CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;41 of 41 results for author: <span class="mathjax">Sch眉脽ler-Langeheine, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Sch眉脽ler-Langeheine, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Sch%C3%BC%C3%9Fler-Langeheine%2C+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Sch眉脽ler-Langeheine, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14360">arXiv:2408.14360</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14360">pdf</a>, <a href="https://arxiv.org/format/2408.14360">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Element-selective probing of ultrafast ferromagnetic--antiferromagnetic order dynamics in Fe/CoO bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Awsaf%2C+C+S">Chowdhury S. Awsaf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thakur%2C+S">Sangeeta Thakur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wei%C3%9Fenhofer%2C+M">Markus Wei脽enhofer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%B6rdes%2C+J">Jendrik G枚rdes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walter%2C+M">Marcel Walter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">Niko Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oppeneer%2C+P+M">Peter M. Oppeneer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuch%2C+W">Wolfgang Kuch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14360v1-abstract-short" style="display: inline;"> The ultrafast magnetization dynamics of an epitaxial Fe/CoO bilayer on Ag(001) is examined in an element-resolved way by resonant soft-x-ray reflectivity. The transient magnetic linear dichroism at the Co L2 edge and the magnetic circular dichroism at the Fe L3 edge measured in reflection in a pump-probe experiment with 120 fs temporal resolution show the loss of antiferromagnetic and ferromagneti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14360v1-abstract-full').style.display = 'inline'; document.getElementById('2408.14360v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14360v1-abstract-full" style="display: none;"> The ultrafast magnetization dynamics of an epitaxial Fe/CoO bilayer on Ag(001) is examined in an element-resolved way by resonant soft-x-ray reflectivity. The transient magnetic linear dichroism at the Co L2 edge and the magnetic circular dichroism at the Fe L3 edge measured in reflection in a pump-probe experiment with 120 fs temporal resolution show the loss of antiferromagnetic and ferromagnetic order in CoO and Fe, respectively, both within 300 fs after excitation with 60 fs light pulses of 800 and 400 nm wavelengths. Comparison to spin-dynamics simulations using an atomistic spin model shows that direct energy transfer from the laser-excited electrons in Fe to the magnetic moments in CoO provides the dominant demagnetization channel in the case of 800-nm excitation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14360v1-abstract-full').style.display = 'none'; document.getElementById('2408.14360v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12119">arXiv:2404.12119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.12119">pdf</a>, <a href="https://arxiv.org/format/2404.12119">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Controlling 4f antiferromagnetic dynamics via itinerant electronic susceptibility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sang-Eun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Windsor%2C+Y+W">Yoav William Windsor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zahn%2C+D">Daniela Zahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kraiker%2C+A">Alexej Kraiker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kummer%2C+K">Kurt Kummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kliemt%2C+K">Kristin Kliemt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krellner%2C+C">Cornelius Krellner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">Niko Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staub%2C+U">Urs Staub</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vyalikh%2C+D+V">Denis V. Vyalikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ernst%2C+A">Arthur Ernst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rettig%2C+L">Laurenz Rettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12119v1-abstract-short" style="display: inline;"> Optical manipulation of magnetism holds promise for future ultrafast spintronics, especially with lanthanides and their huge, localized 4f magnetic moments. These moments interact indirectly via the conduction electrons (RKKY exchange), influenced by interatomic orbital overlap, and the conduction electron susceptibility. Here, we study this influence in a series of 4f antiferromagnets, GdT2Si2 (T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12119v1-abstract-full').style.display = 'inline'; document.getElementById('2404.12119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12119v1-abstract-full" style="display: none;"> Optical manipulation of magnetism holds promise for future ultrafast spintronics, especially with lanthanides and their huge, localized 4f magnetic moments. These moments interact indirectly via the conduction electrons (RKKY exchange), influenced by interatomic orbital overlap, and the conduction electron susceptibility. Here, we study this influence in a series of 4f antiferromagnets, GdT2Si2 (T=Co, Rh, Ir), using ultrafast resonant X-ray diffraction. We observe a twofold increase in ultrafast angular momentum transfer between the materials, originating from modifications in the conduction electron susceptibility, as confirmed by first-principles calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12119v1-abstract-full').style.display = 'none'; document.getElementById('2404.12119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11739">arXiv:2403.11739</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.11739">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Tuning of the ultrafast demagnetization by ultrashort spin polarized currents in multi-sublattice ferrimagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gupta%2C+D">Deeksha Gupta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pankratova%2C+M">Maryna Pankratova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riepp%2C+M">Matthias Riepp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pereiro%2C+M">Manuel Pereiro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanyal%2C+B">Biplab Sanyal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ershadrad%2C+S">Soheil Ershadrad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hehn%2C+M">Michel Hehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">Niko Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abrudan%2C+R">Radu Abrudan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergeard%2C+N">Nicolas Bergeard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bergman%2C+A">Anders Bergman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eriksson%2C+O">Olle Eriksson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boeglin%2C+C">Christine Boeglin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11739v3-abstract-short" style="display: inline;"> Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. Several microscopic mechanisms have been proposed to explain the observations, including the transport of ultrashort spin-polarized hot-electrons (SPHE). Such ultrafast spin currents find growing interest because of the recent challenges in ultrafast spintronics however they are only poorly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11739v3-abstract-full').style.display = 'inline'; document.getElementById('2403.11739v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11739v3-abstract-full" style="display: none;"> Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. Several microscopic mechanisms have been proposed to explain the observations, including the transport of ultrashort spin-polarized hot-electrons (SPHE). Such ultrafast spin currents find growing interest because of the recent challenges in ultrafast spintronics however they are only poorly characterized. One of the key challenges is to characterize the spin-polarized ultrafast currents and the microscopic mechanisms behind SPHE induced manipulation of the magnetization, especially in the case of technologically relevant ferrimagnetic alloys. Here, we have used a combined approach using time- and element-resolved X-ray magnetic circular dichroism and theoretical calculations based on atomistic spin-dynamics simulations to address the ultrafast transfer of the angular momentum from spin-polarized currents into ferrimagnetic Fe74Gd26 films and the concomitant reduction of sub-lattice magnetization. Our study shows that using a Co/Pt multilayer as a polarizer in a spin-valve structure, the SPHE drives the demagnetization of the two sub-lattices of the Fe74Gd26 film. This behaviour is explained based on two physical mechanisms, i.e., spin transfer torque and thermal fluctuations induced by the SPHE. We provide a quantitative description of the heat transfer of the ultrashort SPHE pulse to the Fe74Gd26 films, as well as the degree of spin-polarization of the SPHE current density responsible for the observed magnetization dynamics. Our work finally characterizes the spin-polarization of the SPHEs revealing unexpected opposite spin polarization to the Co magnetization, explaining our experimental results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11739v3-abstract-full').style.display = 'none'; document.getElementById('2403.11739v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.05000">arXiv:2302.05000</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.05000">pdf</a>, <a href="https://arxiv.org/format/2302.05000">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.L220303">10.1103/PhysRevB.107.L220303 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photocarrier Transport of Ferroelectric Photovoltaic Thin Films Detected by the Magnetic Dynamics of Adjacent Ferromagnetic Layers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yujun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%2C+J">Ji Ma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ikeda%2C+K">Keisuke Ikeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirata%2C+Y">Yasuyuki Hirata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamagami%2C+K">Kohei Yamagami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">Niko Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+Y">Yuanhua Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nan%2C+C">Cewen Nan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadati%2C+H">Hiroki Wadati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.05000v1-abstract-short" style="display: inline;"> We have observed photocarrier transport behaviors in BiFeO$_3$/La$_{1-x}$Sr$_x$MnO$_3$~(BFO/LSMO) heterostructures by using time-resolved synchrotron x-ray magnetic circular dichroism in reflectivity. The magnetization of LSMO layers was used as a probe of photo-induced carrier dynamics in the photovoltaic BFO layers. During the photo-induced demagnetization process, the decay time of LSMO~($x$=0.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05000v1-abstract-full').style.display = 'inline'; document.getElementById('2302.05000v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.05000v1-abstract-full" style="display: none;"> We have observed photocarrier transport behaviors in BiFeO$_3$/La$_{1-x}$Sr$_x$MnO$_3$~(BFO/LSMO) heterostructures by using time-resolved synchrotron x-ray magnetic circular dichroism in reflectivity. The magnetization of LSMO layers was used as a probe of photo-induced carrier dynamics in the photovoltaic BFO layers. During the photo-induced demagnetization process, the decay time of LSMO~($x$=0.2) magnetization strongly depends on the ferroelectric polarization direction of the BFO layer. The variation of decay time should be attributed to the different sign of accumulated photocarriers at the BFO/LSMO interface induced by the photovoltaic effect of the BFO layer. The photocarriers can reach the BFO/LSMO interface and influence the magnetization distribution in the LSMO layers within the timescale of $\sim$100~ps. Our results provide a novel strategy to investigate carrier dynamics and mechanisms of optical control of magnetization in thin film heterostructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.05000v1-abstract-full').style.display = 'none'; document.getElementById('2302.05000v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.00789">arXiv:2207.00789</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.00789">pdf</a>, <a href="https://arxiv.org/format/2207.00789">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Robust magnetic order upon ultrafast excitation of an antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">Sang-Eun Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Windsor%2C+Y+W">Yoav William Windsor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kliemt%2C+K">Kristin Kliemt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krellner%2C+C">Cornelius Krellner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">Niko Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+M">Martin Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atxitia%2C+U">Unai Atxitia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vyalikh%2C+D+V">Denis V. Vyalikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rettig%2C+L">Laurenz Rettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.00789v1-abstract-short" style="display: inline;"> The ultrafast manipulation of magnetic order due to optical excitation is governed by the intricate flow of energy and momentum between the electron, lattice and spin subsystems. While various models are commonly employed to describe these dynamics, a prominent example being the microscopic three temperature model (M3TM), systematic, quantitative comparisons to both the dynamics of energy flow and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00789v1-abstract-full').style.display = 'inline'; document.getElementById('2207.00789v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.00789v1-abstract-full" style="display: none;"> The ultrafast manipulation of magnetic order due to optical excitation is governed by the intricate flow of energy and momentum between the electron, lattice and spin subsystems. While various models are commonly employed to describe these dynamics, a prominent example being the microscopic three temperature model (M3TM), systematic, quantitative comparisons to both the dynamics of energy flow and magnetic order are scarce. Here, we apply a M3TM to the ultrafast magnetic order dynamics of the layered antiferromagnet GdRh$_2$Si$_2$. The femtosecond dynamics of electronic temperature, surface ferromagnetic order, and bulk antiferromagnetic order were explored at various pump fluences employing time- and angle-resolved photoemission spectroscopy and time-resolved resonant magnetic soft x-ray diffraction, respectively. After optical excitation, both the surface ferromagnetic order and the bulk antiferromagnetic order dynamics exhibit two-step demagnetization behaviors with two similar timescales (&lt;1 ps, ~10 ps), indicating a strong exchange coupling between localized 4f and itinerant conduction electrons. Despite a good qualitative agreement, the M3TM predicts larger demagnetization than our experimental observation, which can be phenomenologically described by a transient, fluence-dependent increased N茅el temperature. Our results indicate that effects beyond a mean-field description have to be considered for a quantitative description of ultrafast magnetic order dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00789v1-abstract-full').style.display = 'none'; document.getElementById('2207.00789v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.03172">arXiv:2205.03172</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.03172">pdf</a>, <a href="https://arxiv.org/format/2205.03172">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Mapping the energy-time landscape of spins with helical X-rays </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">N. Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dewhurst%2C+J+K">J. K. Dewhurst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuessler-Langeheine%2C+C">C. Schuessler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jana%2C+S">S. Jana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmising%2C+C+v+K">C. v. Korff Schmising</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eisebitt%2C+S">S. Eisebitt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shallcross%2C+S">S. Shallcross</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+S">S. Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.03172v1-abstract-short" style="display: inline;"> Unveiling the key mechanisms that determine optically driven spin dynamics is essential both to probe the fundamental nature of ultrafast light-matter interactions, but also to drive future technologies of smaller, faster, and more energy efficient devices. Essential to this task is the ability to use experimental spectroscopic tools to evidence the underlying energy- and spin-resolved dynamics of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03172v1-abstract-full').style.display = 'inline'; document.getElementById('2205.03172v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.03172v1-abstract-full" style="display: none;"> Unveiling the key mechanisms that determine optically driven spin dynamics is essential both to probe the fundamental nature of ultrafast light-matter interactions, but also to drive future technologies of smaller, faster, and more energy efficient devices. Essential to this task is the ability to use experimental spectroscopic tools to evidence the underlying energy- and spin-resolved dynamics of non-equilibrium electron occupations. In this joint theory and experimental work, we demonstrate that ultrafast helicity-dependent soft X-ray absorption spectroscopy (HXAS) allows access to spin-, time- and energy specific state occupation after optical excitation. We apply this method to the prototype transition metal ferromagnet cobalt and find convincing agreement between theory and experiment. The richly structured energy-resolved spin dynamics unveil the subtle interplay and characteristic time scales of optical excitation and spin-orbit induced spin-flip transitions in this material: the spin moment integrated in an energy window below the Fermi level first exhibits an ultrafast increase as minority carriers are excited by the laser pulse, before it is reduced as spin-flip process in highly localized, low energy states start to dominate. The results of this study demonstrate the power of element specific transient HXAS, placing it as a potential new tool for identifying and determining the role of fundamental processes in optically driven spin dynamics in magnetic materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.03172v1-abstract-full').style.display = 'none'; document.getElementById('2205.03172v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.03280">arXiv:2201.03280</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.03280">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D2FD00005A">10.1039/D2FD00005A <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast manipulation of the NiO antiferromagnetic order via sub-gap optical excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">Xiaocui Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+R+Y">Robin Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vaskivskyi%2C+I">Igor Vaskivskyi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turenne%2C+D">Diego Turenne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shokeen%2C+V">Vishal Shokeen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaroslavtsev%2C+A">Alexander Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gr%C3%A5n%C3%A4s%2C+O">Oscar Gr氓n盲s</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knut%2C+R">Ronny Knut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schunck%2C+J+O">Jan O. Schunck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dziarzhytski%2C+S">Siarhei Dziarzhytski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brenner%2C+G">G眉nter Brenner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">Ru-Pan Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhlmann%2C+M">Marion Kuhlmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuschewski%2C+F">Frederik Kuschewski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bronsch%2C+W">Wibke Bronsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Styervoyedov%2C+A">Andriy Styervoyedov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parmigiani%2C+F">Fulvio Parmigiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eriksson%2C+O">Olle Eriksson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beye%2C+M">Martin Beye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrr%2C+H+A">Hermann A. D眉rr</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.03280v1-abstract-short" style="display: inline;"> Wide-band-gap insulators such as NiO offer the exciting prospect of coherently manipulating electronic correlations with strong optical fields. Contrary to metals where rapid dephasing of optical excitation via electronic processes occurs, the sub-gap excitation in charge-transfer insulators has been shown to couple to low-energy bosonic excitations. However, it is currently unknown if the bosonic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03280v1-abstract-full').style.display = 'inline'; document.getElementById('2201.03280v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.03280v1-abstract-full" style="display: none;"> Wide-band-gap insulators such as NiO offer the exciting prospect of coherently manipulating electronic correlations with strong optical fields. Contrary to metals where rapid dephasing of optical excitation via electronic processes occurs, the sub-gap excitation in charge-transfer insulators has been shown to couple to low-energy bosonic excitations. However, it is currently unknown if the bosonic dressing field is composed of phonons or magnons. Here we use the prototypical charge-transfer insulator NiO to demonstrate that 1.5 eV sub-gap optical excitation leads to a renormalised NiO band-gap in combination with a significant reduction of the antiferromagnetic order. We employ element-specific X-ray reflectivity at the FLASH free-electron laser to demonstrate the reduction of the upper band-edge at the O 1s-2p core-valence resonance (K-edge) whereas the antiferromagnetic order is probed via X-ray magnetic linear dichroism (XMLD) at the Ni 2p-3d resonance (L2-edge). Comparing the transient XMLD spectral line shape to ground-state measurements allows us to extract a spin temperature rise of 65 +/- 5 K for time delays longer than 400 fs while at earlier times a non-equilibrium spin state is formed. We identify transient mid-gap states being formed during the first 200 fs accompanied by a band-gap reduction lasting at least up to the maximum measured time delay of 2.4 ps. Electronic structure calculations indicate that magnon excitations significantly contribute to the reduction of the NiO band gap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.03280v1-abstract-full').style.display = 'none'; document.getElementById('2201.03280v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.03714">arXiv:2108.03714</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.03714">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-022-01206-4">10.1038/s41563-022-01206-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exchange scaling of ultrafast angular momentum transfer in 4$\it{f}$ antiferromagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Windsor%2C+Y+W">Y. W. Windsor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+S">S-E. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zahn%2C+D">D. Zahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisov%2C+V">V. Borisov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thonig%2C+D">D. Thonig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kliemt%2C+K">K. Kliemt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ernst%2C+A">A. Ernst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">N. Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staub%2C+U">U. Staub</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krellner%2C+C">C. Krellner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vyalikh%2C+D+V">D. V. Vyalikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Eriksson%2C+O">O. Eriksson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rettig%2C+L">L. Rettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.03714v1-abstract-short" style="display: inline;"> Ultrafast manipulation of the magnetic state of matter bears great potential for future information technologies. While demagnetisation in ferromagnets is governed by dissipation of angular momentum, materials with multiple spin sublattices, e.g. antiferromagnets, can allow direct angular momentum transfer between opposing spins, promising faster functionality. In lanthanides, 4$\it{f}$ magnetic e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03714v1-abstract-full').style.display = 'inline'; document.getElementById('2108.03714v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.03714v1-abstract-full" style="display: none;"> Ultrafast manipulation of the magnetic state of matter bears great potential for future information technologies. While demagnetisation in ferromagnets is governed by dissipation of angular momentum, materials with multiple spin sublattices, e.g. antiferromagnets, can allow direct angular momentum transfer between opposing spins, promising faster functionality. In lanthanides, 4$\it{f}$ magnetic exchange is mediated indirectly through the conduction electrons (the Ruderman-Kittel-Kasuya-Yosida interaction, RKKY), and the effect of such conditions on direct spin transfer processes is largely unexplored. Here, we investigate ultrafast magnetization dynamics in 4f antiferromagnets, and systematically vary the 4$\it{f}$ occupation, thereby altering the magnitude of RKKY. By combining time-resolved soft x-ray diffraction with ab-initio calculations, we find that the rate of direct transfer between opposing moments is directly determined by the magnitude of RKKY. Given the high sensitivity of RKKY to the conduction electrons, our results offer a novel approach for fine-tuning the speed of magnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.03714v1-abstract-full').style.display = 'none'; document.getElementById('2108.03714v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.09999">arXiv:2106.09999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.09999">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Optical control of 4f orbital state in rare-earth metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thielemann-K%C3%BChn%2C+N">N. Thielemann-K眉hn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amrhein%2C+T">T. Amrhein</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bronsch%2C+W">W. Bronsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jana%2C+S">S. Jana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">N. Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+R+Y">R. Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miedema%2C+P+S">P. S. Miedema</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Legut%2C+D">D. Legut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carva%2C+K">K. Carva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Atxitia%2C+U">U. Atxitia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Kuiken%2C+B+E">B. E. van Kuiken</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Teichmann%2C+M">M. Teichmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carley%2C+R+E">R. E. Carley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercadier%2C+L">L. Mercadier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaroslavtsev%2C+A">A. Yaroslavtsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mercurio%2C+G">G. Mercurio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guyader%2C+L+L">L. Le Guyader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Agarwal%2C+N">N. Agarwal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gort%2C+R">R. Gort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scherz%2C+A">A. Scherz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dziarzhytski%2C+S">S. Dziarzhytski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brenner%2C+G">G. Brenner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pressacco%2C+F">F. Pressacco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+R">R. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schunck%2C+J+O">J. O. Schunck</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.09999v4-abstract-short" style="display: inline;"> A change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth (RE) elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices. Thus, control of their localized 4f magnetic moments and anisotropy is one major challenge in ultrafas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09999v4-abstract-full').style.display = 'inline'; document.getElementById('2106.09999v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.09999v4-abstract-full" style="display: none;"> A change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth (RE) elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices. Thus, control of their localized 4f magnetic moments and anisotropy is one major challenge in ultrafast spin physics. With time-resolved X-ray absorption and resonant inelastic scattering experiments, we show for Tb metal that 4f-electronic excitations out of the ground state multiplet occur after optical pumping. These excitations are driven by inelastic 5d-4f-electron scattering, alter the 4f-orbital state and consequently the MCA with important implications for magnetization dynamics in 4f-metals, and more general for the excitation of localized electronic states in correlated materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.09999v4-abstract-full').style.display = 'none'; document.getElementById('2106.09999v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript (23 pages, 5 figures) and Supplementary Information (32 pages, 10 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07956">arXiv:2106.07956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.07956">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0080331">10.1063/5.0080331 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Experimental confirmation of the delayed Ni demagnetization in FeNi alloy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jana%2C+S">Somnath Jana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knut%2C+R">Ronny Knut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muralidhar%2C+S">Shreyas Muralidhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malik%2C+R+S">Rameez Saeed Malik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stefanuik%2C+R">Robert Stefanuik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%85kerman%2C+J">Johan 脜kerman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karis%2C+O">Olof Karis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">Niko Pontius</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07956v1-abstract-short" style="display: inline;"> Element-selective techniques are central for the understanding of ultrafast spin dynamics in multi-element materials like magnetic alloys. Recently, though, it turned out that the commonly used technique of transverse magneto-optical Kerr effect (T-MOKE) in the EUV range may have linearity issues including unwanted cross talk between different elemental signals. This problem can be sizeable, which&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07956v1-abstract-full').style.display = 'inline'; document.getElementById('2106.07956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07956v1-abstract-full" style="display: none;"> Element-selective techniques are central for the understanding of ultrafast spin dynamics in multi-element materials like magnetic alloys. Recently, though, it turned out that the commonly used technique of transverse magneto-optical Kerr effect (T-MOKE) in the EUV range may have linearity issues including unwanted cross talk between different elemental signals. This problem can be sizeable, which puts recent observations of ultrafast spin transfer from Fe to Ni sites in FeNi alloys into question. In this study, we investigate the Fe-to-Ni spin transfer in a cross-talk-free time-resolved X-ray magnetic circular dichroism (XMCD) experiment with a reliable time reference. We find a very similar Fe and Ni dynamics with XMCD as with T-MOKE from identical samples. Considering the non-linearities of the T-MOKE response, the agreement with our findings appears fortuitous. We discuss possible reasons why T-MOKE seems to give accurate results in this case. Our data provide the ongoing discussion about ultrafast spin-transfer mechanisms in FeNi systems with a sound experimental basis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07956v1-abstract-full').style.display = 'none'; document.getElementById('2106.07956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07926">arXiv:2106.07926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.07926">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Using the photo-induced $L_3$ resonance shift in Fe and Ni as time reference for ultrafast experiments at low flux soft X-ray sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jana%2C+S">Somnath Jana</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muralidhar%2C+S">Shreyas Muralidhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C3%85kerman%2C+J">Johan 脜kerman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">Niko Pontius</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07926v1-abstract-short" style="display: inline;"> We study the optical-pump induced ultrafast transient change of the X-ray absorption at the $L_3$ absorption resonances of the transition metals Ni and Fe in Fe$_{0.5}$Ni$_{0.5}$ alloy. We find the effect for both elements to occur simultaneously on a femtosecond timescale. This effect may hence be used as a handy cross-correlation scheme providing a time-zero reference for ultrafast optical-pump&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07926v1-abstract-full').style.display = 'inline'; document.getElementById('2106.07926v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07926v1-abstract-full" style="display: none;"> We study the optical-pump induced ultrafast transient change of the X-ray absorption at the $L_3$ absorption resonances of the transition metals Ni and Fe in Fe$_{0.5}$Ni$_{0.5}$ alloy. We find the effect for both elements to occur simultaneously on a femtosecond timescale. This effect may hence be used as a handy cross-correlation scheme providing a time-zero reference for ultrafast optical-pump soft X-ray-probe measurement. The method benefits from a relatively simple experimental setup as the sample itself acts as time-reference tool. In particular, this technique works with low flux ultrafast soft X-ray sources. The measurements are compared to the cross-correlation method introduced in an earlier publication. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07926v1-abstract-full').style.display = 'none'; document.getElementById('2106.07926v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.10083">arXiv:2105.10083</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.10083">pdf</a>, <a href="https://arxiv.org/format/2105.10083">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-022-00823-4">10.1038/s42005-022-00823-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photo-induced Antiferromagnetic-ferromagnetic Transition and Electronic Structure Modulation in GdBaCo$_2$O$_{5.5}$ Thin Film </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yujun Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katayama%2C+T">Tsukasa Katayama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chikamatsu%2C+A">Akira Chikamatsu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">Niko Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hirata%2C+Y">Yasuyuki Hirata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takubo%2C+K">Kou Takubo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamagami%2C+K">Kohei Yamagami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ikeda%2C+K">Keisuke Ikeda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+K">Kohei Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasegawa%2C+T">Tetsuya Hasegawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadati%2C+H">Hiroki Wadati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.10083v1-abstract-short" style="display: inline;"> We investigate both the ferromagnetic (FM) and antiferromagnetic (AFM) ultrafast dynamics of a strongly correlated oxide system, GdBaCo$_2$O$_{5.5}$ thin film, by time-resolved x-ray magnetic circular dichroism in reflectivity (XMCDR) and resonant magnetic x-ray diffraction (RMXD). A photo-induced AFM-FM transition characterized by an increase of the transient XMCDR beyond the unpumped value and a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10083v1-abstract-full').style.display = 'inline'; document.getElementById('2105.10083v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.10083v1-abstract-full" style="display: none;"> We investigate both the ferromagnetic (FM) and antiferromagnetic (AFM) ultrafast dynamics of a strongly correlated oxide system, GdBaCo$_2$O$_{5.5}$ thin film, by time-resolved x-ray magnetic circular dichroism in reflectivity (XMCDR) and resonant magnetic x-ray diffraction (RMXD). A photo-induced AFM-FM transition characterized by an increase of the transient XMCDR beyond the unpumped value and a decay of RMXD was observed. The photon-energy dependence of the transient XMCDR and reflectivity can likely be interpreted as a concomitant photo-induced spinstate transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.10083v1-abstract-full').style.display = 'none'; document.getElementById('2105.10083v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.16038">arXiv:2103.16038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.16038">pdf</a>, <a href="https://arxiv.org/format/2103.16038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac5f31">10.1088/1367-2630/ac5f31 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoinduced Transient States of Antiferromagnetic Orderings in La${}_{1/3}$Sr${}_{2/3}$FeO${}_{3}$ and SrFeO${}_{3}$ Thin Films Observed through Time-resolved Resonant Soft X-ray Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yamamoto%2C+K">Kohei Yamamoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsuyama%2C+T">Tomoyuki Tsuyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ito%2C+S">Suguru Ito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takubo%2C+K">Kou Takubo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matsuda%2C+I">Iwao Matsuda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">Niko Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minohara%2C+M">Makoto Minohara</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumigashira%2C+H">Hiroshi Kumigashira</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yamasaki%2C+Y">Yuichi Yamasaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakao%2C+H">Hironori Nakao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Murakami%2C+Y">Youichi Murakami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Katase%2C+T">Takayoshi Katase</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamiya%2C+T">Toshio Kamiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadati%2C+H">Hiroki Wadati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.16038v1-abstract-short" style="display: inline;"> The relationship between the magnetic interaction and photoinduced dynamics in antiferromagnetic perovskites is investigated in this study. In La${}_{1/3}$Sr${}_{2/3}$FeO${}_{3}$ thin films, commensurate spin ordering is accompanied by charge disproportionation, whereas SrFeO${}_{3}$ thin films show incommensurate helical antiferromagnetic spin ordering due to increased ferromagnetic coupling comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16038v1-abstract-full').style.display = 'inline'; document.getElementById('2103.16038v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.16038v1-abstract-full" style="display: none;"> The relationship between the magnetic interaction and photoinduced dynamics in antiferromagnetic perovskites is investigated in this study. In La${}_{1/3}$Sr${}_{2/3}$FeO${}_{3}$ thin films, commensurate spin ordering is accompanied by charge disproportionation, whereas SrFeO${}_{3}$ thin films show incommensurate helical antiferromagnetic spin ordering due to increased ferromagnetic coupling compared to La${}_{1/3}$Sr${}_{2/3}$FeO${}_{3}$. To understand the photoinduced spin dynamics in these materials, we investigate the spin ordering through time-resolved resonant soft X-ray scattering. In La${}_{1/3}$Sr${}_{2/3}$FeO${}_{3}$, ultrafast quenching of the magnetic ordering within 130 fs through a nonthermal process is observed, triggered by charge transfer between the Fe atoms. We compare this to the photoinduced dynamics of the helical magnetic ordering of SrFeO${}_{3}$. We find that the change in the magnetic coupling through optically induced charge transfer can offer an even more efficient channel for spin-order manipulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.16038v1-abstract-full').style.display = 'none'; document.getElementById('2103.16038v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.09665">arXiv:2012.09665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.09665">pdf</a>, <a href="https://arxiv.org/format/2012.09665">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.3.L022004">10.1103/PhysRevResearch.3.L022004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large response of charge stripes to uniaxial stress in $\textrm{La}_{1.475}\textrm{Nd}_{0.4}\textrm{Sr}_{0.125}\textrm{Cu}\textrm{O}_{4}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Boyle%2C+T+J">T. J. Boyle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+M">M. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ruiz%2C+A">A. Ruiz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Z">Z. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boschini%2C+F">F. Boschini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boyko%2C+T+D">T. D. Boyko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moore%2C+W">W. Moore</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tamura%2C+N">N. Tamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+F">F. He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gozar%2C+A">A. Gozar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+W">W. Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Komarek%2C+A+C">A. C. Komarek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frano%2C+A">A. Frano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neto%2C+E+H+d+S">E. H. da Silva Neto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.09665v1-abstract-short" style="display: inline;"> The La-based &#39;214&#39; cuprates host several symmetry breaking phases including superconductivity, charge and spin order in the form of stripes, and a structural othorhombic-to-tetragonal phase transition. Therefore, these materials are an ideal system to study the effects of uniaxial stress onto the various correlations that pervade the cuprate phase diagram. We report resonant x-ray scattering exper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09665v1-abstract-full').style.display = 'inline'; document.getElementById('2012.09665v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.09665v1-abstract-full" style="display: none;"> The La-based &#39;214&#39; cuprates host several symmetry breaking phases including superconductivity, charge and spin order in the form of stripes, and a structural othorhombic-to-tetragonal phase transition. Therefore, these materials are an ideal system to study the effects of uniaxial stress onto the various correlations that pervade the cuprate phase diagram. We report resonant x-ray scattering experiments on $\textrm{La}_{1.475}\textrm{Nd}_{0.4}\textrm{Sr}_{0.125}\textrm{Cu}\textrm{O}_{4}$ (LNSCO-125) that reveal a significant response of charge stripes to uniaxial tensile-stress of $\sim$ 0.1 GPa. These effects include a reduction of the onset temperature of stripes by $\sim$ 50 K, a 29 K reduction of the low-temperature orthorhombic-to-tetragonal transition, competition between charge order and superconductivity, and a preference for stripes to form along the direction of applied stress. Altogether, we observe a dramatic response of the electronic properties of LNSCO-125 to a modest amount of uniaxial stress. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.09665v1-abstract-full').style.display = 'none'; document.getElementById('2012.09665v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, Supplemental material available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 3, 022004 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.11115">arXiv:2008.11115</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.11115">pdf</a>, <a href="https://arxiv.org/format/2008.11115">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast modification of the electronic structure of a correlated insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Vaskivskyi%2C+O+G+I">O. Gr氓n盲s I. Vaskivskyi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+X">X. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thunstr%C3%B6m%2C+P">P. Thunstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghimire%2C+S">S. Ghimire</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knut%2C+R">R. Knut</a>, <a href="/search/cond-mat?searchtype=author&amp;query=S%C3%B6derstr%C3%B6m%2C+J">J. S枚derstr枚m</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kjellsson%2C+L">L. Kjellsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Turenne%2C+D">D. Turenne</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Engel%2C+R+Y">R. Y. Engel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beye%2C+M">M. Beye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lu%2C+J">J. Lu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reid%2C+A+H">A. H. Reid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlotter%2C+W">W. Schlotter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coslovich%2C+G">G. Coslovich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+M">M. Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kolesov%2C+G">G. Kolesov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Styervoyedov%2C+A">A. Styervoyedov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tancogne-Dejean%2C+N">N. Tancogne-Dejean</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sentef%2C+M+A">M. A. Sentef</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reis%2C+D+A">D. A. Reis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rubio%2C+A">A. Rubio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">S. S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Karis%2C+O">O. Karis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nordgren%2C+J">J. Nordgren</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.11115v2-abstract-short" style="display: inline;"> A non-trivial balance between Coulomb repulsion and kinematic effects determines the electronic structure of correlated electron materials. The use electromagnetic fields strong enough to rival these native microscopic interactions allows us to study the electronic response as well as the timescales and energies involved in using quantum effects for possible applications. We use element-specific t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11115v2-abstract-full').style.display = 'inline'; document.getElementById('2008.11115v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.11115v2-abstract-full" style="display: none;"> A non-trivial balance between Coulomb repulsion and kinematic effects determines the electronic structure of correlated electron materials. The use electromagnetic fields strong enough to rival these native microscopic interactions allows us to study the electronic response as well as the timescales and energies involved in using quantum effects for possible applications. We use element-specific transient x-ray absorption spectroscopy and high-harmonic generation to measure the response to ultrashort off-resonant optical fields in the prototypical correlated electron insulator NiO. Surprisingly, fields of up to 0.22 V/脜 leads to no detectable changes on the correlated Ni 3d-orbitals contrary to previous predictions. A transient directional charge transfer is uncovered, a behavior that is captured by first-principles theory. Our results highlight the importance of retardation effects in electronic screening, and pinpoints a key challenge in functionalizing correlated materials for ultrafast device operation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.11115v2-abstract-full').style.display = 'none'; document.getElementById('2008.11115v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figure, supplemental material not included in document</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.05268">arXiv:2008.05268</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.05268">pdf</a>, <a href="https://arxiv.org/format/2008.05268">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.214418">10.1103/PhysRevB.102.214418 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accelerating the laser-induced demagnetization of a ferromagnetic film by antiferromagnetic order in an adjacent layer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumberg%2C+I">Ivar Kumberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Golias%2C+E">Evangelos Golias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">Niko Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hosseinifar%2C+R">Rahil Hosseinifar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frischmuth%2C+K">Karl Frischmuth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gelen%2C+I">Ismet Gelen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shinwari%2C+T">Tauqir Shinwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thakur%2C+S">Sangeeta Thakur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BCssler-Langeheine%2C+C">Christian Sch眉ssler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oppeneer%2C+P">Peter Oppeneer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuch%2C+W">Wolfgang Kuch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.05268v1-abstract-short" style="display: inline;"> We study the ultrafast demagnetization of Ni/NiMn and Co/NiMn ferromagnetic/antiferromagnetic bilayer systems after excitation by a laser pulse. We probe the ferromagnetic order of Ni and Co using magnetic circular dichroism in time-resolved pump--probe resonant X-ray reflectivity. Tuning the sample temperature across the antiferromagnetic ordering temperature of the NiMn layer allows to investiga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05268v1-abstract-full').style.display = 'inline'; document.getElementById('2008.05268v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.05268v1-abstract-full" style="display: none;"> We study the ultrafast demagnetization of Ni/NiMn and Co/NiMn ferromagnetic/antiferromagnetic bilayer systems after excitation by a laser pulse. We probe the ferromagnetic order of Ni and Co using magnetic circular dichroism in time-resolved pump--probe resonant X-ray reflectivity. Tuning the sample temperature across the antiferromagnetic ordering temperature of the NiMn layer allows to investigate effects induced by the magnetic order of the latter. The presence of antiferromagnetic order in NiMn speeds up the demagnetization of the ferromagnetic layer, which is attributed to bidirectional laser-induced superdiffusive spin currents between the ferromagnetic and the antiferromagnetic layer. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.05268v1-abstract-full').style.display = 'none'; document.getElementById('2008.05268v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 214418 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.03544">arXiv:2007.03544</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.03544">pdf</a>, <a href="https://arxiv.org/ps/2007.03544">ps</a>, <a href="https://arxiv.org/format/2007.03544">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Charge disproportionation and nano phase separation in $R$SrNiO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+H">H. Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Z+W">Z. W. Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+F">C. F. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuo%2C+C+-">C. -Y. Kuo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perring%2C+T+G">T. G. Perring</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmidt%2C+W">W. Schmidt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piovano%2C+A">A. Piovano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmalzl%2C+K">K. Schmalzl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H+J">H. J. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C+T">C. T. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blanco-Canosa%2C+S">S. Blanco-Canosa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">J. Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hansmann%2C+P">P. Hansmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khomskii%2C+D+I">D. I. Khomskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Komarek%2C+A+C">A. C. Komarek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.03544v1-abstract-short" style="display: inline;"> We have successfully grown centimeter-sized layered $R$SrNiO$_4$ single crystals under high oxygen pressures of 120 bar by the floating zone technique. This enabled us to perform neutron scattering experiments where we observe close to quarter-integer magnetic peaks below $\sim$77 K that are accompanied by steep upwards dispersing spin excitations. Within the high-frequency Ni-O bond stretching ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03544v1-abstract-full').style.display = 'inline'; document.getElementById('2007.03544v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.03544v1-abstract-full" style="display: none;"> We have successfully grown centimeter-sized layered $R$SrNiO$_4$ single crystals under high oxygen pressures of 120 bar by the floating zone technique. This enabled us to perform neutron scattering experiments where we observe close to quarter-integer magnetic peaks below $\sim$77 K that are accompanied by steep upwards dispersing spin excitations. Within the high-frequency Ni-O bond stretching phonon dispersion, a softening at the propagation vector for a checkerboard modulation can be observed. Together with our spin wave simulations these observations reveal that this Ni$^{3+}$ system exhibits charge disproportionation with charges segregating into a checkerboard pattern within a nano phase separation scenario rather than showing a Jahn-Teller effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.03544v1-abstract-full').style.display = 'none'; document.getElementById('2007.03544v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Sci. Rep. 10, 18012 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.16061">arXiv:2006.16061</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.16061">pdf</a>, <a href="https://arxiv.org/format/2006.16061">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.126.107202">10.1103/PhysRevLett.126.107202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast optically induced ferromagnetic state in an elemental antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Golias%2C+E">E. Golias</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumberg%2C+I">I. Kumberg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gelen%2C+I">I. Gelen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thakur%2C+S">S. Thakur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=G%C3%B6rdes%2C+J">J. G枚rdes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hosseinifar%2C+R">R. Hosseinifar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guillet%2C+Q">Q. Guillet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dewhurst%2C+J+K">J. K. Dewhurst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sharma%2C+S">S. Sharma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">N. Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuch%2C+W">W. Kuch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.16061v4-abstract-short" style="display: inline;"> We present evidence for an ultrafast optically induced ferromagnetic alignment of antiferromagnetic Mn in Co/Mn multilayers. We observe the transient ferromagnetic signal at the arrival of the pump pulse at the Mn L$_3$ resonance using x-ray magnetic circular dichroism in reflectivity. The timescale of the effect is comparable to the duration of the excitation and occurs before the magnetization i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16061v4-abstract-full').style.display = 'inline'; document.getElementById('2006.16061v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.16061v4-abstract-full" style="display: none;"> We present evidence for an ultrafast optically induced ferromagnetic alignment of antiferromagnetic Mn in Co/Mn multilayers. We observe the transient ferromagnetic signal at the arrival of the pump pulse at the Mn L$_3$ resonance using x-ray magnetic circular dichroism in reflectivity. The timescale of the effect is comparable to the duration of the excitation and occurs before the magnetization in Co is quenched. Theoretical calculations point to the imbalanced population of Mn unoccupied states caused by the Co interface for the emergence of this transient ferromagnetic state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.16061v4-abstract-full').style.display = 'none'; document.getElementById('2006.16061v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 126, 107202 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.01398">arXiv:2002.01398</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.01398">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-020-00407-0">10.1038/s42005-020-00407-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deterministic control of an antiferromagnetic spin arrangement using ultrafast optical excitation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Windsor%2C+Y+W">Y. W. Windsor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ernst%2C+A">A. Ernst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kummer%2C+K">K. Kummer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kliemt%2C+K">K. Kliemt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Ch. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">N. Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staub%2C+U">U. Staub</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chulkov%2C+E+V">E. V. Chulkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krellner%2C+C">C. Krellner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vyalikh%2C+D+V">D. V. Vyalikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rettig%2C+L">L. Rettig</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.01398v1-abstract-short" style="display: inline;"> A central prospect of antiferromagnetic spintronics is to exploit magnetic properties that are unavailable with ferromagnets. However, this poses the challenge of accessing such properties for readout and control. To this end, light-induced manipulation of the transient ground state, e.g. by changing the magnetic anisotropy potential, opens promising pathways towards ultrafast deterministic contro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.01398v1-abstract-full').style.display = 'inline'; document.getElementById('2002.01398v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.01398v1-abstract-full" style="display: none;"> A central prospect of antiferromagnetic spintronics is to exploit magnetic properties that are unavailable with ferromagnets. However, this poses the challenge of accessing such properties for readout and control. To this end, light-induced manipulation of the transient ground state, e.g. by changing the magnetic anisotropy potential, opens promising pathways towards ultrafast deterministic control of antiferromagnetism. Here, we use this approach to trigger a $\it{coherent}$ rotation of the entire long-range antiferromagnetic spin arrangement about a crystalline axis in $GdRh_2Si_2$ and demonstrate $\it{deterministic}$ control of this rotation upon ultrafast optical excitation. Our observations can be explained by a displacive excitation of the Gd spins$&#39;$ local anisotropy potential by the optical excitation, allowing for a full description of this transient magnetic anisotropy potential. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.01398v1-abstract-full').style.display = 'none'; document.getElementById('2002.01398v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 3, 139 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07306">arXiv:1912.07306</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07306">pdf</a>, <a href="https://arxiv.org/format/1912.07306">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.057001">10.1103/PhysRevLett.127.057001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of spin dynamics in a layered nickelate using x-ray photon correlation spectroscopy: Evidence for intrinsic destabilization of incommensurate stripes at low temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ricci%2C+A">Alessandro Ricci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poccia%2C+N">Nicola Poccia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Campi%2C+G">Gaetano Campi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+S">Shrawan Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+L">Leonard M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joseph%2C+B">Boby Joseph</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+B">Bo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zozulya%2C+A">Alexey Zozulya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchholz%2C+M">Marcel Buchholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trabant%2C+C">Christoph Trabant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J+C+T">James C. T. Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Viefhaus%2C+J">Jens Viefhaus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goedkoop%2C+J+B">Jeroen B. Goedkoop</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nugroho%2C+A+A">Agustinus Agung Nugroho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braden%2C+M">Markus Braden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07306v2-abstract-short" style="display: inline;"> We study the temporal stability of stripe-type spin order in a layered nickelate with X-ray photon correlation spectroscopy and observe fluctuations on time scales of tens of minutes over a wide temperature range. These fluctuations show an anomalous temperature dependence: they slow down at intermediate temperatures and speed up both upon heating and cooling. This behavior appears to be directly&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07306v2-abstract-full').style.display = 'inline'; document.getElementById('1912.07306v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07306v2-abstract-full" style="display: none;"> We study the temporal stability of stripe-type spin order in a layered nickelate with X-ray photon correlation spectroscopy and observe fluctuations on time scales of tens of minutes over a wide temperature range. These fluctuations show an anomalous temperature dependence: they slow down at intermediate temperatures and speed up both upon heating and cooling. This behavior appears to be directly connected with spatial correlations: stripes fluctuate slowly when stripe correlation lengths are large and become faster when spatial correlations decrease. A low-temperature decay of nickelate stripe correlations, reminiscent of what occurs in cuprates due to a competition between stripes and superconductivity, hence occurs via loss of both spatial and temporal correlations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07306v2-abstract-full').style.display = 'none'; document.getElementById('1912.07306v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 057001 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.02124">arXiv:1905.02124</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.02124">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/condmat4030077">10.3390/condmat4030077 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct Visualization of Spatial inhomogeneity of Spin Stripes Order in La1.72Sr0.28NiO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Campi%2C+G">Gaetano Campi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Poccia%2C+N">Nicola Poccia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joseph%2C+B">Boby Joseph</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bianconi%2C+A">Antonio Bianconi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mishra%2C+S">Shrawan Mishra</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+J">James Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roy%2C+S">Sujoy Roy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nugroho%2C+A+A">Agustinus Agung Nugroho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchholz%2C+M">Marcel Buchholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braden%2C+M">Markus Braden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trabant%2C+C">Christoph Trabant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zozulya%2C+A">Alexey Zozulya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muller%2C+L">Leonard Muller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Viefhaus%2C+J">Jens Viefhaus</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schussler-Langeheine%2C+C">Christian Schussler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sprung%2C+M">Michael Sprung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ricci%2C+A">Alessandro Ricci</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.02124v2-abstract-short" style="display: inline;"> In several strongly correlated electron systems, defects, charge and local lattice distortions are found to show complex inhomogeneous spatial distributions. There is growing evidence that such inhomogeneity plays a fundamental role in unique functionality of quantum complex materials. La1.72Sr0.28NiO4 is a prototypical strongly correlated material showing spin striped order associated with lattic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02124v2-abstract-full').style.display = 'inline'; document.getElementById('1905.02124v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.02124v2-abstract-full" style="display: none;"> In several strongly correlated electron systems, defects, charge and local lattice distortions are found to show complex inhomogeneous spatial distributions. There is growing evidence that such inhomogeneity plays a fundamental role in unique functionality of quantum complex materials. La1.72Sr0.28NiO4 is a prototypical strongly correlated material showing spin striped order associated with lattice and charge modulations. In this work we present the spatial distribution of the spin organization by applying micro X-ray diffraction to La1.72Sr0.28NiO4, mapping the spin-density-wave order below the 120K onset temperature. We find that the spin-density-wave order shows the formation of nanoscale puddles with large spatial fluctuations. The nano-puddle density changes on the microscopic scale forming a multiscale phase separation extending from nanoscale to micron scale with scale-free distribution. Indeed spin-density-wave striped puddles are disconnected by spatial regions with different stripe orientation or negligible spin-density-wave order. The present work highlights the complex nanoscale phase separation of spin stripes in nickelate perovskites and opens the question of the energetics at domain interfaces <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.02124v2-abstract-full').style.display = 'none'; document.getElementById('1905.02124v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Condens. Matter 2019, 4(3), 77 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.03689">arXiv:1703.03689</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.03689">pdf</a>, <a href="https://arxiv.org/format/1703.03689">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.119.197202">10.1103/PhysRevLett.119.197202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast and Energy-Efficient Quenching of Spin Order: Antiferromagnetism Beats Ferromagnetism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Thielemann-K%C3%BChn%2C+N">Nele Thielemann-K眉hn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schick%2C+D">Daniel Schick</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">Niko Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trabant%2C+C">Christoph Trabant</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mitzner%2C+R">Rolf Mitzner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holldack%2C+K">Karsten Holldack</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabel%2C+H">Hartmut Zabel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=F%C3%B6hlisch%2C+A">Alexander F枚hlisch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">Christian Sch眉脽ler-Langeheine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.03689v3-abstract-short" style="display: inline;"> By comparing femtosecond laser pulse induced ferro- and antiferromagnetic dynamics in one and the same material - metallic dysprosium - we show both to behave fundamentally different. Antiferromagnetic order is considerably faster and much more efficiently manipulated by optical excitation than its ferromagnetic counterpart. We assign the fast and extremely efficient process in the antiferromagnet&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03689v3-abstract-full').style.display = 'inline'; document.getElementById('1703.03689v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.03689v3-abstract-full" style="display: none;"> By comparing femtosecond laser pulse induced ferro- and antiferromagnetic dynamics in one and the same material - metallic dysprosium - we show both to behave fundamentally different. Antiferromagnetic order is considerably faster and much more efficiently manipulated by optical excitation than its ferromagnetic counterpart. We assign the fast and extremely efficient process in the antiferromagnet to an interatomic transfer of angular momentum within the spin system. Our findings do not only reveal this angular momentum transfer channel effective in antiferromagnets and other magnetic structures with non-parallel spin alignment, they also point out a possible route towards energy-efficient spin manipulation for magnetic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.03689v3-abstract-full').style.display = 'none'; document.getElementById('1703.03689v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 figures, supplemental material included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 119, 197202 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.05315">arXiv:1511.05315</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.05315">pdf</a>, <a href="https://arxiv.org/format/1511.05315">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.257202">10.1103/PhysRevLett.116.257202 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Itinerant and localized magnetization dynamics in antiferromagnetic Ho </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Rettig%2C+L">L. Rettig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dornes%2C+C">C. Dornes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thielemann-Kuehn%2C+N">N. Thielemann-Kuehn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">N. Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabel%2C+H">H. Zabel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlagel%2C+D+L">D. L. Schlagel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lograsso%2C+T+A">T. A. Lograsso</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chollet%2C+M">M. Chollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robert%2C+A">A. Robert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sikorski%2C+M">M. Sikorski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+S">S. Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glownia%2C+J+M">J. M. Glownia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuessler-Langeheine%2C+C">C. Schuessler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnson%2C+S+L">S. L. Johnson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Staub%2C+U">U. Staub</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.05315v1-abstract-short" style="display: inline;"> Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E1, 2p -&gt; 5d) or quadrupole (E2, 2p -&gt; 4f) transition allows us to selectively and independently study the spin dynamics of the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05315v1-abstract-full').style.display = 'inline'; document.getElementById('1511.05315v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.05315v1-abstract-full" style="display: none;"> Using femtosecond time-resolved resonant magnetic x-ray diffraction at the Ho L3 absorption edge, we investigate the demagnetization dynamics in antiferromagnetically ordered metallic Ho after femtosecond optical excitation. Tuning the x-ray energy to the electric dipole (E1, 2p -&gt; 5d) or quadrupole (E2, 2p -&gt; 4f) transition allows us to selectively and independently study the spin dynamics of the itinerant 5d and localized 4f electronic subsystems via the suppression of the magnetic (2 1 3-tau ) satellite peak. We find demagnetization timescales very similar to ferromagnetic 4f systems, suggesting that the loss of magnetic order occurs via a similar spin-flip process in both cases. The simultaneous demagnetization of both subsystems demonstrates strong intra-atomic 4f-5d exchange coupling. In addition, an ultrafast lattice contraction due to the release of magnetostriction leads to a transient shift of the magnetic satellite peak. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.05315v1-abstract-full').style.display = 'none'; document.getElementById('1511.05315v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 257202 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.03365">arXiv:1511.03365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.03365">pdf</a>, <a href="https://arxiv.org/ps/1511.03365">ps</a>, <a href="https://arxiv.org/format/1511.03365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.116.256402">10.1103/PhysRevLett.116.256402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoinduced demagnetization and insulator-to-metal transition in ferromagnetic insulating BaFeO$_3$ thin films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tsuyama%2C+T">T. Tsuyama</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chakraverty%2C+S">S. Chakraverty</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pontius%2C+N">N. Pontius</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schussler-Langeheine%2C+C">C. Schussler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wadati%2C+H">H. Wadati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.03365v1-abstract-short" style="display: inline;"> We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO3 thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (~ 150 ps) to fast (&lt; 70 ps) to a transition int&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03365v1-abstract-full').style.display = 'inline'; document.getElementById('1511.03365v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.03365v1-abstract-full" style="display: none;"> We studied the electronic and magnetic dynamics of ferromagnetic insulating BaFeO3 thin films by using pump-probe time-resolved resonant x-ray reflectivity at the Fe 2p edge. By changing the excitation density, we found two distinctly different types of demagnetization with a clear threshold behavior. We assigned the demagnetization change from slow (~ 150 ps) to fast (&lt; 70 ps) to a transition into a metallic state induced by laser excitation. These results provide a novel approach for locally tuning magnetic dynamics. In analogy to heat assisted magnetic recording, metallization can locally tune the susceptibility for magnetic manipulation, allowing to spatially encode magnetic information. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03365v1-abstract-full').style.display = 'none'; document.getElementById('1511.03365v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 116, 256402 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1308.0185">arXiv:1308.0185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1308.0185">pdf</a>, <a href="https://arxiv.org/format/1308.0185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/srep02299">10.1038/srep02299 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic superlattice revealed by resonant scattering from random impurities in Sr3Ru2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+A">M. A. Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zegkinoglou%2C+I">I. Zegkinoglou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">J. Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bohnenbuck%2C+B">B. Bohnenbuck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzalez%2C+A+G+C">A. G. Cruz Gonzalez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H+-">H. -H. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schussler-Langeheine%2C+C">C. Schussler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J+D">J. D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathieu%2C+R">R. Mathieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Satow%2C+S">S. Satow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+Y">Y. Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1308.0185v1-abstract-short" style="display: inline;"> Resonant elastic x-ray scattering (REXS) is an exquisite element-sensitive tool for the study of subtle charge, orbital, and spin superlattice orders driven by the valence electrons, which therefore escape detection in conventional x-ray diffraction (XRD). Although the power of REXS has been demonstrated by numerous studies of complex oxides performed in the soft x-ray regime, the cross section an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.0185v1-abstract-full').style.display = 'inline'; document.getElementById('1308.0185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1308.0185v1-abstract-full" style="display: none;"> Resonant elastic x-ray scattering (REXS) is an exquisite element-sensitive tool for the study of subtle charge, orbital, and spin superlattice orders driven by the valence electrons, which therefore escape detection in conventional x-ray diffraction (XRD). Although the power of REXS has been demonstrated by numerous studies of complex oxides performed in the soft x-ray regime, the cross section and photon wavelength of the material-specific elemental absorption edges ultimately set the limit to the smallest superlattice amplitude and periodicity one can probe. Here we show -- with simulations and REXS on Mn-substituted Sr$_3$Ru$_2$O$_7$ -- that these limitations can be overcome by performing resonant scattering experiments at the absorption edge of a suitably-chosen, dilute impurity. This establishes that -- in analogy with impurity-based methods used in electron-spin-resonance, nuclear-magnetic resonance, and M枚ssbauer spectroscopy -- randomly distributed impurities can serve as a non-invasive, but now momentum-dependent probe, greatly extending the applicability of resonant x-ray scattering techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1308.0185v1-abstract-full').style.display = 'none'; document.getElementById('1308.0185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Scientific Reports 3, 2299 (2013) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1101.2548">arXiv:1101.2548</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1101.2548">pdf</a>, <a href="https://arxiv.org/format/1101.2548">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.83.073105">10.1103/PhysRevB.83.073105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic and extrinsic x-ray absorption effects in soft x-ray diffraction from the superstructure in magnetite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+F">C. F. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">J. Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchholz%2C+M">M. Buchholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitz%2C+D">D. Schmitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ott%2C+H">H. Ott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Willers%2C+T">T. Willers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Metcalf%2C+P">P. Metcalf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuessler-Langeheine%2C+C">C. Schuessler-Langeheine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1101.2548v1-abstract-short" style="display: inline;"> We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved single crystals. From the comparison we have been able to determine quantitatively the contribution of intrinsic absorption effects, thereby arriving&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.2548v1-abstract-full').style.display = 'inline'; document.getElementById('1101.2548v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1101.2548v1-abstract-full" style="display: none;"> We studied the (001/2) diffraction peak in the low-temperature phase of magnetite (Fe3O4) using resonant soft x-ray diffraction (RSXD) at the Fe-L2,3 and O-K resonance. We studied both molecular-beam-epitaxy (MBE) grown thin films and in-situ cleaved single crystals. From the comparison we have been able to determine quantitatively the contribution of intrinsic absorption effects, thereby arriving at a consistent result for the (001/2) diffraction peak spectrum. Our data also allow for the identification of extrinsic effects, e.g. for a detailed modeling of the spectra in case a &#34;dead&#34; surface layer is present that is only absorbing photons but does not contribute to the scattering signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1101.2548v1-abstract-full').style.display = 'none'; document.getElementById('1101.2548v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in Phys. Rev. B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0906.0035">arXiv:0906.0035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0906.0035">pdf</a>, <a href="https://arxiv.org/ps/0906.0035">ps</a>, <a href="https://arxiv.org/format/0906.0035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetic Superstructure and Metal-Insulator Transition in Mn-Substituted Sr3Ru2O7 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+A">M. A. Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bohnenbuck%2C+B">B. Bohnenbuck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chuang%2C+Y+-">Y. -D. Chuang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gonzalez%2C+A+G+C">A. G. Cruz Gonzalez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zegkinoglou%2C+I">I. Zegkinoglou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">J. Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H+-">H. -H. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schussler-Langeheine%2C+C">C. Schussler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mathieu%2C+R">R. Mathieu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Satow%2C+S">S. Satow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Takagi%2C+H">H. Takagi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+Y">Y. Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J+D">J. D. Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elfimov%2C+I+S">I. S. Elfimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hussain%2C+Z">Z. Hussain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Damascelli%2C+A">A. Damascelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0906.0035v1-abstract-short" style="display: inline;"> We present a temperature-dependent resonant elastic soft x-ray scattering (REXS) study of the metal-insulator transition in Sr3(Ru1-xMnx)2O7, performed at both Ru and Mn L-edges. Resonant magnetic superstructure reflections, which indicate an incipient instability of the parent compound, are detected below the transition. Based on modelling of the REXS intensity from randomly distributed Mn impu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.0035v1-abstract-full').style.display = 'inline'; document.getElementById('0906.0035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0906.0035v1-abstract-full" style="display: none;"> We present a temperature-dependent resonant elastic soft x-ray scattering (REXS) study of the metal-insulator transition in Sr3(Ru1-xMnx)2O7, performed at both Ru and Mn L-edges. Resonant magnetic superstructure reflections, which indicate an incipient instability of the parent compound, are detected below the transition. Based on modelling of the REXS intensity from randomly distributed Mn impurities, we establish the inhomogeneous nature of the metal-insulator transition, with an effective percolation threshold corresponding to an anomalously low x&lt;0.05 Mn substitution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0906.0035v1-abstract-full').style.display = 'none'; document.getElementById('0906.0035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A high-resolution version can be found at http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/MnSRO_REXS.pdf</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.1632">arXiv:0903.1632</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0903.1632">pdf</a>, <a href="https://arxiv.org/ps/0903.1632">ps</a>, <a href="https://arxiv.org/format/0903.1632">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.80.085308">10.1103/PhysRevB.80.085308 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxy, stoichiometry, and magnetic properties of Gd-doped EuO films on YSZ (001) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Altendorf%2C+S+G">S. G. Altendorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coloru%2C+B">B. Coloru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haupricht%2C+T">T. Haupricht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+F">C. F. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hollmann%2C+N">N. Hollmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kierspel%2C+H">H. Kierspel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mydosh%2C+J+A">J. A. Mydosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsieh%2C+H+H">H. H. Hsieh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H+-">H. -J. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C+T">C. T. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.1632v3-abstract-short" style="display: inline;"> We have succeeded in preparing high-quality Gd-doped single-crystalline EuO films. Using Eu-distillation-assisted molecular beam epitaxy and a systematic variation in the Gd and oxygen deposition rates, we have been able to observe sustained layer-by-layer epitaxial growth on yttria-stabilized cubic zirconia (001). The presence of Gd helps to stabilize the layer-by-layer growth mode. We used sof&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.1632v3-abstract-full').style.display = 'inline'; document.getElementById('0903.1632v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.1632v3-abstract-full" style="display: none;"> We have succeeded in preparing high-quality Gd-doped single-crystalline EuO films. Using Eu-distillation-assisted molecular beam epitaxy and a systematic variation in the Gd and oxygen deposition rates, we have been able to observe sustained layer-by-layer epitaxial growth on yttria-stabilized cubic zirconia (001). The presence of Gd helps to stabilize the layer-by-layer growth mode. We used soft x-ray absorption spectroscopy at the Eu and Gd M4,5 edges to confirm the absence of Eu3+ contaminants and to determine the actual Gd concentration. The distillation process ensures the absence of oxygen vacancies in the films. From magnetization measurements we found the Curie temperature to increase smoothly as a function of doping from 70 K up to a maximum of 125 K. A threshold behavior was not observed for concentrations as low as 0.2%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.1632v3-abstract-full').style.display = 'none'; document.getElementById('0903.1632v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 80, 085308 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0903.0994">arXiv:0903.0994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0903.0994">pdf</a>, <a href="https://arxiv.org/ps/0903.0994">ps</a>, <a href="https://arxiv.org/format/0903.0994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Static and fluctuating stripe order observed by resonant soft x-ray diffraction in La1.8Sr0.2NiO4 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">J. Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+F">C. F. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feyerherm%2C+R">R. Feyerherm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ott%2C+H">H. Ott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Friedt%2C+O">O. Friedt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dudzik%2C+E">E. Dudzik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hung%2C+H+-">H. -H. Hung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benomar%2C+M">M. Benomar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braden%2C+M">M. Braden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuessler-Langeheine%2C+C">C. Schuessler-Langeheine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0903.0994v1-abstract-short" style="display: inline;"> We studied the stripe phase of La1.8Sr0.2NiO4 using neutron diffraction, resonant soft x-ray diffraction (RSXD) at the Ni L2,3 edges, and resonant x-ray diffraction (RXD) at the Ni K threshold. Differences in the q-space resolution of the different techniques have to be taken into account for a proper evaluation of diffraction intensities associated with the spin and charge order superstructures&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.0994v1-abstract-full').style.display = 'inline'; document.getElementById('0903.0994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0903.0994v1-abstract-full" style="display: none;"> We studied the stripe phase of La1.8Sr0.2NiO4 using neutron diffraction, resonant soft x-ray diffraction (RSXD) at the Ni L2,3 edges, and resonant x-ray diffraction (RXD) at the Ni K threshold. Differences in the q-space resolution of the different techniques have to be taken into account for a proper evaluation of diffraction intensities associated with the spin and charge order superstructures. We find that in the RSXD experiment the spin and charge order peaks show the same temperature dependence. In the neutron experiment by contrast, the spin and charge signals follow quite different temperature behaviors. We infer that fluctuating magnetic order contributes considerably to the magnetic RSXD signal and we suggest that this result may open an interesting experimental approach to search for fluctuating order in other systems by comparing RSXD and neutron diffraction data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0903.0994v1-abstract-full').style.display = 'none'; document.getElementById('0903.0994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 March, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2009. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0902.0330">arXiv:0902.0330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0902.0330">pdf</a>, <a href="https://arxiv.org/ps/0902.0330">ps</a>, <a href="https://arxiv.org/format/0902.0330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.79.205318">10.1103/PhysRevB.79.205318 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Epitaxial and layer-by-layer growth of EuO thin films on yttria-stabilized cubic zirconia (001) using MBE distillation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sutarto%2C+R">R. Sutarto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Altendorf%2C+S+G">S. G. Altendorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coloru%2C+B">B. Coloru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sala%2C+M+M">M. Moretti Sala</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haupricht%2C+T">T. Haupricht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+F">C. F. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hollmann%2C+N">N. Hollmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kierspel%2C+H">H. Kierspel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsieh%2C+H+H">H. H. Hsieh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H+-">H. -J. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C+T">C. T. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0902.0330v2-abstract-short" style="display: inline;"> We have succeeded in growing epitaxial and highly stoichiometric films of EuO on yttria-stabilized cubic zirconia (YSZ) (001). The use of the Eu-distillation process during the molecular beam epitaxy assisted growth enables the consistent achievement of stoichiometry. We have also succeeded in growing the films in a layer-by-layer fashion by fine tuning the Eu vs. oxygen deposition rates. The in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.0330v2-abstract-full').style.display = 'inline'; document.getElementById('0902.0330v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0902.0330v2-abstract-full" style="display: none;"> We have succeeded in growing epitaxial and highly stoichiometric films of EuO on yttria-stabilized cubic zirconia (YSZ) (001). The use of the Eu-distillation process during the molecular beam epitaxy assisted growth enables the consistent achievement of stoichiometry. We have also succeeded in growing the films in a layer-by-layer fashion by fine tuning the Eu vs. oxygen deposition rates. The initial stages of growth involve the limited supply of oxygen from the YSZ substrate, but the EuO stoichiometry can still be well maintained. The films grown were sufficiently smooth so that the capping with a thin layer of aluminum was leak tight and enabled ex situ experiments free from trivalent Eu species. The findings were used to obtain recipes for better epitaxial growth of EuO on MgO (001). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0902.0330v2-abstract-full').style.display = 'none'; document.getElementById('0902.0330v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 February, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2009. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 15 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 79, 205318 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0812.3024">arXiv:0812.3024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0812.3024">pdf</a>, <a href="https://arxiv.org/ps/0812.3024">ps</a>, <a href="https://arxiv.org/format/0812.3024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.102.037205">10.1103/PhysRevLett.102.037205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic structure of RuSr$_2$GdCu$_2$O$_8$ determined by resonant x-ray diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bohnenbuck%2C+B">B. Bohnenbuck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zegkinoglou%2C+I">I. Zegkinoglou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Strempfer%2C+J">J. Strempfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nelson%2C+C+S">C. S. Nelson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H+-">H. -H. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reehuis%2C+M">M. Reehuis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leininger%2C+P">Ph. Leininger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herrmannsd%C3%B6rfer%2C+T">T. Herrmannsd枚rfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+J+C">J. C. Lang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Srajer%2C+G">G. Srajer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C+T">C. T. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0812.3024v1-abstract-short" style="display: inline;"> X-ray diffraction with photon energies near the Ru L$_2$-absorption edge was used to detect resonant reflections characteristic of a G-type superstructure in RuSr$_2$GdCu$_2$O$_8$ single crystals. A polarization analysis confirms that these reflections are due to magnetic order of Ru moments, and the azimuthal-angle dependence of the scattering amplitude reveals that the moments lie along a low-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0812.3024v1-abstract-full').style.display = 'inline'; document.getElementById('0812.3024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0812.3024v1-abstract-full" style="display: none;"> X-ray diffraction with photon energies near the Ru L$_2$-absorption edge was used to detect resonant reflections characteristic of a G-type superstructure in RuSr$_2$GdCu$_2$O$_8$ single crystals. A polarization analysis confirms that these reflections are due to magnetic order of Ru moments, and the azimuthal-angle dependence of the scattering amplitude reveals that the moments lie along a low-symmetry axis with substantial components parallel and perpendicular to the RuO$_2$ layers. Complemented by susceptibility data and a symmetry analysis of the magnetic structure, these results reconcile many of the apparently contradictory findings reported in the literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0812.3024v1-abstract-full').style.display = 'none'; document.getElementById('0812.3024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 102, 037205 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0810.1926">arXiv:0810.1926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0810.1926">pdf</a>, <a href="https://arxiv.org/ps/0810.1926">ps</a>, <a href="https://arxiv.org/format/0810.1926">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3246788">10.1063/1.3246788 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of the SrTiO$_3$/LaAlO$_3$ interface revealed by resonant soft x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wadati%2C+H">H. Wadati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hawthorn%2C+D+G">D. G. Hawthorn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geck%2C+J">J. Geck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Higuchi%2C+T">T. Higuchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hikita%2C+Y">Y. Hikita</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hwang%2C+H+Y">H. Y. Hwang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+S+-">S. -W. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+D+J">D. J. Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H+-">H. -J. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schussler-Langeheine%2C+C">C. Schussler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H+-">H. -H. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0810.1926v1-abstract-short" style="display: inline;"> We investigated the electronic structure of the SrTiO$_3$/LaAlO$_3$ superlattice (SL) by resonant soft x-ray scattering. The (003) peak, which is forbidden for our &#34;ideal&#34; SL structure, was observed at all photon energies, indicating reconstruction at the interface. From the peak position analyses taking into account the effects of refraction, we obtained evidence for electronic reconstruction o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.1926v1-abstract-full').style.display = 'inline'; document.getElementById('0810.1926v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0810.1926v1-abstract-full" style="display: none;"> We investigated the electronic structure of the SrTiO$_3$/LaAlO$_3$ superlattice (SL) by resonant soft x-ray scattering. The (003) peak, which is forbidden for our &#34;ideal&#34; SL structure, was observed at all photon energies, indicating reconstruction at the interface. From the peak position analyses taking into account the effects of refraction, we obtained evidence for electronic reconstruction of Ti 3d and O $2p$ states at the interface. From reflectivity analyses, we concluded that the AlO$_2$/LaO/TiO$_2$/SrO and the TiO$_2$/SrO/AlO$_2$/LaO interfaces are quite different, leading to highly asymmetric properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0810.1926v1-abstract-full').style.display = 'none'; document.getElementById('0810.1926v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2008. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Appl. Phys. 106, 083705 (2009) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0805.4341">arXiv:0805.4341</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0805.4341">pdf</a>, <a href="https://arxiv.org/ps/0805.4341">ps</a>, <a href="https://arxiv.org/format/0805.4341">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Atomic multiplet calculation of 3d_{5/2} -&gt; 4f resonant x-ray diffraction from Ho metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+F">C. F. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchholz%2C+M">M. Buchholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H+-">H. -H. Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ott%2C+H">H. Ott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmitz%2C+D">D. Schmitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0805.4341v1-abstract-short" style="display: inline;"> We compare for Ho metal the x-ray absorption spectrum and the resonant soft x-ray diffraction spectra obtained at the $3d_{5/2} \to 4f$ ($M_5$) resonance for the magnetic 1st and 2nd order diffraction peaks $(0,0,蟿)$ and $(0,0,2蟿)$ with the result of an atomic multiplet calculation. We find a good agreement between experiment and simulation giving evidence that this kind of simulation is well su&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0805.4341v1-abstract-full').style.display = 'inline'; document.getElementById('0805.4341v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0805.4341v1-abstract-full" style="display: none;"> We compare for Ho metal the x-ray absorption spectrum and the resonant soft x-ray diffraction spectra obtained at the $3d_{5/2} \to 4f$ ($M_5$) resonance for the magnetic 1st and 2nd order diffraction peaks $(0,0,蟿)$ and $(0,0,2蟿)$ with the result of an atomic multiplet calculation. We find a good agreement between experiment and simulation giving evidence that this kind of simulation is well suited to quantitatively analyze resonant soft x-ray diffraction data from correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0805.4341v1-abstract-full').style.display = 'none'; document.getElementById('0805.4341v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2008. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0804.2461">arXiv:0804.2461</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0804.2461">pdf</a>, <a href="https://arxiv.org/format/0804.2461">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Resonant soft x-ray scattering from stepped surfaces of SrTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">J. Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+F">C. F. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ott%2C+H">H. Ott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaindl%2C+G">G. Kaindl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huijben%2C+M">M. Huijben</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rijnders%2C+G">G. Rijnders</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Blank%2C+D+H+A">D. H. A. Blank</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0804.2461v1-abstract-short" style="display: inline;"> We studied the resonant diffraction signal from stepped surfaces of SrTiO3 at the Ti 2p -&gt; 3d (L2,3) resonance in comparison with x-ray absorption (XAS) and specular reflectivity data. The steps on the surface form an artificial superstructure suited as a model system for resonant soft x-ray diffraction. A small step density on the surface is sufficient to produce a well defined diffraction peak&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0804.2461v1-abstract-full').style.display = 'inline'; document.getElementById('0804.2461v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0804.2461v1-abstract-full" style="display: none;"> We studied the resonant diffraction signal from stepped surfaces of SrTiO3 at the Ti 2p -&gt; 3d (L2,3) resonance in comparison with x-ray absorption (XAS) and specular reflectivity data. The steps on the surface form an artificial superstructure suited as a model system for resonant soft x-ray diffraction. A small step density on the surface is sufficient to produce a well defined diffraction peak, showing the high sensitivity of the method. At larger incidence angles, the resonant diffraction spectrum from the steps on the surface resembles the spectrum for specular reflectivity. Both deviate from the XAS data in the relative peak intensities and positions of the peak maxima. We determined the optical parameters of the sample across the resonance and found that the differences between the XAS and scattering spectra reflect the different quantities probed in the different signals. When recorded at low incidence or detection angles, XAS and specular reflectivity spectra are distorted by the changes of the angle of total reflection with energy. Also the step peak spectra, though less affected, show an energy shift of the peak maxima in grazing incidence geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0804.2461v1-abstract-full').style.display = 'none'; document.getElementById('0804.2461v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2008; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2008. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0707.2765">arXiv:0707.2765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/0707.2765">pdf</a>, <a href="https://arxiv.org/format/0707.2765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.106.077402">10.1103/PhysRevLett.106.077402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic domain fluctuations in an antiferromagnetic film observed with coherent resonant soft x-ray scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Konings%2C+S">S. Konings</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuessler-Langeheine%2C+C">C. Schuessler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ott%2C+H">H. Ott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabel%2C+H">H. Zabel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goedkoop%2C+J+B">J. B. Goedkoop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0707.2765v3-abstract-short" style="display: inline;"> We report the direct observation of slow fluctuations of helical antiferromagnetic domains in an ultra-thin holmium film using coherent resonant magnetic x-ray scattering. We observe a gradual increase of the fluctuations in the speckle pattern with increasing temperature, while at the same time a static contribution to the speckle pattern remains. This finding indicates that domain-wall fluctuati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0707.2765v3-abstract-full').style.display = 'inline'; document.getElementById('0707.2765v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0707.2765v3-abstract-full" style="display: none;"> We report the direct observation of slow fluctuations of helical antiferromagnetic domains in an ultra-thin holmium film using coherent resonant magnetic x-ray scattering. We observe a gradual increase of the fluctuations in the speckle pattern with increasing temperature, while at the same time a static contribution to the speckle pattern remains. This finding indicates that domain-wall fluctuations occur over a large range of time scales. We ascribe this non-ergodic behavior to the strong dependence of the fluctuation rate on the local thickness of the film. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0707.2765v3-abstract-full').style.display = 'none'; document.getElementById('0707.2765v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2011; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2007; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2007. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in Phys. Rev. Lett</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0605096">arXiv:cond-mat/0605096</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0605096">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0605096">ps</a>, <a href="https://arxiv.org/format/cond-mat/0605096">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.100.026406">10.1103/PhysRevLett.100.026406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct observation of t2g orbital ordering in magnetite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">J. Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuessler-Langeheine%2C+C">C. Schuessler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+F">C. F. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ott%2C+H">H. Ott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaindl%2C+G">G. Kaindl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0605096v2-abstract-short" style="display: inline;"> Using soft-x-ray diffraction at the site-specific resonances in the Fe L23 edge, we find clear evidence for orbital and charge ordering in magnetite below the Verwey transition. The spectra show directly that the (001/2) diffraction peak (in cubic notation) is caused by t2g orbital ordering at octahedral Fe2+ sites and the (001) by a spatial modulation of the t2g occupation. </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0605096v2-abstract-full" style="display: none;"> Using soft-x-ray diffraction at the site-specific resonances in the Fe L23 edge, we find clear evidence for orbital and charge ordering in magnetite below the Verwey transition. The spectra show directly that the (001/2) diffraction peak (in cubic notation) is caused by t2g orbital ordering at octahedral Fe2+ sites and the (001) by a spatial modulation of the t2g occupation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0605096v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0605096v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2007; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 May, 2006; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2006. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">to appear in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 100, 026406 (2008) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0509725">arXiv:cond-mat/0509725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0509725">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0509725">ps</a>, <a href="https://arxiv.org/format/cond-mat/0509725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> X-Ray Scattering at Lanthanide M5 Resonances: Application to Magnetic Depth Profiling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ott%2C+H">H. Ott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuessler-Langeheine%2C+C">C. Schuessler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grigoriev%2C+A+Y">A. Yu. Grigoriev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leiner%2C+V">V. Leiner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabel%2C+H">H. Zabel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaindl%2C+G">G. Kaindl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0509725v1-abstract-short" style="display: inline;"> Quantitative analyses of x-ray scattering from thin films of Ho and Dy metal at the M_5 resonances result in values of the optical constants and the magnetic scattering lengths f_m, with f_m as large as 200 r_0. The observation of first- and second-order magnetic satellites allows to separate f_m into circular and linear dichroic contributions. This high magnetic sensitivity, in conjunction with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0509725v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0509725v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0509725v1-abstract-full" style="display: none;"> Quantitative analyses of x-ray scattering from thin films of Ho and Dy metal at the M_5 resonances result in values of the optical constants and the magnetic scattering lengths f_m, with f_m as large as 200 r_0. The observation of first- and second-order magnetic satellites allows to separate f_m into circular and linear dichroic contributions. This high magnetic sensitivity, in conjunction with the tunable x-ray probing depth across the resonance can be applied to monitor depth profiles of complex magnetic structures, as e.g. of helical antiferromagnetic domains in a Dy metal film. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0509725v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0509725v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0502357">arXiv:cond-mat/0502357</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0502357">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0502357">ps</a>, <a href="https://arxiv.org/format/cond-mat/0502357">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.95.156402">10.1103/PhysRevLett.95.156402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectroscopy of stripe order in La1.8Sr0.2NiO4 using resonant soft x-ray diffraction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schuessler-Langeheine%2C+C">C. Schuessler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlappa%2C+J">J. Schlappa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+C+F">C. F. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schierle%2C+E">E. Schierle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Benomar%2C+M">M. Benomar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ott%2C+H">H. Ott</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaindl%2C+G">G. Kaindl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Friedt%2C+O">O. Friedt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sawatzky%2C+G+A">G. A. Sawatzky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H+-">H. -J. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C+T">C. T. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Braden%2C+M">M. Braden</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0502357v1-abstract-short" style="display: inline;"> Strong resonant enhancements of the charge-order and spin-order superstructure-diffraction intensities in La1.8Sr0.2NiO4 are observed when x-ray energies in the vicinity of the Ni L2,3 absorption edges are used. The pronounced photon-energy and polarization dependences of these diffraction intensities allow for a critical determination of the local symmetry of the ordered spin and charge carrier&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502357v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0502357v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0502357v1-abstract-full" style="display: none;"> Strong resonant enhancements of the charge-order and spin-order superstructure-diffraction intensities in La1.8Sr0.2NiO4 are observed when x-ray energies in the vicinity of the Ni L2,3 absorption edges are used. The pronounced photon-energy and polarization dependences of these diffraction intensities allow for a critical determination of the local symmetry of the ordered spin and charge carriers. We found that not only the antiferromagnetic order but also the charge-order superstructure resides within the NiO2 layers; the holes are mainly located on in-plane oxygens surrounding a Ni2+ site with the spins coupled antiparallel in close analogy to Zhang-Rice singlets in the cuprates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0502357v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0502357v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2005; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2005. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0405516">arXiv:cond-mat/0405516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0405516">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0405516">ps</a>, <a href="https://arxiv.org/format/cond-mat/0405516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.94.056401">10.1103/PhysRevLett.94.056401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determination of the orbital moment and crystal field splitting in LaTiO$_{3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Haverkort%2C+M+W">M. W. Haverkort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Z">Z. Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tanaka%2C+A">A. Tanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghiringhelli%2C+G">G. Ghiringhelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Roth%2C+H">H. Roth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cwik%2C+M">M. Cwik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lorenz%2C+T">T. Lorenz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schuessler-Langeheine%2C+C">C. Schuessler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Streltsov%2C+S+V">S. V. Streltsov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mylnikova%2C+A+S">A. S. Mylnikova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Anisimov%2C+V+I">V. I. Anisimov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=de+Nadai%2C+C">C. de Nadai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brookes%2C+N+B">N. B. Brookes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hsieh%2C+H+H">H. H. Hsieh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+H+-">H. -J. Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+C+T">C. T. Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mizokawa%2C+T">T. Mizokawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taguchi%2C+Y">Y. Taguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tokura%2C+Y">Y. Tokura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khomskii%2C+D+I">D. I. Khomskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tjeng%2C+L+H">L. H. Tjeng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0405516v2-abstract-short" style="display: inline;"> Utilizing a sum-rule in a spin-resolved photoelectron spectroscopic experiment with circularly polarized light, we show that the orbital moment in LaTiO$_3$ is strongly reduced both below and above the N茅el temperature. Using Ti $L_{2,3}$ x-ray absorption spectroscopy as a local probe, we found that the crystal field splitting in the $t_{2g}$ subshell is about 0.12-0.30 eV. This large splitting&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0405516v2-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0405516v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0405516v2-abstract-full" style="display: none;"> Utilizing a sum-rule in a spin-resolved photoelectron spectroscopic experiment with circularly polarized light, we show that the orbital moment in LaTiO$_3$ is strongly reduced both below and above the N茅el temperature. Using Ti $L_{2,3}$ x-ray absorption spectroscopy as a local probe, we found that the crystal field splitting in the $t_{2g}$ subshell is about 0.12-0.30 eV. This large splitting does not facilitate the formation of an orbital liquid. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0405516v2-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0405516v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2004; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2004; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2004. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 94, 056401 (2005) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/0308204">arXiv:cond-mat/0308204</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/0308204">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/0308204">ps</a>, <a href="https://arxiv.org/format/cond-mat/0308204">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.67.155112">10.1103/PhysRevB.67.155112 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Metal-insulator Crossover Behavior at the Surface of NiS_2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sarma%2C+D+D">D. D. Sarma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krishnakumar%2C+S+R">S. R. Krishnakumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schussler-Langeheine%2C+C">C. Schussler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazumdar%2C+C">Chandan Mazumdar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kilian%2C+L">L. Kilian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaindl%2C+G">G. Kaindl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mamiya%2C+K">K. Mamiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujimori%2C+S+-">S. -I. Fujimori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fujimori%2C+A">A. Fujimori</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miyadai%2C+T">T. Miyadai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/0308204v1-abstract-short" style="display: inline;"> We have performed a detailed high-resolution electron spectroscopic investigation of NiS$_2$ and related Se-substituted compounds NiS$_{2-x}$Se$_x$, which are known to be gapped insulators in the bulk at all temperatures. A large spectral weight at the Fermi energy of the room temperature spectrum, in conjunction with the extreme surface sensitivity of the experimental probe, however, suggests t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0308204v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/0308204v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/0308204v1-abstract-full" style="display: none;"> We have performed a detailed high-resolution electron spectroscopic investigation of NiS$_2$ and related Se-substituted compounds NiS$_{2-x}$Se$_x$, which are known to be gapped insulators in the bulk at all temperatures. A large spectral weight at the Fermi energy of the room temperature spectrum, in conjunction with the extreme surface sensitivity of the experimental probe, however, suggests that the surface layer is metallic at 300 K. Interestingly, the evolution of the spectral function with decreasing temperature is characterized by a continuous depletion of the single-particle spectral weight at the Fermi energy and the development of a gap-like structure below a characteristic temperature, providing evidence for a metal-insulator crossover behavior at the surfaces of NiS$_2$ and of related compounds. These results provide a consistent description of the unusual transport properties observed in these systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/0308204v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/0308204v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2003; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2003. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 67, 155112 (2003) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/cond-mat/9803110">arXiv:cond-mat/9803110</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/cond-mat/9803110">pdf</a>, <a href="https://arxiv.org/ps/cond-mat/9803110">ps</a>, <a href="https://arxiv.org/format/cond-mat/9803110">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.80.1284">10.1103/PhysRevLett.80.1284 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic structure of NiS$_{1-x}$Se$_x$ across the phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sarma%2C+D+D">D. D. Sarma</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krishnakumar%2C+S+R">S. R. Krishnakumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chandrasekharan%2C+N">Nirmala Chandrasekharan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">E. Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sch%C3%BC%C3%9Fler-Langeheine%2C+C">C. Sch眉脽ler-Langeheine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kilian%2C+L">L. Kilian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaindl%2C+G">G. Kaindl</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="cond-mat/9803110v1-abstract-short" style="display: inline;"> We report very highly resolved photoemission spectra of NiS(1-x)Se(x) across the so-called metal-insulator transition as a function of temperature as well as composition. The present results convincingly demonstrate that the low temperature, antiferromagnetic phase is metallic, with a reduced density of states at E$_F$. This decrease is possibly due to the opening of gaps along specific directio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9803110v1-abstract-full').style.display = 'inline'; document.getElementById('cond-mat/9803110v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="cond-mat/9803110v1-abstract-full" style="display: none;"> We report very highly resolved photoemission spectra of NiS(1-x)Se(x) across the so-called metal-insulator transition as a function of temperature as well as composition. The present results convincingly demonstrate that the low temperature, antiferromagnetic phase is metallic, with a reduced density of states at E$_F$. This decrease is possibly due to the opening of gaps along specific directions in the Brillouin zone caused by the antiferromagnetic ordering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('cond-mat/9803110v1-abstract-full').style.display = 'none'; document.getElementById('cond-mat/9803110v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revtex, 4 pages, 3 postscript figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 80, (1998) 1284-1287 </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10