CINXE.COM
Double factorial - Wikipedia
<!doctype html> <html class="client-nojs skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="en" dir="ltr"> <head> <base href="https://en.m.wikipedia.org/wiki/Double_factorial"> <meta charset="UTF-8"> <title>Double factorial - Wikipedia</title> <script>(function(){var className="client-js skin-theme-clientpref-day mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"ce47eeb3-f57b-49e6-bd7e-5f207fc06ff1","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Double_factorial","wgTitle":"Double factorial","wgCurRevisionId":1258451328,"wgRevisionId":1258451328,"wgArticleId":507208, "wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Double_factorial","wgRelevantArticleId":507208,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"", "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym": "अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo", "autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cs","autonym":"čeština","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy", "autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym":"dansk","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"de","autonym":"Deutsch","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fi","autonym":"suomi","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo", "autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym":"fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym": "Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir":"ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hi","autonym":"हिन्दी","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hu","autonym":"magyar","dir":"ltr"},{"lang":"hy","autonym":"հայերեն","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"it","autonym" :"italiano","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa","autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kk","autonym":"қазақша","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"ko","autonym":"한국어","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym": "къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad","autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym": "Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym":"Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang": "my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål","dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nn","autonym":"norsk nynorsk","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym": "Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{"lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pl","autonym":"polski","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym": "русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym":"Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sl","autonym": "slovenščina","dir":"ltr"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"sq","autonym":"shqip","dir":"ltr"},{"lang":"sr","autonym":"српски / srpski","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym":"Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"te","autonym":"తెలుగు","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang": "tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"th","autonym":"ไทย","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"tr","autonym":"Türkçe","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum","autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"uz","autonym":"oʻzbekcha / ўзбекча","dir":"ltr"}, {"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vi","autonym":"Tiếng Việt","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym":"ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zh","autonym": "中文","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu","ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf", "mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"],"isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q13520655","wgCheckUserClientHintsHeadersJsApi":[ "brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":true,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":true},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready", "skins.minerva.icons":"ready","skins.minerva.amc.styles":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.amc.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&only=styles&skin=minerva"> <script async src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Chord_diagrams_K6_matchings.svg/1200px-Chord_diagrams_K6_matchings.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="711"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Chord_diagrams_K6_matchings.svg/800px-Chord_diagrams_K6_matchings.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="474"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Chord_diagrams_K6_matchings.svg/640px-Chord_diagrams_K6_matchings.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="379"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Double factorial - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Double_factorial&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Double_factorial"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.1hbgkFx4Qn8.O/am=DgY/d=1/rs=AN8SPfqlmAPxwfG457BPbRXwNq39oSMGHg/m=corsproxy" data-sourceurl="https://en.m.wikipedia.org/wiki/Double_factorial"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.1hbgkFx4Qn8.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfqlmAPxwfG457BPbRXwNq39oSMGHg/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://en.m.wikipedia.org/wiki/Double_factorial"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Double_factorial rootpage-Double_factorial stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.1hbgkFx4Qn8.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfqlmAPxwfG457BPbRXwNq39oSMGHg/m=navigationui" data-environment="prod" data-proxy-url="https://en-m-wikipedia-org.translate.goog" data-proxy-full-url="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-source-url="https://en.m.wikipedia.org/wiki/Double_factorial" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="en" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.m.wikipedia.org/wiki/Double_factorial&anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Home</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Random?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Random</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://en-m-wikipedia-org.translate.goog/wiki/Special:Nearby?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Nearby</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&returnto=Double+factorial&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Log in</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:MobileOptions&returnto=Double+factorial&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Settings</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_en.wikipedia.org%26uselang%3Den%26utm_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Donate</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">About Wikipedia</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Disclaimers</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Main_Page?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Special:Search"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Search</span> </button> </form> <nav class="minerva-user-navigation" aria-label="User navigation"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Double factorial</span></h1> <div class="tagline"></div> </div> <ul id="p-associated-pages" class="minerva__tab-container"> <li class="minerva__tab selected"><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" rel="" data-event-name="tabs.subject">Article</a></li> <li class="minerva__tab "><a class="minerva__tab-text" href="https://en-m-wikipedia-org.translate.goog/wiki/Talk:Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" rel="discussion" data-event-name="tabs.talk">Talk</a></li> </ul> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Language" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Language</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Special:UserLogin&returnto=Double+factorial&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Watch</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Edit</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style> <div role="note" class="hatnote navigation-not-searchable"> The double factorial <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!!} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511717d541dba5357928e8d8631f1b4d4f8d5b31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.688ex; height:2.176ex;" alt="{\displaystyle n!!}"></span> is not the same as applying the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Factorial">factorial</a> function twice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n!)!}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> ! </mo> <mo stretchy="false"> ) </mo> <mo> ! </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (n!)!} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/beef2ffd8d0ceb0f080206f0da63d9c6b9d6070b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.498ex; height:2.843ex;" alt="{\displaystyle (n!)!}"></span>. </div> <p>In <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematics?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Mathematics">mathematics</a>, the <b>double factorial</b> of a number <span class="texhtml mvar" style="font-style:italic;">n</span>, denoted by <span class="texhtml"><i>n</i>‼</span>, is the product of all the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Positive_integer?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Positive integer">positive integers</a> up to <span class="texhtml mvar" style="font-style:italic;">n</span> that have the same <a href="https://en-m-wikipedia-org.translate.goog/wiki/Parity_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Parity (mathematics)">parity</a> (odd or even) as <span class="texhtml mvar" style="font-style:italic;">n</span>.<sup id="cite_ref-callan_1-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-callan-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> That is,</p> <figure typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Chord_diagrams_K6_matchings.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/06/Chord_diagrams_K6_matchings.svg/360px-Chord_diagrams_K6_matchings.svg.png" decoding="async" width="360" height="213" class="mw-file-element" srcset="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Chord_diagrams_K6_matchings.svg/540px-Chord_diagrams_K6_matchings.svg.png 1.5x,https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://upload.wikimedia.org/wikipedia/commons/thumb/0/06/Chord_diagrams_K6_matchings.svg/720px-Chord_diagrams_K6_matchings.svg.png 2x" data-file-width="972" data-file-height="576"></a> <figcaption> The fifteen different <a href="https://en-m-wikipedia-org.translate.goog/wiki/Chord_diagram_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Chord diagram (mathematics)">chord diagrams</a> on six points, or equivalently the fifteen different <a href="https://en-m-wikipedia-org.translate.goog/wiki/Perfect_matching?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Perfect matching">perfect matchings</a> on a six-vertex <a href="https://en-m-wikipedia-org.translate.goog/wiki/Complete_graph?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Complete graph">complete graph</a>. These are counted by the double factorial <span class="texhtml">15 = (6 − 1)‼</span>. </figcaption> </figure> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k)=n(n-2)(n-4)\cdots .}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <munderover> <mo> ∏<!-- ∏ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> ⌈ </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ⌉ </mo> </mrow> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </munderover> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mi> k </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> n </mi> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 4 </mn> <mo stretchy="false"> ) </mo> <mo> ⋯<!-- ⋯ --> </mo> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k)=n(n-2)(n-4)\cdots .} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd4bb531283bcca76191054e0a1dfc761bc9265e" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.729ex; height:9.009ex;" alt="{\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k)=n(n-2)(n-4)\cdots .}"></span></p> <p>Restated, this says that for even <span class="texhtml mvar" style="font-style:italic;">n</span>, the double factorial<sup id="cite_ref-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!=\prod _{k=1}^{\frac {n}{2}}(2k)=n(n-2)(n-4)\cdots 4\cdot 2\,,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <munderover> <mo> ∏<!-- ∏ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> n </mi> <mn> 2 </mn> </mfrac> </mrow> </munderover> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> n </mi> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 4 </mn> <mo stretchy="false"> ) </mo> <mo> ⋯<!-- ⋯ --> </mo> <mn> 4 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 2 </mn> <mspace width="thinmathspace"></mspace> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!!=\prod _{k=1}^{\frac {n}{2}}(2k)=n(n-2)(n-4)\cdots 4\cdot 2\,,} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a2c6b3ce11a2addbe78d4bdf74e3f030df3296d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:40.382ex; height:8.343ex;" alt="{\displaystyle n!!=\prod _{k=1}^{\frac {n}{2}}(2k)=n(n-2)(n-4)\cdots 4\cdot 2\,,}"></span> while for odd <span class="texhtml mvar" style="font-style:italic;">n</span> it is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!=\prod _{k=1}^{\frac {n+1}{2}}(2k-1)=n(n-2)(n-4)\cdots 3\cdot 1\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <munderover> <mo> ∏<!-- ∏ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </munderover> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> = </mo> <mi> n </mi> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 4 </mn> <mo stretchy="false"> ) </mo> <mo> ⋯<!-- ⋯ --> </mo> <mn> 3 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 1 </mn> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!!=\prod _{k=1}^{\frac {n+1}{2}}(2k-1)=n(n-2)(n-4)\cdots 3\cdot 1\,.} </annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fc7e4a63cca4a1cc136e5b72bd2de4db575d8c83" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.757ex; height:8.676ex;" alt="{\displaystyle n!!=\prod _{k=1}^{\frac {n+1}{2}}(2k-1)=n(n-2)(n-4)\cdots 3\cdot 1\,.}"></span> For example, <span class="texhtml">9‼ = 9 × 7 × 5 × 3 × 1 = 945</span>. The zero double factorial <span class="texhtml">0‼ = 1</span> as an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Empty_product?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Empty product">empty product</a>.<sup id="cite_ref-:0_3-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-:0-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-4" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup></p> <p>The <a href="https://en-m-wikipedia-org.translate.goog/wiki/Sequence?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Sequence">sequence</a> of double factorials for even <span class="texhtml mvar" style="font-style:italic;">n</span> = <span class="texhtml">0, 2, 4, 6, 8,...</span> starts as</p> <style data-mw-deduplicate="TemplateStyles:r996643573">.mw-parser-output .block-indent{padding-left:3em;padding-right:0;overflow:hidden}</style> <div class="block-indent"> <span class="texhtml">1, 2, 8, 48, 384, 3840, 46080, 645120, ...</span> (sequence <span class="nowrap external"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://oeis.org/A000165" class="extiw" title="oeis:A000165">A000165</a></span> in the <a href="https://en-m-wikipedia-org.translate.goog/wiki/On-Line_Encyclopedia_of_Integer_Sequences?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>) </div> <p>The sequence of double factorials for odd <span class="texhtml mvar" style="font-style:italic;">n</span> = <span class="texhtml">1, 3, 5, 7, 9,...</span> starts as</p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r996643573"> <div class="block-indent"> <span class="texhtml">1, 3, 15, 105, 945, 10395, 135135, ...</span> (sequence <span class="nowrap external"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://oeis.org/A001147" class="extiw" title="oeis:A001147">A001147</a></span> in the <a href="https://en-m-wikipedia-org.translate.goog/wiki/On-Line_Encyclopedia_of_Integer_Sequences?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>) </div> <p>The term <b>odd factorial</b> is sometimes used for the double factorial of an odd number.<sup id="cite_ref-5" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-6" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></p> <p>The term <b>semifactorial</b> is also used by <a href="https://en-m-wikipedia-org.translate.goog/wiki/Donald_Knuth?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Donald Knuth">Knuth</a> as a synonym of double factorial.