared using zinc chloride and tetraoxophophate(VI) acid. The results obtained showed that the activated carbon of Balanitesaegyptiaca seeds studied had relatively high adsorption capacities for these heavy metal ions compared with industrial Activated Carbon. The percentage removal of Cr (VI) and lead (II) ions by the three activated carbon samples were 64%, 70% and 71%; 60%, 66% and 60% respectively. Adsorption equilibrium was established in 90 minutes for the heavy metal ions. The equilibrium data fitted the pseudo second order out of the pseudo first, pseudo second, Elovich ,Natarajan and Khalaf models tested. The investigation also showed that the adsorbents can effectively remove metal ions from similar wastewater and aqueous media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo%20second%20order" title=" pseudo second order"> pseudo second order</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium" title=" chromium"> chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=Elovich%20model" title=" Elovich model"> Elovich model</a> </p> <a href="https://publications.waset.org/abstracts/33081/comparative-evaluation-of-kinetic-model-of-chromium-and-lead-uptake-from-aqueous-solution-by-activated-balanitesaegyptiaca-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4261</span> Production of Clean Reusable Distillery Waste Water Using Activated Carbon Prepared from Waste Orange Peels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Govha">Joseph Govha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharon%20Mudutu"> Sharon Mudutu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research details the treatment of distillery waste water by making use of activated carbon prepared from orange peels as an adsorbent. Adsorption was carried out at different conditions to determine the optimum conditions that work best for the removal of color in distillery waste water using orange peel activated carbon. Adsorption was carried out at different conditions by varying contact time, adsorbent dosage, pH, testing for color intensity and Biological Oxygen Demand. A maximum percentage color removal of 88% was obtained at pH 7 at an adsorbent dosage of 1g/20ml. Maximum adsorption capacity was obtained from the Langmuir isotherm at R2=0.98. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distillery" title="distillery">distillery</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title=" waste water"> waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20peel" title=" orange peel"> orange peel</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/69881/production-of-clean-reusable-distillery-waste-water-using-activated-carbon-prepared-from-waste-orange-peels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4260</span> Thermal Regeneration of CO2 Spent Palm Shell-Polyetheretherketone Activated Carbon Sorbents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20D.%20Hamza">Usman D. Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20S.%20Nasri"> Noor S. Nasri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Jibril"> Mohammed Jibril</a>, <a href="https://publications.waset.org/abstracts/search?q=Husna%20M.%20Zain"> Husna M. Zain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Activated carbons (M4P0, M4P2, and M5P2) used in this research were produced from palm shell and polyetherether ketone (PEEK) via carbonization, impregnation, and microwave activation. The adsorption/desorption process was carried out using static volumetric adsorption. Regeneration is important in the overall economy of the process and waste minimization. This work focuses on the thermal regeneration of the CO2 exhausted microwave activated carbons. The regeneration strategy adopted was thermal with nitrogen purge desorption with N2 feed flow rate of 20 ml/min for 1 h at atmospheric pressure followed by drying at 1500C. Seven successive adsorption/regeneration processes were carried out on the material. It was found that after seven adsorption regeneration cycles; the regeneration efficiency (RE) for CO2 activated carbon from palm shell only (M4P0) was more than 90% while that of hybrid palm shell-PEEK (M4P2, M5P2) was above 95%. The cyclic adsorption and regeneration shows the stability of the adsorbent materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20shell-PEEK" title=" palm shell-PEEK"> palm shell-PEEK</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal" title=" thermal"> thermal</a> </p> <a href="https://publications.waset.org/abstracts/25253/thermal-regeneration-of-co2-spent-palm-shell-polyetheretherketone-activated-carbon-sorbents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4259</span> Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20C.%20Ferreira">R. C. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20H.%20C.%20De%20Lima"> H. H. C. De Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20C%C3%A2ndido"> A. A. Cândido</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Couto%20Junior"> O. M. Couto Junior</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20A.%20Arroyo"> P. A. Arroyo</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Q%20De%20Carvalho"> K. Q De Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20F.%20Gauze"> G. F. Gauze</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20S.%20D.