CINXE.COM

Search results for: LPBF process

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: LPBF process</title> <meta name="description" content="Search results for: LPBF process"> <meta name="keywords" content="LPBF process"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="LPBF process" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="LPBF process"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15202</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: LPBF process</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15202</span> Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Song%20Zhang">Song Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Wang"> Hui Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Henrich%20Schleifenbaum"> Johannes Henrich Schleifenbaum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20processing" title="data processing">data processing</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20monitoring" title=" in-situ monitoring"> in-situ monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=LPBF%20process" title=" LPBF process"> LPBF process</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20system" title=" optical system"> optical system</a>, <a href="https://publications.waset.org/abstracts/search?q=quantization%20model" title=" quantization model"> quantization model</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20artifact" title=" test artifact"> test artifact</a> </p> <a href="https://publications.waset.org/abstracts/139140/quantification-model-for-capability-evaluation-of-optical-based-in-situ-monitoring-system-for-laser-powder-bed-fusion-lpbf-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15201</span> A Brief Review of Titanium Powders Used in Laser Powder-Bed Fusion Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Alhajeri">Ali Alhajeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarig%20Makki"> Tarig Makki</a>, <a href="https://publications.waset.org/abstracts/search?q=Mosa%20Almutahhar"> Mosa Almutahhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ahmed"> Mohammed Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ali"> Usman Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal powder is the raw material used for laser powder-bed fusion (LPBF) additive manufacturing (AM). There are many metal materials that can be used in LPBF. The properties of these materials are varied between each other, which can affect the building part. The objective of this paper is to do an overview of the titanium powders available in LBPF. Comparison between different literature works will lead us to study the similarities and differences between the powder properties such as size, shape, and chemical composition. Furthermore, the results of this paper will point out the significant titanium powder properties in order to clearly illustrate their effect on the build parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LPBF" title="LPBF">LPBF</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium" title=" titanium"> titanium</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-4V" title=" Ti-6Al-4V"> Ti-6Al-4V</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-5553" title=" Ti-5553"> Ti-5553</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20powder" title=" metal powder"> metal powder</a>, <a href="https://publications.waset.org/abstracts/search?q=AM" title=" AM"> AM</a> </p> <a href="https://publications.waset.org/abstracts/151600/a-brief-review-of-titanium-powders-used-in-laser-powder-bed-fusion-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15200</span> Macroscopic Support Structure Design for the Tool-Free Support Removal of Laser Powder Bed Fusion-Manufactured Parts Made of AlSi10Mg</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Schmithuesen">Tobias Schmithuesen</a>, <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Henrich%20Schleifenbaum"> Johannes Henrich Schleifenbaum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The additive manufacturing process laser powder bed fusion offers many advantages over conventional manufacturing processes. For example, almost any complex part can be produced, such as topologically optimized lightweight parts, which would be inconceivable with conventional manufacturing processes. A major challenge posed by the LPBF process, however, is, in most cases, the need to use and remove support structures on critically inclined part surfaces (α < 45 ° regarding substrate plate). These are mainly used for dimensionally accurate mapping of part contours and to reduce distortion by absorbing process-related internal stresses. Furthermore, they serve to transfer the process heat to the substrate plate and are, therefore, indispensable for the LPBF process. A major challenge for the economical use of the LPBF process in industrial process chains is currently still the high manual effort involved in removing support structures. According to the state of the art (SoA), the parts are usually treated by simple hand tools (e.g., pliers, chisels) or by machining (e.g., milling, turning). New automatable approaches are the removal of support structures by means of wet chemical ablation and thermal deburring. According to the state of the art, the support structures are essentially adapted to the LPBF process and not to potential post-processing steps. The aim of this study is the determination of support structure designs that are adapted to the mentioned post-processing approaches. In the first step, the essential boundary conditions for complete removal by means of the respective approaches are identified. Afterward, a representative demonstrator part with various macroscopic support structure designs will be LPBF-manufactured and tested with regard to a complete powder and support removability. Finally, based on the results, potentially suitable support structure designs for the respective approaches will be derived. The investigations are carried out on the example of the aluminum alloy AlSi10Mg. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20powder%20bed%20fusion" title=" laser powder bed fusion"> laser powder bed fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20beam%20melting" title=" laser beam melting"> laser beam melting</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20melting" title=" selective laser melting"> selective laser melting</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20processing" title=" post processing"> post processing</a>, <a href="https://publications.waset.org/abstracts/search?q=tool-free" title=" tool-free"> tool-free</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20chemical%20ablation" title=" wet chemical ablation"> wet chemical ablation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20deburring" title=" thermal deburring"> thermal deburring</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title=" aluminum alloy"> aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=AlSi10Mg" title=" AlSi10Mg"> AlSi10Mg</a> </p> <a href="https://publications.waset.org/abstracts/116718/macroscopic-support-structure-design-for-the-tool-free-support-removal-of-laser-powder-bed-fusion-manufactured-parts-made-of-alsi10mg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15199</span> Laser Powder Bed Fusion Awareness for Engineering Students in France and Qatar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiba%20Naccache">Hiba Naccache</a>, <a href="https://publications.waset.org/abstracts/search?q=Rima%20Hleiss"> Rima Hleiss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing AM or 3D printing is one of the pillars of Industry 4.0. Compared to traditional manufacturing, AM provides a prototype before production in order to optimize the design and avoid the stock market and uses strictly necessary material which can be recyclable, for the benefit of leaning towards local production, saving money, time and resources. Different types of AM exist and it has a broad range of applications across several industries like aerospace, automotive, medicine, education and else. The Laser Powder Bed Fusion (LPBF) is