<sup id="cite_ref-7" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="en" dir="ltr"> <h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#History_and_usage"><span class="tocnumber">1</span> <span class="toctext">History and usage</span></a></li> <li class="toclevel-1 tocsection-2"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Relation_to_the_factorial"><span class="tocnumber">2</span> <span class="toctext">Relation to the factorial</span></a></li> <li class="toclevel-1 tocsection-3"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Applications_in_enumerative_combinatorics"><span class="tocnumber">3</span> <span class="toctext">Applications in enumerative combinatorics</span></a></li> <li class="toclevel-1 tocsection-4"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Asymptotics"><span class="tocnumber">4</span> <span class="toctext">Asymptotics</span></a></li> <li class="toclevel-1 tocsection-5"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Extensions"><span class="tocnumber">5</span> <span class="toctext">Extensions</span></a> <ul> <li class="toclevel-2 tocsection-6"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Negative_arguments"><span class="tocnumber">5.1</span> <span class="toctext">Negative arguments</span></a></li> <li class="toclevel-2 tocsection-7"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Complex_arguments"><span class="tocnumber">5.2</span> <span class="toctext">Complex arguments</span></a></li> </ul></li> <li class="toclevel-1 tocsection-8"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Additional_identities"><span class="tocnumber">6</span> <span class="toctext">Additional identities</span></a></li> <li class="toclevel-1 tocsection-9"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Generalizations"><span class="tocnumber">7</span> <span class="toctext">Generalizations</span></a> <ul> <li class="toclevel-2 tocsection-10"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Definitions"><span class="tocnumber">7.1</span> <span class="toctext">Definitions</span></a></li> <li class="toclevel-2 tocsection-11"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Alternative_extension_of_the_multifactorial"><span class="tocnumber">7.2</span> <span class="toctext">Alternative extension of the multifactorial</span></a></li> <li class="toclevel-2 tocsection-12"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Generalized_Stirling_numbers_expanding_the_multifactorial_functions"><span class="tocnumber">7.3</span> <span class="toctext">Generalized Stirling numbers expanding the multifactorial functions</span></a></li> <li class="toclevel-2 tocsection-13"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Exact_finite_sums_involving_multiple_factorial_functions"><span class="tocnumber">7.4</span> <span class="toctext">Exact finite sums involving multiple factorial functions</span></a></li> </ul></li> <li class="toclevel-1 tocsection-14"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#References"><span class="tocnumber">8</span> <span class="toctext">References</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="History_and_usage">History and usage</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=1&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: History and usage" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>In a 1902 paper, the physicist <a href="https://en-m-wikipedia-org.translate.goog/wiki/Arthur_Schuster?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Arthur Schuster">Arthur Schuster</a> wrote:<sup id="cite_ref-8" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></p> <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style> <blockquote class="templatequote"> <p>The symbolical representation of the results of this paper is much facilitated by the introduction of a separate symbol for the product of alternate factors, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\cdot n-2\cdot n-4\cdots 1}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 4 </mn> <mo> ⋯<!-- ⋯ --> </mo> <mn> 1 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n\cdot n-2\cdot n-4\cdots 1} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83a1ebea406396177824208a39efb2087d3ecedb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:20.208ex; height:2.343ex;" alt="{\displaystyle n\cdot n-2\cdot n-4\cdots 1}"> </noscript><span class="lazy-image-placeholder" style="width: 20.208ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83a1ebea406396177824208a39efb2087d3ecedb" data-alt="{\displaystyle n\cdot n-2\cdot n-4\cdots 1}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"> </noscript><span class="lazy-image-placeholder" style="width: 1.395ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" data-alt="{\displaystyle n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> be odd, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\cdot n-2\cdots 2}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ⋅<!-- ⋅ --> </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mo> ⋯<!-- ⋯ --> </mo> <mn> 2 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n\cdot n-2\cdots 2} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17585cc0b0ef9c4dae965be4370c5c27a719dafd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:13.131ex; height:2.343ex;" alt="{\displaystyle n\cdot n-2\cdots 2}"> </noscript><span class="lazy-image-placeholder" style="width: 13.131ex;height: 2.343ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17585cc0b0ef9c4dae965be4370c5c27a719dafd" data-alt="{\displaystyle n\cdot n-2\cdots 2}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"> </noscript><span class="lazy-image-placeholder" style="width: 1.395ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" data-alt="{\displaystyle n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> be odd [sic]. I propose to write <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!!} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511717d541dba5357928e8d8631f1b4d4f8d5b31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.688ex; height:2.176ex;" alt="{\displaystyle n!!}"> </noscript><span class="lazy-image-placeholder" style="width: 2.688ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/511717d541dba5357928e8d8631f1b4d4f8d5b31" data-alt="{\displaystyle n!!}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> for such products, and if a name be required for the product to call it the "alternate factorial" or the "double factorial".</p> </blockquote> <p><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#CITEREFMeserve1948">Meserve (1948)</a><sup id="cite_ref-meserve_9-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-meserve-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> states that the double factorial was originally introduced in order to simplify the expression of certain <a href="https://en-m-wikipedia-org.translate.goog/wiki/List_of_integrals_of_trigonometric_functions?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="List of integrals of trigonometric functions">trigonometric integrals</a> that arise in the derivation of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Wallis_product?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Wallis product">Wallis product</a>. Double factorials also arise in expressing the volume of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Ball_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Ball (mathematics)">hyperball</a> and surface area of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/N-sphere?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="N-sphere">hypersphere</a>, and they have many applications in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Enumerative_combinatorics?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Enumerative combinatorics">enumerative combinatorics</a>.<sup id="cite_ref-callan_1-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-callan-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-dm93_10-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-dm93-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> They occur in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Student%27s_t-distribution?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Student's t-distribution">Student's <span class="texhtml mvar" style="font-style:italic;">t</span>-distribution</a> (1908), though <a href="https://en-m-wikipedia-org.translate.goog/wiki/William_Sealy_Gosset?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="William Sealy Gosset">Gosset</a> did not use the double exclamation point notation.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Relation_to_the_factorial">Relation to the factorial</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=2&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Relation to the factorial" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <p>Because the double factorial only involves about half the factors of the ordinary <a href="https://en-m-wikipedia-org.translate.goog/wiki/Factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Factorial">factorial</a>, its value is not substantially larger than the square root of the factorial <span class="texhtml"><i>n</i>!</span>, and it is much smaller than the iterated factorial <span class="texhtml">(<i>n</i>!)!</span>.</p> <p>The factorial of a positive <span class="texhtml mvar" style="font-style:italic;">n</span> may be written as the product of two double factorials:<sup id="cite_ref-:0_3-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-:0-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!=n!!\cdot (n-1)!!\,,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> = </mo> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mspace width="thinmathspace"></mspace> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!=n!!\cdot (n-1)!!\,,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ced9d3582cacf1e332848bb63f115cfc3f2ccf" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.042ex; height:2.843ex;" alt="{\displaystyle n!=n!!\cdot (n-1)!!\,,}"> </noscript><span class="lazy-image-placeholder" style="width: 19.042ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d8ced9d3582cacf1e332848bb63f115cfc3f2ccf" data-alt="{\displaystyle n!=n!!\cdot (n-1)!!\,,}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> and therefore <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!={\frac {n!}{(n-1)!!}}={\frac {(n+1)!}{(n+1)!!}}\,,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mrow> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> </mrow> <mrow> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!!={\frac {n!}{(n-1)!!}}={\frac {(n+1)!}{(n+1)!!}}\,,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa8f9bc544e3e74be89c6b0f0ee53fb0fea80c04" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:28.593ex; height:6.509ex;" alt="{\displaystyle n!!={\frac {n!}{(n-1)!!}}={\frac {(n+1)!}{(n+1)!!}}\,,}"> </noscript><span class="lazy-image-placeholder" style="width: 28.593ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa8f9bc544e3e74be89c6b0f0ee53fb0fea80c04" data-alt="{\displaystyle n!!={\frac {n!}{(n-1)!!}}={\frac {(n+1)!}{(n+1)!!}}\,,}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> where the denominator cancels the unwanted factors in the numerator. (The last form also applies when <span class="texhtml"><i>n</i> = 0</span>.)</p> <p>For an even non-negative integer <span class="texhtml"><i>n</i> = 2<i>k</i></span> with <span class="texhtml"><i>k</i> ≥ 0</span>, the double factorial may be expressed as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2k)!!=2^{k}k!\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mi> k </mi> <mo> ! </mo> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (2k)!!=2^{k}k!\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/581c58950469fd9cb703197776c625debcae5067" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.718ex; height:3.176ex;" alt="{\displaystyle (2k)!!=2^{k}k!\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 13.718ex;height: 3.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/581c58950469fd9cb703197776c625debcae5067" data-alt="{\displaystyle (2k)!!=2^{k}k!\,.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>For odd <span class="texhtml"><i>n</i> = 2<i>k</i> − 1</span> with <span class="texhtml"><i>k</i> ≥ 1</span>, combining the two previous formulas yields <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2k-1)!!={\frac {(2k)!}{2^{k}k!}}={\frac {(2k-1)!}{2^{k-1}(k-1)!}}\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo stretchy="false"> ) </mo> <mo> ! </mo> </mrow> <mrow> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mi> k </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> </mrow> <mrow> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (2k-1)!!={\frac {(2k)!}{2^{k}k!}}={\frac {(2k-1)!}{2^{k-1}(k-1)!}}\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ae8722d4f42da84334ed4e3698318f1f65dbffb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.234ex; height:6.843ex;" alt="{\displaystyle (2k-1)!!={\frac {(2k)!}{2^{k}k!}}={\frac {(2k-1)!}{2^{k-1}(k-1)!}}\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 35.234ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ae8722d4f42da84334ed4e3698318f1f65dbffb" data-alt="{\displaystyle (2k-1)!!={\frac {(2k)!}{2^{k}k!}}={\frac {(2k-1)!}{2^{k-1}(k-1)!}}\,.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>For an odd positive integer <span class="texhtml"><i>n</i> = 2<i>k</i> − 1</span> with <span class="texhtml"><i>k</i> ≥ 1</span>, the double factorial may be expressed in terms of <a href="https://en-m-wikipedia-org.translate.goog/wiki/Permutation?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Permutations_without_repetitions" title="Permutation"><span class="texhtml mvar" style="font-style:italic;">k</span>-permutations of <span class="texhtml">2<i>k</i></span></a><sup id="cite_ref-callan_1-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-callan-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-gq12_11-0" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-gq12-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> or a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Falling_and_rising_factorials?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Falling and rising factorials">falling factorial</a> as <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2k-1)!!={\frac {_{2k}P_{k}}{2^{k}}}={\frac {(2k)^{\underline {k}}}{2^{k}}}\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> <mi> k </mi> </mrow> </msub> <msub> <mi> P </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msub> </mrow> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> </mfrac> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi> k </mi> <mo> _<!-- _ --> </mo> </munder> </mrow> </msup> </mrow> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (2k-1)!!={\frac {_{2k}P_{k}}{2^{k}}}={\frac {(2k)^{\underline {k}}}{2^{k}}}\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f2528ee6c64244989ae128c502ea12513fa921f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.148ex; height:6.343ex;" alt="{\displaystyle (2k-1)!!={\frac {_{2k}P_{k}}{2^{k}}}={\frac {(2k)^{\underline {k}}}{2^{k}}}\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 28.148ex;height: 6.343ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f2528ee6c64244989ae128c502ea12513fa921f" data-alt="{\displaystyle (2k-1)!!={\frac {_{2k}P_{k}}{2^{k}}}={\frac {(2k)^{\underline {k}}}{2^{k}}}\,.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Applications_in_enumerative_combinatorics">Applications in enumerative combinatorics</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=3&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Applications in enumerative combinatorics" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <figure typeof="mw:File/Thumb"> <a href="https://en-m-wikipedia-org.translate.goog/wiki/File:Unordered_binary_trees_with_4_leaves.svg?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-file-description"> <noscript> <img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Unordered_binary_trees_with_4_leaves.svg/300px-Unordered_binary_trees_with_4_leaves.svg.png" decoding="async" width="300" height="210" class="mw-file-element" data-file-width="630" data-file-height="441"> </noscript><span class="lazy-image-placeholder" style="width: 300px;height: 210px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Unordered_binary_trees_with_4_leaves.svg/300px-Unordered_binary_trees_with_4_leaves.svg.png" data-width="300" data-height="210" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Unordered_binary_trees_with_4_leaves.svg/450px-Unordered_binary_trees_with_4_leaves.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4d/Unordered_binary_trees_with_4_leaves.svg/600px-Unordered_binary_trees_with_4_leaves.svg.png 2x" data-class="mw-file-element"> </span></a> <figcaption> The fifteen different <a href="https://en-m-wikipedia-org.translate.goog/wiki/Rooted_binary_tree?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Rooted binary tree">rooted binary trees</a> (with unordered children) on a set of four labeled leaves, illustrating <span class="texhtml">15 = (2 × 4 − 3)‼</span> (see article text). </figcaption> </figure> <p>Double factorials are motivated by the fact that they occur frequently in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Enumerative_combinatorics?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Enumerative combinatorics">enumerative combinatorics</a> and other settings. For instance, <span class="texhtml"><i>n</i>‼</span> for odd values of <span class="texhtml mvar" style="font-style:italic;">n</span> counts</p> <ul> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Perfect_matching?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Perfect matching">Perfect matchings</a> of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Complete_graph?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Complete graph">complete graph</a> <span class="texhtml"><i>K</i><sub><i>n</i> + 1</sub></span> for odd <span class="texhtml mvar" style="font-style:italic;">n</span>. In such a graph, any single vertex <i>v</i> has <span class="texhtml mvar" style="font-style:italic;">n</span> possible choices of vertex that it can be matched to, and once this choice is made the remaining problem is one of selecting a perfect matching in a complete graph with two fewer vertices. For instance, a complete graph with four vertices <i>a</i>, <i>b</i>, <i>c</i>, and <i>d</i> has three perfect matchings: <i>ab</i> and <i>cd</i>, <i>ac</i> and <i>bd</i>, and <i>ad</i> and <i>bc</i>.<sup id="cite_ref-callan_1-3" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-callan-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Perfect matchings may be described in several other equivalent ways, including <a href="https://en-m-wikipedia-org.translate.goog/wiki/Involution_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Involution (mathematics)">involutions</a> without fixed points on a set of <span class="texhtml"><i>n</i> + 1</span> items (<a href="https://en-m-wikipedia-org.translate.goog/wiki/Permutations?