CINXE.COM
Search results for: saffron
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: saffron</title> <meta name="description" content="Search results for: saffron"> <meta name="keywords" content="saffron"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="saffron" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="saffron"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: saffron</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Stochastic Frontier Application for Evaluating Cost Inefficiencies in Organic Saffron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Kumar%20Sharma">Pawan Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Dwivedi"> Sudhakar Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Arora"> R. K. Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saffron is one of the most precious spices grown on the earth and is cultivated in a very limited area in few countries of the world. It has also been grown as a niche crop in Kishtwar district of Jammu region of Jammu and Kashmir State of India. This paper attempts to examine the presence of cost inefficiencies in saffron production and the associated socio-economic characteristics of saffron growers in the mentioned area. Although the numbers of inputs used in cultivation of saffron were limited, still cost inefficiencies were present in its production. The net present value (NPV), internal rate of return (IRR) and profitability index (PI) of investment in five years of saffron production were INR 1120803, 95.67 % and 3.52 respectively. The estimated coefficients of saffron stochastic cost function for saffron bulbs, human labour, animal labour, manure and saffron output were positive. The saffron growers having non-farm income were more cost inefficient as compared to farmers who did not have sources of income other than farming by 0.04 %. The maximum value of cost efficiency for saffron grower was 1.69 with mean value of 1.12. The majority of farmers have low cost inefficiencies, as the highest frequency of occurrence of the predicted cost efficiency was below 1.06. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saffron" title="saffron">saffron</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20rate%20of%20return" title=" internal rate of return"> internal rate of return</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20efficiency" title=" cost efficiency"> cost efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20frontier%20model" title=" stochastic frontier model"> stochastic frontier model</a> </p> <a href="https://publications.waset.org/abstracts/98785/stochastic-frontier-application-for-evaluating-cost-inefficiencies-in-organic-saffron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Investigation of Type and Concentration Effects of Solvent on Chemical Properties of Saffron Edible Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharareh%20Mohseni">Sharareh Mohseni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The objective of this study was to find a suitable solvent to produce saffron edible extract with improved chemical properties. Design/methodology/approach: Dried and pulverized stigmas of C. sativus L. (10g) was extracted with 300 ml of solvents including: distillated water (DW), ethanol/DW, methanol/DW, propylene glycol/DW, heptan/DW, and hexan/DW, for 3 days at 25°C and then centrifuged at 3000 rpm. Then the extracts were evaporated using rotary evaporator at 40°C. The fiber and solvent-free extracts were then analyzed by UV spectrophotometer to detect saffron quality parameters including crocin, picrocrocin and safranal. Findings: Distilled water/ethanol mixture as the extraction solvent, caused larger amounts of the plant constituents to diffuse out to the extract compared to other treatments and also control. Polar solvents including distilled water, ethanol, and propylene glycol (except methanol) were more effective in extracting crocin, picrocrocin, and saffranal than non-polar solvents. Social implications: Due to an enhancement of color and flavor, saffron extract is economical compared to natural saffron. Saffron Extract saves on preparation time and reduces the amount of saffron required for imparting the same flavor, as compared to dry saffron. Liquid extract is easier to use and standardize in food preparations compared to dry stamens and can be dosed precisely compared to natural saffron. Originality/value: No research had been done on production of saffron edible extract using the solvent studied in this survey. The novelty of this research is high and the results can be used industrially. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Crocus%20sativus%20L." title="Crocus sativus L.">Crocus sativus L.