CINXE.COM

Search results for: Lyapunov function

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Lyapunov function</title> <meta name="description" content="Search results for: Lyapunov function"> <meta name="keywords" content="Lyapunov function"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Lyapunov function" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Lyapunov function"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5019</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Lyapunov function</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5019</span> Robust H∞ State Feedback Control for Discrete Time T-S Fuzzy Systems Based on Fuzzy Lyapunov Function Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walied%20Hanora">Walied Hanora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the problem of robust state feedback H∞ for discrete time nonlinear system represented by Takagi-Sugeno fuzzy systems. Based on fuzzy lyapunov function, the condition ,which is represented in the form of Liner Matrix Inequalities (LMI), guarantees the H∞ performance of the T-S fuzzy system with uncertainties. By comparison with recent literature, this approach will be more relaxed condition. Finally, an example is given to illustrate the proposed result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20lyapunov%20function" title="fuzzy lyapunov function">fuzzy lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%88%9E%20control" title=" H∞ control "> H∞ control </a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback" title=" state feedback"> state feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=T-S%20fuzzy%20systems" title=" T-S fuzzy systems"> T-S fuzzy systems</a> </p> <a href="https://publications.waset.org/abstracts/58045/robust-h-state-feedback-control-for-discrete-time-t-s-fuzzy-systems-based-on-fuzzy-lyapunov-function-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5018</span> Parameterized Lyapunov Function Based Robust Diagonal Dominance Pre-Compensator Design for Linear Parameter Varying Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaobao%20Han">Xiaobao Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Huacong%20Li"> Huacong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Li"> Jia Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For dynamic decoupling of linear parameter varying system, a robust dominance pre-compensator design method is given. The parameterized pre-compensator design problem is converted into optimal problem constrained with parameterized linear matrix inequalities (PLMI); To solve this problem, firstly, this optimization problem is equivalently transformed into a new form with elimination of coupling relationship between parameterized Lyapunov function (PLF) and pre-compensator. Then the problem was reduced to a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a newly constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator was achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation of a turbofan engine PLPV model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20parameter%20varying%20%28LPV%29" title="linear parameter varying (LPV)">linear parameter varying (LPV)</a>, <a href="https://publications.waset.org/abstracts/search?q=parameterized%20Lyapunov%20function%20%28PLF%29" title=" parameterized Lyapunov function (PLF)"> parameterized Lyapunov function (PLF)</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities%20%28LMI%29" title=" linear matrix inequalities (LMI)"> linear matrix inequalities (LMI)</a>, <a href="https://publications.waset.org/abstracts/search?q=diagonal%20dominance%20pre-compensator" title=" diagonal dominance pre-compensator"> diagonal dominance pre-compensator</a> </p> <a href="https://publications.waset.org/abstracts/57964/parameterized-lyapunov-function-based-robust-diagonal-dominance-pre-compensator-design-for-linear-parameter-varying-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5017</span> Lyapunov Functions for Extended Ross Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahele%20Mosleh">Rahele Mosleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper gives a survey of results on global stability of extended Ross model for malaria by constructing some elegant Lyapunov functions for two cases of epidemic, including disease-free and endemic occasions. The model is a nonlinear seven-dimensional system of ordinary differential equations that simulates this phenomenon in a more realistic fashion. We discuss the existence of positive disease-free and endemic equilibrium points of the model. It is stated that extended Ross model possesses invariant solutions for human and mosquito in a specific domain of the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20stability" title="global stability">global stability</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20solutions" title=" invariant solutions"> invariant solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=stationary%20points" title=" stationary points"> stationary points</a> </p> <a href="https://publications.waset.org/abstracts/125446/lyapunov-functions-for-extended-ross-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5016</span> Turing Pattern in the Oregonator Revisited</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elragig%20Aiman">Elragig Aiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Dreiwi%20Hanan"> Dreiwi Hanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Townley%20Stuart"> Townley Stuart</a>, <a href="https://publications.waset.org/abstracts/search?q=Elmabrook%20Idriss"> Elmabrook Idriss</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we reconsider the analysis of the Oregonator model. We highlight an error in this analysis which leads to an incorrect depiction of the parameter region in which diffusion driven instability is possible. We believe that the cause of the oversight is the complexity of stability analyses based on eigenvalues and the dependence on parameters of matrix minors appearing in stability calculations. We regenerate the parameter space where Turing patterns can be seen, and we use the common Lyapunov function (CLF) approach, which is numerically reliable, to further confirm the dependence of the results on diffusion coefficients intensities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diffusion%20driven%20instability" title="diffusion driven instability">diffusion driven instability</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20Lyapunov%20function%20%28CLF%29" title=" common Lyapunov function (CLF)"> common Lyapunov function (CLF)</a>, <a href="https://publications.waset.org/abstracts/search?q=turing%20pattern" title=" turing pattern"> turing pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=positive-definite%20matrix" title=" positive-definite matrix"> positive-definite matrix</a> </p> <a href="https://publications.waset.org/abstracts/73343/turing-pattern-in-the-oregonator-revisited" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5015</span> Implementation of an Associative Memory Using a Restricted Hopfield Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tet%20H.