CINXE.COM
associahedron in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> associahedron in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> associahedron </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/536/#Item_14" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Contents</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="combinatorics">Combinatorics</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/combinatorics">combinatorics</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/enumerative+combinatorics">enumerative combinatorics</a></p> <p><a class="existingWikiWord" href="/nlab/show/graph+theory">graph theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/rewriting">rewriting</a></p> <p><strong>Basic structures</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/binary+linear+code">binary linear code</a></li> <li><a class="existingWikiWord" href="/nlab/show/chord+diagram">chord diagram</a></li> <li><a class="existingWikiWord" href="/nlab/show/combinatorial+design">combinatorial design</a></li> <li><a class="existingWikiWord" href="/nlab/show/graph">graph</a></li> <li><a class="existingWikiWord" href="/nlab/show/Latin+square">Latin square</a></li> <li><a class="existingWikiWord" href="/nlab/show/matroid">matroid</a></li> <li><a class="existingWikiWord" href="/nlab/show/partition">partition</a></li> <li><a class="existingWikiWord" href="/nlab/show/permutation">permutation</a></li> <li><a class="existingWikiWord" href="/nlab/show/shuffle">shuffle</a></li> <li><a class="existingWikiWord" href="/nlab/show/tree">tree</a></li> <li><a class="existingWikiWord" href="/nlab/show/Young+diagram">Young diagram</a></li> </ul> <p><strong>Generating functions</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/combinatorial+species">combinatorial species</a></li> <li><a class="existingWikiWord" href="/nlab/show/generating+function">generating function</a></li> <li><a class="existingWikiWord" href="/nlab/show/power+series">power series</a></li> </ul> <p><strong>Proof techniques</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/bijective+proof">bijective proof</a></li> <li><a class="existingWikiWord" href="/nlab/show/Lagrange+inversion">Lagrange inversion</a></li> <li><a class="existingWikiWord" href="/nlab/show/M%C3%B6bius+inversion">Möbius inversion</a> <ul> <li><a class="existingWikiWord" href="/nlab/show/order+polynomial">order polynomial</a></li> <li><a class="existingWikiWord" href="/nlab/show/zeta+polynomial">zeta polynomial</a></li> </ul> </li> <li><a class="existingWikiWord" href="/nlab/show/P%C3%B3lya+enumeration+theorem">Pólya enumeration theorem</a></li> </ul> <p><strong>Combinatorial identities</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/binomial+theorem">binomial theorem</a></li> <li><a class="existingWikiWord" href="/nlab/show/Catalan+number">Catalan number</a></li> <li><a class="existingWikiWord" href="/nlab/show/Chu%E2%80%93Vandermonde+identity">Chu–Vandermonde identity</a></li> </ul> <p><strong>Polytopes</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/associahedron">associahedron</a></li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/combinatorics">combinatorics</a></div></div></div> <h4 id="higher_algebra">Higher algebra</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/higher+algebra">higher algebra</a></strong></p> <p><a class="existingWikiWord" href="/nlab/show/universal+algebra">universal algebra</a></p> <h2 id="algebraic_theories">Algebraic theories</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebraic+theory">algebraic theory</a> / <a class="existingWikiWord" href="/nlab/show/2-algebraic+theory">2-algebraic theory</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-algebraic+theory">(∞,1)-algebraic theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monad">monad</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-monad">(∞,1)-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/operad">operad</a> / <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-operad">(∞,1)-operad</a></p> </li> </ul> <h2 id="algebras_and_modules">Algebras and modules</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+a+monad">algebra over a monad</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-monad">∞-algebra over an (∞,1)-monad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+algebraic+theory">algebra over an algebraic theory</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-algebraic+theory">∞-algebra over an (∞,1)-algebraic theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/algebra+over+an+operad">algebra over an operad</a></p> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-algebra+over+an+%28%E2%88%9E%2C1%29-operad">∞-algebra over an (∞,1)-operad</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/action">action</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-action">∞-action</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/representation">representation</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-representation">∞-representation</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/module">module</a>, <a