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Permutations">permutations</a> in which each cycle is a pair)<sup id="cite_ref-callan_1-4" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-callan-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> or <a href="https://en-m-wikipedia-org.translate.goog/wiki/Chord_diagram_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Chord diagram (mathematics)">chord diagrams</a> (sets of chords of a set of <span class="texhtml"><i>n</i> + 1</span> points evenly spaced on a circle such that each point is the endpoint of exactly one chord, also called <a href="https://en-m-wikipedia-org.translate.goog/wiki/Richard_Brauer?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Richard Brauer">Brauer</a> diagrams).<sup id="cite_ref-dm93_10-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-dm93-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-12" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-13" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> The numbers of matchings in complete graphs, without constraining the matchings to be perfect, are instead given by the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Telephone_number_(mathematics)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Telephone number (mathematics)">telephone numbers</a>, which may be expressed as a summation involving double factorials.<sup id="cite_ref-14" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Stirling_permutation?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Stirling permutation">Stirling permutations</a>, permutations of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Multiset?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Multiset">multiset</a> of numbers <span class="texhtml">1, 1, 2, 2, ..., <span class="texhtml mvar" style="font-style:italic;">k</span>, <span class="texhtml mvar" style="font-style:italic;">k</span></span> in which each pair of equal numbers is separated only by larger numbers, where <span class="texhtml"><i>k</i> = <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac"><span class="tion"><span class="num"><i>n</i> + 1</span><span class="sr-only">/</span><span class="den">2</span></span></span></span>. The two copies of <span class="texhtml mvar" style="font-style:italic;">k</span> must be adjacent; removing them from the permutation leaves a permutation in which the maximum element is <span class="texhtml"><i>k</i> − 1</span>, with <span class="texhtml mvar" style="font-style:italic;">n</span> positions into which the adjacent pair of <span class="texhtml mvar" style="font-style:italic;">k</span> values may be placed. From this recursive construction, a proof that the Stirling permutations are counted by the double permutations follows by induction.<sup id="cite_ref-callan_1-5" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-callan-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> Alternatively, instead of the restriction that values between a pair may be larger than it, one may also consider the permutations of this multiset in which the first copies of each pair appear in sorted order; such a permutation defines a matching on the <span class="texhtml">2<i>k</i></span> positions of the permutation, so again the number of permutations may be counted by the double permutations.<sup id="cite_ref-dm93_10-2" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-dm93-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Heap_(data_structure)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Heap (data structure)">Heap-ordered trees</a>, trees with <span class="texhtml"><i>k</i> + 1</span> nodes labeled <span class="texhtml">0, 1, 2, ... <span class="texhtml mvar" style="font-style:italic;">k</span></span>, such that the root of the tree has label 0, each other node has a larger label than its parent, and such that the children of each node have a fixed ordering. An <a href="https://en-m-wikipedia-org.translate.goog/wiki/Euler_tour_technique?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Euler tour technique">Euler tour</a> of the tree (with doubled edges) gives a Stirling permutation, and every Stirling permutation represents a tree in this way.<sup id="cite_ref-callan_1-6" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-callan-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-15" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup></li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Unrooted_binary_tree?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Unrooted binary tree">Unrooted binary trees</a> with <span class="texhtml"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>n</i> + 5</span><span class="sr-only">/</span><span class="den">2</span></span></span></span> labeled leaves. Each such tree may be formed from a tree with one fewer leaf, by subdividing one of the <span class="texhtml mvar" style="font-style:italic;">n</span> tree edges and making the new vertex be the parent of a new leaf.</li> <li><a href="https://en-m-wikipedia-org.translate.goog/wiki/Rooted_binary_tree?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Rooted binary tree">Rooted binary trees</a> with <span class="texhtml"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>n</i> + 3</span><span class="sr-only">/</span><span class="den">2</span></span></span></span> labeled leaves. This case is similar to the unrooted case, but the number of edges that can be subdivided is even, and in addition to subdividing an edge it is possible to add a node to a tree with one fewer leaf by adding a new root whose two children are the smaller tree and the new leaf.<sup id="cite_ref-callan_1-7" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-callan-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-dm93_10-3" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-dm93-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup></li> </ul> <p><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#CITEREFCallan2009">Callan (2009)</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#CITEREFDaleMoon1993">Dale & Moon (1993)</a> list several additional objects with the same <a href="https://en-m-wikipedia-org.translate.goog/wiki/Combinatorial_class?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Combinatorial class">counting sequence</a>, including "trapezoidal words" (<a href="https://en-m-wikipedia-org.translate.goog/wiki/Numeral_system?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Numeral system">numerals</a> in a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Mixed_radix?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Mixed radix">mixed radix</a> system with increasing odd radixes), height-labeled <a href="https://en-m-wikipedia-org.translate.goog/wiki/Dyck_path?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Dyck path">Dyck paths</a>, height-labeled ordered trees, "overhang paths", and certain vectors describing the lowest-numbered leaf descendant of each node in a rooted binary tree. For <a href="https://en-m-wikipedia-org.translate.goog/wiki/Bijective_proof?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Bijective proof">bijective proofs</a> that some of these objects are equinumerous, see <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#CITEREFRubey2008">Rubey (2008)</a> and <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#CITEREFMarshMartin2011">Marsh & Martin (2011)</a>.<sup id="cite_ref-16" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-17" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup></p> <p>The even double factorials give the numbers of elements of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hyperoctahedral_group?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Hyperoctahedral group">hyperoctahedral groups</a> (signed permutations or symmetries of a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hypercube?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Hypercube">hypercube</a>)</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Asymptotics">Asymptotics</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=4&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Asymptotics" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <p><a href="https://en-m-wikipedia-org.translate.goog/wiki/Stirling%27s_approximation?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Stirling's approximation">Stirling's approximation</a> for the factorial can be used to derive an <a href="https://en-m-wikipedia-org.translate.goog/wiki/Asymptotic_analysis?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Asymptotic analysis">asymptotic equivalent</a> for the double factorial. In particular, since <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n},}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> ∼<!-- ∼ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn> 2 </mn> <mi> π<!-- π --> </mi> <mi> n </mi> </msqrt> </mrow> <msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> n </mi> <mi> e </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n},} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fe20ccef4b13b2fc2b79b752fb595da6d855de2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.837ex; height:4.843ex;" alt="{\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n},}"> </noscript><span class="lazy-image-placeholder" style="width: 17.837ex;height: 4.843ex;vertical-align: -1.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fe20ccef4b13b2fc2b79b752fb595da6d855de2" data-alt="{\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n},}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> one has as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"> </noscript><span class="lazy-image-placeholder" style="width: 1.395ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" data-alt="{\displaystyle n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> tends to infinity that</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!\sim {\begin{cases}\displaystyle {\sqrt {\pi n}}\left({\frac {n}{e}}\right)^{n/2}&{\text{if }}n{\text{ is even}},\\[5pt]\displaystyle {\sqrt {2n}}\left({\frac {n}{e}}\right)^{n/2}&{\text{if }}n{\text{ is odd}}.\end{cases}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> <mo> ∼<!-- ∼ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> { </mo> <mtable columnalign="left left" rowspacing="0.7em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi> π<!-- π --> </mi> <mi> n </mi> </msqrt> </mrow> <msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> n </mi> <mi> e </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> </mrow> </msup> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> if </mtext> </mrow> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> is even </mtext> </mrow> <mo> , </mo> </mtd> </mtr> <mtr> <mtd> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn> 2 </mn> <mi> n </mi> </msqrt> </mrow> <msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> n </mi> <mi> e </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mn> 2 </mn> </mrow> </msup> </mstyle> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> if </mtext> </mrow> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> is odd </mtext> </mrow> <mo> . </mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!!\sim {\begin{cases}\displaystyle {\sqrt {\pi n}}\left({\frac {n}{e}}\right)^{n/2}&{\text{if }}n{\text{ is even}},\\[5pt]\displaystyle {\sqrt {2n}}\left({\frac {n}{e}}\right)^{n/2}&{\text{if }}n{\text{ is odd}}.\end{cases}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1665e6a09f9b9a28da13ed08f17b66361aec1364" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.338ex; width:34.748ex; height:11.843ex;" alt="{\displaystyle n!!\sim {\begin{cases}\displaystyle {\sqrt {\pi n}}\left({\frac {n}{e}}\right)^{n/2}&{\text{if }}n{\text{ is even}},\\[5pt]\displaystyle {\sqrt {2n}}\left({\frac {n}{e}}\right)^{n/2}&{\text{if }}n{\text{ is odd}}.\end{cases}}}"> </noscript><span class="lazy-image-placeholder" style="width: 34.748ex;height: 11.843ex;vertical-align: -5.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1665e6a09f9b9a28da13ed08f17b66361aec1364" data-alt="{\displaystyle n!!\sim {\begin{cases}\displaystyle {\sqrt {\pi n}}\left({\frac {n}{e}}\right)^{n/2}&{\text{if }}n{\text{ is even}},\\[5pt]\displaystyle {\sqrt {2n}}\left({\frac {n}{e}}\right)^{n/2}&{\text{if }}n{\text{ is odd}}.\end{cases}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Extensions">Extensions</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=5&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Extensions" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <div class="mw-heading mw-heading3"> <h3 id="Negative_arguments">Negative arguments</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=6&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Negative arguments" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>The ordinary factorial, when extended to the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Gamma_function?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Gamma function">gamma function</a>, has a <a href="https://en-m-wikipedia-org.translate.goog/wiki/Pole_(complex_analysis)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Pole (complex analysis)">pole</a> at each negative integer, preventing the factorial from being defined at these numbers. However, the double factorial of odd numbers may be extended to any negative odd integer argument by inverting its <a href="https://en-m-wikipedia-org.translate.goog/wiki/Recurrence_relation?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Recurrence relation">recurrence relation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!=n\times (n-2)!!}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <mi> n </mi> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!!=n\times (n-2)!!} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5981330b4c21bfe4834d3afff0b140e22b2a017" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.523ex; height:2.843ex;" alt="{\displaystyle n!!=n\times (n-2)!!}"> </noscript><span class="lazy-image-placeholder" style="width: 18.523ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5981330b4c21bfe4834d3afff0b140e22b2a017" data-alt="{\displaystyle n!!=n\times (n-2)!!}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> to give <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!!={\frac {(n+2)!!}{n+2}}\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mrow> <mrow> <mi> n </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!!={\frac {(n+2)!!}{n+2}}\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/662214e367d284c0405ef36d9493530dd7116006" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:16.157ex; height:5.843ex;" alt="{\displaystyle n!!={\frac {(n+2)!!}{n+2}}\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 16.157ex;height: 5.843ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/662214e367d284c0405ef36d9493530dd7116006" data-alt="{\displaystyle n!!={\frac {(n+2)!!}{n+2}}\,.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> Using this inverted recurrence, (−1)!! = 1, (−3)!! = −1, and (−5)!! = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span></span>; negative odd numbers with greater magnitude have fractional double factorials.<sup id="cite_ref-callan_1-8" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-callan-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> In particular, when <span class="texhtml mvar" style="font-style:italic;">n</span> is an odd number, this gives <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-n)!!\times n!!=(-1)^{\frac {n-1}{2}}\times n\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mi> n </mi> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mo> ×<!-- × --> </mo> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ×<!-- × --> </mo> <mi> n </mi> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (-n)!!\times n!!=(-1)^{\frac {n-1}{2}}\times n\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3910ca161950ab98637d93ea3308bc037d8a763d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.556ex; height:4.176ex;" alt="{\displaystyle (-n)!!\times n!!=(-1)^{\frac {n-1}{2}}\times n\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 28.556ex;height: 4.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3910ca161950ab98637d93ea3308bc037d8a763d" data-alt="{\displaystyle (-n)!!\times n!!=(-1)^{\frac {n-1}{2}}\times n\,.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <div class="mw-heading mw-heading3"> <h3 id="Complex_arguments">Complex arguments</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=7&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Complex arguments" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Disregarding the above definition of <span class="texhtml"><i>n</i>!!</span> for even values of <span class="texhtml mvar" style="font-style:italic;">n</span>, the double factorial for odd integers can be extended to most real and complex numbers <span class="texhtml mvar" style="font-style:italic;">z</span> by noting that when <span class="texhtml mvar" style="font-style:italic;">z</span> is a positive odd integer then<sup id="cite_ref-18" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-19" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}z!!&=z(z-2)\cdots 5\cdot 3\\[3mu]&=2^{\frac {z-1}{2}}\left({\frac {z}{2}}\right)\left({\frac {z-2}{2}}\right)\cdots \left({\frac {5}{2}}\right)\left({\frac {3}{2}}\right)\\[5mu]&=2^{\frac {z-1}{2}}{\frac {\Gamma \left({\tfrac {z}{2}}+1\right)}{\Gamma \left({\tfrac {1}{2}}+1\right)}}\\[5mu]&={\sqrt {\frac {2}{\pi }}}2^{\frac {z}{2}}\Gamma \left({\tfrac {z}{2}}+1\right)\,,\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.467em 0.578em 0.578em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi> z </mi> <mo> ! </mo> <mo> ! </mo> </mtd> <mtd> <mi></mi> <mo> = </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> z </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mo stretchy="false"> ) </mo> <mo> ⋯<!