</a>, <a href="https://publications.waset.org/abstracts/search?q=saffron%20extract" title=" saffron extract"> saffron extract</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=distilled%20water" title=" distilled water"> distilled water</a> </p> <a href="https://publications.waset.org/abstracts/18606/investigation-of-type-and-concentration-effects-of-solvent-on-chemical-properties-of-saffron-edible-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Design of a New Package for Saffron Using Kansei Engineering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sotiris%20Papantonopoulos">Sotiris Papantonopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Marianna%20Bortziou"> Marianna Bortziou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed at developing a new package of saffron using emotional design and specifically the Kansei Engineering method. Kansei Engineering is a proactive product development methodology, which aims to improve the product development process and to translate consumers' feelings and image of a product into design elements. A survey was conducted with two major purposes: (1) to determine the target group of saffron use and to collect information about the adequacy of the product’s promotion and the importance of its packaging, (2) to collect the most important properties of a package according to consumers and to evaluate the existing saffron packages according to these properties (benchmarking). The interaction with the general public conducted by the distribution of online questionnaires and personal interviews as well as the statistical analysis of the results were performed using the SPSS software. The results of the survey were used in all stages of Kansei Engineering. Based on the results, a new saffron package was designed by using various designing and image processing software. This improved package is expected to achieve a better promotion and increased sales of the product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=emotional%20design" title=" emotional design"> emotional design</a>, <a href="https://publications.waset.org/abstracts/search?q=Kansei%20Engineering" title=" Kansei Engineering"> Kansei Engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=packaging" title=" packaging"> packaging</a>, <a href="https://publications.waset.org/abstracts/search?q=saffron" title=" saffron"> saffron</a> </p> <a href="https://publications.waset.org/abstracts/101052/design-of-a-new-package-for-saffron-using-kansei-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Effect of Saffron Extract and Aerobic Exercises on Troponin T and Heart-Type Fatty Acid Binding Protein in Men with Type 2 Diabetes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Abdi">Ahmad Abdi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Golzadeh%20Gangeraj"> M. Golzadeh Gangeraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Barari"> Alireza Barari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shirali"> S. Shirali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Amini"> S. Amini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: Diabetes is one of the common metabolic diseases in the world that has the dire adverse effects such as nephropathy, retinopathy and cardiovascular problems. Pharmaceutical and non-pharmaceutical strategies for control and treatment of diabetes are provided. Exercise and nutrition as non-drug strategies for the prevention and control of diabetes are considered. Exercises may increase oxidative stress and myocardium injury, thus it is necessary to take nutrition strategies to help diabetic athletes. Methods: This study was a semi-experimental research. Therefore, 24 men with type 2 diabetes were selected and randomly divided in four groups (1. control, 2. saffron extract, 3. aerobic exercises, 4. compound aerobic exercises and saffron extract). Saffron extract with 100 mg/day was used. Aerobic exercises, three days a week, for eight weeks, with 55-70% of maximum heart rate were performed. At the end, levels of Heart-type fatty acid-binding protein (HFABP) and Troponin T were measured. Data were analyzed by Paired t, One-way ANOVA and Tukey tests. Results: The serum Troponin T increased significantly in saffron extract, aerobic exercises and compound saffron extract -aerobic exercises in type 2 diabetic men(P=0.024, P =0.013, P=0.005 respectively). Saffron extract consumption (100 mg/day) and aerobic exercises did not significantly influence the serum HFABP (P =0.365, P =0.188 respectively). But serum HFABP decreased significantly in compound saffron extract -aerobic exercises group (P =0.003). Conclusions: Raised cardiac Troponin T and HFABP concentration accepted as the standard biochemical markers for the diagnosis of cardiac injury. Saffron intake may beneficially protect the myocardium from injuries. Compound saffron extract -aerobic exercises can decrease levels of Troponin T and HFABP in men with type 2 diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saffron" title="Saffron">Saffron</a>, <a href="https://publications.waset.org/abstracts/search?q=aerobic%20exercises" title=" aerobic exercises"> aerobic exercises</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title=" type 2 diabetes"> type 2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=HFABP" title=" HFABP"> HFABP</a>, <a href="https://publications.waset.org/abstracts/search?q=troponin%20T" title=" troponin T"> troponin T</a> </p> <a href="https://publications.waset.org/abstracts/72225/effect-of-saffron-extract-and-aerobic-exercises-on-troponin-t-and-heart-type-fatty-acid-binding-protein-in-men-with-type-2-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Effect of Humic Substance on Ex-Vitro Propagation of Saffron (Crocus Sativus L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelghani%20Tahiri">Abdelghani Tahiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Karra"> Youssef Karra</a>, <a href="https://publications.waset.org/abstracts/search?q=Naima%20Ait%20Aabd"> Naima Ait Aabd</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelaziz%20Mimouni"> Abdelaziz Mimouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saffron (Crocus sativus L.), the most expensive spice in the world derived from the stigmas, is