CINXE.COM

Search results for: inoculum to substrate ratio

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: inoculum to substrate ratio</title> <meta name="description" content="Search results for: inoculum to substrate ratio"> <meta name="keywords" content="inoculum to substrate ratio"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="inoculum to substrate ratio" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="inoculum to substrate ratio"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5604</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: inoculum to substrate ratio</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5604</span> Anaerobic Digestion of Coffee Wastewater from a Fast Inoculum Adaptation Stage: Replacement of Complex Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Lepe-Cervantes">D. Lepe-Cervantes</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Leon-Becerril"> E. Leon-Becerril</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Gomez-Romero"> J. Gomez-Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Garcia-Depraect"> O. Garcia-Depraect</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Lopez-Lopez"> A. Lopez-Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, raw coffee wastewater (CWW) was used as a complex substrate for anaerobic digestion. The inoculum adaptation stage, microbial diversity analysis and biomethane potential (BMP) tests were performed. A fast inoculum adaptation stage was used by the replacement of vinasse to CWW in an anaerobic sequential batch reactor (AnSBR) operated at mesophilic conditions. Illumina MiSeq sequencing was used to analyze the microbial diversity. While, BMP tests using inoculum adapted to CWW were carried out at different inoculum to substrate (I/S) ratios (2:1, 3:1 and 4:1, on a VS basis). Results show that the adaptability percentage was increased gradually until it reaches the highest theoretical value in a short time of 10 d; with a methane yield of 359.10 NmL CH<sub>4</sub>/g COD-removed; <em>Methanobacterium beijingense</em> was the most abundant microbial (75%) and the greatest specific methane production was achieved at I/S ratio 4:1, whereas the lowest was obtained at 2:1, with BMP values of 320 NmL CH<sub>4</sub>/g VS and 151 NmL CH<sub>4</sub>/g VS, respectively. In conclusion, gradual replacement of substrate was a feasible method to adapt the inoculum in a short time even using complex raw substrates, whereas in the BMP tests, the specific methane production was proportional to the initial amount of inoculum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biomethane%20potential%20test" title=" biomethane potential test"> biomethane potential test</a>, <a href="https://publications.waset.org/abstracts/search?q=coffee%20wastewater" title=" coffee wastewater"> coffee wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20inoculum%20adaptation" title=" fast inoculum adaptation"> fast inoculum adaptation</a> </p> <a href="https://publications.waset.org/abstracts/64826/anaerobic-digestion-of-coffee-wastewater-from-a-fast-inoculum-adaptation-stage-replacement-of-complex-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5603</span> Optimization of Sequential Thermophilic Bio-Hydrogen/Methane Production from Mono-Ethylene Glycol via Anaerobic Digestion: Impact of Inoculum to Substrate Ratio and N/P Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Elreedy">Ahmed Elreedy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tawfik"> Ahmed Tawfik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This investigation aims to assess the effect of inoculum to substrate ratio (ISR) and nitrogen to phosphorous balance on simultaneous biohydrogen and methane production from anaerobic decomposition of mono-ethylene glycol (MEG). Different ISRs were applied in the range between 2.65 and 13.23 gVSS/gCOD, whereas the tested N/P ratios were changed from 4.6 to 8.5; both under thermophilic conditions (55°C). The maximum obtained methane and hydrogen yields (MY and HY) of 151.86±10.8 and 22.27±1.1 mL/gCODinitial were recorded at ISRs of 5.29 and 3.78 gVSS/gCOD, respectively. Unlikely, the ammonification process, in terms of net ammonia produced, was found to be ISR and COD/N ratio dependent, reaching its peak value of 515.5±31.05 mgNH4-N/L at ISR and COD/N ratio of 13.23 gVSS/gCOD and 11.56. The optimum HY was enhanced by more than 1.45-fold with declining N/P ratio from 8.5 to 4.6; whereas, the MY was improved (1.6-fold), while increasing N/P ratio from 4.6 to 5.5 with no significant impact at N/P ratio of 8.5. The results obtained revealed that the methane production was strongly influenced by initial ammonia, compared to initial phosphate. Likewise, the generation of ammonia was markedly deteriorated from 535.25±41.5 to 238.33±17.6 mgNH4-N/L with increasing N/P ratio from 4.6 to 8.5. The kinetic study using Modified Gompertz equation was successfully fitted to the experimental outputs (R2 > 0.9761). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mono-ethylene%20glycol" title="mono-ethylene glycol">mono-ethylene glycol</a>, <a href="https://publications.waset.org/abstracts/search?q=biohydrogen%20and%20methane" title=" biohydrogen and methane"> biohydrogen and methane</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio" title=" inoculum to substrate ratio"> inoculum to substrate ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20to%20phosphorous%20balance" title=" nitrogen to phosphorous balance"> nitrogen to phosphorous balance</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonification" title=" ammonification"> ammonification</a> </p> <a href="https://publications.waset.org/abstracts/54353/optimization-of-sequential-thermophilic-bio-hydrogenmethane-production-from-mono-ethylene-glycol-via-anaerobic-digestion-impact-of-inoculum-to-substrate-ratio-and-np-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5602</span> Effect of Inoculum Ratio on Dark Fermentative Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Yilmazer%20Hitit">Zeynep Yilmazer Hitit</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20C.%20Hallenbeck"> Patrick C. Hallenbeck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel reserve requirements due to depletion of fossil fuels have increased interest in biohydrogen since the 1990’s. In fermentative hydrogen production, pure, mixed, and co-cultures can be used to produce hydrogen. Several previous studies have evaluated hydrogen production by pure cultures of Clostridium butyricum or Enterobacter aerogenes. Evaluating hydrogen production by co-culture of these microorganisms is an interestıng approach since E. aerogenes is a facultative microorganism with resistance to oxygen in contrast to the strict anaerobe C. butyricum, and therefore has the ability to maintain anaerobic conditions. It was found that using co-cultures of facultative E. aerogenes (as a reducing agent and H2 producer) and the obligate anaerobe C. butyricum for producing hydrogen increases the yield of hydrogen by about 50% compared to C. butyricum by itself. Also, using different types of microorganisms for hydrogen production eliminates the need to use expensive reducing agents. C. butyricum strain pre-cultured anaerobically at 37 0C for 15h by inoculating 100 mL of GP medium (pH 6.8) consisting of 1% glucose, 2% polypeptone, 0.2% KH2PO4, 0.05% yeast extract, 0.05% MgSO4. 7H2O and E. aerogenes strain was pre-cultured aerobically at 30 0C, 150 rpm for 9 h by inoculating 100 mL of TGY medium (pH 6.8), consisting of 0.1% glucose, 0.5% tryptone, 0.1% K2HPO4, 0.5% yeast extract. All duplicate batch experiments were conducted in 100 mL bottles with different inoculum ratios of Clostridium butyricum and Enterobater aerogenes (C:E) using 5x diluted rich media (GP) consisting of 2 g/L glucose, 4g/L polypeptone, 0.4 g/L KH2PO4, 0.1 g/L yeast extract, 0.1 MgSO4.7H2O. The range of inoculum ratio of C. butyricum to E. aerogenes were 2:1,4:1,8:1, 1:2,1:4, 1:8, 1:0, 0:1. Using glucose as a carbon source aided in the observation of microbial behavior as well as making the effect of inoculum ratio more evident. Nearly all the glucose in the medium was used to produce hydrogen, except at a 1:0 ratio of inoculum (i.e. containing only C. butyricum). Low glucose consumption leads to a higher hydrogen yield due to cumulative hydrogen production and consumption of glucose, but not as much as C:E, 8:1. The lowest hydrogen yield was achieved in 1:8 inoculum ratio of C:E, 71.9 mL, 1.007±0.01 mol H2/mol glucose and the highest cumulative hydrogen, hydrogen yield and dry cell weight were achieved in 8:1 inoculum ratio of C:E, 117.4 mL, 2.035±0.082 mol H2/mol glucose, 0.4 g/L respectively. In this study effect of inoculum ratio on dark fermentative biohydrogen production using C. butyricum and E. aerogenes was investigated. The maximum hydrogen yield of 2.035mol H2/mol glucose was obtained using 2g/L glucose, an initial pH of 6 and an inoculum ratio of C. butyricum to E. aerogenes of 8:1. Results showed that inoculum ratio is an important parameter on hydrogen production due to competition between the two microorganisms in using substrate for growth and production of by-products. The results presented here could be of great significance for further waste management studies using co-culture hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biohydrogen" title="biohydrogen">biohydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=Clostridium%20butyricum" title=" Clostridium butyricum"> Clostridium butyricum</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20fermentation" title=" dark fermentation"> dark fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=Enterobacter%20aerogenes" title=" Enterobacter aerogenes"> Enterobacter aerogenes</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20ratio%20in%20biohydrogen%20production" title=" inoculum ratio in biohydrogen production"> inoculum ratio in biohydrogen production</a> </p> <a href="https://publications.waset.org/abstracts/47191/effect-of-inoculum-ratio-on-dark-fermentative-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5601</span> Analysis of a Lignocellulose Degrading Microbial Consortium to Enhance the Anaerobic Digestion of Rice Straws</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supanun%20Kangrang">Supanun Kangrang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kraipat%20Cheenkachorn"> Kraipat Cheenkachorn</a>, <a href="https://publications.waset.org/abstracts/search?q=Kittiphong%20Rattanaporn"> Kittiphong Rattanaporn</a>, <a href="https://publications.waset.org/abstracts/search?q=Malinee%20Sriariyanun"> Malinee