CINXE.COM
Search results for: SPDT switch
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: SPDT switch</title> <meta name="description" content="Search results for: SPDT switch"> <meta name="keywords" content="SPDT switch"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="SPDT switch" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="SPDT switch"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 253</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: SPDT switch</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">253</span> High Power Low Loss CMOS SPDT Antenna Switch for LTE-A Front End Module</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki-Jin%20Kim">Ki-Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Suk-Hui%20LEE"> Suk-Hui LEE</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanghoon%20Park"> Sanghoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20H.%20Ahn"> K. H. Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A high power, low loss asymmetric single pole double through(SPDT) antenna switch for LTE-A Front-End Module(FEM) is presented in this paper by using CMOS technology. For the usage of LTE-A applications, low loss and high linearity are the key features which are very challenging works under CMOS process. To enhance insertion loss(IL) and power handling capability, this paper adopts asymmetric Transmitter (TX) and RX (Receiver) structure, floating body technique, multi-stacked structure, and feed forward capacitor technique. The designed SPDT switch shows TX IL 0.34 dB, RX IL 0.73 dB, P1dB 38.9 dBm at 0.9 GHz and TX IL 0.37 dB, RX IL 0.95 dB, P1dB 39.1 dBm at 2.5 GHz respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS%20switch" title="CMOS switch">CMOS switch</a>, <a href="https://publications.waset.org/abstracts/search?q=SPDT%20switch" title=" SPDT switch"> SPDT switch</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20power%20CMOS%20switch" title=" high power CMOS switch"> high power CMOS switch</a>, <a href="https://publications.waset.org/abstracts/search?q=LTE-A%20FEM" title=" LTE-A FEM "> LTE-A FEM </a> </p> <a href="https://publications.waset.org/abstracts/22508/high-power-low-loss-cmos-spdt-antenna-switch-for-lte-a-front-end-module" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22508.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">252</span> Design of a High Performance T/R Switch for 2.4 GHz RF Wireless Transceiver in 0.13 µm CMOS Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Arif%20Sobhan%20Bhuiyan">Mohammad Arif Sobhan Bhuiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamun%20Bin%20Ibne%20Reaz"> Mamun Bin Ibne Reaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid advancement of CMOS technology, in the recent years, has led the scientists to fabricate wireless transceivers fully on-chip which results in smaller size and lower cost wireless communication devices with acceptable performance characteristics. Moreover, the performance of the wireless transceivers rigorously depends on the performance of its first block T/R switch. This article proposes a design of a high performance T/R switch for 2.4 GHz RF wireless transceivers in 0.13 µm CMOS technology. The switch exhibits 1- dB insertion loss, 37.2-dB isolation in transmit mode and 1.4-dB insertion loss, 25.6-dB isolation in receive mode. The switch has a power handling capacity (P1dB) of 30.9-dBm. Besides, by avoiding bulky inductors and capacitors, the size of the switch is drastically reduced and it occupies only (0.00296) mm2 which is the lowest ever reported in this frequency band. Therefore, simplicity and low chip area of the circuit will trim down the cost of fabrication as well as the whole transceiver. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CMOS" title="CMOS">CMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=ISM%20band" title=" ISM band"> ISM band</a>, <a href="https://publications.waset.org/abstracts/search?q=SPDT" title=" SPDT"> SPDT</a>, <a href="https://publications.waset.org/abstracts/search?q=t%2Fr%20switch" title=" t/r switch"> t/r switch</a>, <a href="https://publications.waset.org/abstracts/search?q=transceiver" title=" transceiver"> transceiver</a> </p> <a href="https://publications.waset.org/abstracts/28930/design-of-a-high-performance-tr-switch-for-24-ghz-rf-wireless-transceiver-in-013-m-cmos-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">251</span> Design and Simulation of Step Structure RF MEMS Switch for K Band Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20S.%20Prakash">G. K. S. Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Rao%20K.%20Srinivasa"> Rao K. Srinivasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MEMS plays an important role in wide range of applications like biological, automobiles, military and communication engineering. This paper mainly investigates on capacitive shunt RF MEMS switch with low actuation voltage and low insertion losses. To trim the pull-in voltage, a step structure has introduced to trim air gap between the beam and the dielectric layer with that pull in voltage is trim to 2.9 V. The switching time of the proposed switch is 39.1μs, and capacitance ratio is 67. To get more isolation, we have used aluminum nitride as dielectric material instead of silicon nitride (Si₃N₄) and silicon dioxide (SiO₂) because aluminum nitride has high dielectric constant (εᵣ = 9.5) increases the OFF capacitance and eventually increases the isolation of the switch. The results show that the switch is ON state involves return loss (S₁₁) less than -25 dB up to 40 GHz and insertion loss (S₂₁) is more than -1 dB up to 35 GHz. In OFF state switch shows maximum isolation (S₂₁) of -38 dB occurs at a frequency of 25-27 GHz for K band applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RF%20MEMS" title="RF MEMS">RF MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=actuation%20voltage" title=" actuation voltage"> actuation voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation%20loss" title=" isolation loss"> isolation loss</a>, <a href="https://publications.waset.org/abstracts/search?q=switches" title=" switches"> switches</a> </p> <a href="https://publications.waset.org/abstracts/70729/design-and-simulation-of-step-structure-rf-mems-switch-for-k-band-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">250</span> Fast High Voltage Solid State Switch Using Insulated Gate Bipolar Transistor for Discharge-Pumped Lasers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Syarafina%20Binti%20Othman">Nur Syarafina Binti Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsubasa%20Jindo"> Tsubasa Jindo</a>, <a href="https://publications.waset.org/abstracts/search?q=Makato%20Yamada"> Makato Yamada</a>, <a href="https://publications.waset.org/abstracts/search?q=Miho%20Tsuyama"> Miho Tsuyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hitoshi%20Nakano"> Hitoshi Nakano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel method to produce a fast high voltage solid states switch using Insulated Gate Bipolar Transistors (IGBTs) is presented for discharge-pumped gas lasers. The IGBTs are connected in series to achieve a high voltage rating. An avalanche transistor is used as the gate driver. The fast pulse generated by the avalanche transistor quickly charges the large input capacitance of the IGBT, resulting in a switch out of a fast high-voltage pulse. The switching characteristic of fast-high voltage solid state switch has been estimated in the multi-stage series-connected IGBT with the applied voltage of several tens of kV. Electrical circuit diagram and the mythology of fast-high voltage solid state switch as well as experimental results obtained are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20voltage" title="high voltage">high voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=IGBT" title=" IGBT"> IGBT</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20switch" title=" solid state switch"> solid state switch</a>, <a href="https://publications.waset.org/abstracts/search?q=bipolar%20transistor" title=" bipolar transistor"> bipolar transistor</a> </p> <a href="https://publications.waset.org/abstracts/13067/fast-high-voltage-solid-state-switch-using-insulated-gate-bipolar-transistor-for-discharge-pumped-lasers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">249</span> A New Resonance Solution to Suppress the Voltage Stresses in the Forward Topology Used in a Switch Mode Power Supply</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maamar%20Latroch">Maamar