CINXE.COM

Search results for: salts

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: salts</title> <meta name="description" content="Search results for: salts"> <meta name="keywords" content="salts"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="salts" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="salts"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 250</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: salts</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> The Effects of Salts Concentration into Microbiological, Physio-Chemical and Sensory Properties of Tempoyak (Indonesian Fermented Durian Flesh)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Addion%20Nizori">Addion Nizori</a>, <a href="https://publications.waset.org/abstracts/search?q=Mursalin"> Mursalin</a>, <a href="https://publications.waset.org/abstracts/search?q=Dharia%20Renathe"> Dharia Renathe</a>, <a href="https://publications.waset.org/abstracts/search?q=Lavlinesia"> Lavlinesia</a>, <a href="https://publications.waset.org/abstracts/search?q=Fitry%20Tafzi"> Fitry Tafzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tempoyak was made from fermented durian flesh, which very popular among Jambi people Indonesia. This study aims to isolate and identification of bacteria developed during fermentations, determine physical-chemical properties of Tempoyak as the effect of adding salts at various concentration and the sensory evaluations of Tempoyak produced is also evaluated. The predominant microorganisms present in Tempoyak were Lactobacillus bacteria. The results also showed that the level of salts concentration has a significant effect on pH, lactic acid content, however, not has a significant impact on sensory evaluations. The best results were 3% of adding salts with the product properties of pH 3.64, lactic acid content 3.11% and overall acceptance score is 3.41. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tempoyak" title="Tempoyak">Tempoyak</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented%20foods" title=" fermented foods"> fermented foods</a>, <a href="https://publications.waset.org/abstracts/search?q=salts" title=" salts"> salts</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory"> sensory</a> </p> <a href="https://publications.waset.org/abstracts/83381/the-effects-of-salts-concentration-into-microbiological-physio-chemical-and-sensory-properties-of-tempoyak-indonesian-fermented-durian-flesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> Experimental Device to Test Corrosion Behavior of Materials in the Molten Salt Reactor Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Petru">Jana Petru</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Kudrnova"> Marie Kudrnova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of technologies working with molten salts is conditioned by finding suitable construction materials that must meet several demanding criteria. In addition to temperature resistance, materials must also show corrosion resistance to salts; they must meet mechanical requirements and other requirements according to the area of use – for example, radiation resistance in Molten Salt Reactors. The present text describes an experimental device for studying the corrosion resistance of candidate materials in molten mixtures of salts and is a partial task of the international project ADAR, dealing with the evaluation of advanced nuclear reactors based on molten salts. The design of the device is based on a test exposure of Inconel 625 in the mixture of salts Hitec in a high temperature tube furnace. The result of the pre-exposure is, in addition to the metallographic evaluation of the behavior of material 625 in the mixture of nitrate salts, mainly a list of operational and construction problems that were essential for the construction of the new experimental equipment. The main output is a scheme of a newly designed gas-tight experimental apparatus capable of operating in an inert argon atmosphere, temperature up to 600 °C, pressure 3 bar, in the presence of a corrosive salt environment, with an exposure time of hundreds of hours. This device will enable the study of promising construction materials for nuclear energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20device" title=" experimental device"> experimental device</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title=" molten salt"> molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=steel" title=" steel"> steel</a> </p> <a href="https://publications.waset.org/abstracts/131352/experimental-device-to-test-corrosion-behavior-of-materials-in-the-molten-salt-reactor-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Quaternary Ammonium Salts Based Algerian Petroleum Products: Synthesis and Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houria%20Hamitouche">Houria Hamitouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellah%20Khelifa"> Abdellah Khelifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quaternary ammonium salts (QACs) are the most common cationic surfactants of natural or synthetic origin usually. They possess one or more hydrophobic hydrocarbon chains and hydrophilic cationic group. In fact, the hydrophobic groups are derived from three main sources: petrochemicals, vegetable oils, and animal fats. These QACs have attracted the attention of chemists for a long time, due to their general simple synthesis and their broad application in several fields. They are important as ingredients of cosmetic products and are also used as corrosion inhibitors, in emulsion polymerization and textile processing. Within biological applications, QACs show a good antimicrobial activity and can be used as medicines, gene delivery agents or in DNA extraction methods. The 2004 worldwide annual consumption of QACs was reported as 500,000 tons. The petroleum product is considered a true reservoir of a variety of chemical species, which can be used in the synthesis of quaternary ammonium salts. The purpose of the present contribution is to synthesize the quaternary ammonium salts by Menschutkin reaction, via chloromethylation/quaternization sequences, from Algerian petroleum products namely: reformate, light naphtha and kerosene and characterize. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quaternary%20ammonium%20salts" title="quaternary ammonium salts">quaternary ammonium salts</a>, <a href="https://publications.waset.org/abstracts/search?q=reformate" title=" reformate"> reformate</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20naphtha" title=" light naphtha"> light naphtha</a>, <a href="https://publications.waset.org/abstracts/search?q=kerosene" title=" kerosene "> kerosene </a> </p> <a href="https://publications.waset.org/abstracts/32772/quaternary-ammonium-salts-based-algerian-petroleum-products-synthesis-and-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> Effect of Flux Salts on the Recovery Extent and Quality of Metal Values from Spent Rechargeable Lead Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20A%20Rabah">Mahmoud A Rabah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabah%20M.%20Abelbasir"> Sabah M. Abelbasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead-calcium alloy containing up to 0.10% calcium was recovered from spent rechargeable sealed acid lead batteries. Two techniques were investigated to explore the effect of flux salts on the extent and quality of the recovered alloy, pyro-metallurgical and electrochemical methods. About 10 kg of the spent batteries were collected for testing. The sample was washed with hot water and dried. The plastic cases of the batteries were mechanically cut, and the contents were dismantled manually, the plastic containers were shredded for recycling. The electrode plates were freed from the loose powder and placed in SiC crucible and covered with alkali chloride salts. The loaded crucible was heated in an electronically controlled chamber furnace type Nabertherm C3 at temperatures up to 800 °C. The obtained metals were analyzed. The effect of temperature, rate of heating, atmospheric conditions, composition of the flux salts on the extent and quality of the recovered products were studied. Results revealed that the spent rechargeable batteries contain 6 blocks of 6 plates of Pb-Ca alloy each. Direct heating of these plates in a silicon carbide crucible under ambient conditions produces lead metal poor in calcium content ( < 0.07%) due to partial oxidation of the alloying calcium element. Rate of temperature increase has a considerable effect on the yield of the lead alloy extraction. Flux salts composition benefits the recovery process. Sodium salts are more powerful as compared to potassium salts. Lead calcium alloy meeting the standard specification was successfully recovered from the spent rechargeable acid lead batteries with a very competitive cost to the same alloy prepared from primary resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rechargeable%20lead%20batteries" title="rechargeable lead batteries">rechargeable lead batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=lead-calcium%20alloy" title=" lead-calcium alloy"> lead-calcium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20recovery" title=" waste recovery"> waste recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=flux%20salts" title=" flux salts"> flux salts</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20recovery" title=" thermal recovery"> thermal recovery</a> </p> <a href="https://publications.waset.org/abstracts/78511/effect-of-flux-salts-on-the-recovery-extent-and-quality-of-metal-values-from-spent-rechargeable-lead-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Corrosion Behavior of Steels in Molten Salt Reactors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Rejkov%C3%A1">Jana Rejková</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Kudrnov%C3%A1"> Marie Kudrnová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the research of materials for one of the types of reactors IV. generation - reactor with molten salts. One of the advantages of molten salts applied as a coolant in reactors is the ability to operate at relatively low pressures, as opposed to cooling with water or gases. Compared to liquid metal cooling, which also allows lower operating pressures, salt melts are less prone to chemical reactions. The service life of the construction materials used is limited by the operating temperatures of the reactor and the content of impurities in the salts. For the research of corrosion resistance, an experimental device was designed and assembled, enabling exposure at high temperatures without access to oxygen in a flowing atmosphere of inert gas. Nickel alloys Inconel 601, 617, and 625 were tested in a mixture of chloride salts LiCl – KCl (58,2 - 41,8 wt. %). The experiment showed high resistance of the materials used and based on the results and XPS analysis, other construction materials were proposed for the experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title="molten salt">molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20reactor" title=" nuclear reactor"> nuclear reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel%20alloy" title=" nickel alloy"> nickel alloy</a> </p> <a href="https://publications.waset.org/abstracts/143859/corrosion-behavior-of-steels-in-molten-salt-reactors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> Natural Dyeing on Wool Fabrics Using Some Red Rose Petals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emrah%20%C3%87imen">Emrah Çimen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Demirelli"> Mustafa Demirelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Yilmaz%20%C5%9Eahinba%C5%9Fkan"> Burcu Yilmaz Şahinbaşkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmure%20%C3%9Cst%C3%BCn%20%C3%96zg%C3%BCr"> Mahmure Üstün Özgür</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural colours are used on a large area such as textile, food and pharmaceutical industries by many researchers. When tannic acid is used together with metal salts for dyeing with natural dyes, antibacterial and fastness properties of textile materials are increased. In addition, the allegens are removed on wool fabrics. In this experimental work, some red rose petals were applied as a natural dye with three different dyeing methods and eight different mordant salts. The effect of tannic acid and different metal salts on dyeing of wool fabric was studied. Colour differences ΔECMC (2:1) and fastness properties of dyed fabrics were investigated and compared with each other. Finally, dark colours and adequate colour fastness results (4+) were obtained after dyeing of wool fabrics with FeSO4.7H2O, FeCl3.6H2O and CuCl2.2H2O in the presence of the tannic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20dye" title="natural dye">natural dye</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20rose%20petals" title=" red rose petals"> red rose petals</a>, <a href="https://publications.waset.org/abstracts/search?q=tannic%20acid" title=" tannic acid"> tannic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=mordant%20salts" title=" mordant salts"> mordant salts</a>, <a href="https://publications.waset.org/abstracts/search?q=wool%20fabric" title=" wool fabric"> wool fabric</a> </p> <a href="https://publications.waset.org/abstracts/25586/natural-dyeing-on-wool-fabrics-using-some-red-rose-petals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">631</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> Bile Salt Induced Microstructural Changes of Gemini Surfactant Micelles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vijaykumar%20Patel">Vijaykumar Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Bahadur"> P. Bahadur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural evolution of a cationic gemini surfactant 12-4-12 micelles in the presence of bile salts has been investigated using different techniques. A negative value of interaction parameter evaluated from surface tension measurements is a signature of strong synergistic interaction between oppositely charged surfactants. Both the bile salts compete with each other in inducing the micellar transition of 12-4-12 micelles depending on their hydrophobicity. Viscosity measurements disclose that loading of bile salts induces morphological changes in 12-4-12 micelles; sodium deoxycholate is more efficient in altering the aggregation behaviour of 12-4-12 micelles compared to sodium cholate and presents pronounced increase in viscosity and micellar growth which is suppressed at elevated temperatures. A remarkable growth of 12-4-12 micelles in the presence of sodium deoxycholate at low pH has been ascribed to the solubilization of bile acids formed in acidic medium. Small angle neutron scattering experiments provided size and shape of 12-4-12/bile salt mixed micelles are explicated on the basis of hydrophobicity of bile salts. The location of bile salts in micelle was determined from nuclear overhauser effect spectroscopy. The present study characterizes 12-4-12 gemini-bile salt mixed systems which significantly enriches our knowledge, and such a structural transition provides an opportunity to use these bioamphiphiles as delivery vehicles and in some pharmaceutical formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gemini%20surfactants" title="gemini surfactants">gemini surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=bile%20salts" title=" bile salts"> bile salts</a>, <a href="https://publications.waset.org/abstracts/search?q=SANS%20%28small%20angle%20neutron%20scattering%29" title=" SANS (small angle neutron scattering)"> SANS (small angle neutron scattering)</a>, <a href="https://publications.waset.org/abstracts/search?q=NOESY%20%28nuclear%20overhauser%20effect%20spectroscopy%29" title=" NOESY (nuclear overhauser effect spectroscopy)"> NOESY (nuclear overhauser effect spectroscopy)</a> </p> <a href="https://publications.waset.org/abstracts/75883/bile-salt-induced-microstructural-changes-of-gemini-surfactant-micelles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Nucleophile Mediated Addition-Fragmentation Generation of Aryl Radicals from Aryl Diazonium Salts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elene%20Tatunashvili">Elene Tatunashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=Bun%20Chan"> Bun Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20E.%20Nashar"> Philippe E. Nashar</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20S.%20P.%20McErlean"> Christopher S. P. McErlean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reduction of aryl diazonium salts is one of the most efficient ways to generate aryl radicals for use in a wide range of transformations, including Sandmeyer-type reactions, Meerwein arylations of olefins and Gomberg-Bachmann-Hey arylations of heteroaromatic systems. The aryl diazonium species can be reduced electrochemically, by UV irradiation, inner-sphere and outer-sphere single electron transfer processes (SET) from metal salts, SET from photo-excited organic catalysts or fragmentation of adducts with weak bases (acetate, hydroxide, etc.). This paper details an approach for the metal-free reduction of aryl diazonium salts, which facilitates the efficient synthesis of various aromatic compounds under exceedingly mild reaction conditions. By measuring the oxidation potential of a number of organic molecules, a series of nucleophiles were identified that reduce aryl diazonium salts via the addition-fragmentation mechanism. This approach leads to unprecedented operational simplicity: The reactions are very rapid and proceed in the open air; there is no need for external irradiation or heating, and the process is compatible with a large number of radical reactions. We illustrate these advantages by using the addition-fragmentation strategy to regioselectively arylate a series of heterocyclic compounds, to synthesize ketones by arylation of silyl enol ethers, and to synthesize benzothiophene and phenanthrene derivatives by radical annulation reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diazonium%20salts" title="diazonium salts">diazonium salts</a>, <a href="https://publications.waset.org/abstracts/search?q=hantzsch%20esters" title=" hantzsch esters"> hantzsch esters</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen" title=" oxygen"> oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=radical%20reactions" title=" radical reactions"> radical reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20methods" title=" synthetic methods"> synthetic methods</a> </p> <a href="https://publications.waset.org/abstracts/112892/nucleophile-mediated-addition-fragmentation-generation-of-aryl-radicals-from-aryl-diazonium-salts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Experimental Investigation on Correlation Between Permeability Variation and Sabkha Soil Salts Dissolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fahad%20A.