Sriariyanun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice straw is lignocellulosic biomass which can be utilized as substrate for the biogas production. However, due to the property and composition of rice straw, it is difficult to be degraded by hydrolysis enzymes. One of the pretreatment method that modifies such properties of lignocellulosic biomass is the application of lignocellulose-degrading microbial consortia. The aim of this study is to investigate the effect of microbial consortia to enhance biogas production. To select the high efficient consortium, cellulase enzymes were extracted and their activities were analyzed. The results suggested that microbial consortium culture obtained from cattle manure is the best candidate compared to decomposed wood and horse manure. A microbial consortium isolated from cattle manure was then mixed with anaerobic sludge and used as inoculum for biogas production. The optimal conditions for biogas production were investigated using response surface methodology (RSM). The tested parameters were the ratio of amount of microbial consortium isolated and amount of anaerobic sludge (MI:AS), substrate to inoculum ratio (S:I) and temperature. Here, the value of the regression coefficient R2 = 0.7661 could be explained by the model which is high to advocate the significance of the model. The highest cumulative biogas yield was 104.6 ml/g-rice straw at optimum ratio of MI:AS, ratio of S:I, and temperature of 2.5:1, 15:1 and 44°C respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulolytic%20biomass" title="lignocellulolytic biomass">lignocellulolytic biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20consortium" title=" microbial consortium"> microbial consortium</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulase" title=" cellulase"> cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=Response%20Surface%20Methodology%20%28RSM%29" title=" Response Surface Methodology (RSM)"> Response Surface Methodology (RSM)</a> </p> <a href="https://publications.waset.org/abstracts/21514/analysis-of-a-lignocellulose-degrading-microbial-consortium-to-enhance-the-anaerobic-digestion-of-rice-straws" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21514.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5600</span> Optimization of Artisanal Fishing Waste Fermentation for Volatile Fatty Acids Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luz%20Stella%20Cadavid-Rodriguez">Luz Stella Cadavid-Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Viviana%20E.%20Castro-Lopez"> Viviana E. Castro-Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish waste (FW) has a high content of potentially biodegradable components, so it is amenable to be digested anaerobically. In this line, anaerobic digestion (AD) of FW has been studied for biogas production. Nevertheless, intermediate products such as volatile fatty acids (VFA), generated during the acidogenic stage, have been scarce investigated, even though they have a high potential as a renewable source of carbon. In the literature, there are few studies about the Inoculum-Substrate (I/S) ratio on acidogenesis. On the other hand, it is well known that pH is a critical factor in the production of VFA. The optimum pH for the production of VFA seems to change depending on the substrate and can vary in a range between 5.25 and 11. Nonetheless, the literature about VFA production from protein-rich waste, such as FW, is scarce. In this context, it is necessary to deepen on the determination of the optimal operating conditions of acidogenic fermentation for VFA production from protein-rich waste. Therefore, the aim of this research was to optimize the volatile fatty acid production from artisanal fishing waste, studying the effect of pH and the I/S ratio on the acidogenic process. For this research, the inoculum used was a methanogenic sludge (MS) obtained from a UASB reactor treating wastewater of a slaughterhouse plant, and the FW was collected in the port of Tumaco (Colombia) from the local artisanal fishers. The acidogenic fermentation experiments were conducted in batch mode, in 500 mL glass bottles as anaerobic reactors, equipped with rubber stoppers provided with a valve to release biogas. The effective volume used was 300 mL. The experiments were carried out for 15 days at a mesophilic temperature of 37± 2 °C and constant agitation of 200 rpm. The effect of 3 pH levels: 5, 7, 9, coupled with five I/S ratios, corresponding to 0.20, 0.15, 0.10, 0.05, 0.00 was evaluated taking as a response variable the production of VFA. A complete randomized block design was selected for the experiments in a 5x3 factorial arrangement, with two repetitions per treatment. At the beginning and during the process, pH in the experimental reactors was adjusted to the corresponding values of 5, 7, and 9 using 1M NaOH or 1M H2SO4, as was appropriated. In addition, once the optimum I/S ratio was determined, the process was evaluated at this condition without pH control. The results indicated that pH is the main factor in the production of VFA, obtaining the highest concentration with neutral pH. By reducing the I/S ratio, as low as 0.05, it was possible to maximize VFA production. Thus, the optimum conditions found were natural pH (6.6-7.7) and I/S ratio of 0.05, with which it was possible to reach a maximum total VFA concentration of 70.3 g Ac/L, whose major components were acetic acid (35%) and butyric acid (32%). The findings showed that the acidogenic fermentation of FW is an efficient way of producing VFA and that the operating conditions can be simple and economical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acidogenesis" title="acidogenesis">acidogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=artisanal%20fishing%20waste" title=" artisanal fishing waste"> artisanal fishing waste</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio" title=" inoculum to substrate ratio"> inoculum to substrate ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20fatty%20acids" title=" volatile fatty acids"> volatile fatty acids</a> </p> <a href="https://publications.waset.org/abstracts/122967/optimization-of-artisanal-fishing-waste-fermentation-for-volatile-fatty-acids-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5599</span> Pre-Treatment of Anodic Inoculum with Nitroethane to Improve Performance of a Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20P.P.">Rajesh P.P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Tabish%20Noori"> Md. Tabish Noori</a>, <a href="https://publications.waset.org/abstracts/search?q=Makarand%20M.%20Ghangrekar"> Makarand M. Ghangrekar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methanogenic substrate loss is reported to be a major bottleneck in microbial fuel cell which significantly reduces the power production capacity and coulombic efficiency (CE) of microbial fuel cell (MFC). Nitroethane is found to be a potent inhibitor of hydrogenotrophic methanogens in rumen fermentation process. Influence of nitroethane pre-treated sewage sludge inoculum on suppressing the methanogenic activity and enhancing the electrogenesis in MFC was evaluated. MFC inoculated with nitroethane pre-treated anodic inoculum demonstrated a maximum operating voltage of 541 mV, with coulombic efficiency and sustainable volumetric power density of 39.85 % and 14.63 W/m3 respectively. Linear sweep voltammetry indicated a higher electron discharge on the anode surface due to enhancement of electrogenic activity while suppressing methanogenic activity. A 63 % reduction in specific methanogenic activity was observed in anaerobic sludge pre-treated with nitroethane; emphasizing significance of this pretreatment for suppressing methanogenesis and its utility for enhancing electricity generation in MFC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coulombic%20efficiency" title="coulombic efficiency">coulombic efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=methanogenesis%20inhibition" title=" methanogenesis inhibition"> methanogenesis inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nitroethane" title=" nitroethane"> nitroethane</a> </p> <a href="https://publications.waset.org/abstracts/70270/pre-treatment-of-anodic-inoculum-with-nitroethane-to-improve-performance-of-a-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5598</span> Enhanced Methane Production from Waste Paper through Anaerobic Co-Digestion with Macroalgae</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Rodriguez">Cristina Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Abed%20Alaswad"> Abed Alaswad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaki%20El-Hassan"> Zaki El-Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20G.%20Olabi"> Abdul G. Olabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effect on methane production from the waste paper when co-digested with macroalgal biomass as a source of nitrogen. Both feedstocks were previously mechanically pretreated in order to reduce their particle size. Methane potential assays were carried out at laboratory scale in batch mode for 28 days. The study was planned according to two factors: the feedstock to inoculum (F/I) ratio and the waste paper to macroalgae (WP/MA) ratio. The F/I ratios checked were 0.2, 0.3 and 0.4 and the WP/MA ratios were 0:100, 25:75, 50:50, 75:25 and 100:0. The highest methane yield (608 ml/g of volatile solids (VS)) was achieved at an F/I ratio of 0.2 and a WP/MA ratio of 50:50. The methane yield at a ratio WP/MA of 50:50 is higher than for single compound, while for ratios WP/MA of 25:75 and 75:25 the methane yield decreases compared to biomass mono-digestion. This behavior is observed for the three levels of F/I ratio being more noticeable at F/I ratio of 0.3. A synergistic effect was found for the WP/MA ratio of 50:50 and all F/I ratios and for WP/MA=50:50 and F/I=0.2. A maximum increase of methane yield of 49.58% was found for a co-digestion ratio of 50:50 and an F/I ratio of 0.4. It was concluded that methane production from waste paper improves significantly when co-digested with macroalgae biomass. The methane yields from co-digestion were also found higher that from macroalgae mono-digestion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20co-digestion" title="anaerobic co-digestion">anaerobic co-digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biogas" title=" biogas"> biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=macroalgae" title=" macroalgae"> macroalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20paper" title=" waste paper"> waste paper</a> </p> <a