-- ⋯ --> </mo> <mn> 5 </mn> <mo> ⋅<!-- ⋅ --> </mo> <mn> 3 </mn> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> z </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> z </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⋯<!-- ⋯ --> </mo> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 5 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> z </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> Γ<!-- Γ --> </mi> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mstyle> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi mathvariant="normal"> Γ<!-- Γ --> </mi> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mstyle> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn> 2 </mn> <mi> π<!-- π --> </mi> </mfrac> </msqrt> </mrow> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mi mathvariant="normal"> Γ<!-- Γ --> </mi> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mstyle> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mspace width="thinmathspace"></mspace> <mo> , </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}z!!&=z(z-2)\cdots 5\cdot 3\\[3mu]&=2^{\frac {z-1}{2}}\left({\frac {z}{2}}\right)\left({\frac {z-2}{2}}\right)\cdots \left({\frac {5}{2}}\right)\left({\frac {3}{2}}\right)\\[5mu]&=2^{\frac {z-1}{2}}{\frac {\Gamma \left({\tfrac {z}{2}}+1\right)}{\Gamma \left({\tfrac {1}{2}}+1\right)}}\\[5mu]&={\sqrt {\frac {2}{\pi }}}2^{\frac {z}{2}}\Gamma \left({\tfrac {z}{2}}+1\right)\,,\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1a14e8300bf258355a029306178b16076cce5bb" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.005ex; width:40.413ex; height:25.176ex;" alt="{\displaystyle {\begin{aligned}z!!&=z(z-2)\cdots 5\cdot 3\\[3mu]&=2^{\frac {z-1}{2}}\left({\frac {z}{2}}\right)\left({\frac {z-2}{2}}\right)\cdots \left({\frac {5}{2}}\right)\left({\frac {3}{2}}\right)\\[5mu]&=2^{\frac {z-1}{2}}{\frac {\Gamma \left({\tfrac {z}{2}}+1\right)}{\Gamma \left({\tfrac {1}{2}}+1\right)}}\\[5mu]&={\sqrt {\frac {2}{\pi }}}2^{\frac {z}{2}}\Gamma \left({\tfrac {z}{2}}+1\right)\,,\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 40.413ex;height: 25.176ex;vertical-align: -12.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1a14e8300bf258355a029306178b16076cce5bb" data-alt="{\displaystyle {\begin{aligned}z!!&=z(z-2)\cdots 5\cdot 3\\[3mu]&=2^{\frac {z-1}{2}}\left({\frac {z}{2}}\right)\left({\frac {z-2}{2}}\right)\cdots \left({\frac {5}{2}}\right)\left({\frac {3}{2}}\right)\\[5mu]&=2^{\frac {z-1}{2}}{\frac {\Gamma \left({\tfrac {z}{2}}+1\right)}{\Gamma \left({\tfrac {1}{2}}+1\right)}}\\[5mu]&={\sqrt {\frac {2}{\pi }}}2^{\frac {z}{2}}\Gamma \left({\tfrac {z}{2}}+1\right)\,,\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Gamma (z)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal"> Γ<!-- Γ --> </mi> <mo stretchy="false"> ( </mo> <mi> z </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \Gamma (z)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11ca17f880240539116aac7e6326909299e2a080" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.35ex; height:2.843ex;" alt="{\displaystyle \Gamma (z)}"> </noscript><span class="lazy-image-placeholder" style="width: 4.35ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11ca17f880240539116aac7e6326909299e2a080" data-alt="{\displaystyle \Gamma (z)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> is the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Gamma_function?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Gamma function">gamma function</a>.</p> <p>The final expression is defined for all complex numbers except the negative even integers and satisfies <span class="texhtml">(<i>z</i> + 2)!! = (<i>z</i> + 2) · <i>z</i>!!</span> everywhere it is defined. As with the gamma function that extends the ordinary factorial function, this double factorial function is <a href="https://en-m-wikipedia-org.translate.goog/wiki/Logarithmically_convex?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Logarithmically convex">logarithmically convex</a> in the sense of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Bohr%E2%80%93Mollerup_theorem?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Bohr–Mollerup theorem">Bohr–Mollerup theorem</a>. Asymptotically, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n!!\sim {\sqrt {2n^{n+1}e^{-n}}}\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> <mo> ∼<!-- ∼ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn> 2 </mn> <msup> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mi> n </mi> </mrow> </msup> </msqrt> </mrow> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\textstyle n!!\sim {\sqrt {2n^{n+1}e^{-n}}}\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acd30e60ef8585bfc10f9e569fbae5420fc3ec38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:18.213ex; height:3.009ex;" alt="{\textstyle n!!\sim {\sqrt {2n^{n+1}e^{-n}}}\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 18.213ex;height: 3.009ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/acd30e60ef8585bfc10f9e569fbae5420fc3ec38" data-alt="{\textstyle n!!\sim {\sqrt {2n^{n+1}e^{-n}}}\,.}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span></p> <p>The generalized formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\frac {2}{\pi }}}2^{\frac {z}{2}}\Gamma \left({\tfrac {z}{2}}+1\right)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn> 2 </mn> <mi> π<!-- π --> </mi> </mfrac> </msqrt> </mrow> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mrow> </msup> <mi mathvariant="normal"> Γ<!-- Γ --> </mi> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi> z </mi> <mn> 2 </mn> </mfrac> </mstyle> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\sqrt {\frac {2}{\pi }}}2^{\frac {z}{2}}\Gamma \left({\tfrac {z}{2}}+1\right)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d095a39392ba3ec9007fb5a583e75b253f10f718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.021ex; height:6.176ex;" alt="{\displaystyle {\sqrt {\frac {2}{\pi }}}2^{\frac {z}{2}}\Gamma \left({\tfrac {z}{2}}+1\right)}"> </noscript><span class="lazy-image-placeholder" style="width: 17.021ex;height: 6.176ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d095a39392ba3ec9007fb5a583e75b253f10f718" data-alt="{\displaystyle {\sqrt {\frac {2}{\pi }}}2^{\frac {z}{2}}\Gamma \left({\tfrac {z}{2}}+1\right)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> does not agree with the previous product formula for <span class="texhtml"><i>z</i>!!</span> for non-negative <i>even</i> integer values of <span class="texhtml mvar" style="font-style:italic;">z</span>. Instead, this generalized formula implies the following alternative: <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2k)!!={\sqrt {\frac {2}{\pi }}}2^{k}\Gamma \left(k+1\right)={\sqrt {\frac {2}{\pi }}}\prod _{i=1}^{k}(2i)\,,}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn> 2 </mn> <mi> π<!-- π --> </mi> </mfrac> </msqrt> </mrow> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mi mathvariant="normal"> Γ<!-- Γ --> </mi> <mrow> <mo> ( </mo> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn> 2 </mn> <mi> π<!-- π --> </mi> </mfrac> </msqrt> </mrow> <munderover> <mo> ∏<!-- ∏ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </munderover> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> i </mi> <mo stretchy="false"> ) </mo> <mspace width="thinmathspace"></mspace> <mo> , </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (2k)!!={\sqrt {\frac {2}{\pi }}}2^{k}\Gamma \left(k+1\right)={\sqrt {\frac {2}{\pi }}}\prod _{i=1}^{k}(2i)\,,} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b4c29739a9346b0f2ee9c398cf6a68bf6cd1a0d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:39.936ex; height:7.343ex;" alt="{\displaystyle (2k)!!={\sqrt {\frac {2}{\pi }}}2^{k}\Gamma \left(k+1\right)={\sqrt {\frac {2}{\pi }}}\prod _{i=1}^{k}(2i)\,,}"> </noscript><span class="lazy-image-placeholder" style="width: 39.936ex;height: 7.343ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b4c29739a9346b0f2ee9c398cf6a68bf6cd1a0d" data-alt="{\displaystyle (2k)!!={\sqrt {\frac {2}{\pi }}}2^{k}\Gamma \left(k+1\right)={\sqrt {\frac {2}{\pi }}}\prod _{i=1}^{k}(2i)\,,}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> with the value for 0!! in this case being</p> <style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="plainlist" style="margin-left: 1.6em;"> <ul> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0!!={\sqrt {\frac {2}{\pi }}}\approx 0.797\,884\,5608\dots }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn> 0 </mn> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mn> 2 </mn> <mi> π<!-- π --> </mi> </mfrac> </msqrt> </mrow> <mo> ≈<!-- ≈ --> </mo> <mn> 0.797 </mn> <mspace width="thinmathspace"></mspace> <mn> 884 </mn> <mspace width="thinmathspace"></mspace> <mn> 5608 </mn> <mo> …<!-- … --> </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle 0!!={\sqrt {\frac {2}{\pi }}}\approx 0.797\,884\,5608\dots } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d84c76e416688da30de4a0b7ffac578b0f5195aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.463ex; height:6.176ex;" alt="{\displaystyle 0!!={\sqrt {\frac {2}{\pi }}}\approx 0.797\,884\,5608\dots }"> </noscript><span class="lazy-image-placeholder" style="width: 30.463ex;height: 6.176ex;vertical-align: -2.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d84c76e416688da30de4a0b7ffac578b0f5195aa" data-alt="{\displaystyle 0!!={\sqrt {\frac {2}{\pi }}}\approx 0.797\,884\,5608\dots }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span> (sequence <span class="nowrap external"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://oeis.org/A076668" class="extiw" title="oeis:A076668">A076668</a></span> in the <a href="https://en-m-wikipedia-org.translate.goog/wiki/On-Line_Encyclopedia_of_Integer_Sequences?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>).</li> </ul> </div> <p>Using this generalized formula as the definition, the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Volume_of_an_n-ball?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Volume of an n-ball">volume</a> of an <span class="texhtml mvar" style="font-style:italic;">n</span>-<a href="https://en-m-wikipedia-org.translate.goog/wiki/Dimension?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Dimension">dimensional</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Hypersphere?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Hypersphere">hypersphere</a> of radius <span class="texhtml mvar" style="font-style:italic;">R</span> can be expressed as<sup id="cite_ref-20" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V_{n}={\frac {2\left(2\pi \right)^{\frac {n-1}{2}}}{n!!}}R^{n}\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> V </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn> 2 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mi> π<!-- π --> </mi> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> </msup> </mrow> <mrow> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> </mrow> </mfrac> </mrow> <msup> <mi> R </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle V_{n}={\frac {2\left(2\pi \right)^{\frac {n-1}{2}}}{n!!}}R^{n}\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be406658f8eb6f3fa0835144706546676f48e00" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:19.565ex; height:7.176ex;" alt="{\displaystyle V_{n}={\frac {2\left(2\pi \right)^{\frac {n-1}{2}}}{n!!}}R^{n}\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 19.565ex;height: 7.176ex;vertical-align: -2.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be406658f8eb6f3fa0835144706546676f48e00" data-alt="{\displaystyle V_{n}={\frac {2\left(2\pi \right)^{\frac {n-1}{2}}}{n!!}}R^{n}\,.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Additional_identities">Additional identities</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=8&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Additional identities" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <p>For integer values of <span class="texhtml mvar" style="font-style:italic;">n</span>, <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}x\,dx={\frac {(n-1)!!}{n!!}}\times {\begin{cases}1&{\text{if }}n{\text{ is odd}}\\{\frac {\pi }{2}}&{\text{if }}n{\text{ is even.}}\end{cases}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> π<!-- π --> </mi> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <msup> <mi> sin </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo> <!-- --> </mo> <mi> x </mi> <mspace width="thinmathspace"></mspace> <mi> d </mi> <mi> x </mi> <mo> = </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> π<!-- π --> </mi> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <msup> <mi> cos </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo> <!-- --> </mo> <mi> x </mi> <mspace width="thinmathspace"></mspace> <mi> d </mi> <mi> x </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mrow> <mrow> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> { </mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn> 1 </mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> if </mtext> </mrow> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> is odd </mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> π<!-- π --> </mi> <mn> 2 </mn> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> if </mtext> </mrow> <mi> n </mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> is even. </mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}x\,dx={\frac {(n-1)!!}{n!!}}\times {\begin{cases}1&{\text{if }}n{\text{ is odd}}\\{\frac {\pi }{2}}&{\text{if }}n{\text{ is even.}}\end{cases}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a866cca59d475a6a2b67b12c36739d8b12ff2a3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:63.33ex; height:6.676ex;" alt="{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}x\,dx={\frac {(n-1)!!}{n!!}}\times {\begin{cases}1&{\text{if }}n{\text{ is odd}}\\{\frac {\pi }{2}}&{\text{if }}n{\text{ is even.}}\end{cases}}}"> </noscript><span class="lazy-image-placeholder" style="width: 63.33ex;height: 6.676ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a866cca59d475a6a2b67b12c36739d8b12ff2a3" data-alt="{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}x\,dx={\frac {(n-1)!!}{n!!}}\times {\begin{cases}1&{\text{if }}n{\text{ is odd}}\\{\frac {\pi }{2}}&{\text{if }}n{\text{ is even.}}\end{cases}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> Using instead the extension of the double factorial of odd numbers to complex numbers, the formula is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}x\,dx={\frac {(n-1)!!}{n!!}}{\sqrt {\frac {\pi }{2}}}\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> π<!-- π --> </mi> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <msup> <mi> sin </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo> <!-- --> </mo> <mi> x </mi> <mspace width="thinmathspace"></mspace> <mi> d </mi> <mi> x </mi> <mo> = </mo> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> π<!-- π --> </mi> <mn> 2 </mn> </mfrac> </mrow> </msubsup> <msup> <mi> cos </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo> <!-- --> </mo> <mi> x </mi> <mspace width="thinmathspace"></mspace> <mi> d </mi> <mi> x </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mrow> <mrow> <mi> n </mi> <mo> ! </mo> <mo> ! </mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mi> π<!-- π --> </mi> <mn> 2 </mn> </mfrac> </msqrt> </mrow> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}x\,dx={\frac {(n-1)!!}{n!!}}{\sqrt {\frac {\pi }{2}}}\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf50e6c2f2af94ef55fede8192f95820b873a2d8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:48.131ex; height:6.843ex;" alt="{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}x\,dx={\frac {(n-1)!!}{n!!}}{\sqrt {\frac {\pi }{2}}}\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 48.131ex;height: 6.843ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf50e6c2f2af94ef55fede8192f95820b873a2d8" data-alt="{\displaystyle \int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,dx=\int _{0}^{\frac {\pi }{2}}\cos ^{n}x\,dx={\frac {(n-1)!!}{n!!}}{\sqrt {\frac {\pi }{2}}}\,.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>Double factorials can also be used to evaluate integrals of more complicated trigonometric polynomials.<sup id="cite_ref-meserve_9-1" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-meserve-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-21" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup></p> <p>Double factorials of odd numbers are related to the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Gamma_function?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Gamma function">gamma function</a> by the identity:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2n-1)!!=2^{n}\cdot {\frac {\Gamma \left({\frac {1}{2}}+n\right)}{\sqrt {\pi }}}=(-2)^{n}\cdot {\frac {\sqrt {\pi }}{\Gamma \left({\frac {1}{2}}-n\right)}}\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <msup> <mn> 2 </mn> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> Γ<!-- Γ --> </mi> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> + </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mi> π<!-- π --> </mi> </msqrt> </mfrac> </mrow> <mo> = </mo> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mn> 2 </mn> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo> ⋅<!-- ⋅ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msqrt> <mi> π<!-- π --> </mi> </msqrt> <mrow> <mi mathvariant="normal"> Γ<!-- Γ --> </mi> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> −<!-- − --> </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (2n-1)!!=2^{n}\cdot {\frac {\Gamma \left({\frac {1}{2}}+n\right)}{\sqrt {\pi }}}=(-2)^{n}\cdot {\frac {\sqrt {\pi }}{\Gamma \left({\frac {1}{2}}-n\right)}}\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1010dd65bb58c9f4c0fe3d2a7115916e523fa77" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:50.029ex; height:7.843ex;" alt="{\displaystyle (2n-1)!!