an autumn-flowering and sterile triploid (2n=3x=24) geophyte species that belong to the Iridaceae family. This plant species is mainly propagated vegetatively through the formation of daughter corms from the mother one. Low multiplication rates of daughter corms under natural conditions, along with fungal contamination, significantly reduce the productivity and quality of saffron corms. The development of efficient and sustainable strategies for rapid and large-scale production of selected cultivars of saffron will be desired. For this, the main objective of this work is to improve the vegetative propagation of saffron under ex-vitro conditions. Preliminary results of the influence of increasing doses of humic substances (HS) on the growth and multiplication of corms under greenhouse conditions are evaluated. The obtained data shows that the effect of HS depends on the concentration used and the mode of application. Indeed, the application through irrigation has increased the number of shoots and corms, but it has reduced other parameters. On the other hand, the temporary treatment has improved all observed parameters except for the number of shoots and corms. Results obtained in this work suggest that it is possible to improve the propagation of saffron corms under greenhouse conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saffron" title="saffron">saffron</a>, <a href="https://publications.waset.org/abstracts/search?q=Crocus%20sativus%20L." title=" Crocus sativus L."> Crocus sativus L.</a>, <a href="https://publications.waset.org/abstracts/search?q=corm" title=" corm"> corm</a>, <a href="https://publications.waset.org/abstracts/search?q=humic%20substances" title=" humic substances"> humic substances</a> </p> <a href="https://publications.waset.org/abstracts/132968/effect-of-humic-substance-on-ex-vitro-propagation-of-saffron-crocus-sativus-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Antiproliferative Effect of Polyphenols from Crocus sativus L. Leaves on Human Colon Adenocarcinoma Cells (Caco-2)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gonzalo%20Ortiz%20de%20Elguea-Culebras">Gonzalo Ortiz de Elguea-Culebras</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%BAl%20S%C3%A1nchez-Vioquea"> Raúl Sánchez-Vioquea</a>, <a href="https://publications.waset.org/abstracts/search?q=Adela%20Mena-Morales"> Adela Mena-Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Alaiz"> Manuel Alaiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Melero-Bravo"> Enrique Melero-Bravo</a>, <a href="https://publications.waset.org/abstracts/search?q=Esteban%20Garc%C3%ADa-Romero"> Esteban García-Romero</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Vioque"> Javier Vioque</a>, <a href="https://publications.waset.org/abstracts/search?q=Lourdes%20Marchante-Cuevas"> Lourdes Marchante-Cuevas</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20Gir%C3%B3n-Calle"> Julio Girón-Calle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saffron (Crocus sativus L.) is a highly valued crop for the manufacture of spice that consists of the dried stigma of the flowers. This is in contrast to other underutilized parts of the saffron plant as leaves, which represent abundant biomass whose use might help to enhance the sustainability of the saffron crop. Saffron leaves contain significant amounts of phenolic compounds, 7.8 equivalent grams of gallic acid per 100g of extract, and are very promising compounds in terms of exploring novel uses of saffron leaves. Given that phenolic compounds have numerous effects on cancer-related biological pathways, we have investigated the in vitro antiproliferative effect of saffron leaf polyphenols against human colon adenocarcinoma cells (Caco-2). Polyphenols were extracted from leaves with 70% ethanol, defatted with hexane, and purified by solid phase extraction using C18 silica gel and then silica gel 60. Analysis of polyphenols was performed by HPLC-ESI-MS. Di-, tri-, and tetrahexosides of quercetin, kaempferol, and isorhamnetin, as well as C-hexosides like isoorientin and vitexin, were tentatively identified. Polyphenols strongly inhibited the proliferation of Caco-2 cells, which is consistent with model studies in which several of the polyphenols identified in saffron leaves have demonstrated their potential as chemopreventive agents in cancer. Due to the low profitability that saffron leaf currently represents, we consider these results very encouraging and that this by-product deserves further investigation as a potential source of active molecules against colorectal cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saffron%20leaves" title="saffron leaves">saffron leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20by-products" title=" agricultural by-products"> agricultural by-products</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=antiproliferative%20effect" title=" antiproliferative effect"> antiproliferative effect</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20colon%20adenocarcinoma%20cells" title=" human colon adenocarcinoma cells"> human colon adenocarcinoma cells</a> </p> <a href="https://publications.waset.org/abstracts/141891/antiproliferative-effect-of-polyphenols-from-crocus-sativus-l-leaves-on-human-colon-adenocarcinoma-cells-caco-2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effects of Bed Type, Corm Weight and Lifting Time on Quantitative and Qualitative Criteria of Saffron (Crocus sativus