%20Barros"> M. A. S. D. Barros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of the widespread used drug paracetamol from water was investigated using activated carbon originated from dende coconut mesocarp and babassu coconut mesocarp. Kinetic and equilibrium data were obtained at different values of pH. Babassu activated carbon showed higher efficiency due to its acidity and higher microporosity. Pseudo-second order model was better adjusted to the kinetic results. Equilibrium data may be represented by Langmuir equation. Lower solution pH provided better removal efficiency as the carbonil groups may be attracted by the positively charged carbon surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=babassu" title=" babassu"> babassu</a>, <a href="https://publications.waset.org/abstracts/search?q=dende" title=" dende"> dende</a> </p> <a href="https://publications.waset.org/abstracts/23917/adsorption-of-paracetamol-using-activated-carbon-of-dende-and-babassu-coconut-mesocarp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4258</span> Kinetics, Equilibrium and Thermodynamics of the Adsorption of Triphenyltin onto NanoSiO₂/Fly Ash/Activated Carbon Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olushola%20S.%20Ayanda">Olushola S. Ayanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Olalekan%20S.%20Fatoki"> Olalekan S. Fatoki</a>, <a href="https://publications.waset.org/abstracts/search?q=Folahan%20A.%20Adekola"> Folahan A. Adekola</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhekumusa%20J.%20Ximba"> Bhekumusa J. Ximba</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecilia%20O.%20Akintayo"> Cecilia O. Akintayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the kinetics, equilibrium and thermodynamics of the adsorption of triphenyltin (TPT) from TPT-contaminated water onto nanoSiO2/fly ash/activated carbon composite was investigated in batch adsorption system. Equilibrium adsorption data were analyzed using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R) isotherm models. Pseudo first- and second-order, Elovich and fractional power models were applied to test the kinetic data and in order to understand the mechanism of adsorption, thermodynamic parameters such as ΔG°, ΔSo and ΔH° were also calculated. The results showed a very good compliance with pseudo second-order equation while the Freundlich and D-R models fit the experiment data. Approximately 99.999 % TPT was removed from the initial concentration of 100 mg/L TPT at 80oC, contact time of 60 min, pH 8 and a stirring speed of 200 rpm. Thus, nanoSiO2/fly ash/activated carbon composite could be used as effective adsorbent for the removal of TPT from contaminated water and wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotherm" title="isotherm">isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoSiO%E2%82%82%2Ffly%20ash%2Factivated%20carbon%20composite" title=" nanoSiO₂/fly ash/activated carbon composite"> nanoSiO₂/fly ash/activated carbon composite</a>, <a href="https://publications.waset.org/abstracts/search?q=tributyltin" title=" tributyltin"> tributyltin</a> </p> <a href="https://publications.waset.org/abstracts/52321/kinetics-equilibrium-and-thermodynamics-of-the-adsorption-of-triphenyltin-onto-nanosio2fly-ashactivated-carbon-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4257</span> Equilibrium and Kinetic Studies of Lead Adsorption on Activated Carbon Derived from Mangrove Propagule Waste by Phosphoric Acid Activation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Widi%20Astuti">Widi Astuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Rizki%20Agus%20Hermawan"> Rizki Agus Hermawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hariono%20Mukti"> Hariono Mukti</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Retno%20Sugiyono"> Nurul Retno Sugiyono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The removal of lead ion (Pb<sup>2+</sup>) from aqueous solution by activated carbon with phosphoric acid activation employing mangrove propagule as precursor was investigated in a batch adsorption system. Batch studies were carried out to address various experimental parameters including pH and contact time. The Langmuir and Freundlich models were able to describe the adsorption equilibrium, while the pseudo first order and pseudo second order models were used to describe kinetic process of Pb<sup>2+</sup> adsorption. The results show that the adsorption data are seen in accordance with Langmuir isotherm model and pseudo-second order kinetic model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium" title=" equilibrium"> equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=mangrove%20propagule" title=" mangrove propagule"> mangrove propagule</a> </p> <a href="https://publications.waset.org/abstracts/82675/equilibrium-and-kinetic-studies-of-lead-adsorption-on-activated-carbon-derived-from-mangrove-propagule-waste-by-phosphoric-acid-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4256</span> Removal of Chromium (VI) from Aqueous Solution by Teff (Eragrostis Teff) Husk Activated Carbon: Optimization, Kinetics, Isotherm, and Practical Adaptation Study Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tsegaye%20Adane%20Birhan">Tsegaye Adane Birhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, rapid industrialization has led to the excessive release of heavy metals such as Cr (VI) into the environment. Exposure to chromium (VI) can cause kidney and liver damage, depressed immune systems, and a variety of cancers. Therefore, treatment of Cr (VI) containing wastewater is mandatory. This study aims to optimize the removal of Cr (VI) from an aqueous solution using locally available Teff husk-activated carbon adsorbent. The laboratory-based study was conducted on the optimization of Cr (VI) removal efficiency of Teff husk-activated carbon from aqueous solution. A central composite design was used to examine the effect of the interaction of process parameters and to optimize the process using Design Expert version 7.0 software. The optimized removal efficiency of Teff husk activated carbon (95.597%) was achieved at 1.92 pH, 87.83mg/L initial