a metal AM technique that uses a laser to liquefy metal powder, layer by layer, to build a three-dimensional (3D) object. In industry 4.0 and aligned with the numbers 9 (Industry, Innovation and Infrastructure) and 12 (Responsible Production and Consumption) of the Sustainable Development Goals of the UNESCO 2030 Agenda, the AM’s manufacturers committed to minimizing the environmental impact by being sustainable in every production. The LPBF has several environmental advantages, like reduced waste production, lower energy consumption, and greater flexibility in creating components with lightweight and complex geometries. However, LPBF also have environmental drawbacks, like energy consumption, gas consumption and emissions. It is critical to recognize the environmental impacts of LPBF in order to mitigate them. To increase awareness and promote sustainable practices regarding LPBF, the researchers use the Elaboration Likelihood Model (ELM) theory where people from multiple universities in France and Qatar process information in two ways: peripherally and centrally. The peripheral campaigns use superficial cues to get attention, and the central campaigns provide clear and concise information. The authors created a seminar including a video showing LPBF production and a website with educational resources. The data is collected using questionnaire to test attitude about the public awareness before and after the seminar. The results reflected a great shift on the awareness toward LPBF and its impact on the environment. With no presence of similar research, to our best knowledge, this study will add to the literature on the sustainability of the LPBF production technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20powder%20bed%20fusion" title=" laser powder bed fusion"> laser powder bed fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=elaboration%20likelihood%20model%20theory" title=" elaboration likelihood model theory"> elaboration likelihood model theory</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development%20goals" title=" sustainable development goals"> sustainable development goals</a>, <a href="https://publications.waset.org/abstracts/search?q=education-awareness" title=" education-awareness"> education-awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=France" title=" France"> France</a>, <a href="https://publications.waset.org/abstracts/search?q=Qatar" title=" Qatar"> Qatar</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20energy%20consumption" title=" specific energy consumption"> specific energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20components" title=" lightweight components"> lightweight components</a> </p> <a href="https://publications.waset.org/abstracts/170227/laser-powder-bed-fusion-awareness-for-engineering-students-in-france-and-qatar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15198</span> Advancing Microstructure Evolution in Tungsten Through Rolling in Laser Powder Bed Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narges%20Shayesteh%20Moghaddam">Narges Shayesteh Moghaddam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tungsten (W), a refractory metal known for its remarkably high melting temperature, offers tremendous potential for use in challenging environments prevalent in sectors such as space exploration, defense, and nuclear industries. Additive manufacturing, especially the Laser Powder-Bed Fusion (LPBF) technique, emerges as a beneficial method for fabricating tungsten parts. This technique enables the production of intricate components while simultaneously reducing production lead times and associated costs. However, the inherent brittleness of tungsten and its tendency to crack under high-temperature conditions pose significant challenges to the manufacturing process. Our research primarily focuses on the process of rolling tungsten parts in a layer-by-layer manner in LPBF and the subsequent changes in microstructure. Our objective is not only to identify the alterations in the microstructure but also to assess their implications on the physical properties and performance of the fabricated tungsten parts. To examine these aspects, we conducted an extensive series of experiments that included the fabrication of tungsten samples through LPBF and subsequent characterization using advanced materials analysis techniques. These investigations allowed us to scrutinize shifts in various microstructural features, including, but not limited to, grain size and grain boundaries occurring during the rolling process. The results of our study provide crucial insights into how specific factors, such as plastic deformation occurring during the rolling process, influence the microstructural characteristics of the fabricated parts. This information is vital as it provides a foundation for understanding how the parameters of the layer-by-layer rolling process affect the final tungsten parts. Our research significantly broadens the current understanding of microstructural evolution in tungsten parts produced via the layer-by-layer rolling process in LPBF. The insights obtained will play a pivotal role in refining and optimizing manufacturing parameters, thus improving the mechanical properties of tungsten parts and, therefore, enhancing their performance. Furthermore, these findings will contribute to the advancement of manufacturing techniques, facilitating the wider application of tungsten parts in various high-demand sectors. Through these advancements, this research represents a significant step towards harnessing the full potential of tungsten in high-temperature and high-stress applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling" title=" rolling"> rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=tungsten" title=" tungsten"> tungsten</a>, <a href="https://publications.waset.org/abstracts/search?q=refractory%20materials" title=" refractory materials"> refractory materials</a> </p> <a href="https://publications.waset.org/abstracts/169378/advancing-microstructure-evolution-in-tungsten-through-rolling-in-laser-powder-bed-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15197</span> In-Situ Formation of Particle Reinforced Aluminium Matrix Composites by Laser Powder Bed Fusion of Fe₂O₃/AlSi12 Powder Mixture Using Consecutive Laser Melting+Remelting Strategy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qimin%20Shi">Qimin Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Sun"> Yi Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Constantinus%20Politis"> Constantinus Politis</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoufeng%20Yang"> Shoufeng Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-situ preparation of particle-reinforced aluminium matrix composites (PRAMCs) by laser powder bed fusion (LPBF) additive manufacturing is a promising strategy to strengthen traditional Al-based alloys. The laser-driven thermite reaction can be a practical mechanism to in-situ synthesize PRAMCs. However, introducing oxygen elements through adding Fe₂O₃ makes the powder mixture highly sensitive to form porosity and Al₂O₃ film during LPBF, bringing challenges to producing dense Al-based materials. Therefore, this work develops a processing strategy combined with consecutive high-energy laser melting scanning and low-energy laser remelting scanning to prepare PRAMCs from a Fe₂O₃/AlSi12 powder mixture. The powder mixture consists of 5 wt% Fe₂O₃ and the remainder AlSi12 powder. The addition of 5 wt% Fe₂O₃ aims to achieve balanced strength and ductility. A high relative density (98.2 ± 0.55 %) was successfully obtained by optimizing laser melting (Emelting) and laser remelting surface energy density (Eremelting) to Emelting = 35 J/mm² and Eremelting = 5 J/mm². Results further reveal the necessity of increasing Emelting, to improve metal liquid’s spreading/wetting by breaking up the Al₂O₃ films surrounding the molten pools; however, the high-energy laser melting produced much porosity, including H₂₋, O₂₋ and keyhole-induced pores. The subsequent low-energy laser remelting could close the resulting internal pores, backfill