=2^{n}\cdot {\frac {\Gamma \left({\frac {1}{2}}+n\right)}{\sqrt {\pi }}}=(-2)^{n}\cdot {\frac {\sqrt {\pi }}{\Gamma \left({\frac {1}{2}}-n\right)}}\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 50.029ex;height: 7.843ex;vertical-align: -3.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1010dd65bb58c9f4c0fe3d2a7115916e523fa77" data-alt="{\displaystyle (2n-1)!!=2^{n}\cdot {\frac {\Gamma \left({\frac {1}{2}}+n\right)}{\sqrt {\pi }}}=(-2)^{n}\cdot {\frac {\sqrt {\pi }}{\Gamma \left({\frac {1}{2}}-n\right)}}\,.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>Some additional identities involving double factorials of odd numbers are:<sup id="cite_ref-callan_1-9" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-callan-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(2n-1)!!&=\sum _{k=0}^{n-1}{\binom {n}{k+1}}(2k-1)!!(2n-2k-3)!!\\&=\sum _{k=1}^{n}{\binom {n}{k}}(2k-3)!!(2(n-k)-1)!!\\&=\sum _{k=0}^{n}{\binom {2n-k-1}{k-1}}{\frac {(2k-1)(2n-k+1)}{k+1}}(2n-2k-3)!!\\&=\sum _{k=1}^{n}{\frac {(n-1)!}{(k-1)!}}k(2k-3)!!\,.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 3 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mi> k </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 3 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mi> k </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mn> 2 </mn> <mi> n </mi> <mo> −<!-- − --> </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mrow> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> n </mi> <mo> −<!-- − --> </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 3 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> </mrow> <mrow> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> </mrow> </mfrac> </mrow> <mi> k </mi> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 3 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}(2n-1)!!&=\sum _{k=0}^{n-1}{\binom {n}{k+1}}(2k-1)!!(2n-2k-3)!!\\&=\sum _{k=1}^{n}{\binom {n}{k}}(2k-3)!!(2(n-k)-1)!!\\&=\sum _{k=0}^{n}{\binom {2n-k-1}{k-1}}{\frac {(2k-1)(2n-k+1)}{k+1}}(2n-2k-3)!!\\&=\sum _{k=1}^{n}{\frac {(n-1)!}{(k-1)!}}k(2k-3)!!\,.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7433063a81181baaf577f96dab8938f0359f09d" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.838ex; width:67.608ex; height:28.843ex;" alt="{\displaystyle {\begin{aligned}(2n-1)!!&=\sum _{k=0}^{n-1}{\binom {n}{k+1}}(2k-1)!!(2n-2k-3)!!\\&=\sum _{k=1}^{n}{\binom {n}{k}}(2k-3)!!(2(n-k)-1)!!\\&=\sum _{k=0}^{n}{\binom {2n-k-1}{k-1}}{\frac {(2k-1)(2n-k+1)}{k+1}}(2n-2k-3)!!\\&=\sum _{k=1}^{n}{\frac {(n-1)!}{(k-1)!}}k(2k-3)!!\,.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 67.608ex;height: 28.843ex;vertical-align: -13.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7433063a81181baaf577f96dab8938f0359f09d" data-alt="{\displaystyle {\begin{aligned}(2n-1)!!&=\sum _{k=0}^{n-1}{\binom {n}{k+1}}(2k-1)!!(2n-2k-3)!!\\&=\sum _{k=1}^{n}{\binom {n}{k}}(2k-3)!!(2(n-k)-1)!!\\&=\sum _{k=0}^{n}{\binom {2n-k-1}{k-1}}{\frac {(2k-1)(2n-k+1)}{k+1}}(2n-2k-3)!!\\&=\sum _{k=1}^{n}{\frac {(n-1)!}{(k-1)!}}k(2k-3)!!\,.\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>An approximation for the ratio of the double factorial of two consecutive integers is <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(2n)!!}{(2n-1)!!}}\approx {\sqrt {\pi n}}.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> n </mi> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mrow> <mrow> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> </mrow> </mfrac> </mrow> <mo> ≈<!-- ≈ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi> π<!-- π --> </mi> <mi> n </mi> </msqrt> </mrow> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {(2n)!!}{(2n-1)!!}}\approx {\sqrt {\pi n}}.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181ad38fcf41b55fc6202b1460030ab1817b33b4" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.907ex; height:6.509ex;" alt="{\displaystyle {\frac {(2n)!!}{(2n-1)!!}}\approx {\sqrt {\pi n}}.}"> </noscript><span class="lazy-image-placeholder" style="width: 18.907ex;height: 6.509ex;vertical-align: -2.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/181ad38fcf41b55fc6202b1460030ab1817b33b4" data-alt="{\displaystyle {\frac {(2n)!!}{(2n-1)!!}}\approx {\sqrt {\pi n}}.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span> This approximation gets more accurate as <span class="texhtml mvar" style="font-style:italic;">n</span> increases, which can be seen as a result of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Wallis%27_integrals?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Deducing_the_Double_Factorial_Ratio" title="Wallis' integrals"> Wallis Integral</a>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=9&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Generalizations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-7 collapsible-block" id="mf-section-7"> <div class="mw-heading mw-heading3"> <h3 id="Definitions">Definitions</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=10&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Definitions" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>In the same way that the double factorial generalizes the notion of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Factorial">single factorial</a>, the following definition of the integer-valued multiple factorial functions (multifactorials), or <span class="texhtml mvar" style="font-style:italic;">α</span>-factorial functions, extends the notion of the double factorial function for positive integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> α<!-- α --> </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \alpha } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"> </noscript><span class="lazy-image-placeholder" style="width: 1.488ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" data-alt="{\displaystyle \alpha }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert"> </span></span>:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n!_{(\alpha )}={\begin{cases}n\cdot (n-\alpha )!_{(\alpha )}&{\text{ if }}n>\alpha \,;\\n&{\text{ if }}1\leq n\leq \alpha \,;{\text{and}}\\(n+\alpha )!_{(\alpha )}/(n+\alpha )&{\text{ if }}n\leq 0{\text{ and is not a negative multiple of }}\alpha \,;\end{cases}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo> { </mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi> n </mi> <mo> ⋅<!-- ⋅ --> </mo> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> if </mtext> </mrow> <mi> n </mi> <mo> > </mo> <mi> α<!-- α --> </mi> <mspace width="thinmathspace"></mspace> <mo> ; </mo> </mtd> </mtr> <mtr> <mtd> <mi> n </mi> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> if </mtext> </mrow> <mn> 1 </mn> <mo> ≤<!-- ≤ --> </mo> <mi> n </mi> <mo> ≤<!-- ≤ --> </mo> <mi> α<!-- α --> </mi> <mspace width="thinmathspace"></mspace> <mo> ; </mo> <mrow class="MJX-TeXAtom-ORD"> <mtext> and </mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> + </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> + </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext> if </mtext> </mrow> <mi> n </mi> <mo> ≤<!-- ≤ --> </mo> <mn> 0 </mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> and is not a negative multiple of </mtext> </mrow> <mi> α<!-- α --> </mi> <mspace width="thinmathspace"></mspace> <mo> ; </mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n!_{(\alpha )}={\begin{cases}n\cdot (n-\alpha )!_{(\alpha )}&{\text{ if }}n>\alpha \,;\\n&{\text{ if }}1\leq n\leq \alpha \,;{\text{and}}\\(n+\alpha )!_{(\alpha )}/(n+\alpha )&{\text{ if }}n\leq 0{\text{ and is not a negative multiple of }}\alpha \,;\end{cases}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f38a6d35bb70e2ec2e5b7996a3298779ea7ee2e9" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.749ex; margin-bottom: -0.256ex; width:76.189ex; height:9.176ex;" alt="{\displaystyle n!_{(\alpha )}={\begin{cases}n\cdot (n-\alpha )!_{(\alpha )}&{\text{ if }}n>\alpha \,;\\n&{\text{ if }}1\leq n\leq \alpha \,;{\text{and}}\\(n+\alpha )!_{(\alpha )}/(n+\alpha )&{\text{ if }}n\leq 0{\text{ and is not a negative multiple of }}\alpha \,;\end{cases}}}"> </noscript><span class="lazy-image-placeholder" style="width: 76.189ex;height: 9.176ex;vertical-align: -3.749ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f38a6d35bb70e2ec2e5b7996a3298779ea7ee2e9" data-alt="{\displaystyle n!_{(\alpha )}={\begin{cases}n\cdot (n-\alpha )!_{(\alpha )}&{\text{ if }}n>\alpha \,;\\n&{\text{ if }}1\leq n\leq \alpha \,;{\text{and}}\\(n+\alpha )!_{(\alpha )}/(n+\alpha )&{\text{ if }}n\leq 0{\text{ and is not a negative multiple of }}\alpha \,;\end{cases}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <div class="mw-heading mw-heading3"> <h3 id="Alternative_extension_of_the_multifactorial">Alternative extension of the multifactorial</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=11&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Alternative extension of the multifactorial" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Alternatively, the multifactorial <span class="texhtml"><i>z</i>!<sub>(<i>α</i>)</sub></span> can be extended to most real and complex numbers <span class="texhtml mvar" style="font-style:italic;">z</span> by noting that when <span class="texhtml mvar" style="font-style:italic;">z</span> is one more than a positive multiple of the positive integer <span class="texhtml mvar" style="font-style:italic;">α</span> then</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}z!_{(\alpha )}&=z(z-\alpha )\cdots (\alpha +1)\\&=\alpha ^{\frac {z-1}{\alpha }}\left({\frac {z}{\alpha }}\right)\left({\frac {z-\alpha }{\alpha }}\right)\cdots \left({\frac {\alpha +1}{\alpha }}\right)\\&=\alpha ^{\frac {z-1}{\alpha }}{\frac {\Gamma \left({\frac {z}{\alpha }}+1\right)}{\Gamma \left({\frac {1}{\alpha }}+1\right)}}\,.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi> z </mi> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <mi> z </mi> <mo stretchy="false"> ( </mo> <mi> z </mi> <mo> −<!-- − --> </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> <mo> ⋯<!-- ⋯ --> </mo> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <msup> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> z </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mi> α<!-- α --> </mi> </mfrac> </mrow> </msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> z </mi> <mi> α<!-- α --> </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> z </mi> <mo> −<!-- − --> </mo> <mi> α<!-- α --> </mi> </mrow> <mi> α<!-- α --> </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⋯<!-- ⋯ --> </mo> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> α<!-- α --> </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> α<!-- α --> </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <msup> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> z </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mi> α<!-- α --> </mi> </mfrac> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> Γ<!-- Γ --> </mi> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> z </mi> <mi> α<!-- α --> </mi> </mfrac> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi mathvariant="normal"> Γ<!-- Γ --> </mi> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mi> α<!-- α --> </mi> </mfrac> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}z!_{(\alpha )}&=z(z-\alpha )\cdots (\alpha +1)\\&=\alpha ^{\frac {z-1}{\alpha }}\left({\frac {z}{\alpha }}\right)\left({\frac {z-\alpha }{\alpha }}\right)\cdots \left({\frac {\alpha +1}{\alpha }}\right)\\&=\alpha ^{\frac {z-1}{\alpha }}{\frac {\Gamma \left({\frac {z}{\alpha }}+1\right)}{\Gamma \left({\frac {1}{\alpha }}+1\right)}}\,.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56dc326b0c8f1265bd560f78e541886da1e0ce46" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.005ex; width:41.827ex; height:17.176ex;" alt="{\displaystyle {\begin{aligned}z!_{(\alpha )}&=z(z-\alpha )\cdots (\alpha +1)\\&=\alpha ^{\frac {z-1}{\alpha }}\left({\frac {z}{\alpha }}\right)\left({\frac {z-\alpha }{\alpha }}\right)\cdots \left({\frac {\alpha +1}{\alpha }}\right)\\&=\alpha ^{\frac {z-1}{\alpha }}{\frac {\Gamma \left({\frac {z}{\alpha }}+1\right)}{\Gamma \left({\frac {1}{\alpha }}+1\right)}}\,.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 41.827ex;height: 17.176ex;vertical-align: -8.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/56dc326b0c8f1265bd560f78e541886da1e0ce46" data-alt="{\displaystyle {\begin{aligned}z!_{(\alpha )}&=z(z-\alpha )\cdots (\alpha +1)\\&=\alpha ^{\frac {z-1}{\alpha }}\left({\frac {z}{\alpha }}\right)\left({\frac {z-\alpha }{\alpha }}\right)\cdots \left({\frac {\alpha +1}{\alpha }}\right)\\&=\alpha ^{\frac {z-1}{\alpha }}{\frac {\Gamma \left({\frac {z}{\alpha }}+1\right)}{\Gamma \left({\frac {1}{\alpha }}+1\right)}}\,.\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>This last expression is defined much more broadly than the original. In the same way that <span class="texhtml"><i>z</i>!</span> is not defined for negative integers, and <span class="texhtml"><i>z</i>‼</span> is not defined for negative even integers, <span class="texhtml"><i>z</i>!<sub>(<i>α</i>)</sub></span> is not defined for negative multiples of <span class="texhtml mvar" style="font-style:italic;">α</span>. However, it is defined and satisfies <span class="texhtml">(<i>z</i>+<i>α</i>)!<sub>(<i>α</i>)</sub> = (<i>z</i>+<i>α</i>)·<i>z</i>!<sub>(<i>α</i>)</sub></span> for all other complex numbers <span class="texhtml mvar" style="font-style:italic;">z</span>. This definition is consistent with the earlier definition only for those integers <span class="texhtml mvar" style="font-style:italic;">z</span> satisfying <span class="texhtml"><i>z</i> ≡ 1 mod <i>α</i></span>.</p> <p>In addition to extending <span class="texhtml"><i>z</i>!<sub>(<i>α</i>)</sub></span> to most complex numbers <span class="texhtml mvar" style="font-style:italic;">z</span>, this definition has the feature of working for all positive real values of <span class="texhtml mvar" style="font-style:italic;">α</span>. Furthermore, when <span class="texhtml"><i>α</i> = 1</span>, this definition is mathematically equivalent to the <span class="texhtml">Π(<i>z</i>)</span> function, described above. Also, when <span class="texhtml"><i>α</i> = 2</span>, this definition is mathematically equivalent to the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Complex_arguments">alternative extension of the double factorial</a>.</p> <div class="mw-heading mw-heading3"> <h3 id="Generalized_Stirling_numbers_expanding_the_multifactorial_functions">Generalized Stirling numbers expanding the multifactorial functions</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=12&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Generalized Stirling numbers expanding the multifactorial functions" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>A class of generalized <a href="https://en-m-wikipedia-org.translate.goog/wiki/Stirling_numbers_of_the_first_kind?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Stirling numbers of the first kind">Stirling numbers of the first kind</a> is defined for <span class="texhtml"><i>α</i> > 0</span> by the following triangular recurrence relation:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]_{\alpha }=(\alpha n+1-2\alpha )\left[{\begin{matrix}n-1\\k\end{matrix}}\right]_{\alpha }+\left[{\begin{matrix}n-1\\k-1\end{matrix}}\right]_{\alpha }+\delta _{n,0}\delta _{k,0}\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> </mrow> </msub> <mo> = </mo> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> <msub> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mtd> </mtr> </mtable> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> <msub> <mi> δ<!-- δ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> , </mo> <mn> 0 </mn> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]_{\alpha }=(\alpha n+1-2\alpha )\left[{\begin{matrix}n-1\\k\end{matrix}}\right]_{\alpha }+\left[{\begin{matrix}n-1\\k-1\end{matrix}}\right]_{\alpha }+\delta _{n,0}\delta _{k,0}\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/266e3cc9a98d1308cb1e10fcdeb31bf748882f6f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:56.591ex; height:6.176ex;" alt="{\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]_{\alpha }=(\alpha n+1-2\alpha )\left[{\begin{matrix}n-1\\k\end{matrix}}\right]_{\alpha }+\left[{\begin{matrix}n-1\\k-1\end{matrix}}\right]_{\alpha }+\delta _{n,0}\delta _{k,0}\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 56.591ex;height: 6.176ex;vertical-align: -2.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/266e3cc9a98d1308cb1e10fcdeb31bf748882f6f" data-alt="{\displaystyle \left[{\begin{matrix}n\\k\end{matrix}}\right]_{\alpha }=(\alpha n+1-2\alpha )\left[{\begin{matrix}n-1\\k\end{matrix}}\right]_{\alpha }+\left[{\begin{matrix}n-1\\k-1\end{matrix}}\right]_{\alpha }+\delta _{n,0}\delta _{k,0}\,.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>These generalized <i><span class="texhtml mvar" style="font-style:italic;">α</span>-factorial coefficients</i> then generate the distinct symbolic polynomial products defining the multiple factorial, or <span class="texhtml mvar" style="font-style:italic;">α</span>-factorial functions, <span class="texhtml">(<i>x</i> − 1)!<sub>(<i>α</i>)</sub></span>, as</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(x-1|\alpha )^{\underline {n}}&:=\prod _{i=0}^{n-1}\left(x-1-i\alpha \right)\\&=(x-1)(x-1-\alpha )\cdots {\bigl (}x-1-(n-1)\alpha {\bigr )}\\&=\sum _{k=0}^{n}\left[{\begin{matrix}n\\k\end{matrix}}\right](-\alpha )^{n-k}(x-1)^{k}\\&=\sum _{k=1}^{n}\left[{\begin{matrix}n\\k\end{matrix}}\right]_{\alpha }(-1)^{n-k}x^{k-1}\,.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> | </mo> </mrow> <mi> α<!-- α --> </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <munder> <mi> n </mi> <mo> _<!-- _ --> </mo> </munder> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo> := </mo> <munderover> <mo> ∏<!-- ∏ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <mi> x </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> i </mi> <mi> α<!