%20Yeap">Tet H. Yeap</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=restricted%20Hopfield%20network" title="restricted Hopfield network">restricted Hopfield network</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=simultaneous%20perturbation%20stochastic%20approximation" title=" simultaneous perturbation stochastic approximation"> simultaneous perturbation stochastic approximation</a> </p> <a href="https://publications.waset.org/abstracts/122365/implementation-of-an-associative-memory-using-a-restricted-hopfield-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5014</span> Stability and Boundedness Theorems of Solutions of Certain Systems of Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adetunji%20A.%20Adeyanju.">Adetunji A. Adeyanju.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathew%20O.%20Omeike"> Mathew O. Omeike</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnson%20O.%20Adeniran"> Johnson O. Adeniran</a>, <a href="https://publications.waset.org/abstracts/search?q=Biodun%20S.%20Badmus"> Biodun S. Badmus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we discuss certain conditions for uniform asymptotic stability and uniform ultimate boundedness of solutions to some systems of Aizermann-type of differential equations by means of second method of Lyapunov. In achieving our goal, some Lyapunov functions are constructed to serve as basic tools. The stability results in this paper, extend some stability results for some Aizermann-type of differential equations found in literature. Also, we prove some results on uniform boundedness and uniform ultimate boundedness of solutions of systems of equations study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aizermann" title="Aizermann">Aizermann</a>, <a href="https://publications.waset.org/abstracts/search?q=boundedness" title=" boundedness"> boundedness</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order" title=" first order"> first order</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/164909/stability-and-boundedness-theorems-of-solutions-of-certain-systems-of-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5013</span> Sufficient Conditions for Exponential Stability of Stochastic Differential Equations with Non Trivial Solutions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakhreddin%20Abedi">Fakhreddin Abedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wah%20June%20Leong"> Wah June Leong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exponential stability of stochastic differential equations with non trivial solutions is provided in terms of Lyapunov functions. The main result of this paper establishes that, under certain hypotheses for the dynamics f(.) and g(.), practical exponential stability in probability at the small neighborhood of the origin is equivalent to the existence of an appropriate Lyapunov function. Indeed, we establish exponential stability of stochastic differential equation when almost all the state trajectories are bounded and approach a sufficiently small neighborhood of the origin. We derive sufficient conditions for exponential stability of stochastic differential equations. Finally, we give a numerical example illustrating our results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability%20in%20probability" title="exponential stability in probability">exponential stability in probability</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20differential%20equations" title=" stochastic differential equations"> stochastic differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20technique" title=" Lyapunov technique"> Lyapunov technique</a>, <a href="https://publications.waset.org/abstracts/search?q=Ito%27s%20formula" title=" Ito&#039;s formula"> Ito&#039;s formula</a> </p> <a href="https://publications.waset.org/abstracts/184321/sufficient-conditions-for-exponential-stability-of-stochastic-differential-equations-with-non-trivial-solutions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5012</span> Lyapunov-Based Tracking Control for Nonholonomic Wheeled Mobile Robot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raouf%20Fareh">Raouf Fareh</a>, <a href="https://publications.waset.org/abstracts/search?q=Maarouf%20Saad"> Maarouf Saad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofiane%20Khadraoui"> Sofiane Khadraoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20Rabie"> Tamer Rabie </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a tracking control strategy based on Lyapunov approach for nonholonomic wheeled mobile robot. This control strategy consists of two levels. First, a kinematic controller is developed to adjust the right and left wheel velocities. Using this velocity control law, the stability of the tracking error is guaranteed using Lyapunov approach. This kinematic controller cannot be generated directly by the motors. To overcome this problem, the second level of the controllers, dynamic control, is designed. This dynamic control law is developed based on Lyapunov theory in order to track the desired trajectories of the mobile robot. The stability of the tracking error is proved using Lupunov and Barbalat approaches. Simulation results on a nonholonomic wheeled mobile robot are given to demonstrate the feasibility and effectiveness of the presented approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20robot" title="mobile robot">mobile robot</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20tracking" title=" trajectory tracking"> trajectory tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov" title=" Lyapunov"> Lyapunov</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/50751/lyapunov-based-tracking-control-for-nonholonomic-wheeled-mobile-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5011</span> Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Budhwar">Nisha Budhwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunita%20Daniel"> Sunita Daniel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20points" title="equilibrium points">equilibrium points</a>, <a href="https://publications.waset.org/abstracts/search?q=exposed" title=" exposed"> exposed</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20stability" title=" global stability"> global stability</a>, <a href="https://publications.waset.org/abstracts/search?q=infective%20immigrants" title=" infective immigrants"> infective immigrants</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=recovered" title=" recovered"> recovered</a>, <a href="https://publications.waset.org/abstracts/search?q=reproduction%20number" title=" reproduction number"> reproduction number</a>, <a href="https://publications.waset.org/abstracts/search?q=susceptible" title=" susceptible"> susceptible</a> </p> <a href="https://publications.waset.org/abstracts/60608/stability-analysis-of-a-human-mosquito-model-of-malaria-with-infective-immigrants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5010</span> Quantifying Meaning in Biological Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20L.