L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mollafilabi">A. Mollafilabi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Koocheki"> A. Koocheki</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rezvani%20Moghaddam"> P. Rezvani Moghaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nassiri%20Mahalati"> M. Nassiri Mahalati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to study the effects of corm weights and times of corm lifting saffron in different planting beds, an experiment was conducted as Factorial layout based on a Randomized Complete Block Design with three replications at the Fadak Research Center of Agricultural Research in Food Science during 2010. Treatments were two corm weights (8-10, 10 < g), two planting beds (stone wool and peat moss) and five levels of lifting time (mi-June, early July, mid-July, early August and mid-August). No. of corms were 457 corms.m-2 and for 40 days and were stored for 90 days in incubation, 85% relative humidity and 25°C temperature in the darkness. Then, saffron corms were transferred to growth chamber with 17 °C in 8 hours light and 16 hours darkness. Characteristics were number of flower, fresh weight of flower, dry weight of flower, fresh and dry weight of stigma, fresh and dry weight of style, fresh and dry weight of stigma+style and Picrocrocin, Safronal and Crocin contents of saffron were measured. Results showed that the corm weight, bed type and time of corm lifting had significant effects on economical yield of saffron such as picked flowers, dry weight of stigma and fresh weight of flowers. The highest saffron economical yield was obtained in interaction of corm weight, 10 g, peat moss and lifting time in mid-June as much as 5.2 g.m-2. This yield is 11 fold of average yield of Iranian farms. Picrocrocin, Safranal and Crocin contents was graded as excellent thread in peat moss under controlled conditions compared with ISO Standard of 203. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corm%20density" title="corm density">corm density</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20stigma" title=" dry stigma"> dry stigma</a>, <a href="https://publications.waset.org/abstracts/search?q=safranal-flowering" title=" safranal-flowering"> safranal-flowering</a>, <a href="https://publications.waset.org/abstracts/search?q=yield%20saffron" title=" yield saffron"> yield saffron</a> </p> <a href="https://publications.waset.org/abstracts/40007/effects-of-bed-type-corm-weight-and-lifting-time-on-quantitative-and-qualitative-criteria-of-saffron-crocus-sativus-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40007.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Neuroprotective Effect of Crocus sativus against Cerebral Ischemia in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rehab%20F.%20Abdel-Rahman">Rehab F. Abdel-Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sally%20A.%20El%20Awdan"> Sally A. El Awdan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rehab%20R.%20Hegazy"> Rehab R. Hegazy</a>, <a href="https://publications.waset.org/abstracts/search?q=Dina%20F.%20Mansour"> Dina F. Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanan%20A.%20Ogaly"> Hanan A. Ogaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwan%20Abdelbaset"> Marwan Abdelbaset</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disorders of the cerebral circulation are the leading cause of numerous neurological and psychiatric illnesses. The transient middle cerebral artery occlusion model (MCAO) is considered to be a reliable and reproducible rodent model of cerebral ischemia. The purpose of the current study was to examine the neuroprotective effects of Crocus sativus (saffron) in a rat model of left middle cerebral artery MCAO. Male Wistar rats were anesthetized and subjected to 1 h of MCAO followed by 48 h reperfusion or sham surgery. One group of the ischemia operated animals was kept as left brain ischemia/reperfusion (I/R). Another 2 operated groups received saffron extract (100 or 200 mg/kg, i.p) four times (60 min before the surgery, during the surgery, and on days 1 and 2 after the occlusion). During the experiment, behavioral tests were performed. After 72 h the animals were euthanized and their left brain hemispheres were used in the biochemical, histopathological, and immunohistochemical studies. Saffron administration revealed an improvement in I/R-induced alteration of locomotor balance and coordination ability of rats. Moreover, saffron decreased the brain content of malondialdehyde, nitric oxide, brain natriuretic peptide and vascular endothelial growth factor with significant increase of reduced glutathione. Immunohistochemical evaluation of caspase-3 and Bax protein expression revealed reduction in I/R-enhanced apoptosis in saffron treated rats. In conclusion, saffron treatment decreases ischemic brain injury in association with inhibition of apoptotic and oxidative cell death in a dose dependent manner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caspase-3" title="caspase-3">caspase-3</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebral%20ischemia" title=" cerebral ischemia"> cerebral ischemia</a>, <a href="https://publications.waset.org/abstracts/search?q=Crocus%20sativus" title=" Crocus sativus"> Crocus sativus</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a>, <a href="https://publications.waset.org/abstracts/search?q=vascular%20endothelial%20growth%20factor" title=" vascular endothelial growth factor"> vascular endothelial