open gaps and smoothen solidified surfaces. As a result, the material was densified by repeating laser melting and laser remelting layer by layer. Although with two-times laser scanning, the microstructure still shows fine cellular Si networks with Al grains inside (grain size of about 370 nm) and in-situ nano-precipitates (Al₂O₃, Si, and Al-Fe(-Si) intermetallics). Finally, the fine microstructure, nano-structured dispersion strengthening, and high-level densification strengthened the in-situ PRAMCs, reaching yield strength of 426 ± 4 MPa and tensile strength of 473 ± 6 MPa. Furthermore, the results can expect to provide valuable information to process other powder mixtures with severe porosity/oxide-film formation potential, considering the evidenced contribution of laser melting/remelting strategy to densify material and obtain good mechanical properties during LPBF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=densification" title="densification">densification</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20powder%20bed%20fusion" title=" laser powder bed fusion"> laser powder bed fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20matrix%20composites" title=" metal matrix composites"> metal matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/142710/in-situ-formation-of-particle-reinforced-aluminium-matrix-composites-by-laser-powder-bed-fusion-of-fe2o3alsi12-powder-mixture-using-consecutive-laser-meltingremelting-strategy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15196</span> Advancing Hydrogen Production Through Additive Manufacturing: Optimising Structures of High Performance Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fama%20Jallow">Fama Jallow</a>, <a href="https://publications.waset.org/abstracts/search?q=Melody%20Neaves"> Melody Neaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Professor%20Mcgregor"> Professor Mcgregor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quest for sustainable energy sources has driven significant interest in hydrogen production as a clean and efficient fuel. Alkaline water electrolysis (AWE) has emerged as a prominent method for generating hydrogen, necessitating the development of advanced electrode designs with improved performance characteristics. Additive manufacturing (AM) by laser powder bed fusion (LPBF) method presents an opportunity to tailor electrode microstructures and properties, enhancing their performance. This research proposes investigating the AM of electrodes with different lattice structures to optimize hydrogen production. The primary objective is to employ advanced modeling techniques to identify and select two optimal lattice structures for electrode fabrication. LPBF will be used to fabricate electrodes with precise control over lattice geometry, pore size, and distribution. The performance evaluation will encompass energy consumption and porosity analysis. AWE will assess energy efficiency, aiming to identify lattice structures with enhanced hydrogen production rates and reduced power requirements. Computed tomography (CT) scanning will analyze porosity to determine material integrity and mass transport characteristics. The research aims to bridge the gap between AM and hydrogen production by investigating lattice structures potential in electrode design. By systematically exploring lattice structures and their impact on performance, this study aims to provide valuable insights into the design and fabrication of highly efficient and cost-effective electrodes for AWE. The outcomes hold promise for advancing hydrogen production through AM. The research will have a significant impact on the development of sustainable energy sources. The findings from this study will help to improve the efficiency of AWE, making it a more viable option for hydrogen production. This could lead to a reduction in our reliance on fossil fuels, which would have a positive impact on the environment. The research is also likely to have a commercial impact. The findings could be used to develop new electrode designs that are more efficient and cost-effective. This could lead to the development of new hydrogen production technologies, which could have a significant impact on the energy market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structure" title=" lattice structure"> lattice structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Africa" title=" Africa"> Africa</a> </p> <a href="https://publications.waset.org/abstracts/172491/advancing-hydrogen-production-through-additive-manufacturing-optimising-structures-of-high-performance-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15195</span> Tribological Behaviour of the Degradation Process of Additive Manufactured Stainless Steel 316L</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunhan%20Zhang">Yunhan Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaopeng%20Li"> Xiaopeng Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongxiao%20Peng"> Zhongxiao Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) possesses several key characteristics, including high design freedom, energy-efficient manufacturing process, reduced material waste, high resolution of finished products, and excellent performance of finished products. These advantages have garnered widespread attention and fueled rapid development in recent decades. AM has significantly broadened the spectrum of available materials in the manufacturing industry and is gradually replacing some traditionally manufactured parts. Similar to components produced via traditional methods, products manufactured through AM are susceptible to degradation caused by wear during their service life. Given the prevalence of 316L stainless steel (SS) parts and the limited research on the tribological behavior of 316L SS samples or products fabricated using AM technology, this study aims to investigate the degradation process and wear mechanisms of 316L SS disks fabricated using AM technology. The wear mechanisms and tribological performance of these AM-manufactured samples are compared with commercial 316L SS samples made using conventional methods. Additionally, methods to enhance the tribological performance of additive-manufactured SS samples are explored. Four disk samples with a diameter of 75 mm and a thickness of 10 mm are prepared. Two of them (Group A) are prepared from a purchased SS bar using a milling method. The other two disks (Group B), with the same dimensions, are made of Gas Atomized 316L Stainless Steel (size range: 15-45 µm) purchased from Carpenter Additive and produced using Laser Powder Bed Fusion (LPBF). Pin-on-disk tests are conducted on these disks, which have similar surface roughness and hardness levels. Multiple tests are carried out under various operating conditions, including varying loads and/or speeds, and the friction coefficients are measured during these tests. In addition, the evolution of the surface degradation processes is monitored by creating moulds of the wear tracks and quantitatively analyzing the surface morphologies of the mould images. This analysis involves quantifying the depth and width of the wear tracks and analyzing the wear debris generated during the wear processes. The wear mechanisms and wear performance of these two groups of SS samples are compared. The effects of load and speed on the friction coefficient and wear rate are investigated. The ultimate goal is to gain a better understanding of the surface degradation of additive-manufactured SS samples. This knowledge is crucial for enhancing their anti-wear performance and extending their service life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation%20process" title="degradation process">degradation process</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20features" title=" surface features"> surface features</a> </p> <a href="https://publications.waset.org/abstracts/172824/tribological-behaviour-of-the-degradation-process-of-additive-manufactured-stainless-steel-316l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172824.