%20Alotaibi">Fahad A. Alotaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An increase in salt dissolution rate with continuous water flow is expected to lead to the progressive collapse of the soil structure. Evaluation of the relationship between soil salt dissolution and the variation of sabkha soil permeability in terms of type, rate, and quantity in order to assure construction safety in these environments. The current study investigates the relationship of soil permeability with the rate of dissolution of calcium (Ca2+), sulfate (SO4-2), chloride (CL−1), magnesium (Mg2+), sodium (Na+), and potassium (K+1) ions. Results revealed an increase in sabkha soil permeability with the rate of ions dissolution. This makes the efficiency of using a waterproofing stabilization agent in the reduction of sabkha salts dissolution the main criterion is selecting suitable stabilizing method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sabkha" title="sabkha">sabkha</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=salts" title=" salts"> salts</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution" title=" dissolution"> dissolution</a> </p> <a href="https://publications.waset.org/abstracts/157869/experimental-investigation-on-correlation-between-permeability-variation-and-sabkha-soil-salts-dissolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> An Eco-Friendly Preparations of Izonicotinamide Quaternary Salts in Deep Eutectic Solvents </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dajana%20Ga%C5%A1o-Soka%C4%8D">Dajana Gašo-Sokač</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Bu%C5%A1i%C4%87"> Valentina Bušić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep eutectic solvents (DES) are liquids composed of two or three safe, inexpensive components, often interconnected by noncovalent hydrogen bonds which produce eutectic mixture whose melting point is lower than that of each component. No data in literature have been found on the quaternization reaction in DES. The use of DES have several advantages: they are environmentally benign and biodegradable, easy for purification and simple for preparation. An environmentally sustainable method for preparing quaternary salts of izonicotinamide and substituted 2-bromoacetophenones was demonstrated here using choline chloride-based DES. The quaternization reaction was carried out by three synthetic approaches: conventional method, microwave and ultrasonic irradiation. We showed that the highest yields were obtained by the microwave method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20eutectic%20solvents" title="deep eutectic solvents">deep eutectic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=izonicotinamide%20salts" title=" izonicotinamide salts"> izonicotinamide salts</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20synthesis" title=" microwave synthesis"> microwave synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20irradiation" title=" ultrasonic irradiation"> ultrasonic irradiation</a> </p> <a href="https://publications.waset.org/abstracts/118856/an-eco-friendly-preparations-of-izonicotinamide-quaternary-salts-in-deep-eutectic-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> Effects of Commonly-Used Inorganic Salts on the Morphology and Electrochemical Performance of Carboxylated Cellulose Nanocrystals Doped Polypyrrole Supercapacitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zuxinsun">Zuxinsun</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Eyley"> Samuel Eyley</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongjian%20Guo"> Yongjian Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Reeta%20Salminen"> Reeta Salminen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wim%20Thielemans"> Wim Thielemans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polypyrrole(PPy), as one of the most promising pseudocapacitor electrode materials, has attracted large research interest due to its low cost, high electrical conductivity and easy fabrication, limited capacitance, and cycling stability of PPy films hinder their practical applications. In this study, through adding different amounts of KCl into the pyrrole and CNC-COO⁻ system, three-dimensional, porous, and reticular PPy films were electropolymerized at last without the assistance of any template or substrate. Replacing KCl with NaCl, KBr, and NaClO4, the porous PPy films were still obtained rather than relatively dense PPy films which were deposited with pyrrole and CNC-COO⁻ or pyrrole and KCl. The nucleation and growth mechanisms of PPy films were studied in the deposited electrolyte with or without salts to illustrate the evolution of morphology from relatively dense to porous structure. The capacitance of PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 films increased from 160.6 to 183.4 F g⁻¹ at 0.2 A g⁻¹. More importantly, at a high current density of 2.0 A g⁻¹ (20 mA cm⁻²), the PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 films exhibited an excellent capacitance of 125.0 F g⁻¹ (1.19 F cm⁻²), increasing about 203.7 % over PPy/CNC-COO- films. 103.3 % of its initial capacitance was retained after 5000 cycles at 2 A g⁻¹ (20 mA cm⁻²) for the PPy/CNC-COO⁻-Cl-(ClO4-)_0.5 supercapacitor. The analyses reveal that the porous and reticular PPy/CNC-COO⁻-salts films open up more active reaction areas to store charges. The stiff and ribbonlike CNC-COO⁻ as the permanent dopants improve strength and stability of PPy/CNC-COO⁻-salts films. Our demonstration provides a simple and practical way to deposit PPy-based supercapacitors with high capacitance and cycling ability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title="polypyrrole">polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanocrystals" title=" cellulose nanocrystals"> cellulose nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20and%20reticular%20structure" title=" porous and reticular structure"> porous and reticular structure</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20salts" title=" inorganic salts"> inorganic salts</a> </p> <a href="https://publications.waset.org/abstracts/144677/effects-of-commonly-used-inorganic-salts-on-the-morphology-and-electrochemical-performance-of-carboxylated-cellulose-nanocrystals-doped-polypyrrole-supercapacitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Corrosion Investigation of Superalloys, Molybdenum and TZM in Chloride Molten Salts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Craig%20Jantzen">Craig Jantzen</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Abram"> Tim Abram</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirk%20Engelberg"> Dirk Engelberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugues%20Lambert"> Hugues Lambert</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Cooper"> Daniel Cooper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molten salts are of high interest for use as coolants in nuclear reactors due to favourable high temperature and thermodynamic properties. The corrosive behaviour of molten salts however pose a materials integrity challenge. Three Ni / Ni-Fe based and two Mo based alloys have been exposed to molten eutectics (LiCl-KCl at 59.5:40.5 mol% and KCl-MgCl2 at 68:32 mol%) at 600°C and 800°C for durations up to 500hrs. Corrosion was observed to preferentially attack alloy constituents in order of their reactivity, with chromium the most vulnerable and depleted element. Alloy weight-loss per unit area was calculated to give linear corrosion rates, discounting any initial rapid corrosion of impurities. Further analysis was carried out using ICP-MS, SEM and EDX techniques to give a more detailed view of the corrosion mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title="molten salt">molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=salt" title=" salt"> salt</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature" title=" high temperature"> high temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=licl" title=" licl"> licl</a>, <a href="https://publications.waset.org/abstracts/search?q=KCL" title=" KCL"> KCL</a>, <a href="https://publications.waset.org/abstracts/search?q=MgCl" title=" MgCl"> MgCl</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdenum" title=" molybdenum"> molybdenum</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=superalloys" title=" superalloys"> superalloys</a> </p> <a href="https://publications.waset.org/abstracts/60521/corrosion-investigation-of-superalloys-molybdenum-and-tzm-in-chloride-molten-salts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Modeling by Application of the Nernst-Planck Equation and Film Theory for Predicting of Chromium Salts through Nanofiltration Membrane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aimad%20Oulebsir">Aimad Oulebsir</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Chaabane"> Toufik