growth factor</a> </p> <a href="https://publications.waset.org/abstracts/70152/neuroprotective-effect-of-crocus-sativus-against-cerebral-ischemia-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Strategies Used by the Saffron Producers of Taliouine (Morocco) to Adapt to Climate Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aziz%20Larbi">Aziz Larbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Widad%20Sadok"> Widad Sadok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Morocco, the mountainous regions extend over about 26% of the national territory where 30% of the total population live. They contain opportunities for agriculture, forestry, pastureland and mining. The production systems in these zones are characterised by crop diversification. However, these areas have become vulnerable to the effects of climate change. To understand these effects in relation to the population living in these areas, a study was carried out in the zone of Taliouine, in the Anti-Atlas. The vulnerability of crop productions to climate change was analysed and the different ways of adaptation adopted by farmers were identified. The work was done on saffron, the most profitable crop in the target area even though it requires much water. Our results show that the majority of the farmers surveyed had noticed variations in the climate of the region: irregularity of precipitation leading to a decrease in quantity and an uneven distribution throughout the year; rise in temperature; reduction in the cold period and less snow. These variations had impacts on the cropping system of saffron and its productivity. To cope with these effects, the farmers adopted various strategies: better management and use of water; diversification of agricultural activities; increase in the contribution of non-agricultural activities to their gross income; and seasonal migration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=Taliouine" title=" Taliouine"> Taliouine</a>, <a href="https://publications.waset.org/abstracts/search?q=saffron" title=" saffron"> saffron</a>, <a href="https://publications.waset.org/abstracts/search?q=perceptions" title=" perceptions"> perceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation%20strategies" title=" adaptation strategies"> adaptation strategies</a> </p> <a href="https://publications.waset.org/abstracts/173038/strategies-used-by-the-saffron-producers-of-taliouine-morocco-to-adapt-to-climate-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Different Methods Anthocyanins Extracted from Saffron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hashem%20Barati">Hashem Barati</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Farahbakhsh"> Afshin Farahbakhsh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flowers of saffron contain anthocyanins. Generally, extraction of anthocyanins takes place at low temperatures (below 30 °C), preferably under vacuum (to minimize degradation) and in an acidic environment. In order to extract anthocyanins, the dried petals were added to 30 ml of acidic ethanol (pH=2). Amount of petals, extraction time, temperature, and ethanol percentage which were selected. Total anthocyanin content was a function of both variables of ethanol percent and extraction time.To prepare SW with pH of 3.5, different concentrations of 100, 400, 700, 1,000, and 2,000 ppm of sodium metabisulfite were added to aqueous sodium citrate. At this selected concentration, different extraction times of 20, 40, 60, 120, 180 min were tested to determine the optimum extraction time. When the extraction time was extended from 20 to 60 min, the total recovered anthocyanins of sulfur method changed from 650 to 710 mg/100 g. In the EW method Cellubrix and Pectinex enzymes were added separately to the buffer solution at different concentrations of 1%, 2.5%, 5%, 7%, 10%, and 12.5% and held for 2 hours reaction time at an ambient temperature of 40 °C. There was a considerable and significant difference in trends of Acys content of tepals extracted by pectinex enzymes at 5% concentration and AE solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saffron" title="saffron">saffron</a>, <a href="https://publications.waset.org/abstracts/search?q=anthocyanins" title=" anthocyanins"> anthocyanins</a>, <a href="https://publications.waset.org/abstracts/search?q=acidic%20environment" title=" acidic environment"> acidic environment</a>, <a href="https://publications.waset.org/abstracts/search?q=acidic%20ethanol" title=" acidic ethanol"> acidic ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=pectinex%20enzymes" title=" pectinex enzymes"> pectinex enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=Cellubrix%20enzymes" title=" Cellubrix enzymes"> Cellubrix enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20metabisulfite" title=" sodium metabisulfite"> sodium metabisulfite</a> </p> <a href="https://publications.waset.org/abstracts/48478/different-methods-anthocyanins-extracted-from-saffron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Transcriptome Analysis of Saffron (crocus sativus L.) Stigma Focusing on Identification Genes Involved in the Biosynthesis of Crocin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parvaneh%20Mahmoudi">Parvaneh Mahmoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Moeni"> Ahmad Moeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mojtaba%20Khayam%20Nekoei"> Seyed Mojtaba Khayam Nekoei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Mardi"> Mohsen