concentration, 20.22g/L adsorbent dose and 2.07Hrs contact time. The adsorption of Cr (VI) on Teff husk-activated carbon was found to be best fitted with pseudo-second-order kinetics and Langmuir isotherm model of the adsorption. Teff husk-activated carbon can be used as an efficient adsorbent for the removal of chromium (VI) from contaminated water. Column adsorption needs to be studied in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batch%20adsorption" title="batch adsorption">batch adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium%20%28VI%29" title=" chromium (VI)"> chromium (VI)</a>, <a href="https://publications.waset.org/abstracts/search?q=teff%20husk%20activated%20carbon" title=" teff husk activated carbon"> teff husk activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=tannery%20wastewater" title=" tannery wastewater"> tannery wastewater</a> </p> <a href="https://publications.waset.org/abstracts/194677/removal-of-chromium-vi-from-aqueous-solution-by-teff-eragrostis-teff-husk-activated-carbon-optimization-kinetics-isotherm-and-practical-adaptation-study-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4255</span> Zinc Adsorption Determination of H2SO4 Activated Pomegranate Peel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Turkmen%20Koc">S. N. Turkmen Koc</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Kipcak"> A. S. Kipcak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Piskin"> M. B. Piskin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Moroydor%20Derun"> E. Moroydor Derun</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tugrul"> N. Tugrul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Active carbon can be obtained from agricultural sources. Due to the high surface area, the production of activated carbon from cheap resources is very important. Since the surface area of 1 g activated carbon is approximately between 300 and 2000 m<sup>2</sup>, it can be used to remove both organic and inorganic impurities. In this study, the adsorption of Zn metal was studied with the product of activated carbon, which is obtained from pomegranate peel by microwave and chemical activation methods. The microwave process of pomegranate peel was carried out under constant microwave power of 800 W and 1 to 4 minutes. After the microwave process, samples were treated with H<sub>2</sub>SO<sub>4</sub> for 3 h. Then prepared product was used in synthetic waste water including 40 ppm Zn metal. As a result, removal of waste Zn in waste water ranged from 91% to 93%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20activation" title=" chemical activation"> chemical activation</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%82SO%E2%82%84" title=" H₂SO₄"> H₂SO₄</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate%20peel" title=" pomegranate peel"> pomegranate peel</a> </p> <a href="https://publications.waset.org/abstracts/97996/zinc-adsorption-determination-of-h2so4-activated-pomegranate-peel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4254</span> Elimination of Phosphorus by Activated Carbon Prepared from Algerian Dates Stones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Kamarchoua">A. Kamarchoua</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Bebaa"> A. A. Bebaa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Douadi"> A. Douadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current work has a goal of the preparation of activated carbon from the stones of dates from southern Algeria (El-Oued province) using a simple pyrolysis proceeded by chemical impregnation in sulphuric acid. For the preparation of the carbon, we choose the diameter of the pellets (0.5-1)mm, activation by acid and water (1:1), carbonization at 450˚C. The prepared carbon has the following characteristics: specific surface 125.86 m2/g, methylene blue number 40, CCE = 0.3meq.g/l, IR and micrographics SEM. The activated carbon thus obtained is used at the water purification in wastewater treatment plant (WWTP) at Kouinine, El- Oued province, to totally eliminate phosphorus. We analyzed the water at the WWTP before the purification procedure. In this study, we have looked at the effect of the following parameters on the adsorption of carbon: the pH, the contact time (Tc) and the agitation speed (Va). The best conditions for phosphorus adsorption are: pH=4 or pH >5, Tc = 60 min and Va = 900 rotations per minute. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20stones" title=" date stones"> date stones</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrolysis" title=" pyrolysis"> pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20pollutants" title=" phosphate pollutants "> phosphate pollutants </a> </p> <a href="https://publications.waset.org/abstracts/40846/elimination-of-phosphorus-by-activated-carbon-prepared-from-algerian-dates-stones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4253</span> The Utilization of Tea Residues for Activated Carbon Preparation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiazhen%20Zhou">Jiazhen Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Youcai%20Zhao"> Youcai Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste tea is commonly generated in certain areas of China and its utilization has drawn a lot of concern nowadays. In this paper, highly microporous and mesoporous activated carbons were produced from waste tea by physical activation in the presence of water vapor in a tubular furnace. The effect of activation temperature on yield and pore properties of produced activated carbon are studied. The yield decreased with the increase of activation temperature. According to the Nitrogen adsorption isotherms, the micropore and mesopore are both developed