href="https://publications.waset.org/abstracts/64720/enhanced-methane-production-from-waste-paper-through-anaerobic-co-digestion-with-macroalgae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5597</span> Preformed Au Colloidal Nanoparticles Immobilised on NiO as Highly Efficient Heterogeneous Catalysts for Reduction of 4-Nitrophenol to 4-Aminophenol</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Alshammari">Khaled Alshammari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A facile approach to synthesizing highly active and stable Au/NiO catalysts for the hydrogenation of nitro-aromatics is reported. Preformed gold nanoparticles have been immobilized onto NiO using a colloidal method. In this article, the reduction of 4-nitrophenol with NaBH4 has been used as a model reaction to investigate the catalytic activity of synthesized Au/NiO catalysts. In addition, we report a systematic study of the reduction kinetics and the influence of specific reaction parameters such as (i) temperature, (ii) stirring rate, (iii) sodium borohydride concentration and (iv) substrate/metal molar ratio. The reaction has been performed at a substrate/metal molar ratio of 7.4, a ratio significantly higher than previously reported. The reusability of the catalyst has been examined, with little to no decrease in activity observed over 5 catalytic cycles. Systematic variation of Au loading reveals the successful synthesis of low-cost and efficient Au/NiO catalysts at very low Au content and using high substrate/metal molar ratios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonochemistry" title="nonochemistry">nonochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles%20supported" title=" nanoparticles supported"> nanoparticles supported</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization%20of%20materials" title=" characterization of materials"> characterization of materials</a>, <a href="https://publications.waset.org/abstracts/search?q=colloidal%20nanoparticles" title=" colloidal nanoparticles"> colloidal nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/184004/preformed-au-colloidal-nanoparticles-immobilised-on-nio-as-highly-efficient-heterogeneous-catalysts-for-reduction-of-4-nitrophenol-to-4-aminophenol" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">65</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5596</span> Study of Individual Parameters on the Enzymatic Glycosidation of Betulinic Acid by Novozyme-435</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Adamu">A. U. Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamisu%20Abdu"> Hamisu Abdu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Saidu"> A. A. Saidu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The enzymatic synthesis of 3-O-β-D-glucopyranoside-betulinic acid using Novozyme-435 as a catalyst was studied. The effect of various parameters such as substrate molar ratio, reaction temperature, reaction time, re-used enzymes and amount of enzymes were investigated. The optimum rection conditions for the enzymatic glycosidation of betulinic acid in an organic solvent using Novozym-435 was found to be at 1:1.2 substrate molar ratio, 55oC, 24 h and 180 mg of enzymes with percentage conversion of 88.69 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=betulinic%20acid" title="betulinic acid">betulinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosidation" title=" glycosidation"> glycosidation</a>, <a href="https://publications.waset.org/abstracts/search?q=novozyme-435" title=" novozyme-435"> novozyme-435</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/22008/study-of-individual-parameters-on-the-enzymatic-glycosidation-of-betulinic-acid-by-novozyme-435" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5595</span> Encapsulation of Probiotic Bacteria in Complex Coacervates </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20A.%20Bosnea">L. A. Bosnea</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Moschakis"> T. Moschakis</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Biliaderis"> C. Biliaderis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two probiotic strains of Lactobacillus paracasei subsp. paracasei (E6) and Lactobacillus paraplantarum (B1), isolated from traditional Greek dairy products, were microencapsulated by complex coacervation using whey protein isolate (WPI, 3% w/v) and gum arabic (GA, 3% w/v) solutions mixed at different polymer ratio (1:1, 2:1 and 4:1). The effect of total biopolymer concentration on cell viability was assessed using WPI and GA solutions of 1, 3 and 6% w/v at a constant ratio of 2:1. Also, several parameters were examined for optimization of the microcapsule formation, such as inoculum concentration and the effect of ionic strength. The viability of the bacterial cells during heat treatment and under simulated gut conditions was also evaluated. Among the different WPI/GA weight ratios tested (1:1, 2:1, and 4:1), the highest survival rate was observed for the coacervate structures made with the ratio of 2:1. The protection efficiency at low pH values is influenced by both concentration and the ratio of the added biopolymers. Moreover, the inoculum concentration seems to affect the efficiency of microcapsules to entrap the bacterial cells since an optimum level was noted at less than 8 log cfu/ml. Generally, entrapment of lactobacilli in the complex coacervate structure enhanced the viability of the microorganisms when exposed to a low pH environment (pH 2.0). Both encapsulated strains retained high viability in simulated gastric juice (>73%), especially in comparison with non-encapsulated (free) cells (<19%). The encapsulated lactobacilli also exhibited enhanced viability after 10–30 min of heat treatment (65oC) as well as at different NaCl concentrations (pH 4.0). Overall, the results of this study suggest that complex coacervation with WPI/GA has a potential to deliver live probiotics in low pH food systems and fermented dairy products; the complexes can dissolve at pH 7.0 (gut environment), releasing the microbial cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probiotic" title="probiotic">probiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20coacervation" title=" complex coacervation"> complex coacervation</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a> </p> <a href="https://publications.waset.org/abstracts/16064/encapsulation-of-probiotic-bacteria-in-complex-coacervates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5594</span> Mixotropohic Growth of Chlorella sp. on Raw Food Processing Industrial Wastewater: Effect of COD Tolerance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suvidha%20Gupta">Suvidha Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20A.%20Pandey"> R. A. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Pawar"> Sanjay Pawar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effluents from various food processing industries are found with high BOD, COD, suspended solids, nitrate, and phosphate. Mixotrophic growth of microalgae using food processing industrial wastewater as an organic carbon source has emerged as more effective and energy intensive means for the nutrient removal and COD reduction. The present study details the treatment of non-sterilized unfiltered food processing industrial wastewater by microalgae for nutrient removal as well as to determine the tolerance to COD by taking different dilutions of wastewater. In addition, the effect of different inoculum percentages of microalgae on removal efficiency of the nutrients for given dilution has been studied. To see the effect of dilution and COD tolerance, the wastewater having initial COD 5000 mg/L (±5), nitrate 28 mg/L (±10), and phosphate 24 mg/L (±10) was diluted to get COD of 3000 mg/L and 1000 mg/L. The experiments were carried out in 1L conical flask by intermittent aeration with different inoculum percentage i.e. 10%, 20%, and 30% of Chlorella sp. isolated from nearby area of NEERI, Nagpur. The experiments were conducted for 6 days by providing 12:12 light- dark period and determined various parameters such as COD, TOC, NO3-- N, PO4-- P, and total solids on daily basis. Results revealed that, for 10% and 20% inoculum, over 90% COD and TOC reduction was obtained with wastewater containing COD of 3000 mg/L whereas over 80% COD and TOC reduction was obtained with wastewater containing COD of 1000 mg/L. Moreover, microalgae was found to tolerate wastewater containing COD 5000 mg/L and obtained over 60% and 80% reduction in COD and TOC respectively. The obtained results were found similar with 10% and 20% inoculum in all COD dilutions whereas for 30% inoculum over 60% COD and 70% TOC reduction was obtained. In case of nutrient removal, over 70% nitrate removal and 45% phosphate removal was obtained with 20% inoculum in all dilutions. The obtained results indicated that Microalgae assisted nutrient removal gives maximum COD and TOC reduction with 3000 mg/L COD and 20% inoculum. Hence, microalgae assisted wastewater treatment is not only effective for removal of nutrients but also can tolerate high COD up to 5000 mg/L and solid content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chlorella%20sp." title="Chlorella sp.">Chlorella sp.