Mardi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrshad%20Zeinolabedini"> Mehrshad Zeinolabedini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghasem%20Hosseini%20Salekdeh"> Ghasem Hosseini Salekdeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saffron (Crocus sativus L.) is one of the most important spice and medicinal plants. The three-branch style of C. sativus flowers are the most important economic part of the plant and known as saffron, which has several medicinal properties. Despite the economic and biological significance of this plant, knowledge about its molecular characteristics is very limited. In the present study, we, for the first time, constructed a comprehensive dataset for C. sativus stigma through de novo transcriptome sequencing. We performed de novo transcriptome sequencing of C. sativus stigma using the Illumina paired-end sequencing technology. A total of 52075128 reads were generated and assembled into 118075 unigenes, with an average length of 629 bp and an N50 of 951 bp. A total of 66171unigenes were identified, among them, 66171 (56%) were annotated in the non-redundant National Center for Biotechnology Information (NCBI) database, 30938 (26%) were annotated in the Swiss-Prot database, 10273 (8.7%) unigenes were mapped to 141 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, while 52560 (44%) and 40756 (34%) unigenes were assigned to Gen Ontology (GO) categories and Eukaryotic Orthologous Groups of proteins (KOG), respectively. In addition, 65 candidate genes involved in three stages of crocin biosynthesis were identified. Finally, transcriptome sequencing of saffron stigma was used to identify 6779 potential microsatellites (SSRs) molecular markers. High-throughput de novo transcriptome sequencing provided a valuable resource of transcript sequences of C. sativus in public databases. In addition, most of candidate genes potentially involved in crocin biosynthesis were identified which could be further utilized in functional genomics studies. Furthermore, numerous obtained SSRs might contribute to address open questions about the origin of this amphiploid spices with probable little genetic diversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saffron" title="saffron">saffron</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptome" title=" transcriptome"> transcriptome</a>, <a href="https://publications.waset.org/abstracts/search?q=NGS" title=" NGS"> NGS</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatic" title=" bioinformatic"> bioinformatic</a> </p> <a href="https://publications.waset.org/abstracts/171689/transcriptome-analysis-of-saffron-crocus-sativus-l-stigma-focusing-on-identification-genes-involved-in-the-biosynthesis-of-crocin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> The Use of Allelopathic Influences of Auxiliary Plants in the Bioproduction of Tomatoes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Demur%20Bakuradze">Demur Bakuradze</a>, <a href="https://publications.waset.org/abstracts/search?q=Mzia%20Beruashvili"> Mzia Beruashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that bioactive compounds that are secreted by allelopathic plants sown with the main culture and are natural phytotoxic substances can be used as natural pesticides that, unlike synthetic agrochemicals, are less likely to disrupt the global ecosystem. Alternative plant protection approaches to date include components of integrated pest management programs and natural plant protection tools. Every year, more and more evidence is given on the successful use of these means, including allelopathic compounds in plant protection against pests. Proper use of these interactions between plants and other organisms can become a serious alternative to synthetic pesticides. Due to the relevance of the issue, the purpose of the study was to study the impact of some companion allelopathic plants on the Tomato culture (variety ‘Kharisgula’) on the test plot of the Tsilkani Base Bioagricultural Service of the Agricultural Research Center (East Georgia) and the village of Kharagauli. The study was conducted in 2023-2024 with methods adopted in organic agriculture and plant protection. Various companion plants were studied: Basil (Ocimum basilicum L.), Imeretian saffron or marigold (Tagetes patula L.) and beans (Phaseolus vulgaris L.) (variety ‘Tsanava’) affects tomato culture in mixed crops. It was established that when sowing basil in rows and on the perimeter, the yield in the Tsilkani increased by 39.7%, and in Sagandzile - 42.8%. In the case of Imeretian saffron, economic efficiency in Tsilkani reached 29.5%, in Sagandzile - 28.5%, while the difference in the bean variant with the control was 31.7% in Tsilkani, and in Sagandzile - 23.8%. The study also found that when sowing aromatic plants (basil, marigold) with tomato, the number and spread of pests is quite decreasing compared to the control. In particular, the number of green vegetable bugs (Nezara viridula L.) decreased by 59.4% compared to control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=allelopathy" title="allelopathy">allelopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=companion%20planting" title=" companion planting"> companion planting</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=bioproduction" title=" bioproduction"> bioproduction</a> </p> <a href="https://publications.waset.org/abstracts/192973/the-use-of-allelopathic-influences-of-auxiliary-plants-in-the-bioproduction-of-tomatoes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192973.