Chaabane</a>, <a href="https://publications.waset.org/abstracts/search?q=Sivasankar%20Venkatramann"> Sivasankar Venkatramann</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20Darchen"> Andre Darchen</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachida%20Maachi"> Rachida Maachi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to propose a model for the prediction of the mechanism transfer of the trivalent ions through a nanofiltration membrane (NF) by introduction of the polarization concentration phenomenon and to study its influence on the retention of salts. This model is the combination of the Nernst-Planck equation and the equations of the film theory. This model is characterized by two transfer parameters: Reflection coefficient s and solute permeability Ps which are estimated numerically. The thickness of the boundary layer, δ, solute concentration at the membrane surface, Cm, and concentration profile in the polarization layer have also been estimated. The mathematical formulation suggested was established. The retentions of trivalent salts are estimated and compared with the experimental results. A comparison between the results with and without phenomena of polarization of concentration is made and the thickness of boundary layer alimentation side was given. Experimental and calculated results are shown to be in good agreement. The model is then success fully extended to experimental data reported in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofiltration" title="nanofiltration">nanofiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration%20polarisation" title=" concentration polarisation"> concentration polarisation</a>, <a href="https://publications.waset.org/abstracts/search?q=chromium%20salts" title=" chromium salts"> chromium salts</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer" title=" mass transfer"> mass transfer</a> </p> <a href="https://publications.waset.org/abstracts/32513/modeling-by-application-of-the-nernst-planck-equation-and-film-theory-for-predicting-of-chromium-salts-through-nanofiltration-membrane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Valorization of Waste Reverse Osmosis Desalination Brine and Crystallization Sequence Approach for Kainite Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayoub%20Bouazza">Ayoub Bouazza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Faddouli"> Ali Faddouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Said%20Amal"> Said Amal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachid%20Benhida"> Rachid Benhida</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaoula%20Khaless"> Khaoula Khaless</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brine waste generated from reverse osmosis (RO) desalination plants contains various valuable compounds, mainly salts, trace elements, and organic matter. These wastes are up to two times saltier than standard seawater. Therefore, there is a strong economic interest in recovering these salts. The current practice in desalination plants is to reject the brine back to the sea, which affects the marine ecosystem and the environment. Our study aims to bring forth a reliable management solution for the valorisation of waste brines. Natural evaporation, isothermal evaporation at 25°C and 50°C, and evaporation using continuous heating were used to crystallize valuable salts from a reverse osmosis desalination plant brine located on the Moroccan Atlantic coast. The crystallization sequence of the brine was studied in comparison with standard seawater. The X-Ray Diffraction (XRD) of the precipitated solid phases showed similar results, where halite was the main solid phase precipitated from both the brine and seawater. However, Jänecke diagram prediction, along with FREZCHEM simulations, showed that Kainite should crystallize before Epsomite and Carnallite. As the absence of kainite formation in many experiments in the literature has been related to the metastability of kainite and the critical relative humidity conditions, and the precipitation of K–Mg salts is very sensitive to climatic conditions. An evaporation process is proposed as a solution to achieve the predicted crystallization path and to affirm the recovery of Kainite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salts%20crystallization" title="salts crystallization">salts crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20evaporation" title=" solar evaporation"> solar evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=frezchem" title=" frezchem"> frezchem</a>, <a href="https://publications.waset.org/abstracts/search?q=ZLD" title=" ZLD"> ZLD</a> </p> <a href="https://publications.waset.org/abstracts/162012/valorization-of-waste-reverse-osmosis-desalination-brine-and-crystallization-sequence-approach-for-kainite-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Application of Fatty Acid Salts for Antimicrobial Agents in Koji-Muro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aya%20Tanaka">Aya Tanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiho%20Sakai"> Shiho Sakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Aspergillus niger and Aspergillus oryzae are used as koji fungi in the spot of the brewing. Since koji-muro (room for making koji) was a low level of airtightness, microbial contamination has long been a concern to the alcoholic beverage production. Therefore, we focused on the fatty acid salt which is the main component of soap. Fatty acid salts have been reported to show some antibacterial and antifungal activity. So this study examined antimicrobial activities against Aspergillus and Bacillus spp. This study aimed to find the effectiveness of the fatty acid salt in koji-muro as antimicrobial agents. Materials & Methods: A. niger NBRC 31628, A. oryzae NBRC 5238, A. oryzae (Akita Konno store) and Bacillus subtilis NBRC 3335 were chosen as tested. Nine fatty acid salts including potassium butyrate (C4K), caproate (C6K), caprylate (C8K), caprate (C10K), laurate (C12K), myristate (C14K), oleate (C18:1K), linoleate (C18:2K) and linolenate (C18:3K) at 350 mM and pH 10.5 were used as antimicrobial activity. FASs and spore suspension were prepared in plastic tubes. The spore suspension of each fungus (3.0×104 spores/mL) or the bacterial suspension (3.0×105 CFU/mL) was mixed with each of the fatty acid salts (final concentration of 175 mM). The mixtures were incubated at 25 ℃. Samples were counted at 0, 10, 60, and 180 min by plating (100 µL) on potato dextrose agar. Fungal and bacterial colonies were counted after incubation for 1 or 2 days at 30 ℃. The MIC (minimum inhibitory concentration) is defined as the lowest concentration of drug sufficient for inhibiting visible growth of spore after 10 min of incubation. MICs against fungi and bacteria were determined using the two-fold dilution method. Each fatty acid salt was separately inoculated with 400 µL of Aspergillus spp. or B. subtilis NBRC 3335 at 3.0 × 104 spores/mL or 3.0 × 105 CFU/mL. Results: No obvious change was observed in tested fatty acid salts against A. niger and A. oryzae. However, C12K was the antibacterial effect of 5 log-unit incubated time for 10 min against B. subtilis. Thus, C12K suppressed 99.999 % of bacterial growth. Besides, C10K was the antibacterial effect of 5 log-unit incubated time for 180 min against B. subtilis. C18:1K, C18:2K and C18:3K was the antibacterial effect of 5 log-unit incubated time for 10 min against B. subtilis. However, compared to saturated fatty acid salts to unsaturated fatty acid salts, saturated fatty acid salts are lower cost. These results suggest C12K has potential in the field of koji-muro. It is necessary to evaluate the antimicrobial activity against other fungi and bacteria, in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspergillus" title="Aspergillus">Aspergillus</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20salts" title=" fatty acid salts"> fatty acid salts</a>, <a href="https://publications.waset.org/abstracts/search?q=koji-muro" title=" koji-muro"> koji-muro</a> </p> <a href="https://publications.waset.org/abstracts/33537/application-of-fatty-acid-salts-for-antimicrobial-agents-in-koji-muro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Addition of Phosphates on Stability of Sterilized Goat Milk in Different Seasons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei-Jen%20Lin">Mei-Jen Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Yuan%20Yu"> Yuan-Yuan Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low heat stability of goat milk limited the application of ultra-high temperature (UHT) sterilization on producing sterilized goat milk in order to keep excess goat milk in summer for producing goat dairy products in winter in Taiwan. Therefore, this study aimed to add stabilizers in goat milk to increase the heat stability for producing UHT sterilized goat milk preserved for making goat dairy products in winter. The amounts of 0.05-0.11% blend of sodium phosphates (Na) and blend of sodium/potassium phosphates (Sp) were added in raw goat milk at different seasons a night before autoclaved sterilization at 135°C 4 sec. The coagulation, ion calcium concentration and ethanol stability of sterilized goat milk were analyzed. Results showed that there were seasonal