</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title=" chemical oxygen demand"> chemical oxygen demand</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20processing%20industrial%20wastewater" title=" food processing industrial wastewater"> food processing industrial wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=mixotrophic%20growth" title=" mixotrophic growth"> mixotrophic growth</a> </p> <a href="https://publications.waset.org/abstracts/42921/mixotropohic-growth-of-chlorella-sp-on-raw-food-processing-industrial-wastewater-effect-of-cod-tolerance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5593</span> Continuous Production of Prebiotic Pectic Oligosaccharides from Sugar Beet Pulp in a Continuous Cross Flow Membrane Bioreactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Babbar">Neha Babbar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Van%20Roy"> S. Van Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Dejonghe"> W. Dejonghe</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Sforza"> S. Sforza</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Elst"> K. Elst</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pectic oligosaccharides (a class of prebiotics) are non-digestible carbohydrates which benefits the host by stimulating the growth of healthy gut micro flora. Production of prebiotic pectic oligosaccharides (POS) from pectin rich agricultural residues involves a cutting of long chain polymer of pectin to oligomers of pectin while avoiding the formation of monosaccharides. The objective of the present study is to develop a two-step continuous biocatalytic membrane reactor (MER) for the continuous production of POS (from sugar beet pulp) in which conversion is combined with separation. Optimization of the ratio of POS/monosaccharides, stability and productivities of the process was done by testing various residence times (RT) in the reactor vessel with diluted (10 RT, 20 RT, and 30 RT) and undiluted (30 RT, 40 RT and 60 RT) substrate. The results show that the most stable processes (steady state) were 20 RT and 30 RT for diluted substrate and 40 RT and 60 RT for undiluted substrate. The highest volumetric and specific productivities of 20 g/L/h and 11 g/gE/h; 17 g/l/h and 9 g/gE/h were respectively obtained with 20 RT (diluted substrate) and 40 RT (undiluted substrate). Under these conditions, the permeates of the reactor test with 20 RT (diluted substrate) consisted of 80 % POS fractions while that of 40 RT (undiluted substrate) resulted in 70% POS fractions. A two-step continuous biocatalytic MER for the continuous POS production looks very promising for the continuous production of tailor made POS. Although both the processes i.e 20 RT (diluted substrate) and 40 RT (undiluted substrate) gave the best results, but for an Industrial application it is preferable to use an undiluted substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pectic%20oligosaccharides" title="pectic oligosaccharides">pectic oligosaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20reactor" title=" membrane reactor"> membrane reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=residence%20time" title=" residence time"> residence time</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20productivity" title=" specific productivity"> specific productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20productivity" title=" volumetric productivity"> volumetric productivity</a> </p> <a href="https://publications.waset.org/abstracts/32025/continuous-production-of-prebiotic-pectic-oligosaccharides-from-sugar-beet-pulp-in-a-continuous-cross-flow-membrane-bioreactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5592</span> Experimental Studies on the Effect of Premixing Methods in Anaerobic Digestor with Corn Stover</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Sagarika">M. Sagarika</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chandra%20Sekhar"> M. Chandra Sekhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural residues are producing in large quantities in India and account for abundant but underutilized source of renewable biomass in agriculture. In India, the amount of crop residues available is estimated to be approximately 686 million tons. Anaerobic digestion is a promising option to utilize the surplus agricultural residues and can produce biogas and digestate. Biogas is mainly methane (CH4), which can be utilized as an energy source in replacement for fossil fuels such as natural gas, oil, in other hand, digestate contains high amounts of nutrients, can be employed as fertilizer. Solid state anaerobic digestion (total solids ≥ 15%) is suitable for agricultural residues, as it reduces the problems like stratification and floating issues that occur in liquid anaerobic digestion (total solids < 15%). The major concern in solid-state anaerobic digestion is the low mass transfer of feedstock and inoculum that resulting in low performance. To resolve this low mass transfer issue, effective mixing of feedstock and inoculum is required. Mechanical mixing using stirrer at the time of digestion process can be done, but it is difficult to operate the stirring of feedstock with high solids percentage and high viscosity. Complete premixing of feedstock and inoculum is an alternative method, which is usual in lab scale studies but may not be affordable due to high energy demand in large-scale digesters. Developing partial premixing methods may reduce this problem. Current study is to improve the performance of solid-state anaerobic digestion of corn stover at feedstock to inoculum ratios 3 and 5, by applying partial premixing methods and to compare the complete premixing method with two partial premixing methods which are two alternative layers of feedstock and inoculum and three alternative layers of feedstock and inoculum where higher inoculum ratios in the top layers. From experimental studies it is observed that, partial premixing method with three alternative layers of feedstock and inoculum yielded good methane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=premixing%20methods" title=" premixing methods"> premixing methods</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20yield" title=" methane yield"> methane yield</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20stover" title=" corn stover"> corn stover</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20solids" title=" volatile solids"> volatile solids</a> </p> <a href="https://publications.waset.org/abstracts/90209/experimental-studies-on-the-effect-of-premixing-methods-in-anaerobic-digestor-with-corn-stover" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5591</span> Anaerobic Digestion Batch Study of Taxonomic Variations in Microbial Communities during Adaptation of Consortium to Different Lignocellulosic Substrates Using Targeted Sequencing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Dargode">Priyanka Dargode</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhas%20Gore"> Suhas Gore</a>, <a href="https://publications.waset.org/abstracts/search?q=Manju%20Sharma"> Manju Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Lali"> Arvind Lali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anaerobic digestion has been widely used for production of methane from different biowastes. However, the complexity of microbial communities involved in the process is poorly understood. The performance of biogas production process concerning the process productivity is closely coupled to its microbial community structure and syntrophic interactions amongst the community members. The present study aims at understanding taxonomic variations occurring in any starter inoculum when acclimatised to different lignocellulosic biomass (LBM) feedstocks relating to time of digestion. The work underlines use of high throughput Next Generation Sequencing (NGS) for validating the changes in taxonomic patterns of microbial communities. Biomethane Potential (BMP) batches were set up with different pretreated and non-pretreated LBM residues using the same microbial consortium and samples were withdrawn for studying the changes in microbial community in terms of its structure and predominance with respect to changes in metabolic profile of the process. DNA of samples withdrawn at different time intervals with reference to performance changes of the digestion process, was extracted followed by its 16S rRNA amplicon sequencing analysis using Illumina Platform. Biomethane potential and substrate consumption was monitored using Gas Chromatography(GC) and reduction in COD (Chemical Oxygen Demand) respectively. Taxonomic analysis by QIIME server data revealed that microbial community structure changes with different substrates as well as at different time intervals. It was observed that biomethane potential of each substrate was relatively similar but, the time required for substrate utilization and its conversion to biomethane was different for different substrates. This could be attributed to the nature of substrate and consequently the discrepancy between the dominance of microbial communities with regards to different substrate and at different phases of anaerobic digestion process. Knowledge of microbial communities involved would allow a rational substrate specific consortium design which will help to reduce consortium adaptation period and enhance the substrate utilisation resulting in improved efficacy of biogas process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amplicon%20sequencing" title="amplicon sequencing">amplicon sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=biomethane%20potential" title=" biomethane potential"> biomethane potential</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20predominance" title=" community predominance"> community predominance</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomic%20analysis" title=" taxonomic analysis"> taxonomic analysis</a> </p> <a href="https://publications.waset.org/abstracts/77289/anaerobic-digestion-batch-study-of-taxonomic-variations-in-microbial-communities-during-adaptation-of-consortium-to-different-lignocellulosic-substrates-using-targeted-sequencing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5590</span> Stress Distribution in Axisymmetric Indentation of an Elastic Layer-Substrate Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kotaro%20Miura">Kotaro Miura</a>, <a href="https://publications.waset.org/abstracts/search?q=Makoto%20Sakamoto"> Makoto Sakamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuji%20Tanabe"> Yuji Tanabe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We focus on internal stress and displacement of an elastic axisymmetric contact problem for indentation of a layer-substrate body. An elastic layer is assumed to be perfectly bonded to an elastic semi-infinite substrate. The elastic layer is smoothly indented with a flat-ended cylindrical indenter. The analytical and exact solutions were obtained by solving an infinite system of simultaneous equations using the method to express a normal contact stress at the upper surface of the elastic layer as an appropriate series. This paper presented the numerical results of internal stress and displacement distributions for hard-coating system with constant values of Poisson&rsquo;s ratio and the thickness of elastic layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indentation" title="indentation">indentation</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20problem" title=" contact problem"> contact problem</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20distribution" title=" stress distribution"> stress distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=coating%20materials" title=" coating materials"> coating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-substrate%20body" title=" layer-substrate body"> layer-substrate body</a> </p> <a href="https://publications.waset.org/abstracts/116384/stress-distribution-in-axisymmetric-indentation-of-an-elastic-layer-substrate-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5589</span> Solid State Fermentation Process Development for