-- α --> </mi> </mrow> <mo> ) </mo> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> <mo> ⋯<!-- ⋯ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mi> x </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> </mrow> <mo> ] </mo> </mrow> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mi> α<!-- α --> </mi> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mi> k </mi> </mrow> </msup> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </munderover> <msub> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> </mrow> </msub> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mi> k </mi> </mrow> </msup> <msup> <mi> x </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}(x-1|\alpha )^{\underline {n}}&:=\prod _{i=0}^{n-1}\left(x-1-i\alpha \right)\\&=(x-1)(x-1-\alpha )\cdots {\bigl (}x-1-(n-1)\alpha {\bigr )}\\&=\sum _{k=0}^{n}\left[{\begin{matrix}n\\k\end{matrix}}\right](-\alpha )^{n-k}(x-1)^{k}\\&=\sum _{k=1}^{n}\left[{\begin{matrix}n\\k\end{matrix}}\right]_{\alpha }(-1)^{n-k}x^{k-1}\,.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abea228f6758116d56a58d09d51927b45a7bd1ff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.731ex; margin-bottom: -0.273ex; width:55.453ex; height:25.176ex;" alt="{\displaystyle {\begin{aligned}(x-1|\alpha )^{\underline {n}}&:=\prod _{i=0}^{n-1}\left(x-1-i\alpha \right)\\&=(x-1)(x-1-\alpha )\cdots {\bigl (}x-1-(n-1)\alpha {\bigr )}\\&=\sum _{k=0}^{n}\left[{\begin{matrix}n\\k\end{matrix}}\right](-\alpha )^{n-k}(x-1)^{k}\\&=\sum _{k=1}^{n}\left[{\begin{matrix}n\\k\end{matrix}}\right]_{\alpha }(-1)^{n-k}x^{k-1}\,.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 55.453ex;height: 25.176ex;vertical-align: -11.731ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abea228f6758116d56a58d09d51927b45a7bd1ff" data-alt="{\displaystyle {\begin{aligned}(x-1|\alpha )^{\underline {n}}&:=\prod _{i=0}^{n-1}\left(x-1-i\alpha \right)\\&=(x-1)(x-1-\alpha )\cdots {\bigl (}x-1-(n-1)\alpha {\bigr )}\\&=\sum _{k=0}^{n}\left[{\begin{matrix}n\\k\end{matrix}}\right](-\alpha )^{n-k}(x-1)^{k}\\&=\sum _{k=1}^{n}\left[{\begin{matrix}n\\k\end{matrix}}\right]_{\alpha }(-1)^{n-k}x^{k-1}\,.\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>The distinct polynomial expansions in the previous equations actually define the <span class="texhtml mvar" style="font-style:italic;">α</span>-factorial products for multiple distinct cases of the least residues <span class="texhtml"><i>x</i> ≡ <i>n</i><sub>0</sub> mod <i>α</i></span> for <span class="texhtml"><i>n</i><sub>0</sub> ∈ {0, 1, 2, ..., <i>α</i> − 1}</span>.</p> <p>The generalized <span class="texhtml mvar" style="font-style:italic;">α</span>-factorial polynomials, <span class="texhtml"><i>σ</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">(<i>α</i>)</sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sub></span></span>(<i>x</i>)</span> where <span class="texhtml"><i>σ</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">(1)</sup><br><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sub></span></span>(<i>x</i>) ≡ <i>σ</i><sub><i>n</i></sub>(<i>x</i>)</span>, which generalize the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Stirling_polynomial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#Stirling_convolution_polynomials" class="mw-redirect" title="Stirling polynomial">Stirling convolution polynomials</a> from the single factorial case to the multifactorial cases, are defined by</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{n}^{(\alpha )}(x):=\left[{\begin{matrix}x\\x-n\end{matrix}}\right]_{(\alpha )}{\frac {(x-n-1)!}{x!}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <mo> := </mo> <msub> <mrow> <mo> [ </mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi> x </mi> </mtd> </mtr> <mtr> <mtd> <mi> x </mi> <mo> −<!-- − --> </mo> <mi> n </mi> </mtd> </mtr> </mtable> </mrow> <mo> ] </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo> −<!-- − --> </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> </mrow> <mrow> <mi> x </mi> <mo> ! </mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sigma _{n}^{(\alpha )}(x):=\left[{\begin{matrix}x\\x-n\end{matrix}}\right]_{(\alpha )}{\frac {(x-n-1)!}{x!}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea63311a69cdf64bb4848a9fa5a44ce2b30d5d17" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.973ex; height:6.843ex;" alt="{\displaystyle \sigma _{n}^{(\alpha )}(x):=\left[{\begin{matrix}x\\x-n\end{matrix}}\right]_{(\alpha )}{\frac {(x-n-1)!}{x!}}}"> </noscript><span class="lazy-image-placeholder" style="width: 34.973ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea63311a69cdf64bb4848a9fa5a44ce2b30d5d17" data-alt="{\displaystyle \sigma _{n}^{(\alpha )}(x):=\left[{\begin{matrix}x\\x-n\end{matrix}}\right]_{(\alpha )}{\frac {(x-n-1)!}{x!}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>for <span class="texhtml">0 ≤ <i>n</i> ≤ <i>x</i></span>. These polynomials have a particularly nice closed-form <a href="https://en-m-wikipedia-org.translate.goog/wiki/Ordinary_generating_function?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Ordinary generating function">ordinary generating function</a> given by</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n\geq 0}x\cdot \sigma _{n}^{(\alpha )}(x)z^{n}=e^{(1-\alpha )z}\left({\frac {\alpha ze^{\alpha z}}{e^{\alpha z}-1}}\right)^{x}\,.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> ≥<!-- ≥ --> </mo> <mn> 0 </mn> </mrow> </munder> <mi> x </mi> <mo> ⋅<!-- ⋅ --> </mo> <msubsup> <mi> σ<!-- σ --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo stretchy="false"> ( </mo> <mi> x </mi> <mo stretchy="false"> ) </mo> <msup> <mi> z </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> </mrow> </msup> <mo> = </mo> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> <mi> z </mi> </mrow> </msup> <msup> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi> α<!-- α --> </mi> <mi> z </mi> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <msup> <mi> e </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> α<!-- α --> </mi> <mi> z </mi> </mrow> </msup> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> x </mi> </mrow> </msup> <mspace width="thinmathspace"></mspace> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sum _{n\geq 0}x\cdot \sigma _{n}^{(\alpha )}(x)z^{n}=e^{(1-\alpha )z}\left({\frac {\alpha ze^{\alpha z}}{e^{\alpha z}-1}}\right)^{x}\,.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/558323af82ab55031d091b7bcfc5fc661e66ea0c" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:39.312ex; height:6.843ex;" alt="{\displaystyle \sum _{n\geq 0}x\cdot \sigma _{n}^{(\alpha )}(x)z^{n}=e^{(1-\alpha )z}\left({\frac {\alpha ze^{\alpha z}}{e^{\alpha z}-1}}\right)^{x}\,.}"> </noscript><span class="lazy-image-placeholder" style="width: 39.312ex;height: 6.843ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/558323af82ab55031d091b7bcfc5fc661e66ea0c" data-alt="{\displaystyle \sum _{n\geq 0}x\cdot \sigma _{n}^{(\alpha )}(x)z^{n}=e^{(1-\alpha )z}\left({\frac {\alpha ze^{\alpha z}}{e^{\alpha z}-1}}\right)^{x}\,.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>Other combinatorial properties and expansions of these generalized <span class="texhtml mvar" style="font-style:italic;">α</span>-factorial triangles and polynomial sequences are considered in <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#CITEREFSchmidt2010">Schmidt (2010)</a>.<sup id="cite_ref-22" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup></p> <div class="mw-heading mw-heading3"> <h3 id="Exact_finite_sums_involving_multiple_factorial_functions">Exact finite sums involving multiple factorial functions</h3><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=13&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: Exact finite sums involving multiple factorial functions" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <p>Suppose that <span class="texhtml"><i>n</i> ≥ 1</span> and <span class="texhtml"><i>α</i> ≥ 2</span> are integer-valued. Then we can expand the next single finite sums involving the multifactorial, or <span class="texhtml mvar" style="font-style:italic;">α</span>-factorial functions, <span class="texhtml">(<i>αn</i> − 1)!<sub>(<i>α</i>)</sub></span>, in terms of the <a href="https://en-m-wikipedia-org.translate.goog/wiki/Pochhammer_symbol?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Pochhammer symbol">Pochhammer symbol</a> and the generalized, rational-valued <a href="https://en-m-wikipedia-org.translate.goog/wiki/Binomial_coefficients?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Binomial coefficients">binomial coefficients</a> as</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(\alpha n-1)!_{(\alpha )}&=\sum _{k=0}^{n-1}{\binom {n-1}{k+1}}(-1)^{k}\times \left({\frac {1}{\alpha }}\right)_{-(k+1)}\left({\frac {1}{\alpha }}-n\right)_{k+1}\times {\bigl (}\alpha (k+1)-1{\bigr )}!_{(\alpha )}{\bigl (}\alpha (n-k-1)-1{\bigr )}!_{(\alpha )}\\&=\sum _{k=0}^{n-1}{\binom {n-1}{k+1}}(-1)^{k}\times {\binom {{\frac {1}{\alpha }}+k-n}{k+1}}{\binom {{\frac {1}{\alpha }}-1}{k+1}}\times {\bigl (}\alpha (k+1)-1{\bigr )}!_{(\alpha )}{\bigl (}\alpha (n-k-1)-1{\bigr )}!_{(\alpha )}\,,\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo> ×<!-- × --> </mo> <msub> <mrow> <mo> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mi> α<!-- α --> </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> −<!-- − --> </mo> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> </mrow> </msub> <msub> <mrow> <mo> ( </mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mi> α<!-- α --> </mi> </mfrac> </mrow> <mo> −<!-- − --> </mo> <mi> n </mi> </mrow> <mo> ) </mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msub> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mi> α<!-- α --> </mi> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mi> α<!-- α --> </mi> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mi> α<!-- α --> </mi> </mfrac> </mrow> <mo> + </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mi> n </mi> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mi> α<!-- α --> </mi> </mfrac> </mrow> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo> ×<!-- × --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mi> α<!-- α --> </mi> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mi> α<!-- α --> </mi> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> <mspace width="thinmathspace"></mspace> <mo> , </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}(\alpha n-1)!_{(\alpha )}&=\sum _{k=0}^{n-1}{\binom {n-1}{k+1}}(-1)^{k}\times \left({\frac {1}{\alpha }}\right)_{-(k+1)}\left({\frac {1}{\alpha }}-n\right)_{k+1}\times {\bigl (}\alpha (k+1)-1{\bigr )}!_{(\alpha )}{\bigl (}\alpha (n-k-1)-1{\bigr )}!_{(\alpha )}\\&=\sum _{k=0}^{n-1}{\binom {n-1}{k+1}}(-1)^{k}\times {\binom {{\frac {1}{\alpha }}+k-n}{k+1}}{\binom {{\frac {1}{\alpha }}-1}{k+1}}\times {\bigl (}\alpha (k+1)-1{\bigr )}!_{(\alpha )}{\bigl (}\alpha (n-k-1)-1{\bigr )}!_{(\alpha )}\,,\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dc4cb1c887065c7681d2d4e769bc46a196927c5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:104.47ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}(\alpha n-1)!_{(\alpha )}&=\sum _{k=0}^{n-1}{\binom {n-1}{k+1}}(-1)^{k}\times \left({\frac {1}{\alpha }}\right)_{-(k+1)}\left({\frac {1}{\alpha }}-n\right)_{k+1}\times {\bigl (}\alpha (k+1)-1{\bigr )}!_{(\alpha )}{\bigl (}\alpha (n-k-1)-1{\bigr )}!_{(\alpha )}\\&=\sum _{k=0}^{n-1}{\binom {n-1}{k+1}}(-1)^{k}\times {\binom {{\frac {1}{\alpha }}+k-n}{k+1}}{\binom {{\frac {1}{\alpha }}-1}{k+1}}\times {\bigl (}\alpha (k+1)-1{\bigr )}!_{(\alpha )}{\bigl (}\alpha (n-k-1)-1{\bigr )}!_{(\alpha )}\,,\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 104.47ex;height: 14.843ex;vertical-align: -6.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dc4cb1c887065c7681d2d4e769bc46a196927c5" data-alt="{\displaystyle {\begin{aligned}(\alpha n-1)!_{(\alpha )}&=\sum _{k=0}^{n-1}{\binom {n-1}{k+1}}(-1)^{k}\times \left({\frac {1}{\alpha }}\right)_{-(k+1)}\left({\frac {1}{\alpha }}-n\right)_{k+1}\times {\bigl (}\alpha (k+1)-1{\bigr )}!_{(\alpha )}{\bigl (}\alpha (n-k-1)-1{\bigr )}!_{(\alpha )}\\&=\sum _{k=0}^{n-1}{\binom {n-1}{k+1}}(-1)^{k}\times {\binom {{\frac {1}{\alpha }}+k-n}{k+1}}{\binom {{\frac {1}{\alpha }}-1}{k+1}}\times {\bigl (}\alpha (k+1)-1{\bigr )}!_{(\alpha )}{\bigl (}\alpha (n-k-1)-1{\bigr )}!_{(\alpha )}\,,\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>and moreover, we similarly have double sum expansions of these functions given by</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}(\alpha n-1)!_{(\alpha )}&=\sum _{k=0}^{n-1}\sum _{i=0}^{k+1}{\binom {n-1}{k+1}}{\binom {k+1}{i}}(-1)^{k}\alpha ^{k+1-i}(\alpha i-1)!_{(\alpha )}{\bigl (}\alpha (n-1-k)-1{\bigr )}!_{(\alpha )}\times (n-1-k)_{k+1-i}\\&=\sum _{k=0}^{n-1}\sum _{i=0}^{k+1}{\binom {n-1}{k+1}}{\binom {k+1}{i}}{\binom {n-1-i}{k+1-i}}(-1)^{k}\alpha ^{k+1-i}(\alpha i-1)!_{(\alpha )}{\bigl (}\alpha (n-1-k)-1{\bigr )}!_{(\alpha )}\times (k+1-i)!.\end{aligned}}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </munderover> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> i </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <msup> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> i </mi> </mrow> </msup> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mi> i </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mi> α<!-- α --> </mi> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> k </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> k </mi> <msub> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> i </mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd></mtd> <mtd> <mi></mi> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </munderover> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mi> i </mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mrow> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> i </mi> </mrow> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> i </mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <msup> <mo stretchy="false"> ) </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> </mrow> </msup> <msup> <mi> α<!-- α --> </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> i </mi> </mrow> </msup> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mi> i </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em"> ( </mo> </mrow> </mrow> <mi> α<!-- α --> </mi> <mo stretchy="false"> ( </mo> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> k </mi> <mo stretchy="false"> ) </mo> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em"> ) </mo> </mrow> </mrow> <msub> <mo> ! </mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> α<!-- α --> </mi> <mo stretchy="false"> ) </mo> </mrow> </msub> <mo> ×<!-- × --> </mo> <mo stretchy="false"> ( </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> <mo> −<!-- − --> </mo> <mi> i </mi> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> . </mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\begin{aligned}(\alpha n-1)!_{(\alpha )}&=\sum _{k=0}^{n-1}\sum _{i=0}^{k+1}{\binom {n-1}{k+1}}{\binom {k+1}{i}}(-1)^{k}\alpha ^{k+1-i}(\alpha i-1)!_{(\alpha )}{\bigl (}\alpha (n-1-k)-1{\bigr )}!_{(\alpha )}\times (n-1-k)_{k+1-i}\\&=\sum _{k=0}^{n-1}\sum _{i=0}^{k+1}{\binom {n-1}{k+1}}{\binom {k+1}{i}}{\binom {n-1-i}{k+1-i}}(-1)^{k}\alpha ^{k+1-i}(\alpha i-1)!_{(\alpha )}{\bigl (}\alpha (n-1-k)-1{\bigr )}!_{(\alpha )}\times (k+1-i)!.\end{aligned}}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0eec0e1968ed1890790fa38b1526ab6fad7d313" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:113.748ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}(\alpha n-1)!_{(\alpha )}&=\sum _{k=0}^{n-1}\sum _{i=0}^{k+1}{\binom {n-1}{k+1}}{\binom {k+1}{i}}(-1)^{k}\alpha ^{k+1-i}(\alpha i-1)!_{(\alpha )}{\bigl (}\alpha (n-1-k)-1{\bigr )}!_{(\alpha )}\times (n-1-k)_{k+1-i}\\&=\sum _{k=0}^{n-1}\sum _{i=0}^{k+1}{\binom {n-1}{k+1}}{\binom {k+1}{i}}{\binom {n-1-i}{k+1-i}}(-1)^{k}\alpha ^{k+1-i}(\alpha i-1)!_{(\alpha )}{\bigl (}\alpha (n-1-k)-1{\bigr )}!_{(\alpha )}\times (k+1-i)!.\end{aligned}}}"> </noscript><span class="lazy-image-placeholder" style="width: 113.748ex;height: 14.843ex;vertical-align: -6.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0eec0e1968ed1890790fa38b1526ab6fad7d313" data-alt="{\displaystyle {\begin{aligned}(\alpha n-1)!_{(\alpha )}&=\sum _{k=0}^{n-1}\sum _{i=0}^{k+1}{\binom {n-1}{k+1}}{\binom {k+1}{i}}(-1)^{k}\alpha ^{k+1-i}(\alpha i-1)!_{(\alpha )}{\bigl (}\alpha (n-1-k)-1{\bigr )}!_{(\alpha )}\times (n-1-k)_{k+1-i}\\&=\sum _{k=0}^{n-1}\sum _{i=0}^{k+1}{\binom {n-1}{k+1}}{\binom {k+1}{i}}{\binom {n-1-i}{k+1-i}}(-1)^{k}\alpha ^{k+1-i}(\alpha i-1)!_{(\alpha )}{\bigl (}\alpha (n-1-k)-1{\bigr )}!_{(\alpha )}\times (k+1-i)!.\end{aligned}}}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>The first two sums above are similar in form to a known <i>non-round</i> combinatorial identity for the double factorial function when <span class="texhtml"><i>α</i> := 2</span> given by <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#CITEREFCallan2009">Callan (2009)</a>.</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (2n-1)!!=\sum _{k=0}^{n-1}{\binom {n}{k+1}}(2k-1)!!(2n-2k-3)!!.}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mo> = </mo> <munderover> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em"> ( </mo> </mrow> <mfrac linethickness="0"> <mi> n </mi> <mrow> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em"> ) </mo> </mrow> </mrow> </mrow> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 1 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mo stretchy="false"> ( </mo> <mn> 2 </mn> <mi> n </mi> <mo> −<!-- − --> </mo> <mn> 2 </mn> <mi> k </mi> <mo> −<!-- − --> </mo> <mn> 3 </mn> <mo stretchy="false"> ) </mo> <mo> ! </mo> <mo> ! </mo> <mo> . </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle (2n-1)!!=\sum _{k=0}^{n-1}{\binom {n}{k+1}}(2k-1)!!(2n-2k-3)!!.} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed043899ec33bde26c4ddaef9b9aff69f49229f" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:50.142ex; height:7.509ex;" alt="{\displaystyle (2n-1)!!