%20Summers">Richard L. Summers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advanced computational analysis of biological systems is becoming increasingly dependent upon an understanding of the information-theoretic structure of the materials, energy and interactive processes that comprise those systems. The stability and survival of these living systems are fundamentally contingent upon their ability to acquire and process the meaning of information concerning the physical state of its biological continuum (biocontinuum). The drive for adaptive system reconciliation of a divergence from steady-state within this biocontinuum can be described by an information metric-based formulation of the process for actionable knowledge acquisition that incorporates the axiomatic inference of Kullback-Leibler information minimization driven by survival replicator dynamics. If the mathematical expression of this process is the Lagrangian integrand for any change within the biocontinuum then it can also be considered as an action functional for the living system. In the direct method of Lyapunov, such a summarizing mathematical formulation of global system behavior based on the driving forces of energy currents and constraints within the system can serve as a platform for the analysis of stability. As the system evolves in time in response to biocontinuum perturbations, the summarizing function then conveys information about its overall stability. This stability information portends survival and therefore has absolute existential meaning for the living system. The first derivative of the Lyapunov energy information function will have a negative trajectory toward a system's steady state if the driving force is dissipating. By contrast, system instability leading to system dissolution will have a positive trajectory. The direction and magnitude of the vector for the trajectory then serves as a quantifiable signature of the meaning associated with the living system’s stability information, homeostasis and survival potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meaning" title="meaning">meaning</a>, <a href="https://publications.waset.org/abstracts/search?q=information" title=" information"> information</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov" title=" Lyapunov"> Lyapunov</a>, <a href="https://publications.waset.org/abstracts/search?q=living%20systems" title=" living systems"> living systems</a> </p> <a href="https://publications.waset.org/abstracts/146575/quantifying-meaning-in-biological-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5009</span> Stability of Hybrid Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kreangkri%20Ratchagit">Kreangkri Ratchagit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with exponential stability of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the exponential stability of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of LMIs. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability" title="exponential stability">exponential stability</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=timevarying%20delays" title=" timevarying delays"> timevarying delays</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov-Krasovskii%20functional" title=" Lyapunov-Krasovskii functional"> Lyapunov-Krasovskii functional</a>, <a href="https://publications.waset.org/abstracts/search?q=Leibniz-Newton%E2%80%99s%20formula" title=" Leibniz-Newton’s formula"> Leibniz-Newton’s formula</a> </p> <a href="https://publications.waset.org/abstracts/20280/stability-of-hybrid-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5008</span> New Results on Exponential Stability of Hybrid Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grienggrai%20Rajchakit">Grienggrai Rajchakit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with the exponential stability of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton's formula, a switching rule for the exponential stability of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of LMIs. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability" title="exponential stability">exponential stability</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=time-varying%20delays" title=" time-varying delays"> time-varying delays</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov-krasovskii%20functional" title=" lyapunov-krasovskii functional"> lyapunov-krasovskii functional</a>, <a href="https://publications.waset.org/abstracts/search?q=leibniz-newton%27s%20formula" title=" leibniz-newton&#039;s formula"> leibniz-newton&#039;s formula</a> </p> <a href="https://publications.waset.org/abstracts/19808/new-results-on-exponential-stability-of-hybrid-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5007</span> Stability of Hybrid Stochastic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manlika%20Ratchagit">Manlika Ratchagit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robust%20mean%20square%20stability" title="robust mean square stability">robust mean square stability</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20stochastic%20systems" title=" discrete-time stochastic systems"> discrete-time stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20time-varying%20delays" title=" interval time-varying delays"> interval time-varying delays</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20functional" title=" Lyapunov functional"> Lyapunov functional</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a> </p> <a href="https://publications.waset.org/abstracts/20283/stability-of-hybrid-stochastic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5006</span> New