differences on choosing the optimal stabilizers and the addition levels. Addition of 0.05% and 0.22% of both Na and Sp salts in Spring goat milk, 0.10-0.11% of both Na and Sp salts in Summer goat milk, and 0.05%Na Sp group in Autumn goat milk were coagulated after autoclaved, respectively. There was no coagulation found with the addition of 0.08-0.09% both Na and Sp salts in goat milk; furthermore, the ionic calcium concentration were lower than 2.00 mM and ethanol stability higher than 70% in both 0.08-0.09% Na and Sp salts added goat milk. Therefore, the optimal addition level of blend of sodium phosphates and blend of sodium/potassium phosphates were 0.08-0.09% for producing sterilized goat milk at different seasons in Taiwan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coagulation" title="coagulation">coagulation</a>, <a href="https://publications.waset.org/abstracts/search?q=goat%20milk" title=" goat milk"> goat milk</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphates" title=" phosphates"> phosphates</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/63070/addition-of-phosphates-on-stability-of-sterilized-goat-milk-in-different-seasons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> Effect of Nickel Coating on Corrosion of Alloys in Molten Salts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Raghunandanan">Divya Raghunandanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavesh%20D.%20Gajbhiye"> Bhavesh D. Gajbhiye</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Sona"> C. S. Sona</a>, <a href="https://publications.waset.org/abstracts/search?q=Channamallikarjun%20S.%20Mathpati"> Channamallikarjun S. Mathpati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molten fluoride salts are considered as potential coolants for next generation nuclear plants where the heat can be utilized for production of hydrogen and electricity. Among molten fluoride salts, FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) is a potential candidate for the coolant due to its superior thermophysical properties such as high temperature stability, boiling point, volumetric heat capacity and thermal conductivity. Major technical challenge in implementation is the selection of structural material which can withstand corrosive nature of FLiNaK. Corrosion study of alloys SS 316L, Hastelloy B, Ni-201 was performed in molten FLiNaK at 650°C. Nickel was found to be more resistant to corrosive attack in molten fluoride medium. Corrosion experiments were performed to study the effect of nickel coating on corrosion of alloys SS 316L and Hastelloy B. Weight loss of the alloys due to corrosion was measured and corrosion rate was estimated. The surface morphology of the alloys was analyzed by Scanning Electron Microscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=FLiNaK" title=" FLiNaK"> FLiNaK</a>, <a href="https://publications.waset.org/abstracts/search?q=hastelloy" title=" hastelloy"> hastelloy</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20loss" title=" weight loss"> weight loss</a> </p> <a href="https://publications.waset.org/abstracts/6733/effect-of-nickel-coating-on-corrosion-of-alloys-in-molten-salts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Malachite Ore Treatment with Typical Ammonium Salts and Its Mechanism to Promote the Flotation Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Ibrahim">Ayman M. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinpeng%20Cai"> Jinpeng Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Peilun%20Shen"> Peilun Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dianwen%20Liu"> Dianwen Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The difference in promoting sulfurization between different ammonium salts and its anion's effect on the sulfurization of the malachite surface was systematically studied. Therefore, this study takes malachite, a typical copper oxide mineral, as the research object, field emission scanning electron microscopy and energy-dispersive X-ray analysis (FESEM‒EDS), X-ray photoelectron spectroscopy (XPS), and other analytical and testing methods, as well as pure mineral flotation experiments, were carried out to examine the superiority of the ammonium salts as the sulfurizing reagent of malachite at the microscopic level. Additionally, the promoting effects of ammonium sulfate and ammonium phosphate on the malachite sulfurization of xanthate-flotation were compared systematically from the microstructure of sulfurized products, elemental composition, chemical state of characteristic elements, and hydrophobicity surface evolution. The FESEM and AFM results presented that after being pre-treated with ammonium salts, the adhesion of sulfurized products formed on the mineral surface was denser; thus, the flake radial dimension product was significantly greater. For malachite sulfurization flotation, the impact of ammonium phosphate in promoting sulfurization is weaker than ammonium sulfate. The reason may be that hydrolyzing phosphate consumes a substantial quantity of H+ in the solution, which hastens the formation of the copper-sulfur products, decreasing the adhesion stability of copper-sulfur species on the malachite surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfurization%20flotation" title="sulfurization flotation">sulfurization flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20characteristics" title=" adsorption characteristics"> adsorption characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite" title=" malachite"> malachite</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a> </p> <a href="https://publications.waset.org/abstracts/170990/malachite-ore-treatment-with-typical-ammonium-salts-and-its-mechanism-to-promote-the-flotation-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> The Influence of Sulfate and Magnesium Ions on the Growth Kinetics of CaCO3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kotbia%20Labiod">Kotbia Labiod</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mouldi%20Tlili"> Mohamed Mouldi Tlili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The presence of different mineral salts in natural waters may precipitate and form hard deposits in water distribution systems. In this respect, we have developed numerous works on scaling by Algerian water with a very high hardness of 102 °F. The aim of our work is to study the influence of water dynamics and its composition on mineral salts on the precipitation of calcium carbonate (CaCO3). To achieve this objective, we have adopted two precipitation techniques based on controlled degassing of dissolved CO2. This study will identify the causes and provide answers to this complex phenomenon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title="calcium carbonate">calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20degassing" title=" controlled degassing"> controlled degassing</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling" title=" scaling"> scaling</a> </p> <a href="https://publications.waset.org/abstracts/73053/the-influence-of-sulfate-and-magnesium-ions-on-the-growth-kinetics-of-caco3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> Technologies for Solar Energy Storage and Utilization Using Mixture of Molten Salts and Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anteneh%20Mesfin%20Yeneneh">Anteneh Mesfin Yeneneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Shakoor"> Abdul Shakoor</a>, <a href="https://publications.waset.org/abstracts/search?q=Jimoh%20Adewole"> Jimoh Adewole</a>, <a href="https://publications.waset.org/abstracts/search?q=Safinaz%20Al%20Balushi"> Safinaz Al Balushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Al%20Balushi"> Sara Al Balushi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research work focuses on exploring better technologies for solar energy storage. The research has the objective of substituting fossil fuels with renewable solar energy technology. This was the reason that motivated the research team to search for alternatives to develop an eco-friendly desalination process, which fully depends on the solar energy source. The Authors also investigated the potential of using different salt mixtures for better solar energy storage and better pure water productivity. Experiments were conducted to understand the impacts of solar energy collection and storage techniques on heat accumulation, heat storage capacity of various compositions of salt mixtures. Based on the experiments conducted, the economic and technical advantages of the integrated water desalination was assessed. Experiments also showed that the best salts with a higher storage efficiency of heat energy are NaCl, KNO3, and MgCl26H2O and polymers such as Poly Propylene and Poly Ethylene Terephthalate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molten%20salts" title="molten salts">molten salts</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy%20storage%20and%20utilization" title=" solar energy storage and utilization"> solar energy storage and utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a> </p> <a href="https://publications.waset.org/abstracts/128579/technologies-for-solar-energy-storage-and-utilization-using-mixture-of-molten-salts-and-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Anti-Acanthamoeba