Trichoderma asperellum Using Inert Support in a Fixed Bed Fermenter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Cruz">Mauricio Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9s%20D%C3%ADaz%20Garc%C3%ADa"> Andrés Díaz García</a>, <a href="https://publications.waset.org/abstracts/search?q=Martha%20Isabel%20G%C3%B3mez"> Martha Isabel Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Carlos%20Serrato%20Berm%C3%BAdez"> Juan Carlos Serrato Bermúdez </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The disadvantages of using natural substrates in SSF processes have been well recognized and mainly are associated to gradual decomposition of the substrate, formation of agglomerates and decrease of porosity bed generating limitations in the mass and heat transfer. Additionally, in several cases, materials with a high agricultural value such as sour milk, beets, rice, beans and corn have been used. Thus, the use of economic inert supports (natural or synthetic) in combination with a nutrient suspension for the production of biocontrol microorganisms is a good alternative in SSF processes, but requires further studies in the fields of modeling and optimization. Therefore, the aim of this work is to compare the performance of two inert supports, a synthetic (polyurethane foam) and a natural one (rice husk), identifying the factors that have the major effects on the productivity of T. asperellum Th204 and the maximum specific growth rate in a PROPHYTA L05® fixed bed bioreactor. For this, the six factors C:N ratio, temperature, inoculation rate, bed height, air moisture content and airflow were evaluated using a fractional design. The factors C:N and air flow were identified as significant on the productivity (expressed as conidia/dry substrate•h). The polyurethane foam showed higher maximum specific growth rate (0.1631 h-1) and productivities of 3.89 x107 conidia/dry substrate•h compared to rice husk (2.83x106) and natural substrate based on rice (8.87x106) used as control. Finally, a quadratic model was generated and validated, obtaining productivities higher than 3.0x107 conidia/dry substrate•h with air flow at 0.9 m3/h and C:N ratio at 18.1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioprocess" title="bioprocess">bioprocess</a>, <a href="https://publications.waset.org/abstracts/search?q=scale%20up" title=" scale up"> scale up</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20design" title=" fractional design"> fractional design</a>, <a href="https://publications.waset.org/abstracts/search?q=C%3AN%20ratio" title=" C:N ratio"> C:N ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flow" title=" air flow"> air flow</a> </p> <a href="https://publications.waset.org/abstracts/13182/solid-state-fermentation-process-development-for-trichoderma-asperellum-using-inert-support-in-a-fixed-bed-fermenter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">509</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5588</span> Wetting Properties of Silver Based Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zolt%C3%A1n%20Weltsch">Zoltán Weltsch</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B3zsef%20Hlinka"> József Hlinka</a>, <a href="https://publications.waset.org/abstracts/search?q=Eszter%20K%C3%B3kai"> Eszter Kókai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature dependence of wettability (wetting angle, Θ (T)) for Ag-based melts on graphite and Al2O3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygen-alloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al2O3 substrates. As a consequence, Θ(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θ(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title="contact angle">contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=silver" title=" silver"> silver</a>, <a href="https://publications.waset.org/abstracts/search?q=soldering" title=" soldering"> soldering</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20solubility" title=" solid solubility"> solid solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate" title=" substrate"> substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20dependence" title=" temperature dependence"> temperature dependence</a>, <a href="https://publications.waset.org/abstracts/search?q=wetting" title=" wetting"> wetting</a> </p> <a href="https://publications.waset.org/abstracts/25730/wetting-properties-of-silver-based-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25730.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5587</span> Single Cell Sorter Driven by Resonance Vibration of Cell Culture Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misa%20Nakao">Misa Nakao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Kurashina"> Yuta Kurashina</a>, <a href="https://publications.waset.org/abstracts/search?q=Chikahiro%20Imashiro"> Chikahiro Imashiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenjiro%20Takemura"> Kenjiro Takemura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Research Goal: With the growing demand for regenerative medicine, an effective mass cell culture process is required. In a repetitive subculture process for proliferating cells, preparing single cell suspension which does not contain any cell aggregates is highly required because cell aggregates often raise various undesirable phenomena, e.g., apoptosis and decrease of cell proliferation. Since cell aggregates often occur in cell suspension during conventional subculture processes, this study proposes a single cell sorter driven by a resonance vibration of a cell culture substrate. The Method and the Result: The single cell sorter is simply composed of a cell culture substrate and a glass pipe vertically placed against the cell culture substrate with a certain gap corresponding to a cell diameter. The cell culture substrate is made of biocompatible stainless steel with a piezoelectric ceramic disk glued to the bottom side. Applying AC voltage to the piezoelectric ceramic disk, an out-of-plane resonance vibration with a single nodal circle of the cell culture substrate can be excited at 5.5 kHz. By doing so, acoustic radiation force is emitted, and then cell suspension containing only single cells is pumped into the pipe and collected. This single cell sorter is effective to collect single cells selectively in spite of its quite simple structure. We collected C2C12 myoblast cell suspension by the single cell sorter with the vibration amplitude of 12 µmp-p and evaluated the ratio of single cells in number against the entire cells in the suspension. Additionally, we cultured the collected cells for 72 hrs and measured the number of cells after the cultivation in order to evaluate their proliferation. As a control sample, we also collected cell suspension by conventional pipetting, and evaluated the ratio of single cells and the number of cells after the 72-hour cultivation. The ratio of single cells in the cell suspension collected by the single cell sorter was 98.2%. This ratio was 9.6% higher than that collected by conventional pipetting (statistically significant). Moreover, the number of cells cultured for 72 hrs after the collection by the single cell sorter yielded statistically more cells than that collected by pipetting, resulting in a 13.6% increase in proliferated cells. These results suggest that the cell suspension collected by the single cell sorter driven by the resonance vibration hardly contains cell aggregates whose diameter is larger than the gap between the cell culture substrate and the pipe. Consequently, the cell suspension collected by the single cell sorter maintains high cell proliferation. Conclusions: In this study, we developed a single cell sorter capable of sorting and pumping single cells by a resonance vibration of a cell culture substrate. The experimental results show the single cell sorter collects single cell suspension which hardly contains cell aggregates. Furthermore, the collected cells show higher proliferation than that of cells collected by conventional pipetting. This means the resonance vibration of the cell culture substrate can benefit us with the increase in efficiency of mass cell culture process for clinical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20radiation%20force" title="acoustic radiation force">acoustic radiation force</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20proliferation" title=" cell proliferation"> cell proliferation</a>, <a href="https://publications.waset.org/abstracts/search?q=regenerative%20medicine" title=" regenerative medicine"> regenerative medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20vibration" title=" resonance vibration"> resonance vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20cell%20sorter" title=" single cell sorter"> single cell sorter</a> </p> <a href="https://publications.waset.org/abstracts/61220/single-cell-sorter-driven-by-resonance-vibration-of-cell-culture-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5586</span> Effect of Substrate Temperature on Structure and Properties of Sputtered Transparent Conducting Film of La-Doped BaSnO₃</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alok%20Tiwari">Alok Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Show%20Wong"> Ming Show Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lanthanum (La) doped Barium Tin Oxide (BaSnO₃) film is an excellent alternative for expensive Transparent Conducting Oxides (TCOs) film such as Indium Tin Oxide (ITO). However single crystal film of La-doped BaSnO₃ has been reported with a good amount of conductivity and transparency but in order to improve its reachability, it is important to grow doped BaSO₃ films on an inexpensive substrate. La-doped BaSnO₃ thin films have been grown on quartz substrate by Radio Frequency (RF) sputtering at a different substrate temperature (from 200⁰C to 750⁰C). The thickness of the film measured was varying from 360nm to 380nm with varying substrate temperature. Structure, optical and electrical properties have been studied. The carrier concentration is seen to be decreasing as we enhance the substrate temperature while mobility found to be increased up to 9.3 cm²/V-S. At low substrate temperature resistivity found was lower (< 3x10⁻³ ohm-cm) while sudden enhancement was seen as substrate temperature raises and the trend continues further with increasing substrate temperature. Optical transmittance is getting better with higher substrate temperature from 70% at 200⁰C to > 80% at 750⁰C. Overall, understanding of changes in microstructure, electrical and optical properties of a thin film by varying substrate temperature has been reported successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductivity" title="conductivity">conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=perovskite" title=" perovskite"> perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=TCO%20film" title=" TCO film"> TCO film</a> </p> <a href="https://publications.waset.org/abstracts/95715/effect-of-substrate-temperature-on-structure-and-properties-of-sputtered-transparent-conducting-film-of-la-doped-basno3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5585</span> Achievement of High L-Cysteine Yield from Enzymatic Conversion Using Eutectic Mixtures of the Substrate ATC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deokyeong%20Choe">Deokyeong Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hun%20Youn"> Sung Hun Youn</a>, <a href="https://publications.waset.org/abstracts/search?q=Younggon%20Kim"> Younggon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Soo%20Shin"> Chul Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L-Cysteine, a sulfur-containing amino acid, has been often used in the pharmaceutical, cosmetic, food, and feed additive industries. This amino acid has been usually produced by acid-hydrolysis of human hair and poultry feathers. There are many problems, such as avoidance for use of animal hair, low yields, and formation of harmful waste material. As an alternative, the enzymatic conversion of D, L-2-amino-Δ2-thiazoline-4-carboxylic acid (ATC) to L-cysteine has been developed as an environmental-friendly method. However, the substrate solubility was too low to be used in industry. In this study, high concentrations of eutectic substrate solutions were prepared to solve the problem. Eutectic melting occurred at 39°C after mixing ATC and malonic acid at a molar ratio of 1:1. The characteristics of eutectic mixtures were analyzed by FE-SEM, EDS mapping, and XPS. However, since sorbitol, MnSO4, and NaOH should be added as supplements to the substrate mixture for the activation and stabilization of the enzyme, strategies for sequential addition of total five compounds, ATC, malonic acid, sorbitol, MnSO4, and NaOH were established. As a result, eutectic substrate mixtures of 670 mM ATC were successfully formulated. After 6 h of enzymatic reaction, 550 mM L-cysteine was made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D" title="D">D</a>, <a href="https://publications.waset.org/abstracts/search?q=L-2-amino-%CE%942-thiazoline-4-carboxylicacid" title=" L-2-amino-Δ2-thiazoline-4-carboxylicacid"> L-2-amino-Δ2-thiazoline-4-carboxylicacid</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20conversion" title=" enzymatic conversion"> enzymatic conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=eutectic%20solution" title=" eutectic solution"> eutectic solution</a>, <a href="https://publications.waset.org/abstracts/search?q=l-cysteine" title=" l-cysteine"> l-cysteine</a> </p> <a href="https://publications.waset.org/abstracts/4129/achievement-of-high-l-cysteine-yield-from-enzymatic-conversion-using-eutectic-mixtures-of-the-substrate-atc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5584</span> Cybernetic Modeling of Growth Dynamics of Debaryomyces nepalensis NCYC 3413 and Xylitol Production in Batch Reactor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Sharon%20Mano%20Pappu">J. Sharon Mano Pappu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sathyanarayana%20N.%20Gummadi"> Sathyanarayana N. Gummadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growth of Debaryomyces nepalensis on mixed substrates in batch culture follows diauxic pattern of completely utilizing glucose during the first exponential growth phase, followed by an intermediate lag phase and a second exponential growth phase consuming xylose. The present study deals with the development of cybernetic mathematical model for prediction of xylitol production and yield. Production of xylitol from xylose in batch fermentation is investigated in the presence of glucose as the co-substrate. Different ratios of glucose and xylose concentrations are assessed to study the impact of multi substrate on production of xylitol in batch reactors. The parameters in the model equations were estimated from experimental observations using integral method. The model equations were solved simultaneously by numerical technique using MATLAB. The developed cybernetic model of xylose fermentation in the presence of a co-substrate can provide answers about how the ratio of glucose to xylose influences the yield and rate of production of xylitol. This model is expected to accurately predict the growth of microorganism on mixed substrate, duration of intermediate lag phase, consumption of substrate, production of xylitol. The model developed based on cybernetic modelling framework can be helpful to simulate the dynamic competition between the metabolic pathways. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-substrate" title="co-substrate">co-substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=cybernetic%20model" title=" cybernetic model"> cybernetic model</a>, <a href="https://publications.waset.org/abstracts/search?q=diauxic%20growth" title=" diauxic growth"> diauxic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=xylose" title=" xylose"> xylose</a>, <a href="https://publications.waset.org/abstracts/search?q=xylitol" title=" xylitol"> xylitol</a> </p> <a href="https://publications.waset.org/abstracts/69333/cybernetic-modeling-of-growth-dynamics-of-debaryomyces-nepalensis-ncyc-3413-and-xylitol-production-in-batch-reactor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5583</span> Characterization of Minerals, Elicitors in Spent Mushroom Substrate Extract and Effects on Growth, Yield and the Management of Massava Mosaic Diseases </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20E.%20Okere">Samuel E. Okere</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20E.%20Ataga"> Anthony E. Ataga</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: This paper evaluated the mineral compositions, disease resistance elicitors in Pleurotus ostratus (POWESMS), and Pleurotus tuber-regium water extract spent mushroom substrate (PTWESMS) on the growth, yield, and management of cassava mosaic disease. Materials and Methods: The cassava plantlet (tms 98/0505) were generated through meristem tip culture at the Tissue Culture Laboratory, National Root Crop Research Institute, Umudike before they were transferred to the screen house, University of Port Harcourt Research Farm. The minerals and elicitors contained in the two spent mushroom substrates were evaluated using standard procedures. The treatments for this investigation comprised cassava plants treated with POWESMS, PTWESMS, and untreated cassava as control, which were inoculated with viral inoculum seven days after treatment application. The experiment was laid out in a completely randomized block design with 3 replicates. The data generated were subjected to analysis of variance (ANOVA). Means were separated using Fishers Least Significant Difference at p=0.05. Results: The results obtained revealed that POWESMS contained 19.3, 0.52, and 0.1g/200g substrate of carbohydrate polymers, glycoproteins, and lipid molecules elicitors respectively while it also contained 3.17, 212.1, 17.9,21.8, 58.8 and 111.0 mg/100g substrate for N, P, K, Na, Mg and Ca respectively. Further, PTWESMS contain 1.6, 0.04, and 0.2g/200g of the substrate as carbohydrate polymers, glycoprotein, and lipid respectively; the minerals contained in this substrate were 3.4, 204.8, 8.9, 24.2, 32.2 and 105.5 mg respectively for N, P, K, Na, and Ca. There were also significant differences in the mean values of the number of storage roots, root length, fresh root weight, fresh weight plant biomass, root girth, and whole plant dry biomass, but no significant difference was recorded for harvest index. The result also revealed significant differences in mean values of disease severity index evaluated at 4, 8, 12, 16, 20, 24, and 28 weeks after inoculation (WAI). Conclusion: The aqueous extract of these spent mushrooms substrate have shown outstanding prospect in managing cassava mosaic disease and also improvement in growth and yield of cassava due to the high level of the minerals and elicitors they contain when compared with the control. However, more work is recommended, especially in understanding the mechanism of this induced resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characterization" title="characterization">characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=elicitors" title=" elicitors"> elicitors</a>, <a href="https://publications.waset.org/abstracts/search?q=mosaic" title=" mosaic"> mosaic</a>, <a href="https://publications.waset.org/abstracts/search?q=mushroom" title=" mushroom"> mushroom</a> </p> <a href="https://publications.waset.org/abstracts/113183/characterization-of-minerals-elicitors-in-spent-mushroom-substrate-extract-and-effects-on-growth-yield-and-the-management-of-massava-mosaic-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5582</span> Crop Genotype and Inoculum Density Influences Plant Growth and Endophytic Colonization Potential of Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naveed">Muhammad Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohail%20Yousaf"> Sohail Yousaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahir%20Ahmad%20Zahir"> Zahir Ahmad Zahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Birgit%20Mitter"> Birgit Mitter</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Sessitsch"> Angela Sessitsch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most bacterial endophytes originate from the soil and enter plants via the roots followed by further spread through the inner tissues. The mechanisms allowing bacteria to colonize plants endophytically are still poorly understood for most bacterial and plant species. Specific bacterial functions are required for plant colonization, but also the plant itself is a determining factor as bacterial ability to establish endophytic populations is very often dependent on the plant genotype (cultivar) and inoculums density. The effect of inoculum density (107, 108, 109 CFU mL-1) of Burkholderia phytofirmans strain PsJN was evaluated on growth and endophytic colonization of different maize and potato cultivars under axenic and natural soil conditions. PsJN inoculation significantly increased maize seedling growth and tuber yield of potato at all inoculum density compared to uninoculated control. Under axenic condition, PsJN inoculation (108 CFU mL-1) significantly improved the germination, root/shoot length and biomass up to 62, 115, 98 and 135% of