Results on Stability of Hybrid Stochastic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manlika%20Rajchakit">Manlika Rajchakit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=robust%20mean%20square%20stability" title="robust mean square stability">robust mean square stability</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete-time%20stochastic%20systems" title=" discrete-time stochastic systems"> discrete-time stochastic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20systems" title=" hybrid systems"> hybrid systems</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20time-varying%20delays" title=" interval time-varying delays"> interval time-varying delays</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20functional" title=" lyapunov functional"> lyapunov functional</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a> </p> <a href="https://publications.waset.org/abstracts/19809/new-results-on-stability-of-hybrid-stochastic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5005</span> Fast Terminal Synergetic Converter Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Bouchama">Z. Bouchama</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Essounbouli"> N. Essounbouli</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamzaoui"> A. Hamzaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Harmas"> M. N. Harmas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new robust finite time synergetic controller is presented based on recently developed synergetic control methodology and a terminal attractor technique. A Fast Terminal Synergetic Control (FTSC) is proposed for controlling DC-DC buck converter. Unlike Synergetic Control (SC) and sliding mode control, the proposed control scheme has the characteristics of finite time convergence and chattering free phenomena. Simulation of stabilization and reference tracking for buck converter systems illustrates the approach effectiveness while stability is assured in the Lyapunov sense and converse Lyapunov results involving scalar differential inequalities are given for finite-time stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dc-dc%20buck%20converter" title="dc-dc buck converter">dc-dc buck converter</a>, <a href="https://publications.waset.org/abstracts/search?q=synergetic%20control" title=" synergetic control"> synergetic control</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20time%20convergence" title=" finite time convergence"> finite time convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20synergetic%20control" title=" terminal synergetic control"> terminal synergetic control</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20terminal%20synergetic%20control" title=" fast terminal synergetic control"> fast terminal synergetic control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov" title=" Lyapunov"> Lyapunov</a> </p> <a href="https://publications.waset.org/abstracts/7054/fast-terminal-synergetic-converter-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5004</span> The Uniting Control Lyapunov Functions in Permanent Magnet Synchronous Linear Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Fei%20Yang">Yi-Fei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Nai-Bao%20He"> Nai-Bao He</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao-Bang%20Xing"> Shao-Bang Xing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the permanent magnet synchronous linear motor (PMSLM) chaotic motion under the specific physical parameters, the stability and the security of motor-driven system will be unavoidably influenced. Therefore, it is really necessary to investigate the methods of controlling or suppressing chaos in PMSLM. Firstly, we derive a chaotic model of PMSLM in the closed-loop system. Secondly, in order to realize the local asymptotic stabilization of the mechanical subsystem and the global stabilization of the motor-driven system including electrical subsystem, we propose an improved uniting control lyapunov functions by introducing backstepping approach. Finally, an illustrated example is also given to show the electiveness of the obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20motor" title="linear motor">linear motor</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20functions" title=" lyapunov functions"> lyapunov functions</a>, <a href="https://publications.waset.org/abstracts/search?q=chao%20control" title=" chao control"> chao control</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20controller" title=" hybrid controller"> hybrid controller</a> </p> <a href="https://publications.waset.org/abstracts/46677/the-uniting-control-lyapunov-functions-in-permanent-magnet-synchronous-linear-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5003</span> Lyapunov and Input-to-State Stability of Stochastic Differential Equations </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arcady%20Ponosov">Arcady Ponosov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20Kadiev"> Ramazan Kadiev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Input-to-State Stability (ISS) is widely used in deterministic control theory but less known in the stochastic case. Roughly speaking, the theory explains when small perturbations of the right-hand sides of the system on the entire semiaxis cause only small changes in the solutions of the system, again on the entire semiaxis. This property is crucial in many applications. In the report, we explain how to define and study ISS for systems of linear stochastic differential equations with or without delays. The central result connects ISS with the property of Lyapunov stability. This relationship is well-known in the deterministic setting, but its stochastic version is new. As an application, a method of studying asymptotic Lyapunov stability for stochastic delay equations is described and justified. Several examples are provided that confirm the efficiency and simplicity of the framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20stability" title="asymptotic stability">asymptotic stability</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20equations" title=" delay equations"> delay equations</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20methods" title=" operator methods"> operator methods</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20perturbations" title=" stochastic perturbations"> stochastic perturbations</a> </p> <a href="https://publications.waset.org/abstracts/127764/lyapunov-and-input-to-state-stability-of-stochastic-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5002</span> Lyapunov