Latroch</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Bourahla"> Mohamed Bourahla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forward topology used in switch mode power supply (SMPS) is one of the most famous configuration feeding DC systems such as telecommunication systems and other specific applications where the galvanic isolation is required. This configuration benefits of the high frequency feature of the transformer to provide a small size and light weight of the over all system. However, the stresses existing on the power switch during an ON/OFF commutation limit the transmitted power to the DC load. This paper investigates the main causes of the stresses in voltage existing during a commutation cycle and suggest a low cost solution that eliminates the overvoltage. As a result, this configuration will yield the possibility of the use of this configuration in higher power applications. Simulation results will show the efficiency of the presented method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=switch%20mode%20power%20supply" title="switch mode power supply">switch mode power supply</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20topology" title=" forward topology"> forward topology</a>, <a href="https://publications.waset.org/abstracts/search?q=resonance%20topology" title=" resonance topology"> resonance topology</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20commutation" title=" high frequency commutation"> high frequency commutation</a> </p> <a href="https://publications.waset.org/abstracts/32934/a-new-resonance-solution-to-suppress-the-voltage-stresses-in-the-forward-topology-used-in-a-switch-mode-power-supply" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">248</span> Integration of a Load Switch with DC/DC Buck Converter for Power Distribution in Low Cost Educational Nanosatellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bentoutou%20Houari">Bentoutou Houari</a>, <a href="https://publications.waset.org/abstracts/search?q=Boutte%20Aissa"> Boutte Aissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Belaidi%20El%20Yazid"> Belaidi El Yazid</a>, <a href="https://publications.waset.org/abstracts/search?q=Limam%20Lakhdar"> Limam Lakhdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of a load switch with a DC/DC buck converter using LM2596 for power distribution in low-cost educational nanosatellites is a technique that aims to efficiently manage the power distribution system in these small spacecraft. The converter is based on the LM2596 regulator and designed to step down the input voltage of +16.8V to +12V, +5V, and +3.3V output, which are suitable for the nanosatellite's various subsystems. The load switch is based on MOSFET and is used to turn on or off the power supply to a particular load and protect the nanosatellite from power surges. A prototype of a +12V DC/DC buck converter with a high side load switch has been realized and tested, which meets our requirements and shows a good efficiency of 89%. In addition, the prototype features a capacitor between the source and gate of the MOSFET, which has effectively reduced the inrush current, demonstrating the effectiveness of this approach in reducing surges of current when the load is connected. The output current and voltage were measured at 0.7A and 11.89V, respectively, making this design suitable for use in low-cost educational nanosatellites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC%2FDC%20buck%20converter" title="DC/DC buck converter">DC/DC buck converter</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20switch" title=" load switch"> load switch</a>, <a href="https://publications.waset.org/abstracts/search?q=LM2596" title=" LM2596"> LM2596</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20power%20subsystems" title=" electrical power subsystems"> electrical power subsystems</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosatellite" title=" nanosatellite"> nanosatellite</a>, <a href="https://publications.waset.org/abstracts/search?q=inrush%20current" title=" inrush current"> inrush current</a> </p> <a href="https://publications.waset.org/abstracts/166405/integration-of-a-load-switch-with-dcdc-buck-converter-for-power-distribution-in-low-cost-educational-nanosatellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">247</span> An Android Geofencing App for Autonomous Remote Switch Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamie%20Wong">Jamie Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Daisy%20Sang"> Daisy Sang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Shyh%20Peng"> Chang-Shyh Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geofence is a virtual fence defined by a preset physical radius around a target location. Geofencing App provides location-based services which define the actionable operations upon the crossing of a geofence. Geofencing requires continual location tracking, which can consume noticeable amount of battery power. Additionally, location updates need to be frequent and accurate or order so that actions can be triggered within an expected time window after the mobile user navigate through the geofence. In this paper, we build an Android mobile geofencing Application to remotely and autonomously control a power switch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=location%20based%20service" title="location based service">location based service</a>, <a href="https://publications.waset.org/abstracts/search?q=geofence" title=" geofence"> geofence</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous" title=" autonomous"> autonomous</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20switch" title=" remote switch"> remote switch</a> </p> <a href="https://publications.waset.org/abstracts/56664/an-android-geofencing-app-for-autonomous-remote-switch-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">246</span> Development of Generally Applicable Intravenous to Oral Antibiotic Switch Therapy Criteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Akhloufi">H. Akhloufi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hulscher"> M. Hulscher</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Prins"> J. M. Prins</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20H.%20Van%20Der%20Sijs"> I. H. Van Der Sijs</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Melles"> D. Melles</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Verbon"> A. Verbon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: A timely switch from intravenous to oral antibiotic therapy has many advantages, such as reduced incidence of IV-line related infections, a decreased hospital length of stay and less workload for healthcare professionals with equivalent patient safety. Additionally, numerous studies have demonstrated significant decreases in costs of a timely intravenous to oral antibiotic therapy switch, while maintaining efficacy and safety. However, a considerable variation in iv to oral antibiotic switch therapy criteria has been described in literature. Here, we report the development of a set of iv to oral switch criteria that are generally applicable in all hospitals. Material/methods: A RAND-modified Delphi procedure, which was composed of 3 rounds, was used. This Delphi procedure is a widely used structured process to develop consensus using multiple rounds of questionnaires within a qualified panel of selected experts. The international expert panel was multidisciplinary and composed out of clinical microbiologists, infectious disease consultants and clinical pharmacists. This panel of 19 experts appraised 6 major intravenous to oral antibiotic switch therapy criteria and operationalized these criteria using 41 measurable conditions extracted from the literature. The procedure to select a concise set of iv to oral switch criteria included 2 questionnaire rounds and a face-to-face meeting. Results: The procedure resulted in the selection of 16 measurable conditions, which operationalize 6 major intravenous to oral antibiotic switch therapy criteria. The following 6 major switch therapy criteria were selected: (1) Vital signs should be good or improving when bad. (2) Signs and symptoms related to the infection have to be resolved or improved. (3) The gastrointestinal tract has to be intact and functioning. (4) The oral route should not be compromised. (5) Absence of contra-indicated infections. (6) An oral variant of the antibiotic with good bioavailability has to exist. Conclusions: This systematic stepwise method