maize seedling compared to uninoculated control. In case of potato, PsJN inoculation (109 CFU mL-1) showed maximum response and significantly increased root/shoot biomass and tuber yield under natural soil condition. We confirmed that PsJN is able to colonize the rhizosphere, roots and shoots of maize and potato cultivars. The endophytic colonization increased linearly with increasing inoculum density (within a range of 8 x 104 – 3 x 107 CFU mL-1) and were highest for maize (Morignon) and potato (Romina) as compared to other cultivars. Efficient colonization of cv. Morignon and Romina by strain PsJN indicates the specific cultivar colonizing capacity of the bacteria. The findings of the study indicate the non-significant relationship between colonization and plant growth promotion in maize under axenic conditions. However, the inoculum level (109 CFU mL-1) that promoted colonization of rhizosphere and plant interior (endophytic) also best promoted growth and tuber yield of potato under natural soil conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20genotype" title="crop genotype">crop genotype</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20density" title=" inoculum density"> inoculum density</a>, <a href="https://publications.waset.org/abstracts/search?q=Burkholderia%20phytofirmans%20PsJN" title=" Burkholderia phytofirmans PsJN"> Burkholderia phytofirmans PsJN</a>, <a href="https://publications.waset.org/abstracts/search?q=colonization" title=" colonization"> colonization</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a> </p> <a href="https://publications.waset.org/abstracts/20888/crop-genotype-and-inoculum-density-influences-plant-growth-and-endophytic-colonization-potential-of-plant-growth-promoting-bacterium-burkholderia-phytofirmans-psjn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5581</span> Extracellular Production of the Oncolytic Enzyme, Glutaminase Free L-Asparaginase, from Newly Isolated Streptomyces Olivaceus NEAE-119: Optimization of Culture Conditions Using Response Surface Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noura%20El-Ahmady%20El-Naggar">Noura El-Ahmady El-Naggar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the antitumour drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological and biochemical properties, together with 16S rDNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product(1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett–Burman experimental design and response surface methodology was carried out. Fifteen nutritional variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4.7H2O, NaCl and FeSO4. 7H2O) were screened using Plackett–Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age and agitation speed) were further optimized by the central composite face-centered design -response surface methodology. As a result, a medium of the following formula is the optimum for producing an extracellular L-asparaginase in the culture filtrate of Streptomyces olivaceus NEAE-119: Dextrose 3g, starch 20g, L-asparagine 10g, KNO3 1g, K2HPO4 1g, MgSO4.7H2O 0.1g, NaCl 0.1g, pH 7, temperature 37°C, agitation speed 200 rpm/min, inoculum size 4%, v/v, inoculum age 72 h and fermentation period 5 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Streptomyces%20olivaceus%20NEAE-119" title="Streptomyces olivaceus NEAE-119">Streptomyces olivaceus NEAE-119</a>, <a href="https://publications.waset.org/abstracts/search?q=glutaminase%20free%20L-asparaginase" title=" glutaminase free L-asparaginase"> glutaminase free L-asparaginase</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=Plackett-Burman%20design" title=" Plackett-Burman design"> Plackett-Burman design</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20face-centered%20design" title=" central composite face-centered design"> central composite face-centered design</a>, <a href="https://publications.waset.org/abstracts/search?q=16S%20rRNA" title=" 16S rRNA"> 16S rRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope" title=" scanning electron microscope "> scanning electron microscope </a> </p> <a href="https://publications.waset.org/abstracts/13217/extracellular-production-of-the-oncolytic-enzyme-glutaminase-free-l-asparaginase-from-newly-isolated-streptomyces-olivaceus-neae-119-optimization-of-culture-conditions-using-response-surface-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5580</span> Humidity Sensing Behavior of Graphene Oxide on Porous Silicon Substrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Hasani">Amirhossein Hasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shamin%20Houshmand%20Sharifi"> Shamin Houshmand Sharifi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we investigate humidity sensing behavior of the graphene oxide with porous silicon substrate. By evaporation method, aluminum interdigital electrodes have been deposited onto porous silicon substrate. Then, by drop-casting method graphene oxide solution was deposited onto electrodes. The porous silicon was formed by electrochemical etching. The experimental results showed that using porous silicon substrate, we obtained two times larger sensitivity and response time compared with the results obtained with silicon substrate without porosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title="graphene oxide">graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20silicon" title=" porous silicon"> porous silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity%20sensor" title=" humidity sensor"> humidity sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical" title=" electrochemical"> electrochemical</a> </p> <a href="https://publications.waset.org/abstracts/13093/humidity-sensing-behavior-of-graphene-oxide-on-porous-silicon-substrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">605</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5579</span> Optimization of Sucrose Concentration, PH Level and Inoculum Size for Callus Proliferation and Anti-bacterial Potential of Stevia Rebaudiana Bertoni</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inayat%20Ur%20Rahman%20Arshad">Inayat Ur Rahman Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non caloric sweet Steviol Glycosides (SGs). The purpose of the study is to optimize sugar concentration, pH level and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes were inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Maximum callus induction 100, 87.5 and 85.33% was resulted in the medium supplemented with 30g/l sucrose, pH maintained at 5.5 and inoculated with 1.25g inoculum respectively. Similarly, the highest fresh weight 65.00, 75.50 and 50.53g/l were noted in medium fortified with 40g/l sucrose, inoculated 1.25g inoculum and 6.0 pH level respectively. However, the callus developed in medium containing 50g/l sucrose found highly antibacterial potent with 27.3 and 26.5mm inhibition zone against P. vulgaris and B. subtilize respectively. Similarly, the callus grown on medium inoculated with 1.00g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72mm inhibition zones respectively. However, in the case of pH levels the medium maintained at 6.5pH showed maximum antibacterial activity against P. vulgaris, B.subtilis and E.coli with 27.9, 25 and 23.72mm respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment the standard antibacterial agent Streptomycin showed the highest inhibition zones from the rest of the callus extract, however the pure DMSO (Dimethyl Sulfoxide) caused no inhibitory zone against any bacteria. From these findings it is concluded that among various levels sucrose at the rate of 40g L-1, pH 6.0 and inoculums 0.75g was found best for most of the growth and quality attributes including fresh weight, dry weight and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudiana <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Steviol%20Glycosides" title="Steviol Glycosides">Steviol Glycosides</a>, <a href="https://publications.waset.org/abstracts/search?q=Skoog" title=" Skoog"> Skoog</a>, <a href="https://publications.waset.org/abstracts/search?q=Murashige" title=" Murashige"> Murashige</a>, <a href="https://publications.waset.org/abstracts/search?q=Clavebactor%20michiganensis" title=" Clavebactor michiganensis"> Clavebactor michiganensis</a> </p> <a href="https://publications.waset.org/abstracts/155829/optimization-of-sucrose-concentration-ph-level-and-inoculum-size-for-callus-proliferation-and-anti-bacterial-potential-of-stevia-rebaudiana-bertoni" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5578</span> Optimization of Sucrose Concentration, pH Level and Inoculum Size for Callus Proliferation and Anti-Bacterial Potential of Stevia rebaudiana Bertoni</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inayat%20Ur%20Rahman%20Arshad">Inayat Ur Rahman Arshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non-caloric sweet steviol glycosides (SGs). Purpose: The purpose of the study is to optimize sugar concentration, pH level, and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Method: Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes was inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Results: Maximum callus induction 100, 87.5, and 85.33% resulted in the medium supplemented with 30 g/l sucrose, pH maintained at 5.5, and inoculated with 1.25g inoculum, respectively. Similarly, the highest fresh weights 65.00, 75.50, and 50.53 g/l were noted in a medium fortified with 40 g/l sucrose, inoculated 1.25g inoculum, and 6.0 pH level, respectively. However, the callus developed in a medium containing 50 g/l sucrose was found to be highly antibacterial potent with 27.3 and 26.5 mm inhibition zone against P. vulgaris and B. subtilis, respectively. Similarly, the callus grown on a medium inoculated with 1.00 g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72 mm inhibition zone, respectively. However, in the case of pH levels, the medium maintained at 6.5 pH showed maximum antibacterial activity against P. vulgaris, B.subtilis, and E.coli with 27.9, 25, and 23.72 mm, respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment, the standard antibacterial agent Streptomycin showed the highest inhibition zones among the rest of the callus extract; however, the pure dimethyl sulfoxide (DMSO) caused no inhibitory zone against any bacteria. Conclusion: From these findings, it is concluded that among various levels, sucrose @ 40 g L⁻¹, pH 6.0, and inoculums at 0.75 g were found best for most of the growth and quality attributes, including fresh weight, dry weight, and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudiana. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stevia%20rebaudiana" title="Stevia rebaudiana">Stevia rebaudiana</a>, <a href="https://publications.waset.org/abstracts/search?q=Steviol%20Glycosides" title=" Steviol Glycosides"> Steviol Glycosides</a>, <a href="https://publications.waset.org/abstracts/search?q=callus" title=" callus"> callus</a>, <a href="https://publications.waset.org/abstracts/search?q=Xanthomonas%20campestris" title=" Xanthomonas campestris"> Xanthomonas campestris</a> </p> <a href="https://publications.waset.org/abstracts/155733/optimization-of-sucrose-concentration-ph-level-and-inoculum-size-for-callus-proliferation-and-anti-bacterial-potential-of-stevia-rebaudiana-bertoni" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5577</span> Rhizobia-Containing Rhizobacterial Consortia and Intercropping Improved Faba Bean and Wheat Performances Under Stress Combining Drought and Phosphorus Deficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Cheto">Said Cheto</a>, <a href="https://publications.waset.org/abstracts/search?q=Khawla%20Oukaltouma"> Khawla Oukaltouma</a>, <a href="https://publications.waset.org/abstracts/search?q=Imane%20Chamkhi"> Imane Chamkhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Ibn%20Yasser"> Ammar Ibn Yasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouchra%20Benmrid"> Bouchra Benmrid</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Qaddoury"> Ahmed Qaddoury</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamfeddal%20Kouisni"> Lamfeddal Kouisni</a>, <a href="https://publications.waset.org/abstracts/search?q=Joerg%20Geistlinger"> Joerg Geistlinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Zeroual"> Youssef Zeroual</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnane%20Bargaz"> Adnane Bargaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Cherki%20Ghoulam"> Cherki Ghoulam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our study aimed to assess, the role of inoculation of faba bean/wheat intercrops with selected rhizobacteria consortia gathering one rhizobia and two phosphate solubilizing bacteria “PSB” to alleviate the effects of combined water deficit and P limitation on Faba bean/ wheat intercrops versus monocrops under greenhouse conditions. One Vicia faba L variety (Aguadulce “Ag”), and one Triticum durum L. variety (Karim “K”) were grown as sole crops or intercrop in pots containing sterilized substrate (sand: peat 4:1v/v) added either with rock phosphate (RP) as the alone P source (P limitation) or with KH₂PO₄ in nutrient solution (P sufficient control). Plant inoculation was done using rhizobacterial consortia composed; C1(Rhizobium laguerreae, Kocuria sp, and Pseudomonas sp) and C2 (R. laguerreae, Rahnella sp, and Kocuria sp). Two weeks after inoculation, the plants were submitted to water deficit consisting of 40% of substrate water holding Capacity (WHC) versus 80% WHC for well-watered plants. At the flowering stage, the trial was assessed, and the results showed that inoculation with both consortia (C1 and C2) improved faba bean biomass in terms of shoots, roots, and nodules compared to inoculation with rhizobia alone, particularly C2 improved these parametres by 19.03, 78.99, and 72.73%, respectively. Leaf relative water content decreased under combined stress, particularly in response to C1 with a significant improvement of this parameter in wheat intercrops. For faba bean under P limitation, inoculation with C2 increased stomatal conductance (gs) by 35.73% compared to plants inoculated with rhizobia alone. Furthermore, the same inoculum C2 improved membrane stability by 44,33% versus 16,16% for C1 compared to inoculation with rhizobia alone under P deficit. For sole cropped faba bean plants, inoculation with both consortia improved N accumulation compared to inoculation with rhizobia alone with an increase of 70.75% under P limitation. Moreover, under the combined stress, intercropping inoculation with C2 improved plant biomass and N content (112.98%) in wheat plants, compared to the sole crop. Our finding revealed that consortium C2 might offer an agronomic advantage under water and P deficit and could be used as inoculum for enhancing faba bean and wheat production under both monocropping and intercropping systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought" title="drought">drought</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus" title=" phosphorus"> phosphorus</a>, <a href="https://publications.waset.org/abstracts/search?q=intercropping" title=" intercropping"> intercropping</a>, <a href="https://publications.waset.org/abstracts/search?q=PSB" title=" PSB"> PSB</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=vicia%20faba" title=" vicia faba"> vicia faba</a>, <a href="https://publications.waset.org/abstracts/search?q=Triticum%20durum" title=" Triticum durum"> Triticum durum</a> </p> <a href="https://publications.waset.org/abstracts/163616/rhizobia-containing-rhizobacterial-consortia-and-intercropping-improved-faba-bean-and-wheat-performances-under-stress-combining-drought-and-phosphorus-deficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5576</span> The Effect of Spent Mushroom Substrate on Blood Metabolites in Kurdish Male Lambs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Vakili">Alireza Vakili</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Ehtesham"> Shahab Ehtesham</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Danesh%20Mesgaran"> Mohsen Danesh Mesgaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was use different levels of spent mushroom substrate as a suitable substitute for wheat straw in the ration of male lambs. In this study 20 male lambs with the age of 90 days and initial average weight of 33± 1.7 kg were used. The animals were divided separately into single boxes with four treatments (control treatment, spent mushroom substrate 15%, spent mushroom substrate 25% and spent mushroom substrate 35%) and five replications. The experiment period was 114 days being 14 days adaptation and 90 days for breeding. On the days 36 and 94, blood samples were taken from the jugular vein. In order to carry out the trial, 20 male lambs received the four experimental diets in completely randomized design. The statistical analyses were carried out by using the GLM procedure of SAS 9.1. Means among treatments were compared by Tukey test. The results of the study showed that there was no significant differences between the serum biochemical and hematological contents of the lambs in the four treatments (p>0.05). It was concluded that spent mushroom substrate consumption has no harmful effect on the blood parameters of Kurdish male lambs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternative%20food" title="alternative food">alternative food</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20performance" title=" sheep performance"> sheep performance</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20mushroom%20substrate" title=" spent mushroom substrate "> spent mushroom substrate </a> </p> <a href="https://publications.waset.org/abstracts/32670/the-effect-of-spent-mushroom-substrate-on-blood-metabolites-in-kurdish-male-lambs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5575</span> Effect of Substrate Temperature on Some Physical Properties of Doubly doped Tin Oxide Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Battal">Ahmet Battal</a>, <a href="https://publications.waset.org/abstracts/search?q=Demet%20Tatar"> Demet Tatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahattin%20D%C3%BCzg%C3%BCn"> Bahattin Düzgün</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various transparent conducting oxides (TCOs) are mostly used much applications due to many properties such as cheap, high transmittance/electrical conductivity etc. One of the clearest among TCOs, indium tin oxide (ITO), is the most widely used in many areas. However, as ITO is expensive and very low regarding reserve, other materials with suitable properties (especially SnO2 thin films) are be using instead of it. In this report, tin oxide thin films doubly doped with antimony and fluorine (AFTO) were deposited by spray at different substrate temperatures on glass substrate. It was investigated their structural, optical, electrical and luminescence properties. The substrate temperature was varied from 320 to 480 ˚C at the interval of 40 (±5) ºC. X-ray results were shown that the films are polycrystalline with tetragonal structure and oriented preferentially along (101), (200) and (210) directions. It was observed that the preferential orientations of crystal growth are not dependent on substrate temperature, but the intensity of preferential orientation was increased with increasing substrate temperature until 400 ºC. After this substrate temperature, they decreased. So, substrate temperature impact structure of these thin films. It was known from SEM analysis, the thin films have rough and homogenous and the surface of the films was affected by the substrate temperature i.e. grain size are increasing with increasing substrate temperature until 400 ºC. Also, SEM and AFM studies revealed the surface of AFTO thin films to be made of nanocrystalline particles. The average transmittance of the films in the visible range is 70-85%. Eg values of the films were investigated using the absorption spectra and found to be in the range 3,20-3,93 eV. The electrical resistivity decreases with increasing substrate temperature, then the electrical resistivity increases. PL spectra were found as a function of substrate temperature. With increasing substrate temperature, emission spectra shift a little bit to a UV region. Finally, tin oxide thin films were successfully prepared by this method and a spectroscopic characterization of the obtained films was performed. It was found that the films have very good physical properties. It was concluded that substrate temperature impacts thin film structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title="thin films">thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20pyrolysis" title=" spray pyrolysis"> spray pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SnO2" title=" SnO2"> SnO2</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20doped" title=" doubly doped"> doubly doped</a> </p> <a href="https://publications.waset.org/abstracts/28569/effect-of-substrate-temperature-on-some-physical-properties-of-doubly-doped-tin-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=186">186</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=187">187</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inoculum%20to%20substrate%20ratio&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10