=\sum _{k=0}^{n-1}{\binom {n}{k+1}}(2k-1)!!(2n-2k-3)!!.}"> </noscript><span class="lazy-image-placeholder" style="width: 50.142ex;height: 7.509ex;vertical-align: -3.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ed043899ec33bde26c4ddaef9b9aff69f49229f" data-alt="{\displaystyle (2n-1)!!=\sum _{k=0}^{n-1}{\binom {n}{k+1}}(2k-1)!!(2n-2k-3)!!.}" data-class="mwe-math-fallback-image-display mw-invert skin-invert"> </span></span></p> <p>Similar identities can be obtained via context-free grammars.<sup id="cite_ref-23" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> Additional finite sum expansions of congruences for the <span class="texhtml mvar" style="font-style:italic;">α</span>-factorial functions, <span class="texhtml">(<i>αn</i> − <i>d</i>)!<sub>(<i>α</i>)</sub></span>, modulo any prescribed integer <span class="texhtml"><i>h</i> ≥ 2</span> for any <span class="texhtml">0 ≤ <i>d</i> < <i>α</i></span> are given by <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#CITEREFSchmidt2018">Schmidt (2018)</a>.<sup id="cite_ref-24" class="reference"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(8)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="References">References</h2><span class="mw-editsection"> <a role="button" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=edit&section=14&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </div> <section class="mf-section-8 collapsible-block" id="mf-section-8"> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style> <div class="reflist"> <div class="mw-references-wrap mw-references-columns"> <ol class="references"> <li id="cite_note-callan-1"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-callan_1-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-callan_1-1"><sup><i><b>b</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-callan_1-2"><sup><i><b>c</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-callan_1-3"><sup><i><b>d</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-callan_1-4"><sup><i><b>e</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-callan_1-5"><sup><i><b>f</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-callan_1-6"><sup><i><b>g</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-callan_1-7"><sup><i><b>h</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-callan_1-8"><sup><i><b>i</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-callan_1-9"><sup><i><b>j</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFCallan2009" class="citation arxiv cs1">Callan, David (2009). "A combinatorial survey of identities for the double factorial". <a href="https://en-m-wikipedia-org.translate.goog/wiki/ArXiv_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://arxiv.org/abs/0906.1317">0906.1317</a></span> [<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://arxiv.org/archive/math.CO">math.CO</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=A+combinatorial+survey+of+identities+for+the+double+factorial&rft.date=2009&rft_id=info%3Aarxiv%2F0906.1317&rft.aulast=Callan&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-2">^</a></b></span> <span class="reference-text">Some authors define the double factorial differently for even numbers; see <a class="mw-selflink-fragment" href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#complex_arguments">Double factorial § complex arguments</a> below.</span></li> <li id="cite_note-:0-3"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-:0_3-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-:0_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathworld.wolfram.com/DoubleFactorial.html">"Double Factorial"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-10</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=mathworld.wolfram.com&rft.atitle=Double+Factorial&rft.aulast=Weisstein&rft.aufirst=Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FDoubleFactorial.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-4">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://brilliant.org/wiki/double-factorials-and-multifactorials/">"Double Factorials and Multifactorials | Brilliant Math & Science Wiki"</a>. <i>brilliant.org</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-10</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=brilliant.org&rft.atitle=Double+Factorials+and+Multifactorials+%7C+Brilliant+Math+%26+Science+Wiki&rft_id=https%3A%2F%2Fbrilliant.org%2Fwiki%2Fdouble-factorials-and-multifactorials%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-5">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHendersonParmeter2012" class="citation journal cs1">Henderson, Daniel J.; Parmeter, Christopher F. (2012). "Canonical higher-order kernels for density derivative estimation". <i>Statistics & Probability Letters</i>. <b>82</b> (7): 1383–1387. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1016%252Fj.spl.2012.03.013">10.1016/j.spl.2012.03.013</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D2929790">2929790</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Statistics+%26+Probability+Letters&rft.atitle=Canonical+higher-order+kernels+for+density+derivative+estimation&rft.volume=82&rft.issue=7&rft.pages=1383-1387&rft.date=2012&rft_id=info%3Adoi%2F10.1016%2Fj.spl.2012.03.013&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2929790%23id-name%3DMR&rft.aulast=Henderson&rft.aufirst=Daniel+J.&rft.au=Parmeter%2C+Christopher+F.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-6">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsen1999" class="citation journal cs1">Nielsen, B. (1999). "The likelihood-ratio test for rank in bivariate canonical correlation analysis". <i>Biometrika</i>. <b>86</b> (2): 279–288. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1093%252Fbiomet%252F86.2.279">10.1093/biomet/86.2.279</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D1705359">1705359</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Biometrika&rft.atitle=The+likelihood-ratio+test+for+rank+in+bivariate+canonical+correlation+analysis&rft.volume=86&rft.issue=2&rft.pages=279-288&rft.date=1999&rft_id=info%3Adoi%2F10.1093%2Fbiomet%2F86.2.279&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1705359%23id-name%3DMR&rft.aulast=Nielsen&rft.aufirst=B.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-7">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth2023" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Donald_Knuth?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Donald Knuth">Knuth, Donald Ervin</a> (2023). <i>The art of computer programming. volume 4B part 2: Combinatorial algorithms</i>. Boston Munich: Addison-Wesley. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/978-0-201-03806-4?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/978-0-201-03806-4"><bdi>978-0-201-03806-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+art+of+computer+programming.+volume+4B+part+2%3A+Combinatorial+algorithms&rft.place=Boston+Munich&rft.pub=Addison-Wesley&rft.date=2023&rft.isbn=978-0-201-03806-4&rft.aulast=Knuth&rft.aufirst=Donald+Ervin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-8">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchuster1902" class="citation journal cs1">Schuster, Arthur (1902). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1098%252Frspl.1902.0068">"On some definite integrals and a new method of reducing a function of spherical co-ordinates to a series of spherical harmonics"</a>. <i>Proceedings of the Royal Society of London</i>. <b>71</b> (467–476): 97–101. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1098%252Frspl.1902.0068">10.1098/rspl.1902.0068</a></span>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/JSTOR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://www.jstor.org/stable/116355">116355</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Proceedings+of+the+Royal+Society+of+London&rft.atitle=On+some+definite+integrals+and+a+new+method+of+reducing+a+function+of+spherical+co-ordinates+to+a+series+of+spherical+harmonics&rft.volume=71&rft.issue=467%E2%80%93476&rft.pages=97-101&rft.date=1902&rft_id=info%3Adoi%2F10.1098%2Frspl.1902.0068&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F116355%23id-name%3DJSTOR&rft.aulast=Schuster&rft.aufirst=Arthur&rft_id=https%3A%2F%2Fdoi.org%2F10.1098%252Frspl.1902.0068&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span> See in particular p. 99.</span></li> <li id="cite_note-meserve-9"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-meserve_9-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-meserve_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMeserve1948" class="citation journal cs1">Meserve, B. E. (1948). "Classroom Notes: Double Factorials". <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/The_American_Mathematical_Monthly?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="The American Mathematical Monthly">The American Mathematical Monthly</a></i>. <b>55</b> (7): 425–426. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.2307%252F2306136">10.2307/2306136</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/JSTOR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://www.jstor.org/stable/2306136">2306136</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D1527019">1527019</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+American+Mathematical+Monthly&rft.atitle=Classroom+Notes%3A+Double+Factorials&rft.volume=55&rft.issue=7&rft.pages=425-426&rft.date=1948&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1527019%23id-name%3DMR&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2306136%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2306136&rft.aulast=Meserve&rft.aufirst=B.+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-dm93-10"><span class="mw-cite-backlink">^ <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-dm93_10-0"><sup><i><b>a</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-dm93_10-1"><sup><i><b>b</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-dm93_10-2"><sup><i><b>c</b></i></sup></a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-dm93_10-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaleMoon1993" class="citation journal cs1">Dale, M. R. T.; Moon, J. W. (1993). "The permuted analogues of three Catalan sets". <i>Journal of Statistical Planning and Inference</i>. <b>34</b> (1): 75–87. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1016%252F0378-3758%252893%252990035-5">10.1016/0378-3758(93)90035-5</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D1209991">1209991</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Statistical+Planning+and+Inference&rft.atitle=The+permuted+analogues+of+three+Catalan+sets&rft.volume=34&rft.issue=1&rft.pages=75-87&rft.date=1993&rft_id=info%3Adoi%2F10.1016%2F0378-3758%2893%2990035-5&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1209991%23id-name%3DMR&rft.aulast=Dale&rft.aufirst=M.+R.+T.&rft.au=Moon%2C+J.+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-gq12-11"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-gq12_11-0">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGouldQuaintance2012" class="citation journal cs1">Gould, Henry; Quaintance, Jocelyn (2012). "Double fun with double factorials". <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Mathematics_Magazine?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Mathematics Magazine">Mathematics Magazine</a></i>. <b>85</b> (3): 177–192. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.4169%252Fmath.mag.85.3.177">10.4169/math.mag.85.3.177</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D2924154">2924154</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://api.semanticscholar.org/CorpusID:117120280">117120280</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+Magazine&rft.atitle=Double+fun+with+double+factorials&rft.volume=85&rft.issue=3&rft.pages=177-192&rft.date=2012&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2924154%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117120280%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.4169%2Fmath.mag.85.3.177&rft.aulast=Gould&rft.aufirst=Henry&rft.au=Quaintance%2C+Jocelyn&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-12">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitaev2011" class="citation book cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Sergey_Kitaev?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Sergey Kitaev">Kitaev, Sergey</a> (2011). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.com/books?id%3DJgQHtgR5N60C%26pg%3DPA96"><i>Patterns in Permutations and Words</i></a>. EATCS Monographs in Theoretical Computer Science. Springer. p. 96. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/9783642173332?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/9783642173332"><bdi>9783642173332</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Patterns+in+Permutations+and+Words&rft.series=EATCS+Monographs+in+Theoretical+Computer+Science&rft.pages=96&rft.pub=Springer&rft.date=2011&rft.isbn=9783642173332&rft.aulast=Kitaev&rft.aufirst=Sergey&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DJgQHtgR5N60C%26pg%3DPA96&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-13">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDaleNarayana1986" class="citation journal cs1">Dale, M. R. T.; Narayana, T. V. (1986). "A partition of Catalan permuted sequences with applications". <i>Journal of Statistical Planning and Inference</i>. <b>14</b> (2): 245–249. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1016%252F0378-3758%252886%252990161-8">10.1016/0378-3758(86)90161-8</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D0852528">0852528</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Statistical+Planning+and+Inference&rft.atitle=A+partition+of+Catalan+permuted+sequences+with+applications&rft.volume=14&rft.issue=2&rft.pages=245-249&rft.date=1986&rft_id=info%3Adoi%2F10.1016%2F0378-3758%2886%2990161-8&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D852528%23id-name%3DMR&rft.aulast=Dale&rft.aufirst=M.+R.+T.&rft.au=Narayana%2C+T.+V.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-14">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTichyWagner2005" class="citation journal cs1">Tichy, Robert F.; Wagner, Stephan (2005). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://www.math.tugraz.at/fosp/pdfs/tugraz_main_0052.pdf">"Extremal problems for topological indices in combinatorial chemistry"</a> <span class="cs1-format">(PDF)</span>. <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Journal_of_Computational_Biology?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Journal of Computational Biology">Journal of Computational Biology</a></i>. <b>12</b> (7): 1004–1013. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1089%252Fcmb.2005.12.1004">10.1089/cmb.2005.12.1004</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/PMID_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="PMID (identifier)">PMID</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pubmed.ncbi.nlm.nih.gov/16201918">16201918</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Computational+Biology&rft.atitle=Extremal+problems+for+topological+indices+in+combinatorial+chemistry&rft.volume=12&rft.issue=7&rft.pages=1004-1013&rft.date=2005&rft_id=info%3Adoi%2F10.1089%2Fcmb.2005.12.1004&rft_id=info%3Apmid%2F16201918&rft.aulast=Tichy&rft.aufirst=Robert+F.&rft.au=Wagner%2C+Stephan&rft_id=http%3A%2F%2Fwww.math.tugraz.at%2Ffosp%2Fpdfs%2Ftugraz_main_0052.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-15">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJanson2008" class="citation conference cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Svante_Janson?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Svante Janson">Janson, Svante</a> (2008). "Plane recursive trees, Stirling permutations and an urn model". <i>Fifth Colloquium on Mathematics and Computer Science</i>. Discrete Math. Theor. Comput. Sci. Proc., AI. Assoc. Discrete Math. Theor. Comput. Sci., Nancy. pp. 541–547. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ArXiv_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://arxiv.org/abs/0803.1129">0803.1129</a></span>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Bibcode_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ui.adsabs.harvard.edu/abs/2008arXiv0803.1129J">2008arXiv0803.1129J</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D2508813">2508813</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=Plane+recursive+trees%2C+Stirling+permutations+and+an+urn+model&rft.btitle=Fifth+Colloquium+on+Mathematics+and+Computer+Science&rft.series=Discrete+Math.+Theor.+Comput.+Sci.+Proc.%2C+AI&rft.pages=541-547&rft.pub=Assoc.+Discrete+Math.+Theor.+Comput.+Sci.%2C+Nancy&rft.date=2008&rft_id=info%3Aarxiv%2F0803.1129&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2508813%23id-name%3DMR&rft_id=info%3Abibcode%2F2008arXiv0803.1129J&rft.aulast=Janson&rft.aufirst=Svante&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-16">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRubey2008" class="citation conference cs1">Rubey, Martin (2008). "Nestings of matchings and permutations and north steps in PDSAWs". <i>20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008)</i>. Discrete Math. Theor. Comput. Sci. Proc., AJ. Assoc. Discrete Math. Theor. Comput. Sci., Nancy. pp. 691–704. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D2721495">2721495</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=Nestings+of+matchings+and+permutations+and+north+steps+in+PDSAWs&rft.btitle=20th+Annual+International+Conference+on+Formal+Power+Series+and+Algebraic+Combinatorics+%28FPSAC+2008%29&rft.series=Discrete+Math.+Theor.+Comput.+Sci.+Proc.%2C+AJ&rft.pages=691-704&rft.pub=Assoc.+Discrete+Math.+Theor.+Comput.+Sci.