which combined evidence and expert opinion resulted in a feasible set of 6 major intravenous to oral antibiotic switch therapy criteria operationalized by 16 measurable conditions. This set of early antibiotic iv to oral switch criteria can be used in daily practice in all adult hospital patients. Future use in audits and as rules in computer assisted decision support systems will lead to improvement of antimicrobial steward ship programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20resistance" title="antibiotic resistance">antibiotic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotic%20stewardship" title=" antibiotic stewardship"> antibiotic stewardship</a>, <a href="https://publications.waset.org/abstracts/search?q=intravenous%20to%20oral" title=" intravenous to oral"> intravenous to oral</a>, <a href="https://publications.waset.org/abstracts/search?q=switch%20therapy" title=" switch therapy"> switch therapy</a> </p> <a href="https://publications.waset.org/abstracts/46445/development-of-generally-applicable-intravenous-to-oral-antibiotic-switch-therapy-criteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">245</span> A Picture Naming Study of European Portuguese-English Bilinguals on Cognates Switch Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minghui%20Zou">Minghui Zou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates whether and how cognate status influences switching costs in bilingual language production. Two picture naming tasks will be conducted in this proposed study by manipulating the conditions of how cognates and non-cognates are presented, i.e., separately in two testing blocks vs intermixed in one single testing block. Participants of each experiment will be 24 L1-European Portuguese L2-English unbalanced speakers. Stimuli will include 12 pictures of cognate nouns and 12 of non-cognate nouns. It is hypothesized that there will be cognate switch facilitation effects among unbalanced bilinguals in both of their languages when stimuli are presented either in two single testing blocks or one mixed testing block. Shorter reaction times and higher naming accuracy are expected to be found in cognate switch trials than in non-cognate switch trials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognates" title="cognates">cognates</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20switching%20costs" title=" language switching costs"> language switching costs</a>, <a href="https://publications.waset.org/abstracts/search?q=picture%20naming" title=" picture naming"> picture naming</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20Portuguese" title=" European Portuguese"> European Portuguese</a>, <a href="https://publications.waset.org/abstracts/search?q=cognate%20facilitation%20effect" title=" cognate facilitation effect"> cognate facilitation effect</a> </p> <a href="https://publications.waset.org/abstracts/187477/a-picture-naming-study-of-european-portuguese-english-bilinguals-on-cognates-switch-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">38</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">244</span> An Exploratory Study Regarding the Effects of Auditor Switch, Auditee’s Industry, and Auditee’s Location on Audit Fees in Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashkan%20Mirzay%20Fashami">Ashkan Mirzay Fashami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the effects of auditor switch, auditee’s industry, and auditee’s location on audit fees in Australia. It uses fee data of Australian Securities Exchange 500 companies, considering all industry classifications throughout the country from 2006 until 2016. Main findings show that auditor switch does not affect audit fees. However, auditee’s industry affects audit fees. This effect occurs in information technology, financials, energy, and materials sectors among the top 500 companies. Financials, energy, and materials sectors face a fee rise, whereas information technology has a fee cut. The extent of fee changes is different among various industries, wherein the financial sector has the highest increase. Further, auditee’s location affects audit fees. Top 500 companies in Hobart, Perth, and Brisbane face a fee reduction, wherein the highest cut is in Hobart. Further analysis suggests that the Australian audit market is being increasingly concentrated in the hands of the Big Four audit firms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audit" title="audit">audit</a>, <a href="https://publications.waset.org/abstracts/search?q=auditor%20switch" title=" auditor switch"> auditor switch</a>, <a href="https://publications.waset.org/abstracts/search?q=Australia" title=" Australia"> Australia</a>, <a href="https://publications.waset.org/abstracts/search?q=fee" title=" fee"> fee</a>, <a href="https://publications.waset.org/abstracts/search?q=low-balling" title=" low-balling"> low-balling</a> </p> <a href="https://publications.waset.org/abstracts/104086/an-exploratory-study-regarding-the-effects-of-auditor-switch-auditees-industry-and-auditees-location-on-audit-fees-in-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">243</span> Packet Fragmentation Caused by Encryption and Using It as a Security Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Rabah%20Azzam">Said Rabah Azzam</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Graham"> Andrew Graham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fragmentation of packets caused by encryption applied on the network layer of the IOS model in Internet Protocol version 4 (IPv4) networks as well as the possibility of using fragmentation and Access Control Lists (ACLs) as a method of restricting network access to certain hosts or areas of a network.Using default settings, fragmentation is expected to occur and each fragment to be reassembled at the other end. If this does not occur then a high number of ICMP messages should be generated back towards the source host indicating that the packet is too large and that it needs to be made smaller. This result is also expected when the MTU is changed for certain links between devices.When using ACLs and packet fragments to restrict access to hosts or network segments it is possible that ACLs cannot be set up in this way. If ACLs cannot be setup to allow only fragments then it is a limitation of the hardware’s firmware holding back this particular method. If the ACL on the restricted switch can be set up in such a way to allow only fragments then a connection that forces packets to fragment should be allowed to pass through the ACL. This should then make a network connection to the destination machine allowing data to be sent to and from the destination machine. ICMP messages from the restricted access switch and host should also be blocked from being sent back across the link which will be shown in an SSH session into the switch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fragmentation" title="fragmentation">fragmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=encryption" title=" encryption"> encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=switch" title=" switch "> switch </a> </p> <a href="https://publications.waset.org/abstracts/30056/packet-fragmentation-caused-by-encryption-and-using-it-as-a-security-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">242</span> Evaluation of Reliability Indices Using Monte Carlo Simulation Accounting Time to Switch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Asefi">Sajjad Asefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Afrakhte"> Hossein Afrakhte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the evaluation of reliability indices of an electrical distribution system using Monte Carlo simulation technique accounting Time To Switch (TTS) for each section. In this paper, the distribution system has been assumed by accounting random repair time omission. For simplicity, we have assumed the reliability analysis to be based on exponential law. Each segment has a specified rate of failure (λ) and repair time (r) which will give us the mean up time and mean down time of each section in distribution system. After calculating the modified mean up time (MUT) in years, mean down time (MDT) in hours and unavailability (U) in h/year, TTS have been added to the time which the system is not available, i.e. MDT. In this paper, we have assumed the TTS to be a random variable with Log-Normal distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20system" title="distribution system">distribution