Type Inequalities for Fractional Impulsive Hamiltonian Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kazem%20Ghanbari">Kazem Ghanbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yousef%20Gholami"> Yousef Gholami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with study about fractional order impulsive Hamiltonian systems and fractional impulsive Sturm-Liouville type problems derived from these systems. The main purpose of this paper devotes to obtain so called Lyapunov type inequalities for mentioned problems. Also, in view point on applicability of obtained inequalities, some qualitative properties such as stability, disconjugacy, nonexistence and oscillatory behaviour of fractional Hamiltonian systems and fractional Sturm-Liouville type problems under impulsive conditions will be derived. At the end, we want to point out that for studying fractional order Hamiltonian systems, we will apply recently introduced fractional Conformable operators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20derivatives%20and%20integrals" title="fractional derivatives and integrals">fractional derivatives and integrals</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20system" title=" Hamiltonian system"> Hamiltonian system</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov-type%20inequalities" title=" Lyapunov-type inequalities"> Lyapunov-type inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=disconjugacy" title=" disconjugacy"> disconjugacy</a> </p> <a href="https://publications.waset.org/abstracts/48806/lyapunov-type-inequalities-for-fractional-impulsive-hamiltonian-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48806.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5001</span> Lyapunov Exponents in the Restricted Three Body Problem under the Influence of Perturbations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ram%20Kishor">Ram Kishor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Lyapunov characteristic exponent (LCE) is an important tool to describe behavior of a dynamical system, which measures the average rate of divergence (or convergence) of a trajectory emanating in the vicinity of initial point. To analyze the behavior of nearby trajectory emanating in the neighborhood of an equilibrium point in the restricted three-body problem under the influence of perturbations in the form of radiation pressure and oblateness, we compute LCEs of first order with the help of slandered method which is based on variational equation of the system. It is observed that trajectories are chaotic in nature due positive LCEs. Also, we analyze the effect of radiation pressure and oblateness on the LCEs. Results are applicable to study the behavior of more generalized RTBP in the presence of perturbations such as PR drag, solar wind drag etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20characteristic%20exponent" title="Lyapunov characteristic exponent">Lyapunov characteristic exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=RTBP" title=" RTBP"> RTBP</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20pressure" title=" radiation pressure"> radiation pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=oblateness" title=" oblateness"> oblateness</a> </p> <a href="https://publications.waset.org/abstracts/49916/lyapunov-exponents-in-the-restricted-three-body-problem-under-the-influence-of-perturbations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5000</span> Chaotic Motion of Single-Walled Carbon Nanotube Subject to Damping Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tai-Ping%20Chang">Tai-Ping Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the effects on chaotic motion of single-walled carbon nanotube (SWCNT) due to the linear and nonlinear damping are investigated. By using the Hamilton’s principle, the nonlinear governing equation of the single-walled carbon nanotube embedded in a matrix is derived. The Galerkin’s method is adopted to simplify the integro-partial differential equation into a nonlinear dimensionless governing equation for the SWCNT, which turns out to be a forced Duffing equation. The variations of the Lyapunov exponents of the SWCNT with damping and harmonic forcing amplitudes are investigated. Based on the computations of the top Lyapunov exponent, it is concluded that the chaotic motion of the SWCNT occurs when the amplitude of the periodic excitation exceeds certain value, besides, the chaotic motion of the SWCNT occurs with small linear damping and tiny nonlinear damping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaotic%20motion" title="chaotic motion">chaotic motion</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20exponents" title=" Lyapunov exponents"> Lyapunov exponents</a>, <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotube" title=" single-walled carbon nanotube"> single-walled carbon nanotube</a> </p> <a href="https://publications.waset.org/abstracts/43091/chaotic-motion-of-single-walled-carbon-nanotube-subject-to-damping-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4999</span> Analysing the Behaviour of Local Hurst Exponent and Lyapunov Exponent for Prediction of Market Crashes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreemoyee%20Sarkar">Shreemoyee Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikhyat%20Chadha"> Vikhyat Chadha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the local fractal properties and chaotic properties of financial time series are investigated by calculating two exponents, the Local Hurst Exponent: LHE and Lyapunov Exponent in a moving time window of a financial series.y. For the purpose of this paper, the Dow Jones Industrial Average (DIJA) and S&P 500, two of the major indices of United States have been considered. The behaviour of the above-mentioned exponents prior to some major crashes (1998 and 2008 crashes in S&P 500 and 2002 and 2008 crashes in DIJA) is discussed. Also, the optimal length of the window for obtaining the best possible results is decided. Based on the outcomes of the above, an attempt is made to predict the crashes and accuracy of such an algorithm is decided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20hurst%20exponent" title="local hurst exponent">local hurst exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=lyapunov%20exponent" title=" lyapunov exponent"> lyapunov exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20crash%20prediction" title=" market crash prediction"> market crash prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20chaos" title=" time series chaos"> time series chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series%20local%20fractal%20properties" title=" time series local fractal properties"> time series local fractal properties</a> </p> <a href="https://publications.waset.org/abstracts/102568/analysing-the-behaviour-of-local-hurst-exponent-and-lyapunov-exponent-for-prediction-of-market-crashes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4998</span> Adaptive Control of Magnetorheological Damper Using Duffing-Like Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hung-Jiun%20Chi">Hung-Jiun Chi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-En%20Tsai"> Cheng-En Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia-Ying%20Tu"> Jia-Ying Tu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Semi-active control of Magnetorheological (MR) dampers for vibration reduction of structural systems has received considerable attention in civil and earthquake engineering, because the effective stiffness and damping properties of MR fluid can change in a very short time in reaction to external loading, requiring only a low level of power. However, the inherent nonlinear dynamics of hysteresis raise challenges in the modeling and control processes. In order to control the MR damper, an innovative Duffing-like equation is proposed to approximate the hysteresis dynamics in a deterministic and systematic manner than previously has been possible. Then, the model-reference adaptive control technique based on the Duffing-like model and the Lyapunov method is discussed. Parameter identification work with experimental data is presented to show the effectiveness of the Duffing-like model. In addition, simulation results show that the resulting adaptive gains enable the MR damper force to track the desired response of the reference model satisfactorily, verifying the effectiveness of the proposed modeling and control techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetorheological%20damper" title="magnetorheological damper">magnetorheological damper</a>, <a href="https://publications.waset.org/abstracts/search?q=duffing%20equation" title=" duffing equation"> duffing equation</a>, <a href="https://publications.waset.org/abstracts/search?q=model-reference%20adaptive%20control" title=" model-reference adaptive control"> model-reference adaptive control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=hysteresis" title=" hysteresis"> hysteresis</a> </p> <a href="https://publications.waset.org/abstracts/30513/adaptive-control-of-magnetorheological-damper-using-duffing-like-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4997</span> Global Mittag-Leffler Stability of Fractional-Order Bidirectional Associative Memory Neural Network with Discrete and Distributed Transmission Delays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Tyagi">Swati Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Abbas"> Syed Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fractional-order Hopfield neural networks are generally used to model the information processing among the interacting neurons. To show the constancy of the processed information, it is required to analyze the stability of these systems. In this work, we perform Mittag-Leffler stability for the corresponding Caputo fractional-order bidirectional associative memory (BAM) neural networks with various time-delays. We derive sufficient conditions to ensure the existence and uniqueness of the equilibrium point by using the theory of topological degree theory. By applying the fractional Lyapunov method and Mittag-Leffler functions, we derive sufficient conditions for the global Mittag-Leffler stability, which further imply the global asymptotic stability of the network equilibrium. Finally, we present two suitable examples to show the effectiveness of the obtained results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bidirectional%20associative%20memory%20neural%20network" title="bidirectional associative memory neural network">bidirectional associative memory neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=existence%20and%20uniqueness" title=" existence and uniqueness"> existence and uniqueness</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional-order" title=" fractional-order"> fractional-order</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=Mittag-Leffler%20stability" title=" Mittag-Leffler stability"> Mittag-Leffler stability</a> </p> <a href="https://publications.waset.org/abstracts/52374/global-mittag-leffler-stability-of-fractional-order-bidirectional-associative-memory-neural-network-with-discrete-and-distributed-transmission-delays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4996</span> Aggregation of Electric Vehicles for Emergency Frequency Regulation of Two-Area Interconnected Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Agheb">S. Agheb</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ledwich"> G. Ledwich</a>, <a href="https://publications.waset.org/abstracts/search?q=G.Walker"> G.Walker</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.Tong"> Z.Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency control has become more of concern for reliable operation of interconnected power systems due to the integration of low inertia renewable energy sources to the grid and their volatility. Also, in case of a sudden fault, the system has less time to recover before widespread blackouts. Electric Vehicles (EV)s have the potential to cooperate in the Emergency Frequency Regulation (EFR) by a nonlinear control of the power system in case of large disturbances. The time is not adequate to communicate with each individual EV on emergency cases, and thus, an aggregate model is necessary for a quick response to prevent from much frequency deviation and the occurrence of any blackout. In this work, an aggregate of EVs is modelled as a big virtual battery in each area considering various aspects of uncertainty such as the number of connected EVs and their initial State of Charge (SOC) as stochastic variables. A control law was proposed and applied to the aggregate model using Lyapunov energy function to maximize the rate of reduction of total kinetic energy in a two-area network after the occurrence of a fault. The control methods are primarily based on the charging/ discharging control of available EVs as shunt capacity in the distribution system. Three different cases were studied considering the locational aspect of the model with the virtual EV either in the center of the two areas or in the corners. The simulation results showed that EVs could help the generator lose its