Activities of Fatty Acid Salts and Fatty Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manami%20Masuda">Manami Masuda</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Fatty acid salts are a type of anionic surfactant and are produced from fatty acids and alkali. Moreover, fatty acid salts are known to have potent antibacterial activities. Acanthamoeba is ubiquitously distributed in the environment including sea water, fresh water, soil and even from the air. Although generally free-living, Acanthamoeba can be an opportunistic pathogen, which could cause a potentially blinding corneal infection known as Acanthamoeba keratitis. So, in this study, we evaluated the anti-amoeba activity of fatty acid salts and fatty acids to Acanthamoeba castellanii ATCC 30010. Materials and Methods: The antibacterial activity of 9 fatty acid salts (potassium butyrate (C4K), caproate (C6K), caprylate (C8K), caprate (C10K), laurate (C12K), myristate (C14K), oleate (C18:1K), linoleate (C18:2K), linolenate (C18:3K)) tested on cells of Acanthamoeba castellanii ATCC 30010. Fatty acid salts (concentration of 175 mM and pH 10.5) were prepared by mixing the fatty acid with the appropriate amount of KOH. The amoeba suspension mixed with KOH with a pH adjusted solution was used as the control. Fatty acids (concentration of 175 mM) were prepared by mixing the fatty acid with Tween 80 (20 %). The amoeba suspension mixed with Tween 80 (20 %) was used as the control. The anti-amoeba method, the amoeba suspension (3.0 × 104 cells/ml trophozoites) was mixed with the sample of fatty acid potassium (final concentration of 175 mM). Samples were incubated at 30°C, for 10 min, 60 min, and 180 min and then the viability of A. castellanii was evaluated using plankton counting chamber and trypan blue stainings. The minimum inhibitory concentration (MIC) against Acanthamoeba was determined using the two-fold dilution method. The MIC was defined as the minimal anti-amoeba concentration that inhibited visible amoeba growth following incubation (180 min). Results: C8K, C10K, and C12K were the anti-amoeba effect of 4 log-unit (99.99 % growth suppression of A. castellanii) incubated time for 180 min against A. castellanii at 175mM. After the amoeba, the suspension was mixed with C10K or C12K, destroying the cell membrane had been observed. Whereas, the pH adjusted control solution did not exhibit any effect even after 180 min of incubation with A. castellanii. Moreover, C6, C8, and C18:3 were the anti-amoeba effect of 4 log-unit incubated time for 60 min. C4 and C18:2 exhibited a 4-log reduction after 180 min incubation. Furthermore, the minimum inhibitory concentration (MIC) was determined. The MIC of C10K, C12K and C4 were 2.7 mM. These results indicate that C10K, C12K and C4 have high anti-amoeba activity against A. castellanii and suggest C10K, C12K and C4 have great potential for antimi-amoeba agents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatty%20acid%20salts" title="Fatty acid salts">Fatty acid salts</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-amoeba%20activities" title=" anti-amoeba activities"> anti-amoeba activities</a>, <a href="https://publications.waset.org/abstracts/search?q=Acanthamoeba" title=" Acanthamoeba"> Acanthamoeba</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/33499/anti-acanthamoeba-activities-of-fatty-acid-salts-and-fatty-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Determination of Iodine and Heavy Metals in Two Brands of Iodised Salt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20O.%20Apotiola">Z. O. Apotiola</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20F.%20Fashakin"> J. F. Fashakin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study was conducted to investigate the storage stability of Mr Chef and Annapurna salts. The salts were bought from Mile 12 market in Lagos State and were stored for a period of six months. The stability of the iodine content was then investigated by storing some at ambient temperature (24-30oC) and some at atmospheric temperature (21-35 oC), and from each storage condition, a sample each was taken every month to analyze for the iodine and moisture contents. The result shows that there was a significant difference between Mr Chef and the standard and Annapurna and the standard. The iodine content of Mr Chef stored at ambient and atmospheric temperature decreases progressively from 48.70±0.00-37.00±0.00 and 47.60±0.00-11.60±0.00 respectively. And that of Annapurna at both ambient and atmospheric temperature also decreases progressively from 47.60±0.00-36.60±0.00 and 47.60±0.00-10.60±0.00 respectively. Also, the moisture content of both salts at the zero month to the sixth month both at room temperature and atmospheric temperature increases from 1.11±0.00-1.70±0.00 and 1.11±0.00-2.40±0.00 respectively. The results of the heavy metals shows that only Copper, Zinc and Cobalt were detected at the first and the sixth month in both Mr Chef and Annapurna which ranges from 0.15±0.00-0.38±0.00 and 0.18±0.00 - 3.50±0.00 respectively. Hence, the stability of iodine in salt is influenced by the storage conditions it is subjected to and the length of time it is been stored. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt" title="salt">salt</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine" title=" iodine"> iodine</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient" title=" ambient"> ambient</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20temperature" title=" atmospheric temperature"> atmospheric temperature</a> </p> <a href="https://publications.waset.org/abstracts/20724/determination-of-iodine-and-heavy-metals-in-two-brands-of-iodised-salt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20724.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Fortification of Concentrated Milk Protein Beverages with Soy Proteins: Impact of Divalent Cations and Heating Treatment on the Physical Stability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yichao%20Liang">Yichao Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Biye%20Chen"> Biye Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Li"> Xiang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20R.%20Dimler"> Steven R. Dimler</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the effects of adding calcium and magnesium chloride on heat and storage stability of milk protein concentrate-soy protein isolate (8:2 respectively) mixtures containing 10% w/w total protein subjected to the in-container sterilization (115 °C x 15 min). The particle size does not change when emulsions are heated at pH between 6.7 and 7.3 irrespective of the mixed protein ratio. Increasing concentration of divalent cation salts resulted in an increase in protein particle size, dry sediment formation and sediment height and a decrease in pH, heat stability and hydration in milk protein concentrate-soy protein isolate mixtures solutions on sterilization at 115°C. Fortification of divalent cation salts in milk protein concentrate-soy protein isolate mixture solutions resulted in an accelerated protein sedimentation and two unique sediment regions during accelerated storage stability testing. Moreover, the heat stability decreased upon sterilization at 115°C, with addition of MgCl₂ causing a greater increase in sedimentation velocity and compressibility than CaCl₂. Increasing pH value of protein milk concentrate-soy protein isolate mixtures solutions from 6.7 to 7.2 resulted in an increase in viscosity following the heat treatment. The study demonstrated that the type and concentration of divalent cation salts used strongly impact heat and storage stability of milk protein concentrate-soy protein isolate mixture nutritional beverages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=divalent%20cation%20salts" title="divalent cation salts">divalent cation salts</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20stability" title=" heat stability"> heat stability</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20protein%20concentrate" title=" milk protein concentrate"> milk protein concentrate</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20protein%20isolate" title=" soy protein isolate"> soy protein isolate</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20stability" title=" storage stability"> storage stability</a> </p> <a href="https://publications.waset.org/abstracts/94469/fortification-of-concentrated-milk-protein-beverages-with-soy-proteins-impact-of-divalent-cations-and-heating-treatment-on-the-physical-stability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Carbonylative Cross Coupling of 2-Bromopyridine with Different Boronic Acids under Carbon Monoxide Atmosphere </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Touj">N. Touj</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sauthier"> M. Sauthier</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Mansour"> L. Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Hamdi"> N. Hamdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The palladium NHC complexes are one of the most interesting and widely investigated complexes in different catalytic transformations, especially C–C bond. Thus, the use of N-heterocyclic carbenes associated with palladium has been reported as efficient catalysts for the carbonyl coupling under mild and varied conditions. Herein, we report the synthesis, characterization, and cytotoxic activities of two new families of benzimidazolium salts. Then we studied the use of this class of benzimidazolium salts as a ligand in the carbonylative cross-coupling of 2-bromopyridine with different boronic acids under CO atmosphere to form unsymmetrical arylpyridine ketones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NHC-Pd%28II%29%20catalysts" title="NHC-Pd(II) catalysts">NHC-Pd(II) catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonylative%20Suzuki%20cross-coupling%20reaction" title=" carbonylative Suzuki cross-coupling reaction"> carbonylative Suzuki cross-coupling reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=arylboronic%20acids" title=" arylboronic acids"> arylboronic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=2-bromopyridine" title=" 2-bromopyridine"> 2-bromopyridine</a>, <a href="https://publications.waset.org/abstracts/search?q=unsymmetrical%20arylpyridine%20ketones" title=" unsymmetrical arylpyridine ketones"> unsymmetrical arylpyridine ketones</a> </p> <a href="https://publications.waset.org/abstracts/131435/carbonylative-cross-coupling-of-2-bromopyridine-with-different-boronic-acids-under-carbon-monoxide-atmosphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Production of Gluten-Free Bread Using Emulsifying Salts and Rennet Casein</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Morina">A. Morina</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20%C3%96.%20Muti"> S. Ö. Muti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20%C3%96zt%C3%BCrk"> M. Öztürk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Celiac disease is a chronic intestinal disease observed in individuals with gluten intolerance. In this study, our aim was to create a protein matrix to mimic the functional properties of gluten. For this purpose, rennet casein and four emulsifying salts (disodium phosphate (DSP), tetrasodium pyrophosphate (TSPP), sodium acid pyrophosphate (SAPP), and sodium hexametaphosphate (SHMP)) were investigated in gluten-free bread manufacture. Compositional, textural, and visual properties of the gluten-free bread dough and gluten-free breads were investigated by a two–level factorial experimental design with two-star points (α = 1.414) and two replicates of the center point. Manufacturing gluten-free bread with rennet casein and SHMP significantly increased the bread volume (P < 0.0001, R² = 97.8). In general, utilization of rennet casein with DSP and SAPP increased bread hardness while no difference was observed in samples manufactured with TSPP and SHMP. Except for TSPP, bread color was improved by the utilization of rennet casein and DSP, SAPP, and SHMP combinations. In conclusion, it is possible to manufacture gluten-free bread with acceptable texture and color by rennet casein and SHMP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=celiac%20disease" title="celiac disease">celiac disease</a>, <a href="https://publications.waset.org/abstracts/search?q=gluten-free%20bread" title=" gluten-free bread"> gluten-free bread</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsified%20salts" title=" emulsified salts"> emulsified salts</a>, <a href="https://publications.waset.org/abstracts/search?q=rennet%20casein" title=" rennet casein"> rennet casein</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20flour" title=" rice flour"> rice flour</a> </p> <a href="https://publications.waset.org/abstracts/147585/production-of-gluten-free-bread-using-emulsifying-salts-and-rennet-casein" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Inhibitory Action of Fatty Acid Salts against Cladosporium cladosporioides and Dermatophagoides farinae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yui%20Okuno">Yui Okuno</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Fungus and mite are known as allergens that cause an allergic disease for example asthma bronchiale and allergic rhinitis. Cladosporium cladosporioides is one of the most often detected fungi in the indoor environment and causes pollution and deterioration. Dermatophagoides farinae is major mite allergens indoors. Therefore, the creation of antifungal agents with high safety and the antifungal effect is required. Fatty acid salts are known that have antibacterial activities. This report describes the effects of fatty acid salts against Cladosporium cladosporioides NBRC 30314 and Dermatophagoides farinae. Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. The antifungal method, the spore suspension (3.0×104 spores/mL) was mixed with a sample of fatty acid potassium (final concentration of 175 mM). Samples were counted at 0, 10, 60, 180 min by plating (100 µL) on PDA. Fungal colonies were counted after incubation for 3 days at 30 °C. The MIC (minimum inhibitory concentration) against the fungi was determined by the two-fold dilution method. Each fatty acid salts were inoculated separately with 400 µL of C. cladosporioides at 3.0 × 104 spores/mL. The mixtures were incubated at the respective temperature for each organism for 10 min. The tubes were then contacted with the fungi incubated at 30 °C for 7 days and examined for growth of spores on PDA. The acaricidal method, twenty D. farinae adult females were used and each adult was covered completely with 2 µL fatty acid potassium for 1 min. The adults were then dried with filter paper. The filter paper was folded and fixed by two clips and kept at 25 °C and 64 % RH. Mortalities were determained 48 h after treatment under the microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that C8K, C10K, C12K, C14K was effective to decrease survival rate (4 log unit) of the fatty acids potassium incubated time for 10 min against C. cladosporioides. C18:3K was effective to decrease 4 log unit of the fatty acids potassium incubated time for 60 min. Especially, C12K was the highest antifungal activity and the MIC of C12K was 0.7 mM. On the other hand, the fatty acids potassium showed no acaricidal effects against D. farinae. The activity of D. farinae was not adversely affected after 48 hours. These results indicate that C12K has high antifungal activity against C. cladosporioides and suggest the fatty acid potassium will be used as an antifungal agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20salts" title="fatty acid salts">fatty acid salts</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20effects" title=" antifungal effects"> antifungal effects</a>, <a href="https://publications.waset.org/abstracts/search?q=acaricidal%20effects" title=" acaricidal effects"> acaricidal effects</a>, <a href="https://publications.waset.org/abstracts/search?q=Cladosporium%20cladosporioides" title=" Cladosporium cladosporioides"> Cladosporium cladosporioides</a>, <a href="https://publications.waset.org/abstracts/search?q=Dermatophagoides%20farinae" title=" Dermatophagoides farinae "> Dermatophagoides farinae </a> </p> <a href="https://publications.waset.org/abstracts/33500/inhibitory-action-of-fatty-acid-salts-against-cladosporium-cladosporioides-and-dermatophagoides-farinae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Effects of Fatty Acid Salts and Spices on Dermatophagoides farinae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yumeho%20Obata">Yumeho Obata</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dermatophagoides farinae is major mite allergens in indoors. D. farinae is often swarm over powder products (e.g. wheat flour), because it feeds on starch or protein that are included in them. Eating powder products which are mixed D.farinae causes various allergic symptoms. Therefore, the creation of food additive agents with high safety and control of mite effect is required. Fatty acid salts and spices are known that have pesticidal activities. This study describes the effects of fatty acid salts and spices against Dermatophagoides farinae. Materials and Methods: Potassium salts of 9 fatty acids (C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C18:1, C18:2, C18:3) were prepared by mixing the fatty acid with the appropriate amount of KOH solution to a concentration of 175 mM and pH 10.5. C12Cu and C12Zn were selected as other fatty acid salts. Cayenne pepper, habanero, Japanese pepper, mustard, jalapeno pepper, curry aroma and cinnamon were selected as spices. D. farina, have been cultured in laboratory. To rear the mites, double-soled dishes containing of sterilized food were put on the big plastic container (30.0 × 20.0 × 20.0cm) which had 100% ammonium nitrate solution in the bottom. Plastic container was placed on incubator at 25 °C and 64 % relative humidity (RH) under dark condition. Sterilized food composed of dried bonito flakes and dried yeast (Ebios), 1:1 by weight. The antiproliferative method, sample and medium culture were mixed in double-soled dish and kept at 25 °C and 64 % RH. Decrease rates were determined 1 week and 4 week after treatment under microscope. D. farina was considered to be dead if appendages did not move when prodded with a pin. Results and Conclusions: The results show that the fatty acids potassium showed no antiproliferative effects against D. farinae. On the other hand, Japanese