system</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=repair%20time" title=" repair time"> repair time</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20to%20switch%20%28TTS%29" title=" time to switch (TTS)"> time to switch (TTS)</a> </p> <a href="https://publications.waset.org/abstracts/75199/evaluation-of-reliability-indices-using-monte-carlo-simulation-accounting-time-to-switch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">241</span> Optimum Switch Temperature for Phase Change Materials in Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Hadi%20Bouguerra">El Hadi Bouguerra</a>, <a href="https://publications.waset.org/abstracts/search?q=Nouredine%20Retiel"> Nouredine Retiel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To avoid or at least to attenuate the global warming, it is essential to reduce the energy consumption of the buildings where the biggest potential of savings exists. The impending danger can come from the increase in the needs of air conditioning not only because of the climate warming but also the fast equipping of emerging or developing countries. Passive solutions exist and others are in promising development and therefore, must be applied wherever it is possible. Even if they do not always avoid the resort to an active cooling (mechanical), they allow lowering the load at an acceptable level which can be possibly taken in relay by the renewable energies. These solutions have the advantage to be relatively less expensive and especially adaptable to the existing housing. However, it is the internal convection resistance that controls the heat exchange between the phase change materials (PCM) and the indoor temperature because of the very low heat coefficients of natural convection. Therefore, it is reasonable to link the switch temperature Tm to the temperature of the substrate (walls and ceiling) because conduction heat transfer is dominant. In this case, external conditions (heat sources such as solar irradiation and ambient temperatures) and conductivities of envelope constituents are the most important factors. The walls are not at the same temperature year round; therefore, it is difficult to set a unique switch temperature for the whole season, making the average values a key parameter. With this work, the authors’ aim is to see which parameters influence the optimum switch temperature of a PCM and additionally, if a better selection of PCMs relating to their optimum temperature can enhance their energetic performances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20energy%20building" title="low energy building">low energy building</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation" title=" energy conservation"> energy conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=PCM" title=" PCM"> PCM</a> </p> <a href="https://publications.waset.org/abstracts/52193/optimum-switch-temperature-for-phase-change-materials-in-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">240</span> The Experience with SiC MOSFET and Buck Converter Snubber Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Petr%20Vaculik">Petr Vaculik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The newest semiconductor devices on the market are MOSFET transistors based on the silicon carbide – SiC. This material has exclusive features thanks to which it becomes a better switch than Si – silicon semiconductor switch. There are some special features that need to be understood to enable the device’s use to its full potential. The advantages and differences of SiC MOSFETs in comparison with Si IGBT transistors have been described in first part of this article. Second part describes driver for SiC MOSFET transistor and last part of article represents SiC MOSFET in the application of buck converter (step-down) and design of simple RC snubber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiC" title="SiC">SiC</a>, <a href="https://publications.waset.org/abstracts/search?q=Si" title=" Si"> Si</a>, <a href="https://publications.waset.org/abstracts/search?q=MOSFET" title=" MOSFET"> MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=IGBT" title=" IGBT"> IGBT</a>, <a href="https://publications.waset.org/abstracts/search?q=SBD" title=" SBD"> SBD</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20snubber" title=" RC snubber"> RC snubber</a> </p> <a href="https://publications.waset.org/abstracts/3291/the-experience-with-sic-mosfet-and-buck-converter-snubber-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">239</span> Designing Floor Planning in 2D and 3D with an Efficient Topological Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Nagammai">V. Nagammai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining thousands of transistors into a single chip. Development of technology increases the complexity in IC manufacturing which may vary the power consumption, increase the size and latency period. Topology defines a number of connections between network. In this project, NoC topology is generated using atlas tool which will increase performance in turn determination of constraints are effective. The routing is performed by XY routing algorithm and wormhole flow control. In NoC topology generation, the value of power, area and latency are predetermined. In previous work, placement, routing and shortest path evaluation is performed using an algorithm called floor planning with cluster reconstruction and path allocation algorithm (FCRPA) with the account of 4 3x3 switch, 6 4x4 switch, and 2 5x5 switches. The usage of the 4x4 and 5x5 switch will increase the power consumption and area of the block. In order to avoid the problem, this paper has used one 8x8 switch and 4 3x3 switches. This paper uses IPRCA which of 3 steps they are placement, clustering, and shortest path evaluation. The placement is performed using min – cut placement and clustering are performed using an algorithm called cluster generation. The shortest path is evaluated using an algorithm called Dijkstra's algorithm. The power consumption of each block is determined. The experimental result shows that the area, power, and wire length improved simultaneously. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=application%20specific%20noc" title="application specific noc">application specific noc</a>, <a href="https://publications.waset.org/abstracts/search?q=b%2A%20tree%20representation" title=" b* tree representation"> b* tree representation</a>, <a href="https://publications.waset.org/abstracts/search?q=floor%20planning" title=" floor planning"> floor planning</a>, <a href="https://publications.waset.org/abstracts/search?q=t%20tree%20representation" title=" t tree representation"> t tree representation</a> </p> <a href="https://publications.waset.org/abstracts/45379/designing-floor-planning-in-2d-and-3d-with-an-efficient-topological-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">238</span> Regulated Output Voltage Double Switch Buck-Boost Converter for Photovoltaic Energy Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kaouane">M. Kaouane</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boukhelifa"> A. Boukhelifa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Cheriti"> A. Cheriti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new Buck-Boost DC-DC converter is designed and simulated for photovoltaic energy system. The presented Buck-Boost converter has a double switch. Moreover, its output voltage is regulated to a constant value whatever its input is. In the presented work, the Buck-Boost transfers the produced energy from the photovoltaic generator to an R-L load. The converter is controlled by the pulse width modulation technique in a way to have a suitable output voltage, in the other hand, to carry the generator’s power, and put it close to the maximum possible power that can be generated by introducing the right duty cycle of the pulse width modulation signals that control the switches of the converter; each component and each parameter of the proposed circuit is well calculated using the equations that describe each operating mode of the converter. The proposed configuration of Buck-Boost converter has been simulated in Matlab/Simulink environment; the simulation results show that it is a good choice to take in order to maintain the output voltage constant while ensuring a good energy transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buck-Boost%20converter" title="Buck-Boost