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15194</span> Object-Centric Process Mining Using Process Cubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anahita%20Farhang%20Ghahfarokhi">Anahita Farhang Ghahfarokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Berti"> Alessandro Berti</a>, <a href="https://publications.waset.org/abstracts/search?q=Wil%20M.P.%20van%20der%20Aalst"> Wil M.P. van der Aalst</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Process mining provides ways to analyze business processes. Common process mining techniques consider the process as a whole. However, in real-life business processes, different behaviors exist that make the overall process too complex to interpret. Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes. Process cubes organize event data using different dimensions. Each cell contains a set of events that can be used as an input to apply process mining techniques. Existing work on process cubes assume single case notions. However, in real processes, several case notions (e.g., order, item, package, etc.) are intertwined. Object-centric process mining is a new branch of process mining addressing multiple case notions in a process. To make a bridge between object-centric process mining and process comparison, we propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs. To facilitate the comparison, the framework is integrated with several object-centric process discovery approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multidimensional%20process%20mining" title="multidimensional process mining">multidimensional process mining</a>, <a href="https://publications.waset.org/abstracts/search?q=mMulti-perspective%20business%20processes" title=" mMulti-perspective business processes"> mMulti-perspective business processes</a>, <a href="https://publications.waset.org/abstracts/search?q=OLAP" title=" OLAP"> OLAP</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20cubes" title=" process cubes"> process cubes</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20discovery" title=" process discovery"> process discovery</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20mining" title=" process mining"> process mining</a> </p> <a href="https://publications.waset.org/abstracts/131006/object-centric-process-mining-using-process-cubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15193</span> Production Process of Coconut-Shell Product in Amphawa District</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wannee%20Sutthachaidee">Wannee Sutthachaidee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the production process of coconut-shell product in Amphawa, Samutsongkram Province is objected to study the pattern of the process of coconut-shell product by focusing in the 3 main processes which are inbound logistics process, production process and outbound process. The result of the research: There were 4 main results from the study. Firstly, most of the manufacturer of coconut-shell product is usually owned by a single owner and the quantity of the finished product is quite low and the main labor group is local people. Secondly, the production process can be divided into 4 stages which are pre-production process, production process, packaging process and distribution process. Thirdly, each 3 of the logistics process of coconut shell will find process which may cause the problem to the business but the process which finds the most problem is the production process because the production process needs the skilled labor and the quantity of the labor does not match with the demand from the customers. Lastly, the factors which affect the production process of the coconut shell can be founded in almost every process of the process such as production design, packaging design, sourcing supply and distribution management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production%20process" title="production process">production process</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut-shell%20product" title=" coconut-shell product"> coconut-shell product</a>, <a href="https://publications.waset.org/abstracts/search?q=Amphawa%20District" title=" Amphawa District"> Amphawa District</a>, <a href="https://publications.waset.org/abstracts/search?q=inbound%20logistics%20process" title=" inbound logistics process"> inbound logistics process</a> </p> <a href="https://publications.waset.org/abstracts/14646/production-process-of-coconut-shell-product-in-amphawa-district" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15192</span> A Study on Unix Process Crash Based on Efficient Process Management Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guo%20Haonan">Guo Haonan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Peiyu"> Chen Peiyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Hanyu"> Zhao Hanyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Burra%20Venkata%20Durga%20Kumar"> Burra Venkata Durga Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unix and Unix-like operating systems are widely used due to their high stability but are limited by the parent-child process structure, and the child process depends on the parent process, so the crash of a single process may cause the entire process group or even the entire system to fail. Another possibility of unexpected process termination is that the system administrator inadvertently closed the terminal or pseudo-terminal where the application was launched, causing the application process to terminate unexpectedly. This paper mainly analyzes the reasons for the problems and proposes two solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20management" title="process management">process management</a>, <a href="https://publications.waset.org/abstracts/search?q=daemon" title=" daemon"> daemon</a>, <a href="https://publications.waset.org/abstracts/search?q=login-bash%20and%20non-login%20bash" title=" login-bash and non-login bash"> login-bash and non-login bash</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20group" title=" process group"> process group</a> </p> <a href="https://publications.waset.org/abstracts/153030/a-study-on-unix-process-crash-based-on-efficient-process-management-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15191</span> Mining Diagnostic Investigation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sohail%20Imran">Sohail Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=Tariq%20Mahmood"> Tariq Mahmood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In complex healthcare diagnostic investigation process, medical practitioners have to focus on ways to standardize their processes to perform high quality care and optimize the time and costs. Process mining techniques can be applied to extract process related knowledge from data without considering causal and dynamic dependencies in business domain and processes. The application of process mining is effective in diagnostic investigation. It is very helpful where a treatment gives no dispositive evidence favoring it. In this paper, we applied process mining to discover important process flow of diagnostic investigation for hepatitis patients. This approach has some benefits which can enhance the quality and efficiency of diagnostic investigation processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=process%20mining" title="process mining">process mining</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnostic%20investigation%20process" title=" diagnostic investigation process"> diagnostic investigation process</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20flow" title=" process flow"> process flow</a> </p> <a href="https://publications.waset.org/abstracts/9370/mining-diagnostic-investigation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">522</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15190</span> Simulation of a Fluid Catalytic Cracking Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Kim">Sungho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Shik%20Kim"> Dae Shik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Lee"> Jong Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery indusrty. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its nonlinearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flowsheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flowsheet simulator to develop an integrated process model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20catalytic%20cracking" title="fluid catalytic cracking">fluid catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20data" title=" plant data"> plant data</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20design" title=" process design"> process design</a> </p> <a href="https://publications.waset.org/abstracts/29425/simulation-of-a-fluid-catalytic-cracking-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15189</span> Modeling and Simulation of Fluid Catalytic Cracking Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Kim">Sungho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dae%20Shik%20Kim"> Dae Shik Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Min%20Lee"> Jong Min Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid catalytic cracking (FCC) process is one of the most important process in modern refinery industry. This paper focuses on the fluid catalytic cracking (FCC) process. As the FCC process is difficult to model well, due to its non linearities and various interactions between its process variables, rigorous process modeling of whole FCC plant is demanded for control and plant-wide optimization of the plant. In this study, a process design for the FCC plant includes riser reactor, main fractionator, and gas processing unit was developed. A reactor model was described based on four-lumped kinetic scheme. Main fractionator, gas processing unit and other process units are designed to simulate real plant data, using a process flow sheet simulator, Aspen PLUS. The custom reactor model was integrated with the process flow sheet simulator to develop an integrated process model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20catalytic%20cracking" title="fluid catalytic cracking">fluid catalytic cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20data" title=" plant data"> plant data</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20design" title=" process design"> process design</a> </p> <a href="https://publications.waset.org/abstracts/29415/modeling-and-simulation-of-fluid-catalytic-cracking-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15188</span> Study of Skid-Mounted Natural Gas Treatment Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Di%20Han">Di Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingfeng%20Li"> Lingfeng Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selection of low-temperature separation dehydration and dehydrochlorination process applicable to skid design, using Hysys software to simulate the low-temperature separation dehydration and dehydrochlorination process under different refrigeration modes, focusing on comparing the refrigeration effect of different refrigeration modes, the condensation amount of hydrocarbon liquids and alcoholic wastewater, as well as the adaptability of the process, and determining the low-temperature separation process applicable to the natural gas dehydration and dehydrochlorination skid into the design of skid; and finally, to carry out the CNG recycling process calculations of the processed qualified natural gas and to determine the dehydration scheme and the key parameters of the compression process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=skidding" title="skidding">skidding</a>, <a href="https://publications.waset.org/abstracts/search?q=dehydration%20and%20dehydrochlorination" title=" dehydration and dehydrochlorination"> dehydration and dehydrochlorination</a>, <a href="https://publications.waset.org/abstracts/search?q=cryogenic%20separation%20process" title=" cryogenic separation process"> cryogenic separation process</a>, <a href="https://publications.waset.org/abstracts/search?q=CNG%20recovery%20process%20calculations" title=" CNG recovery process calculations"> CNG recovery process calculations</a> </p> <a href="https://publications.waset.org/abstracts/176218/study-of-skid-mounted-natural-gas-treatment-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15187</span> Methods for Business Process Simulation Based on Petri Nets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Shoylekova">K. Shoylekova</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Grigorova"> K. Grigorova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Petri nets are the first standard for business process modeling. Most probably, it is one of the core reasons why all new standards created afterwards have to be so reformed as to reach the stage of mapping the new standard onto Petri nets. The paper presents a Business process repository based on a universal database. The repository provides the possibility the data about a given process to be stored in three different ways. Business process repository is developed with regard to the reformation of a given model to a Petri net in order to be easily simulated two different techniques for business process simulation based on Petri nets - Yasper and Woflan are discussed. Their advantages and drawbacks are outlined. The way of simulating business process models, stored in the Business process repository is shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20process%20repository" title="business process repository">business process repository</a>, <a href="https://publications.waset.org/abstracts/search?q=petri%20nets" title=" petri nets"> petri nets</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Woflan" title=" Woflan"> Woflan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasper" title=" Yasper"> Yasper</a> </p> <a href="https://publications.waset.org/abstracts/41091/methods-for-business-process-simulation-based-on-petri-nets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15186</span> Improving Biodegradation Behavior of Fabricated WE43 Magnesium Alloy by High-Temperature Oxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinge%20Liu">Jinge Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuyuan%20Min"> Shuyuan Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingchuan%20Liu"> Bingchuan Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangzhao%20Yin"> Bangzhao Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Peng"> Bo Peng</a>, <a href="https://publications.waset.org/abstracts/search?q=Peng%20Wen"> Peng Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun%20Tian"> Yun Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> WE43 magnesium alloy can be additively manufactured via laser powder bed fusion (LPBF) for biodegradable applications, but the as-built WE43 exhibits an excessively rapid corrosion rate. High-temperature oxidation (HTO) was performed on the as-built WE43 to improve its biodegradation behavior. A sandwich structure including an oxide layer at the surface, a transition layer in the middle, and the matrix was generated influenced by the oxidation reaction and diffusion of RE atoms when heated at 525 ℃for 8 hours. The oxide layer consisted of Y₂O₃ and Nd₂O₃ oxides with a thickness of 2-3 μm. The transition layer is composed of α-Mg and Y₂O₃ with a thickness of 60-70 μm, while Mg24RE5 could be observed except α-Mg and Y₂O₃. The oxide layer and transition layer appeared to have an effective passivation effect. The as-built WE43 lost 40% weight after the in vitro immersion test for three days and finally broke into debris after seven days of immersion. The high-temperature oxidation samples kept the structural integrity and lost only 6.88 % weight after 28-day immersion. The corrosion rate of HTO samples was significantly controlled, which improved the biocompatibility of the as-built WE43 at the same time. The samples after HTO had better osteogenic capability according to ALP activity. Moreover, as built WE43 performed unqualified in cell adhesion and hemolytic test due to its excessively rapid corrosion rate. While as for HTO samples, cells adhered well, and the hemolysis ratio was only 1.59%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20powder%20bed%20fusion" title="laser