kinetic energy in a short time after a contingency. Earlier estimation of possible contributions of EVs can help the supervisory control level to transmit a prompt control signal to the subsystems such as the aggregator agents and the grid. Thus, the percentage of EVs contribution for EFR will be characterized in the future as the goal of this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emergency%20frequency%20regulation" title="emergency frequency regulation">emergency frequency regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicle" title=" electric vehicle"> electric vehicle</a>, <a href="https://publications.waset.org/abstracts/search?q=EV" title=" EV"> EV</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregation" title=" aggregation"> aggregation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20energy%20function" title=" Lyapunov energy function"> Lyapunov energy function</a> </p> <a href="https://publications.waset.org/abstracts/111333/aggregation-of-electric-vehicles-for-emergency-frequency-regulation-of-two-area-interconnected-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4995</span> Synchronization of Chaotic T-System via Optimal Control as an Adaptive Controller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Kheiri">Hossein Kheiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Bashir%20Naderi"> Bashir Naderi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Reza%20Niknam"> Mohamad Reza Niknam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we study the optimal synchronization of chaotic T-system with complete uncertain parameter. Optimal control laws and parameter estimation rules are obtained by using Hamilton-Jacobi-Bellman (HJB) technique and Lyapunov stability theorem. The derived control laws are optimal adaptive control and make the states of drive and response systems asymptotically synchronized. Numerical simulation shows the effectiveness and feasibility of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20stability" title="Lyapunov stability">Lyapunov stability</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronization" title=" synchronization"> synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20control" title=" adaptive control"> adaptive control</a> </p> <a href="https://publications.waset.org/abstracts/8820/synchronization-of-chaotic-t-system-via-optimal-control-as-an-adaptive-controller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4994</span> Set-point Performance Evaluation of Robust ‎Back-Stepping Control Design for a Nonlinear ‎Electro-‎Hydraulic Servo System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Ahmadnezhad">Maria Ahmadnezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyedgharani%20Ghoreishi%20%E2%80%8E"> Seyedgharani Ghoreishi ‎</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrohydraulic servo system have been used in industry in a wide ‎number of applications. Its ‎dynamics are highly nonlinear and also ‎have large extent of model uncertainties and external ‎disturbances. ‎In this thesis, a robust back-stepping control (RBSC) scheme is ‎proposed to overcome ‎the problem of disturbances and system ‎uncertainties effectively and to improve the set-point ‎performance ‎of EHS systems. In order to implement the proposed control ‎scheme, the system ‎uncertainties in EHS systems are considered as ‎total leakage coefficient and effective oil volume. In ‎addition, in ‎order to obtain the virtual controls for stabilizing system, the ‎update rule for the ‎system uncertainty term is induced by the ‎Lyapunov control function (LCF). To verify the ‎performance and ‎robustness of the proposed control system, computer simulation of ‎the ‎proposed control system using Matlab/Simulink Software is ‎executed. From the computer ‎simulation, it was found that the ‎RBSC system produces the desired set-point performance and ‎has ‎robustness to the disturbances and system uncertainties of ‎EHS systems.‎ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro%20hydraulic%20servo%20system" title="electro hydraulic servo system">electro hydraulic servo system</a>, <a href="https://publications.waset.org/abstracts/search?q=back-stepping%20control" title=" back-stepping control"> back-stepping control</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20back-%E2%80%8Estepping%20control" title=" robust back-‎stepping control"> robust back-‎stepping control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20redesign%E2%80%8E" title=" Lyapunov redesign‎"> Lyapunov redesign‎</a> </p> <a href="https://publications.waset.org/abstracts/39729/set-point-performance-evaluation-of-robust-back-stepping-control-design-for-a-nonlinear-electro-hydraulic-servo-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1004</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4993</span> Generalized Synchronization in Systems with a Complex Topology of Attractor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20I.%20Moskalenko">Olga I. Moskalenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladislav%20A.%20Khanadeev"> Vladislav A. Khanadeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasya%20D.%20Koloskova"> Anastasya D. Koloskova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20A.%20Koronovskii"> Alexey A. Koronovskii</a>, <a href="https://publications.waset.org/abstracts/search?q=Anatoly%20A.%20Pivovarov"> Anatoly A. Pivovarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generalized synchronization is one of the most intricate phenomena in nonlinear science. It can be observed both in systems with a unidirectional and mutual type of coupling including the complex networks. Such a phenomenon has a number of practical applications, for example, for the secure information transmission through the communication channel with a high level of noise. Known methods for the secure information transmission needs in the increase of the privacy of data transmission that arises a question about the observation of such phenomenon in systems with a complex topology of chaotic attractor possessing two or more positive Lyapunov exponents. The present report is devoted to the study of such phenomenon in two unidirectionally and mutually coupled dynamical systems being in chaotic (with one positive Lyapunov exponent) and hyperchaotic (with two or more positive Lyapunov exponents) regimes, respectively. As the systems under study, we have used two mutually coupled modified Lorenz oscillators and two unidirectionally coupled time-delayed generators. We have shown that in both cases the generalized synchronization regime can be detected by means