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Inhibitory Effects of Crocin from Crocus sativus L. on Cell Proliferation of a Medulloblastoma Human Cell Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyriaki%20Hatziagapiou">Kyriaki Hatziagapiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Kakouri"> Eleni Kakouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Bethanis"> Konstantinos Bethanis</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20Nikola"> Alexandra Nikola</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleni%20Koniari"> Eleni Koniari</a>, <a href="https://publications.waset.org/abstracts/search?q=Charalabos%20Kanakis"> Charalabos Kanakis</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Christoforides"> Elias Christoforides</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Lambrou"> George Lambrou</a>, <a href="https://publications.waset.org/abstracts/search?q=Petros%20Tarantilis"> Petros Tarantilis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Medulloblastoma is a highly invasive tumour, as it tends to disseminate throughout the central nervous system early in its course. Despite the high 5-year-survival rate, a significant number of patients demonstrate serious long- or short-term sequelae (e.g., myelosuppression, endocrine dysfunction, cardiotoxicity, neurological deficits and cognitive impairment) and higher mortality rates, unrelated to the initial malignancy itself but rather to the aggressive treatment. A strong rationale exists for the use of Crocus sativus L (saffron) and its bioactive constituents (crocin, crocetin, safranal) as pharmaceutical agents, as they exert significant health-promoting properties. Crocins are water soluble carotenoids. Unlike other carotenoids, crocins are highly water-soluble compounds, with relatively low toxicity as they are not stored in adipose and liver tissues. Crocins have attracted wide attention as promising anti-cancer agents, due to their antioxidant, anti-inflammatory, and immunomodulatory effects, interference with transduction pathways implicated in tumorigenesis, angiogenesis, and metastasis (disruption of mitotic spindle assembly, inhibition of DNA topoisomerases, cell-cycle arrest, apoptosis or cell differentiation) and sensitization of cancer cells to radiotherapy and chemotherapy. The current research aimed to study the potential cytotoxic effect of crocins on TE671 medulloblastoma cell line, which may be useful in the optimization of existing and development of new therapeutic strategies. Crocins were extracted from stigmas of saffron in ultrasonic bath, using petroleum-ether, diethylether and methanol 70%v/v as solvents and the final extract was lyophilized. Identification of crocins according to high-performance liquid chromatography (HPLC) analysis was determined comparing the UV-vis spectra and the retention time (tR) of the peaks with literature data. For the biological assays crocin was diluted to nuclease and protease free water. TE671 cells were incubated with a range of concentrations of crocins (16, 8, 4, 2, 1, 0.5 and 0.25 mg/ml) for 24, 48, 72 and 96 hours. Analysis of cell viability after incubation with crocins was performed with Alamar Blue viability assay. The active ingredient of Alamar Blue, resazurin, is a blue, nontoxic, cell permeable compound virtually nonfluorescent. Upon entering cells, resazurin is reduced to a pink and fluorescent molecule, resorufin. Viable cells continuously convert resazurin to resorufin, generating a quantitative measure of viability. The colour of resorufin was quantified by measuring the absorbance of the solution at 600 nm with a spectrophotometer. HPLC analysis indicated that the most abundant crocins in our extract were trans-crocin-4 and trans-crocin-3. Crocins exerted significant cytotoxicity in a dose and time-dependent manner (p < 0.005 for exposed cells to any concentration at 48, 72 and 96 hours versus cells not exposed); as their concentration and time of exposure increased, the reduction of resazurin to resofurin decreased, indicating reduction in cell viability. IC50 values for each time point were calculated ~3.738, 1.725, 0.878 and 0.7566 mg/ml at 24, 48, 72 and 96 hours, respectively. The results of our study could afford the basis of research regarding the use of natural carotenoids as anticancer agents and the shift to targeted therapy with higher efficacy and limited toxicity. Acknowledgements: The research was funded by Fellowships of Excellence for Postgraduate Studies IKY-Siemens Programme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crocetin" title="crocetin">crocetin</a>, <a href="https://publications.waset.org/abstracts/search?q=crocin" title=" crocin"> crocin</a>, <a href="https://publications.waset.org/abstracts/search?q=medulloblastoma" title=" medulloblastoma"> medulloblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=saffron" title=" saffron"> saffron</a> </p> <a href="https://publications.waset.org/abstracts/80420/inhibitory-effects-of-crocin-from-crocus-sativus-l-on-cell-proliferation-of-a-medulloblastoma-human-cell-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Study of the Allelopathic Effects of Certain Aromatic Plants on Grapevines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tinatin%20Shengelia">Tinatin Shengelia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mzia%20Beruashvili"> Mzia