powder bed fusion">laser powder bed fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20metal" title=" biodegradable metal"> biodegradable metal</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20oxidation" title=" high temperature oxidation"> high temperature oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation%20behavior" title=" biodegradation behavior"> biodegradation behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=WE43" title=" WE43"> WE43</a> </p> <a href="https://publications.waset.org/abstracts/156258/improving-biodegradation-behavior-of-fabricated-we43-magnesium-alloy-by-high-temperature-oxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15185</span> Process Capability Analysis by Using Statistical Process Control of Rice Polished Cylinder Turning Practice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Bangphan">S. Bangphan</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Bangphan"> P. Bangphan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.Boonkang"> T.Boonkang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quality control helps industries in improvements of its product quality and productivity. Statistical Process Control (SPC) is one of the tools to control the quality of products that turning practice in bringing a department of industrial engineering process under control. In this research, the process control of a turning manufactured at workshops machines. The varying measurements have been recorded for a number of samples of a rice polished cylinder obtained from a number of trials with the turning practice. SPC technique has been adopted by the process is finally brought under control and process capability is improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20polished%20cylinder" title="rice polished cylinder">rice polished cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20charts" title=" control charts"> control charts</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20capability" title=" process capability"> process capability</a> </p> <a href="https://publications.waset.org/abstracts/14767/process-capability-analysis-by-using-statistical-process-control-of-rice-polished-cylinder-turning-practice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15184</span> Business Process Orientation: Case of Croatia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ljubica%20Milanovi%C4%87%20Glavan">Ljubica Milanović Glavan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because of the increasing business pressures, companies must be adaptable and flexible in order to withstand them. Inadequate business processes and low level of business process orientation, that in its core accentuates business processes as opposed to business functions and focuses on process performance and customer satisfaction, hider the ability to adapt to changing environment. It has been shown in previous studies that the companies which have reached higher business process maturity level consistently outperform those that have not reached them. The aim of this paper is to provide a basic understanding of business process orientation concept and business process maturity model. Besides that the paper presents the state of business process orientation in Croatia that has been captured with a study conducted in 2013. Based on the results some practical implications and guidelines for managers are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20process%20orientation" title="business process orientation">business process orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20process%20maturity" title=" business process maturity"> business process maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=Croatia" title=" Croatia"> Croatia</a>, <a href="https://publications.waset.org/abstracts/search?q=maturity%20score" title=" maturity score"> maturity score</a> </p> <a href="https://publications.waset.org/abstracts/10216/business-process-orientation-case-of-croatia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15183</span> A Goal-Oriented Social Business Process Management Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ehson%20Rangiha">Mohammad Ehson Rangiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Bill%20Karakostas"> Bill Karakostas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Social Business Process Management (SBPM) promises to overcome limitations of traditional BPM by allowing flexible process design and enactment through the involvement of users from a social community. This paper proposes a meta-model and architecture for socially driven business process management systems. It discusses the main facets of the architecture such as goal-based role assignment that combines social recommendations with user profile, and process recommendation, through a real example of a charity organization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20process%20management" title="business process management">business process management</a>, <a href="https://publications.waset.org/abstracts/search?q=goal-based%20modelling" title=" goal-based modelling"> goal-based modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20recommendation%20social%20collaboration" title=" process recommendation social collaboration"> process recommendation social collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20BPM" title=" social BPM"> social BPM</a> </p> <a href="https://publications.waset.org/abstracts/9192/a-goal-oriented-social-business-process-management-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15182</span> Signature Verification System for a Banking Business Process Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Rahaf">A. Rahaf</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Liyakathunsia"> S. Liyakathunsia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today’s world, unprecedented operational pressure is faced by banks that test the efficiency, effectiveness, and agility of their business processes. In a typical banking process, a person’s authorization is usually based on his signature on most all of the transactions. Signature verification is considered as one of the highly significant information needed for any bank document processing. Banks usually use Signature Verification to authenticate the identity of individuals. In this paper, a business process model has been proposed in order to increase the quality of the verification process and to reduce time and needed resources. In order to understand the current process, a survey has been conducted and distributed among bank employees. After analyzing the survey, a process model has been created using Bizagi modeler which helps in simulating the process after assigning time and cost of it. The outcomes show that the automation of signature verification process is highly recommended for a banking business process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20process%20management" title="business process management">business process management</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20modeling" title=" process modeling"> process modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=Signature%20Verification" title=" Signature Verification"> Signature Verification</a> </p> <a href="https://publications.waset.org/abstracts/67664/signature-verification-system-for-a-banking-business-process-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15181</span> Transitivity Analysis in Reading Passage of English Text Book for Senior High School</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elitaria%20Bestri%20Agustina%20Siregar">Elitaria Bestri Agustina Siregar</a>, <a href="https://publications.waset.org/abstracts/search?q=Boni%20Fasius%20Siregar"> Boni Fasius Siregar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper concerned with the transitivity in the reading passage of English textbook for Senior High School. The six types of process were occurred in the passages with percentage as follows: Material Process is 166 (42%), Relational Process is 155 (39%), Mental Process is 39 (10%), Verbal Process is 21 (5%), Existential Process is 13 (3), and Behavioral Process is 5 (1%). The material processes were found to be the most frequently used process type in the samples in our corpus (41,60 %). This indicates that the twenty reading passages are centrally concerned with action and events. Related to developmental psychology theory, this book fits the needs of students of this age. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=transitivity" title="transitivity">transitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=types%20of%20processes" title=" types of processes"> types of processes</a>, <a href="https://publications.waset.org/abstracts/search?q=reading%20passages" title=" reading passages"> reading passages</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental%20psycholoy" title=" developmental psycholoy"> developmental psycholoy</a> </p> <a href="https://publications.waset.org/abstracts/50606/transitivity-analysis-in-reading-passage-of-english-text-book-for-senior-high-school" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15180</span> Knowledge Discovery from Production Databases for Hierarchical Process Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavol%20Tanuska">Pavol Tanuska</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Vazan"> Pavel Vazan</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Kebisek"> Michal Kebisek</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Jurovata"> Dominika Jurovata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system, thus, the proposed solution has been verified. The paper documents how it is possible to apply new discovery knowledge to be used in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20process%20control" title="hierarchical process control">hierarchical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20discovery%20from%20databases" title=" knowledge discovery from databases"> knowledge discovery from databases</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20control" title=" process control"> process control</a> </p> <a href="https://publications.waset.org/abstracts/2816/knowledge-discovery-from-production-databases-for-hierarchical-process-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15179</span> Covariance of the Queue Process Fed by Isonormal Gaussian Input Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Rahimirshnani">Samaneh Rahimirshnani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Jafari"> Hossein Jafari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider fluid queueing processes fed by an isonormal Gaussian process. We study the correlation structure of the queueing process and the rate of convergence of the running supremum in the queueing process. The Malliavin calculus techniques are applied to obtain relations that show the workload process inherits the dependence properties of the input process. As examples, we consider two isonormal Gaussian processes, the sub-fractional Brownian motion (SFBM) and the fractional Brownian motion (FBM). For these examples, we obtain upper bounds for the covariance function of the queueing process and its rate of convergence to zero. We also discover that the rate of convergence of the queueing process is related to the structure of the covariance function of the input process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=queue%20length%20process" title="queue length process">queue length process</a>, <a href="https://publications.waset.org/abstracts/search?q=Malliavin%20calculus" title=" Malliavin calculus"> Malliavin calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=covariance%20function" title=" covariance function"> covariance function</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20Brownian%20motion" title=" fractional Brownian motion"> fractional Brownian motion</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-fractional%20Brownian%20motion" title=" sub-fractional Brownian motion"> sub-fractional Brownian motion</a> </p> <a href="https://publications.waset.org/abstracts/182769/covariance-of-the-queue-process-fed-by-isonormal-gaussian-input-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15178</span> Design and Characterization of a CMOS Process Sensor Utilizing Vth Extractor Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohana%20Musa">Rohana Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuzman%20Yusoff"> Yuzman Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia%20Chieu%20Yin"> Chia Chieu Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanif%20Che%20Lah"> Hanif Che Lah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and characterization of a low power Complementary Metal Oxide Semiconductor (CMOS) process sensor. The design is targeted for implementation using Silterra&rsquo;s 180 nm CMOS process technology. The proposed process sensor employs a voltage threshold (V<sub>th</sub>) extractor architecture for detection of variations in the fabrication process. The process sensor generates output voltages in the range of 401 mV (fast-fast corner) to 443 mV (slow-slow corner) at nominal condition. The power dissipation for this process sensor is 6.3 &micro;W with a supply voltage of 1.8V with a silicon area of 190 &micro;m X 60 &micro;m. The preliminary result of this process sensor that was fabricated indicates a close resemblance between test and simulated results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20process%20sensor" title="CMOS process sensor">CMOS process sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=PVT%20sensor" title=" PVT sensor"> PVT sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20extractor%20circuit" title=" threshold extractor circuit"> threshold extractor circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=Vth%20extractor%20circuit" title=" Vth extractor circuit"> Vth extractor circuit</a> </p> <a href="https://publications.waset.org/abstracts/129672/design-and-characterization-of-a-cmos-process-sensor-utilizing-vth-extractor-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129672.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15177</span> Business Process Mashup</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fethia%20Zenak">Fethia Zenak</a>, <a href="https://publications.waset.org/abstracts/search?q=Salima%20Benbernou"> Salima Benbernou</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Zaoui"> Linda Zaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, many companies are based on process development from scratch to achieve their business goals. The process development is not trivial and the main objective of enterprise managing processes is to decrease the software development time. Several concepts have been proposed in the field of business process-based reused development, known as BP Mashup. This concept consists of reusing existing business processes which have been modeled in order to respond to a particular goal. To meet user process requirements, our contribution is to mix parts of processes as 'processes fragments' components to build a new process (i.e. process mashup). The main idea of our paper is to offer graphical framework tool for both creating and running processes mashup. Allow users to perform a mixture of fragments, using a simple interface with set of graphical mixture operators based on a proposed formal model. A process mashup and mixture behavior are described within a new specification of a high-level language, language for process mashup (BPML). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20process" title="business process">business process</a>, <a href="https://publications.waset.org/abstracts/search?q=mashup" title=" mashup"> mashup</a>, <a href="https://publications.waset.org/abstracts/search?q=fragments" title=" fragments"> fragments</a>, <a href="https://publications.waset.org/abstracts/search?q=bp%20mashup" title=" bp mashup"> bp mashup</a> </p> <a href="https://publications.waset.org/abstracts/4098/business-process-mashup" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">635</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15176</span> Application of Failure Mode and Effects Analysis (FMEA) on the Virtual Process Hazard Analysis of Acetone Production Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Princes%20Ann%20E.