in the activated carbon. The specific surface area and the mesopore volume fractions of the activated carbon increased with the raise of activation temperature. The maximum specific surface area attained 756 m²/g produced at activation temperature 900°C. The results showed that the activation temperature had a significant effect on the micro and mesopore volumes as well as the specific surface area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20adsorption%20isotherm" title=" nitrogen adsorption isotherm"> nitrogen adsorption isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activation" title=" physical activation"> physical activation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20tea" title=" waste tea"> waste tea</a> </p> <a href="https://publications.waset.org/abstracts/71072/the-utilization-of-tea-residues-for-activated-carbon-preparation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4252</span> Carbon Nanomaterials from Agricultural Wastes for Adsorption of Organic Pollutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Magdalena%20Blachnio">Magdalena Blachnio</a>, <a href="https://publications.waset.org/abstracts/search?q=Viktor%20Bogatyrov"> Viktor Bogatyrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariia%20Galaburda"> Mariia Galaburda</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Derylo-Marczewska"> Anna Derylo-Marczewska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural waste materials from traditional oil mill and after extraction of natural raw materials in supercritical conditions were used for the preparation of carbon nanomaterials (activated carbons) by two various methods. Chemical activation using acetic acid and physical activation with a gaseous agent (carbon dioxide) were chosen as mild and environmentally friendly ones. The effect of influential factors: type of raw material, temperature and activation agent on the porous structure characteristics of the materials was discussed by using N₂ adsorption/desorption isotherms at 77 K. Furthermore scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to examine the physicochemical properties of the obtained sorbents. Selection of a raw material and an optimization of the conditions of the synthesis process, allowed to obtain the cheap sorbents with a targeted distribution of pores enabling effective adsorption of the model organic pollutants carried out in the multicomponent systems. Adsorption behavior (capacity and rate) of the chosen activated carbons was estimated by utilizing Crystal violet (CV), 4-chlorophenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid (2.4-D) as the adsorbates. Both rate and adsorption capacity of the organics on the sorbents evidenced that the activated carbons could be effectively used in sewage treatment plants. The mechanisms of organics adsorption were studied and correlated with activated carbons properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title=" adsorption equilibrium"> adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20kinetics" title=" adsorption kinetics"> adsorption kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=organics%20adsorption" title=" organics adsorption"> organics adsorption</a> </p> <a href="https://publications.waset.org/abstracts/90720/carbon-nanomaterials-from-agricultural-wastes-for-adsorption-of-organic-pollutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4251</span> Fabrication of Activated Carbon from Palm Trunksfor Removal of Harmful Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Alzahrani">Eman Alzahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Date palm trees are abundant and cheap natural resources in Saudi Arabia. In this study, an activated carbon was prepared from palm trunks by chemical processes. The chemical activation was performed by impregnation of the raw materials after grinding with H3PO4 solution (63%), followed by placing of the sample solution on a muffle furnace at 400ºC for 30 min, and then at 800ºC for 10 min. The morphology of the fabricated material was checked using scanning electron microscopy that showed the rough surfaces on the carbon samples. The use of fabricated activated carbon for removal of eosin dye from aqueous solutions at different contact time, initial dye concentration, pH and adsorbent doses was investigated. The experimental results show that the adsorption process attains equilibrium within 20 min. The adsorption isotherm equilibrium was studied by means of the Langmuir and Freundlich isotherms, and it was found that the data fit the Langmuir isotherm equation with maximum monolayer adsorption capacity of 126.58 mg g-1. The results indicated that the home made activated carbon prepared from palm trunks has the ability to remove eosin dye from aqueous solution and it will be a promising adsorbent for the removal of harmful dyes from waste water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20palm%20trunks" title=" date palm trunks"> date palm trunks</a>, <a href="https://publications.waset.org/abstracts/search?q=H3PO4%20activation" title=" H3PO4 activation"> H3PO4 activation</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20removal" title=" dye removal"> dye removal</a>, <a href="https://publications.waset.org/abstracts/search?q=eosin%20dye" title=" eosin dye"> eosin dye</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherm" title=" isotherm"> isotherm</a> </p> <a href="https://publications.waset.org/abstracts/14227/fabrication-of-activated-carbon-from-palm-trunksfor-removal-of-harmful-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4250</span> Adsorption and Desorption of Emerging Water Contaminants on Activated