converter">Buck-Boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=switch" title=" switch"> switch</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM" title=" PWM"> PWM</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20transfer" title=" energy transfer"> energy transfer</a> </p> <a href="https://publications.waset.org/abstracts/34336/regulated-output-voltage-double-switch-buck-boost-converter-for-photovoltaic-energy-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">905</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">237</span> Switching Losses in Power Electronic Converter of Switched Reluctance Motor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Asghar%20Memon">Ali Asghar Memon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A cautious and astute selection of switching devices used in power electronic converters of a switched reluctance (SR) motor is required. It is a matter of choice of best switching devices with respect to their switching ability rather than fulfilling the number of switches. This paper highlights the computational determination of switching losses comprising of switch-on, switch-off and conduction losses respectively by using experimental data in simulation model of a SR machine. The finding of this research is helpful for proper selection of electronic switches and suitable converter topology for switched reluctance motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=converter" title="converter">converter</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20modes" title=" operating modes"> operating modes</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20reluctance%20motor" title=" switched reluctance motor"> switched reluctance motor</a>, <a href="https://publications.waset.org/abstracts/search?q=switching%20losses" title=" switching losses"> switching losses</a> </p> <a href="https://publications.waset.org/abstracts/35250/switching-losses-in-power-electronic-converter-of-switched-reluctance-motor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35250.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">507</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">236</span> Mobile Number Portability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Geetha">R. Geetha</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Arunkumar"> J. Arunkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Gopal"> P. Gopal</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Loganathan"> D. Loganathan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Pavithra"> K. Pavithra</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Vikashini"> C. Vikashini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile Number Portability is an attempt to switch over from one network to another network facility for mobile based on applications. This facility is currently not available for mobile handsets. This application is intended to assist the mobile network and its service customers in understanding the criteria; this will serve as a universal set of requirements which must be met by the customers. This application helps the user's network portability. Accessing permission from the network provider to enable services to the user and utilizing the available network signals. It is enabling the user to make a temporary switch over to other network. The main aim of this research work is to adapt multiple networks at the time of no network coverage. It can be accessed at rural and geographical areas. This can be achieved by this mobile application. The application is capable of temporary switch over between various networks. With this application both the service provider and the network user are benefited. The service provider is benefited by charging a minimum cost for utilizing other network. It provides security in terms of password that is unique to avoid unauthorized users and to prevent loss of balance. The goal intended to be attained is a complete utilization of available network at significant situations and to provide feature that satisfy the customer needs. The temporary switch over is done to manage emergency calls when user is in rural or geographical area, where there will be a very low network coverage. Since people find it trend in using Android mobile, this application is designed as an Android applications, which can be freely downloaded and installed from Play store. In the current scenario, the service provider enables the user to change their network without shifting their mobile network. This application affords a clarification for users while they are jammed in a critical situation. This application is designed by using Android 4.2 and SQLite Version3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20number" title="mobile number">mobile number</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20number" title=" random number"> random number</a>, <a href="https://publications.waset.org/abstracts/search?q=alarm" title=" alarm"> alarm</a>, <a href="https://publications.waset.org/abstracts/search?q=imei%20number" title=" imei number"> imei number</a>, <a href="https://publications.waset.org/abstracts/search?q=call" title=" call"> call</a> </p> <a href="https://publications.waset.org/abstracts/1709/mobile-number-portability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">235</span> Fast Switching Mechanism for Multicasting Failure in OpenFlow Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Allakany">Alaa Allakany</a>, <a href="https://publications.waset.org/abstracts/search?q=Koji%20Okamura"> Koji Okamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multicast technology is an efficient and scalable technology for data distribution in order to optimize network resources. However, in the IP network, the responsibility for management of multicast groups is distributed among network routers, which causes some limitations such as delays in processing group events, high bandwidth consumption and redundant tree calculation. Software Defined Networking (SDN) represented by OpenFlow presented as a solution for many problems, in SDN the control plane and data plane are separated by shifting the control and management to a remote centralized controller, and the routers are used as a forwarder only. In this paper we will proposed fast switching mechanism for solving the problem of link failure in multicast tree based on Tabu Search heuristic algorithm and modifying the functions of OpenFlow switch to fasts switch to the pack up sub tree rather than sending to the controller. In this work we will implement multicasting OpenFlow controller, this centralized controller is a core part in our multicasting approach, which is responsible for 1- constructing the multicast tree, 2- handling the multicast group events and multicast state maintenance. And finally modifying OpenFlow switch functions for fasts switch to pack up paths. Forwarders, forward the multicast packet based on multicast routing entries which were generated by the centralized controller. Tabu search will be used as heuristic algorithm for construction near optimum multicast tree and maintain multicast tree to still near optimum in case of join or leave any members from multicast group (group events). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multicast%20tree" title="multicast tree">multicast tree</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20define%20networks" title=" software define networks"> software define networks</a>, <a href="https://publications.waset.org/abstracts/search?q=tabu%20search" title=" tabu search"> tabu search</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFlow" title=" OpenFlow"> OpenFlow</a> </p> <a href="https://publications.waset.org/abstracts/47773/fast-switching-mechanism-for-multicasting-failure-in-openflow-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">234</span> An Elegant Technique to Achieve ZCS in a Boost Converter Incorporating Complete Energy Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagesh%20Vangala">Nagesh Vangala</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayudu%20Mannam"> Rayudu Mannam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soft switching has attracted the interest of various researchers constantly. Many techniques are in vogue to achieve soft switching (ZVS and/or ZCS) in Boost converters. These techniques utilize an auxiliary switch to incorporate the ZCS/ZVS. Such schemes require additional control circuit and induce complexity in design. This paper proposes an elegant fly back approach which guarantees zero current switching of the main Switch without the need for any additional active device. A simple flyback transformer scheme is implemented which absorbs the initial turn ON energy (or the Reverse recovery energy of Boost diode) and delivers to the output. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boost%20converter" title="boost converter">boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=complete%20energy%20transfer" title=" complete energy transfer"> complete energy transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=flyback" title=" flyback"> flyback</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20current%20switching" title=" zero current switching"> zero current switching</a> </p> <a href="https://publications.waset.org/abstracts/14340/an-elegant-technique-to-achieve-zcs-in-a-boost-converter-incorporating-complete-energy-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">233</span> Reduced Switch Count Asymmetrical Multilevel Inverter Topology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Voodi%20Kalandhar">Voodi Kalandhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Veera%20Reddy"> Veera Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuva%20Tejasree"> Yuva Tejasree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Researchers have become interested in multilevel inverters (MLI) because of their potential for medium- and high-power applications. MLIs are becoming more popular as a result of their ability to generate higher voltage levels, minimal power losses, small size, and low price. These inverters used in high voltage and high-power applications because the stress on the switch is low. Even though many traditional topologies, such as the cascaded H-bridge MLI, the flying capacitor MLI, and the diode clamped MLI, exist, they all have some drawbacks. A complicated control system is needed for the flying capacitor MLI to balance the voltage across the capacitor and diode clamped MLI requires more no of diodes when no of levels increases. Even though the cascaded H-Bridge MLI is popular in terms of modularity and simple control, it requires more no of isolated DC source. Therefore, a topology with fewer devices has always been necessary for greater efficiency and reliability. A new single-phase MLI topology has been introduced to minimize the required switch count in the circuit and increase output levels. With 3 dc voltage sources, 8 switches, and 13 levels at the output, this new single- phase MLI topology was developed. To demonstrate the proposed converter's superiority over the other MLI topologies currently in use, a thorough analysis of the proposed topology will be conducted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DC-AC%20converter" title="DC-AC converter">DC-AC converter</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-level%20inverter%20%28MLI%29" title=" multi-level inverter (MLI)"> multi-level inverter (MLI)</a>, <a href="https://publications.waset.org/abstracts/search?q=diodes" title=" diodes"> diodes</a>, <a href="https://publications.waset.org/abstracts/search?q=H-bridge%20inverter" title=" H-bridge inverter"> H-bridge inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=switches" title=" switches"> switches</a> </p> <a href="https://publications.waset.org/abstracts/162081/reduced-switch-count-asymmetrical-multilevel-inverter-topology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> A Comparative Analysis of an All-Optical Switch Using Chalcogenide Glass and Gallium Arsenide Based on Nonlinear Photonic Crystal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyanka%20Kumari%20Gupta">Priyanka Kumari Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Punya%20Prasanna%20Paltani"> Punya Prasanna Paltani</a>, <a href="https://publications.waset.org/abstracts/search?q=Shrivishal%20Tripathi"> Shrivishal Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a nonlinear photonic crystal ring resonator-based all-optical 2 × 2 switch. The nonlinear Kerr effect is used to evaluate the essential 2 x 2 components of the photonic crystal-based optical switch, including the bar and cross states. The photonic crystal comprises a two-dimensional square lattice of dielectric rods in an air background. In the background air, two different dielectric materials are used for this comparison study separately. Initially with chalcogenide glass rods, then with GaAs rods. For both materials, the operating wavelength, bandgap diagram, operating power intensities, and performance parameters, such as the extinction ratio, insertion loss, and cross-talk of an optical switch, have also been estimated using the plane wave expansion and the finite-difference time-domain method. The chalcogenide glass material (Ag20As32Se48) has a high refractive index of 3.1 which is highly suitable for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 9.1 x 10-17 m2/W. The resonance wavelength is at 1552 nm, with the operating power intensities at the cross-state and bar state around 60 W/μm2 and 690 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are 17.19 dB, 0.051 dB, and -17.14 dB, and the bar state, the values are 11.32 dB, 0.025 dB, and -11.35 dB respectively. The gallium arsenide (GaAs) dielectric material has a high refractive index of 3.4, a direct bandgap semiconductor material highly preferred nowadays for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 3.1 x 10-16 m2/W. The resonance wavelength is at 1558 nm, with the operating power intensities at the cross-state and bar state around 110 W/μm2 and 200 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are found to be 3.36.19 dB, 2.436 dB, and -5.8 dB, and for the bar state, the values are 15.60 dB, 0.985 dB, and -16.59 dB respectively. This paper proposes an all-optical 2 × 2 switch based on a nonlinear photonic crystal using a ring resonator. The two-dimensional photonic crystal comprises a square lattice of dielectric rods in an air background. The resonance wavelength is in the range of photonic bandgap. Later, another widely used material, GaAs, is also considered, and its performance is compared with the chalcogenide glass. Our presented structure can be potentially applicable in optical integration circuits and information processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photonic%20crystal" title="photonic crystal">photonic crystal</a>, <a href="https://publications.waset.org/abstracts/search?q=FDTD" title=" FDTD"> FDTD</a>, <a href="https://publications.waset.org/abstracts/search?q=ring%20resonator" title=" ring resonator"> ring resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20switch" title=" optical switch"> optical switch</a> </p> <a href="https://publications.waset.org/abstracts/165997/a-comparative-analysis-of-an-all-optical-switch-using-chalcogenide-glass-and-gallium-arsenide-based-on-nonlinear-photonic-crystal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> A ZVT-ZCT-PWM DC-DC Boost Converter with Direct Power Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naim%20Suleyman%20Ting">Naim Suleyman Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Yakup%20Sahin"> Yakup Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Aksoy"> Ismail Aksoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a zero voltage transition-zero current transition (ZVT-ZCT)-PWM DC-DC boost converter with direct power transfer. In this converter, the main switch turns on with ZVT and turns off with ZCT. The auxiliary switch turns on and off with zero current switching (ZCS). The main diode turns on with ZVS and turns off with ZCS. Besides, the additional current or voltage stress does not occur on the main device. The converter has features as simple structure, fast dynamic response and easy control. Also, the proposed converter has direct power transfer feature as well as excellent soft switching techniques. In this study, the operating principle of the converter is presented and its operation is verified for 1 kW and 100 kHz model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20power%20transfer" title="direct power transfer">direct power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=boost%20converter" title=" boost converter"> boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-voltage%20transition" title=" zero-voltage transition"> zero-voltage transition</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-current%20transition" title=" zero-current transition"> zero-current transition</a> </p> <a href="https://publications.waset.org/abstracts/45333/a-zvt-zct-pwm-dc-dc-boost-converter-with-direct-power-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">821</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Inactivation