of the calculation of Lyapunov exponents and phase tube approach whereas due to the complex topology of attractor the nearest neighbor method is misleading. Moreover, the auxiliary system approaches being the standard method for the synchronous regime observation, for the mutual type of coupling results in incorrect results. To calculate the Lyapunov exponents in time-delayed systems we have proposed an approach based on the modification of Gram-Schmidt orthogonalization procedure in the context of the time-delayed system. We have studied in detail the mechanisms resulting in the generalized synchronization regime onset paying a great attention to the field where one positive Lyapunov exponent has already been become negative whereas the second one is a positive yet. We have found the intermittency here and studied its characteristics. To detect the laminar phase lengths the method based on a calculation of local Lyapunov exponents has been proposed. The efficiency of the method has been verified using the example of two unidirectionally coupled Rössler systems being in the band chaos regime. We have revealed the main characteristics of intermittency, i.e. the distribution of the laminar phase lengths and dependence of the mean length of the laminar phases on the criticality parameter, for all systems studied in the report. This work has been supported by the Russian President's Council grant for the state support of young Russian scientists (project MK-531.2018.2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20topology%20of%20attractor" title="complex topology of attractor">complex topology of attractor</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20synchronization" title=" generalized synchronization"> generalized synchronization</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperchaos" title=" hyperchaos"> hyperchaos</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20exponents" title=" Lyapunov exponents"> Lyapunov exponents</a> </p> <a href="https://publications.waset.org/abstracts/95332/generalized-synchronization-in-systems-with-a-complex-topology-of-attractor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4992</span> Design of a Fuzzy Luenberger Observer for Fault Nonlinear System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Bekaik">Mounir Bekaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Messaoud%20Ramdani"> Messaoud Ramdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system" title="nonlinear system">nonlinear system</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=faults" title=" faults"> faults</a>, <a href="https://publications.waset.org/abstracts/search?q=TS" title=" TS"> TS</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov-Krasovskii" title=" Lyapunov-Krasovskii"> Lyapunov-Krasovskii</a>, <a href="https://publications.waset.org/abstracts/search?q=observer" title=" observer"> observer</a> </p> <a href="https://publications.waset.org/abstracts/47230/design-of-a-fuzzy-luenberger-observer-for-fault-nonlinear-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4991</span> Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Lee">S. H. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Park"> M. J. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Kwon"> O. M. Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of this systems are obtained by solving a set of Linear Matrix Inequalities(LMIs). One numerical example is included to show the effectiveness of the proposed criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title="multi-agent">multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities%20%28LMIs%29" title=" linear matrix inequalities (LMIs)"> linear matrix inequalities (LMIs)</a>, <a href="https://publications.waset.org/abstracts/search?q=kronecker%20product" title=" kronecker product"> kronecker product</a>, <a href="https://publications.waset.org/abstracts/search?q=sampled-data" title=" sampled-data"> sampled-data</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20method" title=" Lyapunov method"> Lyapunov method</a> </p> <a href="https://publications.waset.org/abstracts/25582/reliable-consensus-problem-for-multi-agent-systems-with-sampled-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4990</span> Tracking Performance Evaluation of Robust Back-Stepping Control Design for a ‎Nonlinear Electro-Hydraulic Servo System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Ahmadnezhad">Maria Ahmadnezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Soltanpour"> Mohammad Reza Soltanpour </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrohydraulic servo systems have been used in industry in a wide number of applications. Its dynamics ‎are highly nonlinear and also have large extent of model uncertainties and external disturbances. In this ‎thesis, a robust back-stepping control (RBSC) scheme is proposed to overcome the problem of ‎disturbances and system uncertainties effectively and to improve the tracking performance of EHS ‎systems. In order to implement the proposed control scheme, the system uncertainties in EHS systems ‎are considered as total leakage coefficient and effective oil volume. In addition, in order to obtain the ‎virtual controls for stabilizing system, the update rule for the system uncertainty term is induced by the ‎Lyapunov control function (LCF). To verify the performance and robustness of the proposed control ‎system, computer simulation of the proposed control system using Matlab/Simulink Software is ‎executed. From the computer simulation, it was found that the RBSC system produces the desired ‎tracking performance and has robustness to the disturbances and system uncertainties of EHS systems.‎ <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro%20hydraulic%20servo%20system" title="electro hydraulic servo system">electro hydraulic servo system</a>, <a href="https://publications.waset.org/abstracts/search?q=back-stepping%20control" title=" back-stepping control"> back-stepping control</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20back-stepping%20control" title=" robust back-stepping control"> robust back-stepping control</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20redesign" title=" Lyapunov redesign"> Lyapunov redesign</a> </p> <a href="https://publications.waset.org/abstracts/31966/tracking-performance-evaluation-of-robust-back-stepping-control-design-for-a-nonlinear-electro-hydraulic-servo-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=167">167</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=168">168</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10