%20Prieto">Princes Ann E. Prieto</a>, <a href="https://publications.waset.org/abstracts/search?q=Denise%20F.%20Alpuerto"> Denise F. Alpuerto</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20Rafael%20C.%20Unlayao"> John Rafael C. Unlayao</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Concibido"> Neil Concibido</a>, <a href="https://publications.waset.org/abstracts/search?q=Monet%20Concepcion%20Maguyon-Detras"> Monet Concepcion Maguyon-Detras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Failure Mode and Effects Analysis (FMEA) has been used in the virtual Process Hazard Analysis (PHA) of the Acetone production process through the dehydrogenation of isopropyl alcohol, for which very limited process risk assessment has been published. In this study, the potential failure modes, effects, and possible causes of selected major equipment in the process were identified. During the virtual FMEA mock sessions, the risks in the process were evaluated and recommendations to reduce and/or mitigate the process risks were formulated. The risk was estimated using the calculated risk priority number (RPN) and was classified into four (4) levels according to their effects on acetone production. Results of this study were also used to rank the criticality of equipment in the process based on the calculated criticality rating (CR). Bow tie diagrams were also created for the critical hazard scenarios identified in the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20process%20safety" title="chemical process safety">chemical process safety</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20mode%20and%20effects%20analysis%20%28FMEA%29" title=" failure mode and effects analysis (FMEA)"> failure mode and effects analysis (FMEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20hazard%20analysis%20%28PHA%29" title=" process hazard analysis (PHA)"> process hazard analysis (PHA)</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20safety%20management%20%28PSM%29" title=" process safety management (PSM)"> process safety management (PSM)</a> </p> <a href="https://publications.waset.org/abstracts/152134/application-of-failure-mode-and-effects-analysis-fmea-on-the-virtual-process-hazard-analysis-of-acetone-production-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15175</span> A Holistic Workflow Modeling Method for Business Process Redesign</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heejung%20Lee">Heejung Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a highly competitive environment, it becomes more important to shorten the whole business process while delivering or even enhancing the business value to the customers and suppliers. Although the workflow management systems receive much attention for its capacity to practically support the business process enactment, the effective workflow modeling method remain still challenging and the high degree of process complexity makes it more difficult to gain the short lead time. This paper presents a workflow structuring method in a holistic way that can reduce the process complexity using activity-needs and formal concept analysis, which eventually enhances the key performance such as quality, delivery, and cost in business process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=workflow%20management" title="workflow management">workflow management</a>, <a href="https://publications.waset.org/abstracts/search?q=re-engineering" title=" re-engineering"> re-engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=formal%20concept%20analysis" title=" formal concept analysis"> formal concept analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20process" title=" business process"> business process</a> </p> <a href="https://publications.waset.org/abstracts/16351/a-holistic-workflow-modeling-method-for-business-process-redesign" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15174</span> A Case Study of Conceptual Framework for Process Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ljubica%20Milanovi%C4%87%20Glavan">Ljubica Milanović Glavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Bosilj%20Vuk%C5%A1i%C4%87"> Vesna Bosilj Vukšić</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalia%20Su%C5%A1a"> Dalia Suša</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to gain a competitive advantage, many companies are focusing on reorganization of their business processes and implementing process-based management. In this context, assessing process performance is essential because it enables individuals and groups to assess where they stand in comparison to their competitors. In this paper, it is argued that process performance measurement is a necessity for a modern process-oriented company and it should be supported by a holistic process performance measurement system. It seems very unlikely that a universal set of performance indicators can be applied successfully to all business processes. Thus, performance indicators must be process-specific and have to be derived from both the strategic enterprise-wide goals and the process goals. Based on the extensive literature review and interviews conducted in Croatian company a conceptual framework for process performance measurement system was developed. The main objective of such system is to help process managers by providing comprehensive and timely information on the performance of business processes. This information can be used to communicate goals and current performance of a business process directly to the process team, to improve resource allocation and process output regarding quantity and quality, to give early warning signals, to make a diagnosis of the weaknesses of a business process, to decide whether corrective actions are needed and to assess the impact of actions taken. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Croatia" title="Croatia">Croatia</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20performance%20indicators" title=" key performance indicators"> key performance indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20measurement" title=" performance measurement"> performance measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20performance" title=" process performance"> process performance</a> </p> <a href="https://publications.waset.org/abstracts/46579/a-case-study-of-conceptual-framework-for-process-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">673</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15173</span> Fixed Points of Contractive-Like Operators by a Faster Iterative Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safeer%20Hussain%20Khan">Safeer Hussain Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we prove a strong convergence result using a recently introduced iterative process with contractive-like operators. This improves and generalizes corresponding results in the literature in two ways: the iterative process is faster, operators are more general. In the end, we indicate that the results can also be proved with the iterative process with error terms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator" title="contractive-like operator">contractive-like operator</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20process" title=" iterative process"> iterative process</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20point" title=" fixed point"> fixed point</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20convergence" title=" strong convergence"> strong convergence</a> </p> <a href="https://publications.waset.org/abstracts/3818/fixed-points-of-contractive-like-operators-by-a-faster-iterative-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3818.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=506">506</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=507">507</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=LPBF%20process&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10