of Semicarbazide-Sensitive Amine Oxidase Induces the Phenotypic Switch of Smooth Muscle Cells and Aggravates the Development of Atherosclerotic Lesions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miao%20Zhang">Miao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Limin%20Liu"> Limin Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Zhi"> Feng Zhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Panpan%20Niu"> Panpan Niu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengya%20Yang"> Mengya Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuemei%20Zhu"> Xuemei Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Diao"> Ying Diao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Wang"> Jun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ying%20Zhao"> Ying Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aims: Clinical studies have demonstrated that serum semicarbazide-sensitive amine oxidase (SSAO) activities positively correlate with the progression of atherosclerosis. The aim of the present study is to investigate the effect of SSAO inactivation on the development of atherosclerosis. Methods: Female LDLr knockout (KO) mice were given the Western-type diet for 6 and 9 weeks to induce the formation of early and advanced lesions, and semicarbazide (SCZ, 0.125%) was added into the drinking water to inactivate SSAO in vivo. Results: Despite no impact on plasma total cholesterol levels, abrogation of SSAO by SCZ not only resulted in the enlargement of both early (1.5-fold, p=0.0043) and advanced (1.8-fold, p=0.0013) atherosclerotic lesions, but also led to reduced/increased lesion contents of macrophages/smooth muscle cells (SMCs) (macrophage: ~0.74-fold, p=0.0002(early)/0.0016(advanced); SMC: ~1.55-fold, p=0.0003(early) /0.0001(advanced)), respectively. Moreover, SSAO inactivation inhibited the migration of circulating monocytes into peripheral tissues and reduced the amount of circulating Ly6Chigh monocytes (0.7-fold, p=0.0001), which may account for the reduced macrophage content in lesions. In contrast, the increased number of SMCs in lesions of SCZ-treated mice is attributed to an augmented synthetic vascular SMC phenotype switch as evidenced by the increased proliferation of SMCs and accumulation of collagens in vivo. Conclusion: SSAO inactivation by SCZ promotes the phenotypic switch of SMCs and the development of atherosclerosis. The enzymatic activity of SSAO may thus represent a potential target in the prevention and/or treatment of atherosclerosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atherosclerosis" title="atherosclerosis">atherosclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=phenotype%20switch%20of%20smooth%20muscle%20cells" title=" phenotype switch of smooth muscle cells"> phenotype switch of smooth muscle cells</a>, <a href="https://publications.waset.org/abstracts/search?q=SSAO%2FVAP-1" title=" SSAO/VAP-1"> SSAO/VAP-1</a>, <a href="https://publications.waset.org/abstracts/search?q=semicarbazide" title=" semicarbazide"> semicarbazide</a> </p> <a href="https://publications.waset.org/abstracts/45625/inactivation-of-semicarbazide-sensitive-amine-oxidase-induces-the-phenotypic-switch-of-smooth-muscle-cells-and-aggravates-the-development-of-atherosclerotic-lesions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Wireless Integrated Switched Oscillator Impulse Generator with Application in Wireless Passive Electric Field Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mohammadzamani">S. Mohammadzamani</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kordi"> B. Kordi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless electric field sensors are in high demand in the number of applications that requires measuring electric field such as investigations of high power systems and testing the high voltage apparatus. Passive wireless electric field sensors are most desired since they do not require a source of power and are interrogated wirelessly. A passive wireless electric field sensor has been designed and fabricated by our research group. In the wireless interrogation system of the sensor, a wireless radio frequency impulse generator needs to be employed. A compact wireless impulse generator composed of an integrated resonant switched oscillator (SWO) and a pulse-radiating antenna has been designed and fabricated in this research. The fundamental of Switched Oscillators was introduced by C.E.Baum. A Switched Oscillator consists of a low impedance transmission line charged by a DC source, through large impedance at desired frequencies and terminated to a high impedance antenna at one end and a fast closing switch at the other end. Once the line is charged, the switch will close and short-circuit the transmission line. Therefore, a fast transient wave will be generated and travels along the transmission line. Because of the mismatch between the antenna and the transmission line, only a part of fast transient wave will be radiated, and a portion of the fast-transient wave will reflect back. At the other end of the transmission line, there is a closed switch. Consequently, a second reflection with a reversed sign will propagate towards the antenna and the wave continues back and forth. hence, at the terminal of the antenna, there will be a series of positive and negative pulses with descending amplitude. In this research a single ended quarter wavelength Switched Oscillator has been designed and simulated at 800MHz. The simulation results show that the designed Switched Oscillator generates pulses with decreasing amplitude at the frequency of 800MHz with the maximum amplitude of 10V and bandwidth of about 10MHz at the antenna end. The switched oscillator has been fabricated using a 6cm long coaxial cable transmission line which is charged by a DC source and an 8cm monopole antenna as the pulse radiating antenna. A 90V gas discharge switch has been employed as the fast closing switch. The Switched oscillator sends a series of pulses with decreasing amplitude at the frequency of 790MHz with the maximum amplitude of 0.3V in the distance of 30 cm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20field%20measurement" title="electric field measurement">electric field measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20radiating%20antenna" title=" impulse radiating antenna"> impulse radiating antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=switched%20oscillator" title=" switched oscillator"> switched oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20impulse%20generator" title=" wireless impulse generator"> wireless impulse generator</a> </p> <a href="https://publications.waset.org/abstracts/105070/wireless-integrated-switched-oscillator-impulse-generator-with-application-in-wireless-passive-electric-field-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Code – Switching in a Flipped Classroom for Foreign Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Tutova">E. Tutova</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ebzeeva"> Y. Ebzeeva</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Gishkaeva"> L. Gishkaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.Smirnova"> Y.Smirnova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Dubinina"> N. Dubinina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have been working with students from different countries and found it crucial to switch the languages to explain something. Whether it is Russian, or Chinese, explaining in a different language plays an important role for students’ cognitive abilities. In this work we are going to explore how code switching may impact the student’s perception of information. Code-switching is a tool defined by linguists as a switch from one language to another for convenience, explanation of terms unavailable in an initial language or sometimes prestige. In our case, we are going to consider code-switching from the function of convenience. As a rule, students who come to study Russian in a language environment, lack many skills in speaking the language. Thus, it is made harder to explain the rules for them of another language, which is English. That is why switching between English, Russian and Mandarin is crucial for their better understanding. In this work we are going to explore the code-switching as a tool which can help a teacher in a flipped classroom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilingualism" title="bilingualism">bilingualism</a>, <a