Beruashvili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In organic farming, including organic viticulture, biodiversity plays a crucial role. Properly selected ‘companion’ and helper plants create favorable conditions for the growth and development of the main crop. Additionally, they can provide protection from pests and diseases, suppress weeds, improve the crop’s visual and taste characteristics, enhance nutrient absorption from the soil, and, as a result of all these factors, increase yields. The use of companion plants is particularly relevant for organic farms, where the range of pesticides and fertilizers is significantly restricted by organic regulations, and they must be replaced with alternative, environmentally safe methods. Therefore, the aim of this research was to study the allelopathic effects of companion aromatic plants on grapevines. The research employed methods used in organic farming and the biological control of harmful organisms. The experiments were conducted in control and experimental plots, each with three replications on equal areas (50 m²). The allelopathic potential of medicinal hyssop (Hyssopus officinalis), basil (Ocimum basilicum), marigold or Imeretian saffron (Tagetes patula), and lavender (Lavandula angustifolia L.) was studied in vineyards located in the Mtskheta-Mtianeti and Kakheti regions. The impact of these plants on grapevines (Vitis vinifera L.) (variety Muscat petitgrain), their growth and development according to the BBCH scale, yields, and diseases caused by certain pathogenic microorganisms (downy mildew, powdery mildew, anthracnose) were determined. Additionally, the biological, agricultural, and economic efficiency of using these companion plants was assessed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20farming" title="organic farming">organic farming</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=allelopathy" title=" allelopathy"> allelopathy</a>, <a href="https://publications.waset.org/abstracts/search?q=aromatic%20plants" title=" aromatic plants"> aromatic plants</a> </p> <a href="https://publications.waset.org/abstracts/192919/study-of-the-allelopathic-effects-of-certain-aromatic-plants-on-grapevines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Azaridachta indica (Neem) Seed Oil Effect in Experimental Arthritis: Biochemical Parameters Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasan%20Khademnematolahi">Sasan Khademnematolahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevine%20Kamga%20Silihe"> Kevine Kamga Silihe</a>, <a href="https://publications.waset.org/abstracts/search?q=Katar%C3%ADna%20Pru%C5%BEinsk%C3%A1"> Katarína Pružinská</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Chrastina"> Martina Chrastina</a>, <a href="https://publications.waset.org/abstracts/search?q=Elisabeth%20Louise%20Ndjengue%20Mindang"> Elisabeth Louise Ndjengue Mindang</a>, <a href="https://publications.waset.org/abstracts/search?q=Franti%C5%A1ek%20Dr%C3%A1fi"> František Dráfi</a>, <a href="https://publications.waset.org/abstracts/search?q=Katar%C3%ADna%20Bauerov%C3%A1"> Katarína Bauerová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In ethnomedicine, plant parts and compounds are traditionally utilized to treat many disorders. Azadirachta indica, known as Neem, has been traditionally used in medicinal practices. Due to the presence of bioactive substances such as nimbolide, azadirachtin, and gedunin, Neem offers a variety of medicinal properties, including anti-inflammatory and antioxidant properties. Through its effect on pathological inflammatory processes, supplementation with it could alleviate the symptoms of rheumatoid arthritis (RA). Methods: This research aimed to assess Neem seed oil's impact on rats with adjuvant arthritis. Three doses in monotherapy and two in combination with methotrexate (MTX) have been studied, and their effect was compared. Neem p.o. doses of 100, 200, and 300 mg/kg and MTX p.o. doses of 0.3 mg/kg were examined. After clinical parameters assessment, biochemical analysis was performed in plasma. Results: During the acute phase of the experimental arthritis (Day21), levels of MMP-9, MCP-1, and cytokines IL-1beta and IL-17A were measured. The positive results of inflammatory mediators evaluation in plasma encourage additional analysis also in related tissues to prove if Neem seed oil can be used as an adjuvant therapy for RA. Conclusion: In this study, the combination therapy of Neem with MTX was the most effective of all therapies investigated. Acknowledgement: SAIA PROJECT of Kevine Kamga Silihe, Slovakia-Cameroon 2023: “The effect of Crocus sativus L (Saffron), Azadirachta indica (Neem) and their main bioactives compounds in combinatory treatment with methotrexate on experimental arthritis”, VEGA 2/0079/24, VEGA 2/0136/20, VEGA 2/0126/23 and VEGA 2/0091/23. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjuvant" title="adjuvant">adjuvant</a>, <a href="https://publications.waset.org/abstracts/search?q=Neem" title=" Neem"> Neem</a>, <a href="https://publications.waset.org/abstracts/search?q=methotrexate" title=" methotrexate"> methotrexate</a>, <a href="https://publications.waset.org/abstracts/search?q=arthritis" title=" arthritis"> arthritis</a> </p> <a href="https://publications.waset.org/abstracts/186053/azaridachta-indica-neem-seed-oil-effect-in-experimental-arthritis-biochemical-parameters-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">44</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>