%2C+Nancy&rft.date=2008&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2721495%23id-name%3DMR&rft.aulast=Rubey&rft.aufirst=Martin&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-17">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMarshMartin2011" class="citation journal cs1">Marsh, Robert J.; Martin, Paul (2011). "Tiling bijections between paths and Brauer diagrams". <i><a href="https://en-m-wikipedia-org.translate.goog/wiki/Journal_of_Algebraic_Combinatorics?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Journal of Algebraic Combinatorics">Journal of Algebraic Combinatorics</a></i>. <b>33</b> (3): 427–453. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ArXiv_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://arxiv.org/abs/0906.0912">0906.0912</a></span>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1007%252Fs10801-010-0252-6">10.1007/s10801-010-0252-6</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D2772541">2772541</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://api.semanticscholar.org/CorpusID:7264692">7264692</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Algebraic+Combinatorics&rft.atitle=Tiling+bijections+between+paths+and+Brauer+diagrams&rft.volume=33&rft.issue=3&rft.pages=427-453&rft.date=2011&rft_id=info%3Aarxiv%2F0906.0912&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2772541%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A7264692%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1007%2Fs10801-010-0252-6&rft.aulast=Marsh&rft.aufirst=Robert+J.&rft.au=Martin%2C+Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-18">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHassani2000" class="citation book cs1">Hassani, Sadri (2000). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://books.google.com/books?id%3DdxSOzeLMij4C%26pg%3DPA266"><i>Mathematical Methods: For Students of Physics and Related Fields</i></a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Undergraduate_Texts_in_Mathematics?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Undergraduate Texts in Mathematics">Undergraduate Texts in Mathematics</a>. Springer. p. 266. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISBN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="https://en-m-wikipedia-org.translate.goog/wiki/Special:BookSources/9780387989587?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="Special:BookSources/9780387989587"><bdi>9780387989587</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+Methods%3A+For+Students+of+Physics+and+Related+Fields&rft.series=Undergraduate+Texts+in+Mathematics&rft.pages=266&rft.pub=Springer&rft.date=2000&rft.isbn=9780387989587&rft.aulast=Hassani&rft.aufirst=Sadri&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DdxSOzeLMij4C%26pg%3DPA266&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-19">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=http://functions.wolfram.com/06.02.03.0005">"Double factorial: Specific values (formula 06.02.03.0005)"</a>. Wolfram Research. 2001-10-29<span class="reference-accessdate">. Retrieved <span class="nowrap">2013-03-23</span></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=unknown&rft.btitle=Double+factorial%3A+Specific+values+%28formula+06.02.03.0005%29&rft.pub=Wolfram+Research&rft.date=2001-10-29&rft_id=http%3A%2F%2Ffunctions.wolfram.com%2F06.02.03.0005&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-20">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMezey2009" class="citation journal cs1">Mezey, Paul G. (2009). "Some dimension problems in molecular databases". <i>Journal of Mathematical Chemistry</i>. <b>45</b> (1): 1–6. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.1007%252Fs10910-008-9365-8">10.1007/s10910-008-9365-8</a>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/S2CID_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://api.semanticscholar.org/CorpusID:120103389">120103389</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Mathematical+Chemistry&rft.atitle=Some+dimension+problems+in+molecular+databases&rft.volume=45&rft.issue=1&rft.pages=1-6&rft.date=2009&rft_id=info%3Adoi%2F10.1007%2Fs10910-008-9365-8&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120103389%23id-name%3DS2CID&rft.aulast=Mezey&rft.aufirst=Paul+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-21">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDassiosKiriaki1987" class="citation journal cs1"><a href="https://en-m-wikipedia-org.translate.goog/wiki/George_Dassios?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" title="George Dassios">Dassios, George</a>; Kiriaki, Kiriakie (1987). "A useful application of Gauss theorem". <i>Bulletin de la Société Mathématique de Grèce</i>. <b>28</b> (A): 40–43. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D0935868">0935868</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Bulletin+de+la+Soci%C3%A9t%C3%A9+Math%C3%A9matique+de+Gr%C3%A8ce&rft.atitle=A+useful+application+of+Gauss+theorem&rft.volume=28&rft.issue=A&rft.pages=40-43&rft.date=1987&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D935868%23id-name%3DMR&rft.aulast=Dassios&rft.aufirst=George&rft.au=Kiriaki%2C+Kiriakie&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-22">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidt2010" class="citation journal cs1">Schmidt, Maxie D. (2010). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://cs.uwaterloo.ca/journals/JIS/VOL13/Schmidt/multifact.html">"Generalized <i>j</i>-Factorial Functions, Polynomials, and Applications"</a>. <i>J. Integer Seq</i>. <b>13</b>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.+Integer+Seq.&rft.atitle=Generalized+j-Factorial+Functions%2C+Polynomials%2C+and+Applications&rft.volume=13&rft.date=2010&rft.aulast=Schmidt&rft.aufirst=Maxie+D.&rft_id=https%3A%2F%2Fcs.uwaterloo.ca%2Fjournals%2FJIS%2FVOL13%2FSchmidt%2Fmultifact.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-23">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTrianaDe_Castro2019" class="citation journal cs1">Triana, Juan; De Castro, Rodrigo (2019). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.15446%252Frecolma.v53n2.85522">"The formal derivative operator and multifactorial numbers"</a>. <i>Revista Colombiana de Matemáticas</i>. <b>53</b> (2): 125–137. <a href="https://en-m-wikipedia-org.translate.goog/wiki/Doi_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://doi.org/10.15446%252Frecolma.v53n2.85522">10.15446/recolma.v53n2.85522</a></span>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ISSN_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://search.worldcat.org/issn/0034-7426">0034-7426</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Revista+Colombiana+de+Matem%C3%A1ticas&rft.atitle=The+formal+derivative+operator+and+multifactorial+numbers&rft.volume=53&rft.issue=2&rft.pages=125-137&rft.date=2019&rft_id=info%3Adoi%2F10.15446%2Frecolma.v53n2.85522&rft.issn=0034-7426&rft.aulast=Triana&rft.aufirst=Juan&rft.au=De+Castro%2C+Rodrigo&rft_id=https%3A%2F%2Fdoi.org%2F10.15446%252Frecolma.v53n2.85522&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="https://en-m-wikipedia-org.translate.goog/wiki/Double_factorial?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB#cite_ref-24">^</a></b></span> <span class="reference-text"> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSchmidt2018" class="citation journal cs1">Schmidt, Maxie D. (2018). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://math.colgate.edu/~integers/s78/s78.pdf">"New congruences and finite difference equations for generalized factorial functions"</a> <span class="cs1-format">(PDF)</span>. <i>Integers</i>. <b>18</b>: A78:1–A78:34. <a href="https://en-m-wikipedia-org.translate.goog/wiki/ArXiv_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://arxiv.org/abs/1701.04741">1701.04741</a></span>. <a href="https://en-m-wikipedia-org.translate.goog/wiki/MR_(identifier)?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://mathscinet.ams.org/mathscinet-getitem?mr%3D3862591">3862591</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Integers&rft.atitle=New+congruences+and+finite+difference+equations+for+generalized+factorial+functions&rft.volume=18&rft.pages=A78%3A1-A78%3A34&rft.date=2018&rft_id=info%3Aarxiv%2F1701.04741&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D3862591%23id-name%3DMR&rft.aulast=Schmidt&rft.aufirst=Maxie+D.&rft_id=https%3A%2F%2Fmath.colgate.edu%2F~integers%2Fs78%2Fs78.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ADouble+factorial" class="Z3988"></span></span></li> </ol> </div> </div><!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐l24nk Cached time: 20241124161415 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.600 seconds Real time usage: 0.806 seconds Preprocessor visited node count: 5251/1000000 Post‐expand include size: 68796/2097152 bytes Template argument size: 7699/2097152 bytes Highest expansion depth: 10/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 93857/5000000 bytes Lua time usage: 0.311/10.000 seconds Lua memory usage: 7216272/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 571.400 1 -total 48.03% 274.455 1 Template:Reflist 16.42% 93.816 1 Template:Cite_arXiv 15.69% 89.679 14 Template:Cite_journal 15.44% 88.235 58 Template:Math 15.11% 86.366 1 Template:Short_description 10.09% 57.630 2 Template:Pagetype 8.22% 46.973 8 Template:Harvtxt 4.90% 28.019 62 Template:Main_other 3.41% 19.463 3 Template:Cite_book --> <!-- Saved in parser cache with key enwiki:pcache:idhash:507208-0!canonical and timestamp 20241124161415 and revision id 1258451328. Rendering was triggered because: page-view --> </section> </div><!-- MobileFormatter took 0.047 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Retrieved from "<a dir="ltr" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/w/index.php?title%3DDouble_factorial%26oldid%3D1258451328">https://en.wikipedia.org/w/index.php?title=Double_factorial&oldid=1258451328</a>" </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://en-m-wikipedia-org.translate.goog/w/index.php?title=Double_factorial&action=history&_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="Quantling" data-user-gender="unknown" data-timestamp="1732047999"> <span>Last edited on 19 November 2024, at 20:26</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Languages</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ar.wikipedia.org/wiki/%25D8%25B9%25D8%25A7%25D9%2585%25D9%2584%25D9%258A_%25D8%25AB%25D9%2586%25D8%25A7%25D8%25A6%25D9%258A" title="عاملي ثنائي – Arabic" lang="ar" hreflang="ar" data-title="عاملي ثنائي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ca.wikipedia.org/wiki/Doble_factorial" title="Doble factorial – Catalan" lang="ca" hreflang="ca" data-title="Doble factorial" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-et mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://et.wikipedia.org/wiki/Kahekordne_faktoriaal" title="Kahekordne faktoriaal – Estonian" lang="et" hreflang="et" data-title="Kahekordne faktoriaal" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://es.wikipedia.org/wiki/Doble_factorial" title="Doble factorial – Spanish" lang="es" hreflang="es" data-title="Doble factorial" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fa.wikipedia.org/wiki/%25D9%2581%25D8%25A7%25DA%25A9%25D8%25AA%25D9%2588%25D8%25B1%25DB%258C%25D9%2584_%25D8%25AF%25D9%2588%25D8%25A8%25D9%2584" title="فاکتوریل دوبل – Persian" lang="fa" hreflang="fa" data-title="فاکتوریل دوبل" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://fr.wikipedia.org/wiki/Analogues_de_la_factorielle%23Multifactorielles" title="Analogues de la factorielle – French" lang="fr" hreflang="fr" data-title="Analogues de la factorielle" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://he.wikipedia.org/wiki/%25D7%25A2%25D7%25A6%25D7%25A8%25D7%25AA_%25D7%259B%25D7%25A4%25D7%2595%25D7%259C%25D7%2594" title="עצרת כפולה – Hebrew" lang="he" hreflang="he" data-title="עצרת כפולה" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://nl.wikipedia.org/wiki/Dubbelfaculteit" title="Dubbelfaculteit – Dutch" lang="nl" hreflang="nl" data-title="Dubbelfaculteit" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ja.wikipedia.org/wiki/%25E4%25BA%258C%25E9%2587%258D%25E9%259A%258E%25E4%25B9%2597" title="二重階乗 – Japanese" lang="ja" hreflang="ja" data-title="二重階乗" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://pt.wikipedia.org/wiki/Duplo_fatorial" title="Duplo fatorial – Portuguese" lang="pt" hreflang="pt" data-title="Duplo fatorial" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ru badge-Q70894304 mw-list-item" title=""><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://ru.wikipedia.org/wiki/%25D0%2594%25D0%25B2%25D0%25BE%25D0%25B9%25D0%25BD%25D0%25BE%25D0%25B9_%25D1%2584%25D0%25B0%25D0%25BA%25D1%2582%25D0%25BE%25D1%2580%25D0%25B8%25D0%25B0%25D0%25BB" title="Двойной факториал – Russian" lang="ru" hreflang="ru" data-title="Двойной факториал" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://simple.wikipedia.org/wiki/Double_factorial" title="Double factorial – Simple English" lang="en-simple" hreflang="en-simple" data-title="Double factorial" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li> <li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sk.wikipedia.org/wiki/Dvojit%25C3%25BD_faktori%25C3%25A1l" title="Dvojitý faktoriál – Slovak" lang="sk" hreflang="sk" data-title="Dvojitý faktoriál" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://sv.wikipedia.org/wiki/Semifakultet" title="Semifakultet – Swedish" lang="sv" hreflang="sv" data-title="Semifakultet" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li> <li class="interlanguage-link interwiki-uk badge-Q70893996 mw-list-item" title=""><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://uk.wikipedia.org/wiki/%25D0%259F%25D0%25BE%25D0%25B4%25D0%25B2%25D1%2596%25D0%25B9%25D0%25BD%25D0%25B8%25D0%25B9_%25D1%2584%25D0%25B0%25D0%25BA%25D1%2582%25D0%25BE%25D1%2580%25D1%2596%25D0%25B0%25D0%25BB" title="Подвійний факторіал – Ukrainian" lang="uk" hreflang="uk" data-title="Подвійний факторіал" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://zh-yue.wikipedia.org/wiki/%25E9%259B%2599%25E9%259A%258E%25E4%25B9%2598" title="雙階乘 – Cantonese" lang="yue" hreflang="yue" data-title="雙階乘" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">This page was last edited on 19 November 2024, at 20:26<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Content is available under <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://creativecommons.org/licenses/by-sa/4.0/deed.en">CC BY-SA 4.0</a> unless otherwise noted.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:About?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="https://en-m-wikipedia-org.translate.goog/wiki/Wikipedia:General_disclaimer?_x_tr_sl=auto&_x_tr_tl=en&_x_tr_hl=en-GB">Disclaimers</a></li> <li id="footer-places-contact"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://stats.wikimedia.org/%23/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Terms of Use</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&tl=en&hl=en-GB&u=https://en.wikipedia.org/w/index.php?title%3DDouble_factorial%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Desktop</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-gfg4b","wgBackendResponseTime":233,"wgPageParseReport":{"limitreport":{"cputime":"0.600","walltime":"0.806","ppvisitednodes":{"value":5251,"limit":1000000},"postexpandincludesize":{"value":68796,"limit":2097152},"templateargumentsize":{"value":7699,"limit":2097152},"expansiondepth":{"value":10,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":93857,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 571.400 1 -total"," 48.03% 274.455 1 Template:Reflist"," 16.42% 93.816 1 Template:Cite_arXiv"," 15.69% 89.679 14 Template:Cite_journal"," 15.44% 88.235 58 Template:Math"," 15.11% 86.366 1 Template:Short_description"," 10.09% 57.630 2 Template:Pagetype"," 8.22% 46.973 8 Template:Harvtxt"," 4.90% 28.019 62 Template:Main_other"," 3.41% 19.463 3 Template:Cite_book"]},"scribunto":{"limitreport-timeusage":{"value":"0.311","limit":"10.000"},"limitreport-memusage":{"value":7216272,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFCallan2009\"] = 1,\n [\"CITEREFDaleMoon1993\"] = 1,\n [\"CITEREFDaleNarayana1986\"] = 1,\n [\"CITEREFDassiosKiriaki1987\"] = 1,\n [\"CITEREFGouldQuaintance2012\"] = 1,\n [\"CITEREFHassani2000\"] = 1,\n [\"CITEREFHendersonParmeter2012\"] = 1,\n [\"CITEREFJanson2008\"] = 1,\n [\"CITEREFKitaev2011\"] = 1,\n [\"CITEREFKnuth2023\"] = 1,\n [\"CITEREFMarshMartin2011\"] = 1,\n [\"CITEREFMeserve1948\"] = 1,\n [\"CITEREFMezey2009\"] = 1,\n [\"CITEREFNielsen1999\"] = 1,\n [\"CITEREFRubey2008\"] = 1,\n [\"CITEREFSchmidt2010\"] = 1,\n [\"CITEREFSchmidt2018\"] = 1,\n [\"CITEREFSchuster1902\"] = 1,\n [\"CITEREFTichyWagner2005\"] = 1,\n [\"CITEREFTrianaDe_Castro2019\"] = 1,\n [\"CITEREFWeisstein\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 1,\n [\"=\"] = 9,\n [\"Block indent\"] = 2,\n [\"Cite arXiv\"] = 1,\n [\"Cite book\"] = 3,\n [\"Cite conference\"] = 2,\n [\"Cite journal\"] = 14,\n [\"Cite web\"] = 3,\n [\"Endplainlist\"] = 1,\n [\"Harvtxt\"] = 8,\n [\"Hatnote\"] = 1,\n [\"Math\"] = 57,\n [\"Mvar\"] = 45,\n [\"OEIS\"] = 3,\n [\"Quote\"] = 1,\n [\"Reflist\"] = 1,\n [\"Sfrac\"] = 4,\n [\"Short description\"] = 1,\n [\"Slink\"] = 1,\n [\"Startplainlist\"] = 1,\n [\"Su\"] = 2,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-l24nk","timestamp":"20241124161415","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Double factorial","url":"https:\/\/en.wikipedia.org\/wiki\/Double_factorial","sameAs":"http:\/\/www.wikidata.org\/entity\/Q13520655","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q13520655","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-03-05T22:03:59Z","dateModified":"2024-11-19T20:26:39Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/0\/06\/Chord_diagrams_K6_matchings.svg","headline":"product of all the integers from 1 up to the integral input of the function that have the same parity as this input"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('en', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&hl=en-GB&client=wt" type="text/javascript"></script> </body> </html>