href="https://publications.waset.org/abstracts/search?q=psychological%20linguistics" title=" psychological linguistics"> psychological linguistics</a>, <a href="https://publications.waset.org/abstracts/search?q=code-switching" title=" code-switching"> code-switching</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20linguistics" title=" social linguistics"> social linguistics</a> </p> <a href="https://publications.waset.org/abstracts/163259/code-switching-in-a-flipped-classroom-for-foreign-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Donghyun%20Lee">Donghyun Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Cam%20Nguyen"> Cam Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microwaves" title="microwaves">microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=millimeter%20waves" title=" millimeter waves"> millimeter waves</a>, <a href="https://publications.waset.org/abstracts/search?q=T%2FR%20switch" title=" T/R switch"> T/R switch</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communications" title=" wireless communications"> wireless communications</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20communications" title=" wireless communications"> wireless communications</a> </p> <a href="https://publications.waset.org/abstracts/78900/a-microwave-and-millimeter-wave-transmitreceive-switch-subsystem-for-communication-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Weibull Cumulative Distribution Function Analysis with Life Expectancy Endurance Test Result of Power Window Switch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miky%20Lee">Miky Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kim"> K. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Lim"> D. Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Cho"> D. Cho </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the planning, rationale for test specification derivation, sampling requirements, test facilities, and result analysis used to conduct lifetime expectancy endurance tests on power window switches (PWS) considering thermally induced mechanical stress under diurnal cyclic temperatures during normal operation (power cycling). The detail process of analysis and test results on the selected PWS set were discussed in this paper. A statistical approach to ‘life time expectancy’ was given to the measurement standards dealing with PWS lifetime determination through endurance tests. The approach choice, within the framework of the task, was explained. The present task was dedicated to voltage drop measurement to derive lifetime expectancy while others mostly consider contact or surface resistance. The measurements to perform and the main instruments to measure were fully described accordingly. The failure data from tests were analyzed to conclude lifetime expectancy through statistical method using Weibull cumulative distribution function. The first goal of this task is to develop realistic worst case lifetime endurance test specification because existing large number of switch test standards cannot induce degradation mechanism which makes the switches less reliable. 2nd goal is to assess quantitative reliability status of PWS currently manufactured based on test specification newly developed thru this project. The last and most important goal is to satisfy customer’ requirement regarding product reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20window%20switch" title="power window switch">power window switch</a>, <a href="https://publications.waset.org/abstracts/search?q=endurance%20test" title=" endurance test"> endurance test</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull%20function" title=" Weibull function"> Weibull function</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation%20mechanism" title=" degradation mechanism"> degradation mechanism</a> </p> <a href="https://publications.waset.org/abstracts/83893/weibull-cumulative-distribution-function-analysis-with-life-expectancy-endurance-test-result-of-power-window-switch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> 1 kW Power Factor Correction Soft Switching Boost Converter with an Active Snubber Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yakup%20Sahin">Yakup Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Naim%20Suleyman%20Ting"> Naim Suleyman Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Aksoy"> Ismail Aksoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 1 kW power factor correction boost converter with an active snubber cell is presented in this paper. In the converter, the main switch turns on under zero voltage transition (ZVT) and turns off under zero current transition (ZCT) without any additional voltage or current stress. The auxiliary switch turns on and off under zero current switching (ZCS). Besides, the main diode turns on under ZVS and turns off under ZCS. The output current and voltage are controlled by the PFC converter in wide line and load range. The simulation results of converter are obtained for 1 kW and 100 kHz. One of the most important feature of the given converter is that it has direct power transfer as well as excellent soft switching techniques. Also, the converter has 0.99 power factor with the sinusoidal input current shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20factor%20correction" title="power factor correction">power factor correction</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20power%20transfer" title=" direct power transfer"> direct power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-voltage%20transition" title=" zero-voltage transition"> zero-voltage transition</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-current%20transition" title=" zero-current transition"> zero-current transition</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20switching" title=" soft switching"> soft switching</a> </p> <a href="https://publications.waset.org/abstracts/45336/1-kw-power-factor-correction-soft-switching-boost-converter-with-an-active-snubber-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">962</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> A Multilevel-Synthesis Approach with Reduced Number of Switches for 99-Level Inverter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Satish%20Kumar">P. Satish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Ramu"> V. Ramu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ramakrishna"> K. Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an efficient multilevel wave form synthesis technique is proposed and applied to a 99-level inverter. The basic principle of the proposed scheme is that the continuous output voltage levels can be synthesized by the addition or subtraction of the instantaneous voltages generated from different voltage levels. This synthesis technique can be realized by an array of switching devices composing full-bridge inverter modules and proper mixing of each bi-directional switch modules. The most different aspect, compared to the conventional approach, in the synthesis of the multilevel output waveform is the utilization of a combination of bidirectional switches and full bridge inverter modules with reduced number of components. A 99-level inverter consists of three full-bridge modules and six bi-directional switch modules. The validity of the proposed scheme is verified by the simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascaded%20connection" title="cascaded connection">cascaded connection</a>, <a href="https://publications.waset.org/abstracts/search?q=multilevel%20inverter" title=" multilevel inverter"> multilevel inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20harmonic%20distortion" title=" total harmonic distortion"> total harmonic distortion</a> </p> <a href="https://publications.waset.org/abstracts/12054/a-multilevel-synthesis-approach-with-reduced-number-of-switches-for-99-level-inverter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SPDT%20switch&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SPDT%20switch&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SPDT%20switch&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SPDT%20switch&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SPDT%20switch&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SPDT%20switch&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SPDT%20switch&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SPDT%20switch&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=SPDT%20switch&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>