pepper, mustard, curry aroma and cinnamon were effective to decrease propagative rate (over 80 %) after treatment for 1 week against D. farina. Japanese pepper, curry aroma and cinnamon were effective to decrease propagative rate (approximately 100 %) after treatment for 4 weeks against D. farina. Especially, Japanese pepper and cinnamon showed the fasted and the most consecutive antiproliferative effects. These results indicate that Japanese pepper and cinnamon have high antiproliferative effects against D. farina and suggest spices will be used as a food additive agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20salts" title="fatty acid salts">fatty acid salts</a>, <a href="https://publications.waset.org/abstracts/search?q=spices" title=" spices"> spices</a>, <a href="https://publications.waset.org/abstracts/search?q=antiproliferative%20effects" title=" antiproliferative effects"> antiproliferative effects</a>, <a href="https://publications.waset.org/abstracts/search?q=dermatophagoides%20farinae" title=" dermatophagoides farinae"> dermatophagoides farinae</a> </p> <a href="https://publications.waset.org/abstracts/49384/effects-of-fatty-acid-salts-and-spices-on-dermatophagoides-farinae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Kohonen Self-Organizing Maps as a New Method for Determination of Salt Composition of Multi-Component Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergey%20A.%20Burikov">Sergey A. Burikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20A.%20Dolenko"> Tatiana A. Dolenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirill%20A.%20Gushchin"> Kirill A. Gushchin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20A.%20Dolenko"> Sergey A. Dolenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results of clusterization by Kohonen self-organizing maps (SOM) applied for analysis of array of Raman spectra of multi-component solutions of inorganic salts, for determination of types of salts present in the solution. It is demonstrated that use of SOM is a promising method for solution of clusterization and classification problems in spectroscopy of multi-component objects, as attributing a pattern to some cluster may be used for recognition of component composition of the object. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kohonen%20self-organizing%20maps" title="Kohonen self-organizing maps">Kohonen self-organizing maps</a>, <a href="https://publications.waset.org/abstracts/search?q=clusterization" title=" clusterization"> clusterization</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-component%20solutions" title=" multi-component solutions"> multi-component solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/14544/kohonen-self-organizing-maps-as-a-new-method-for-determination-of-salt-composition-of-multi-component-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Assessment of Toxic Impact of Metals on Different Instars of Silkworm, Bombyx Mori</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Dildar%20Gogi">Muhammad Dildar Gogi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Arshad"> Muhammad Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ahsan%20Khan"> Muhammad Ahsan Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sufian"> M. Sufian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nawaz"> Ahmad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mubashir%20Iqbal"> Mubashir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Junaid%20Nisar"> Muhammad Junaid Nisar</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Afzal%20Naveed"> Waleed Afzal Naveed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Larvae of silkworm (Bombyx mori) exhibit very high mortality when reared on mulberry leaves collected from mulberry orchards which get contaminated with metallic/nonmetallic compounds through either drift-deposition or chemigation. There is need to screen out such metallic compound for their toxicity at their various concentrations. The present study was carried out to assess toxicity of metals in different instars of silkworm. Aqueous solutions of nine heavy-metal based salts were prepared by dissolving 50, 100, 150, 200, 250, 300, 350 and 400 mg of each salt in one liter of water and were applied on the mulberry leaves by leaf-dip methods. The results reveal that mortality in 1st, 2nd, 3rd, 4th and 5th instar larvae caused by each heavy metal salts increased with an increase in their concentrations. The 1st instar larvae were found more susceptible to metal salts followed by 2nd, 3rd, 4th and 5th instar larvae of silkworm. Overall, Nickel chloride proved more toxic for all larval instar as it demonstrated approximately 40-99% mortality. On the basis of LC2 and larval mortality, the order of toxicity of heavy metals against all five larval instar was Nickel chloride (LC₂ = 1.9-13.9 mg/L; & 15.0±1.2-69.2±1.7% mortality) followed by Chromium nitrate (LC₂ = 3.3-14.8 mg/L; & 13.3±1.4-62.4±2.8% mortality), Cobalt nitrate (LC₂ = 4.3-30.9; &11.4±0.07-54.9±2.0% mortality), Lead acetate (LC₂ =8.8-53.3 mg/L; & 9.5±1.3-46.4±2.9% mortality), Aluminum sulfate (LC₂ = 15.5-76.6 mg/L; & 8.4±0.08-42.1±2.8% mortality), Barium sulfide (LC₂ = 20.9-105.9; & 7.7±1.1-39.2±2.5% mortality), Copper sulfate (LC2 = 28.5-12.4 mg/L; & 7.3±0.06-37.1±2.4% mortality), Manganese chloride (LC₂ = 29.9-136.9 mg/L; & 6.8±0.09-35.3±1.6% mortality) and Zinc nitrate (LC₂ = 36.3-15 mg/L; & 6.2±1.2-32.1±1.9% mortality). Zinc nitrate @ 50 and 100 mg/L, Barium sulfide @ 50 mg/L, Manganese chloride @ 50 and 100 mg/L and Copper sulfate @ 50 mg/L proved safe for 5th instar larvae as these interaction attributed no mortality. All the heavy metal salts at a concentration of 50 mg/L demonstrated less than 10% mortality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy-metals" title="heavy-metals">heavy-metals</a>, <a href="https://publications.waset.org/abstracts/search?q=larval-instars" title=" larval-instars"> larval-instars</a>, <a href="https://publications.waset.org/abstracts/search?q=lethal-concentration" title=" lethal-concentration"> lethal-concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=silkworm" title=" silkworm"> silkworm</a> </p> <a href="https://publications.waset.org/abstracts/97315/assessment-of-toxic-impact-of-metals-on-different-instars-of-silkworm-bombyx-mori" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> The Effect of Internal Electrical Ion Mobility on Molten Salts through Atomistic Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20F.%20Sanz-Navarro">Carlos F. Sanz-Navarro</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Fereres"> Sonia Fereres</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Binary and ternary mixtures of molten salts are excellent thermal energy storage systems and have been widely used in commercial tanks both in nuclear and solar thermal applications. However, the energy density of the commercially used mixtures is still insufficient, and therefore, new systems based on latent heat storage (or phase change materials, PCM) are currently being investigated. In order to shed some light on the macroscopic physical properties of the molten salt phases, knowledge of the microscopic structure and dynamics is required. Several molecular dynamics (MD) simulations have been performed to model the thermal behavior of (Li,K)2CO3 mixtures. Up to this date, this particular molten salt mixture has not been extensively studied but it is of fundamental interest for understanding the behavior of other commercial salts. Molten salt diffusivities, the internal electrical ion mobility, and the physical properties of the solid-liquid phase transition have been calculated and compared to available data from literature. The effect of anion polarization and the application of a strong external electric field have also been investigated. The influence of electrical ion mobility on local composition is explained through the Chemla effect, well known in electrochemistry. These results open a new way to design optimal high temperature energy storage materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomistic%20simulations" title="atomistic simulations">atomistic simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20storage" title=" thermal storage"> thermal storage</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat" title=" latent heat"> latent heat</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20salt" title=" molten salt"> molten salt</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20mobility" title=" ion mobility"> ion mobility</a> </p> <a href="https://publications.waset.org/abstracts/33033/the-effect-of-internal-electrical-ion-mobility-on-molten-salts-through-atomistic-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salts&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salts&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salts&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salts&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salts&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salts&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salts&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salts&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=salts&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10