Carbon Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Delpeux-Ouldriane">S. Delpeux-Ouldriane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gineys"> M. Gineys</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Masson"> S. Masson</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Cohaut"> N. Cohaut</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Reinert"> L. Reinert</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Duclaux"> L. Duclaux</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20B%C3%A9guin"> F. Béguin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, a wide variety of organic contaminants are present at trace concentrations in wastewater effluents. In order to face these pollution problems, the implementation of the REACH European regulation has defined lists of targeted pollutants to be eliminated selectively in water. It therefore implies the development of innovative and more efficient remediation techniques. In this sense, adsorption processes can be successfully used to achieve the removal of organic compounds in waste water treatment processes, especially at low pollutant concentration. Especially, activated carbons possessing a highly developed porosity demonstrate high adsorption capacities. More specifically, carbon cloths show high adsorption rates, an easily handling, a good mechanical integrity and regeneration potentialities. When loaded with pollutants, these materials can be indeed regenerated using an electrochemical polarization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoporous%20carbons" title="nanoporous carbons">nanoporous carbons</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20cloths" title=" activated carbon cloths"> activated carbon cloths</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=micropollutants" title=" micropollutants"> micropollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20contaminants" title=" emerging contaminants"> emerging contaminants</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration" title=" regeneration"> regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemistry" title=" electrochemistry"> electrochemistry</a> </p> <a href="https://publications.waset.org/abstracts/14465/adsorption-and-desorption-of-emerging-water-contaminants-on-activated-carbon-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4249</span> A Moroccan Natural Solution for Treating Industrial Effluents: Evaluating the Effectiveness of Using Date Kernel Residues for Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Salim">Ahmed Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El%20Bouari"> A. El Bouari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tahiri"> M. Tahiri</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Tanane"> O. Tanane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to develop and comprehensively characterize a cost-effective activated carbon derived from date residues, with a focus on optimizing its physicochemical properties to achieve superior performance in a variety of applications. The samples were synthesized via a chemical activation process utilizing phosphoric acid (H₃PO₄) as the activating agent. Activated carbon, produced through this method, functions as a vital adsorbent for the removal of contaminants, with a specific focus on methylene blue, from industrial wastewater. This study meticulously examined the influence of various parameters, including carbonization temperature and duration, on both the combustion properties and adsorption efficiency of the resultant material. Through extensive analysis, the optimal conditions for synthesizing the activated carbon were identified as a carbonization temperature of 600°C and a duration of 2 hours. The activated carbon synthesized under optimized conditions demonstrated an exceptional carbonization yield and methylene blue adsorption efficiency of 99.71%. The produced carbon was subsequently characterized using X-ray diffraction (XRD) analysis. Its effectiveness in the adsorption of methylene blue from contaminated water was then evaluated. A comprehensive assessment of the adsorption capacity was conducted by varying parameters such as carbon dosage, contact time, initial methylene blue concentration, and pH levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title="environmental pollution">environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphoric%20acid" title=" phosphoric acid"> phosphoric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=date%20Kernels" title=" date Kernels"> date Kernels</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutants" title=" pollutants"> pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/187056/a-moroccan-natural-solution-for-treating-industrial-effluents-evaluating-the-effectiveness-of-using-date-kernel-residues-for-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4248</span> Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lucky%20Malise">Lucky Malise</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto"> Hilary Rutto</a>, <a href="https://publications.waset.org/abstracts/search?q=Tumisang%20Seodigeng"> Tumisang Seodigeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherms" title=" isotherms"> isotherms</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=marula%20nut%20shells%20activated%20carbon" title=" marula nut shells activated carbon"> marula nut shells activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/67327/adsorption-of-lead-ii-and-copper-ii-ions-onto-marula-nuts-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=142">142</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=143">143</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=activated%20carbon%20adsorption&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10