class="existingWikiWord" href="/nlab/show/%E2%88%9E-module">∞-module</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/associated+bundle">associated bundle</a>, <a class="existingWikiWord" href="/nlab/show/associated+%E2%88%9E-bundle">associated ∞-bundle</a></p> </li> </ul> <h2 id="higher_algebras">Higher algebras</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+%28%E2%88%9E%2C1%29-category">monoidal (∞,1)-category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+%28%E2%88%9E%2C1%29-category">symmetric monoidal (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoid+in+an+%28%E2%88%9E%2C1%29-category">monoid in an (∞,1)-category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/commutative+monoid+in+an+%28%E2%88%9E%2C1%29-category">commutative monoid in an (∞,1)-category</a></p> </li> </ul> </li> <li> <p>symmetric monoidal (∞,1)-category of spectra</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/smash+product+of+spectra">smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/symmetric+monoidal+smash+product+of+spectra">symmetric monoidal smash product of spectra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/ring+spectrum">ring spectrum</a>, <a class="existingWikiWord" href="/nlab/show/module+spectrum">module spectrum</a>, <a class="existingWikiWord" href="/nlab/show/algebra+spectrum">algebra spectrum</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+algebra">A-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+ring">A-∞ ring</a>, <a class="existingWikiWord" href="/nlab/show/A-%E2%88%9E+space">A-∞ space</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/C-%E2%88%9E+algebra">C-∞ algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+ring">E-∞ ring</a>, <a class="existingWikiWord" href="/nlab/show/E-%E2%88%9E+algebra">E-∞ algebra</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/%E2%88%9E-module">∞-module</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-module+bundle">(∞,1)-module bundle</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/multiplicative+cohomology+theory">multiplicative cohomology theory</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/L-%E2%88%9E+algebra">L-∞ algebra</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/deformation+theory">deformation theory</a></li> </ul> </li> </ul> <h2 id="model_category_presentations">Model category presentations</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+simplicial+T-algebras">model structure on simplicial T-algebras</a> / <a class="existingWikiWord" href="/nlab/show/homotopy+T-algebra">homotopy T-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+operads">model structure on operads</a></p> <p><a class="existingWikiWord" href="/nlab/show/model+structure+on+algebras+over+an+operad">model structure on algebras over an operad</a></p> </li> </ul> <h2 id="geometry_on_formal_duals_of_algebras">Geometry on formal duals of algebras</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Isbell+duality">Isbell duality</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/derived+geometry">derived geometry</a></p> </li> </ul> <h2 id="theorems">Theorems</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Deligne+conjecture">Deligne conjecture</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/delooping+hypothesis">delooping hypothesis</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/monoidal+Dold-Kan+correspondence">monoidal Dold-Kan correspondence</a></p> </li> </ul> <div> <p> <a href="/nlab/edit/higher+algebra+-+contents">Edit this sidebar</a> </p> </div></div></div> <h4 id="homotopy_theory">Homotopy theory</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a>, <a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category+theory">(∞,1)-category theory</a>, <a class="existingWikiWord" href="/nlab/show/homotopy+type+theory">homotopy type theory</a></strong></p> <p>flavors: <a class="existingWikiWord" href="/nlab/show/stable+homotopy+theory">stable</a>, <a class="existingWikiWord" href="/nlab/show/equivariant+homotopy+theory">equivariant</a>, <a class="existingWikiWord" href="/nlab/show/rational+homotopy+theory">rational</a>, <a class="existingWikiWord" href="/nlab/show/p-adic+homotopy+theory">p-adic</a>, <a class="existingWikiWord" href="/nlab/show/proper+homotopy+theory">proper</a>, <a class="existingWikiWord" href="/nlab/show/geometric+homotopy+theory">geometric</a>, <a class="existingWikiWord" href="/nlab/show/cohesive+homotopy+theory">cohesive</a>, <a class="existingWikiWord" href="/nlab/show/directed+homotopy+theory">directed</a>…</p> <p>models: <a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological</a>, <a class="existingWikiWord" href="/nlab/show/simplicial+homotopy+theory">simplicial</a>, <a class="existingWikiWord" href="/nlab/show/localic+homotopy+theory">localic</a>, …</p> <p>see also <strong><a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a></strong></p> <p><strong>Introductions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology+--+2">Introduction to Basic Homotopy Theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Homotopy+Theory">Introduction to Abstract Homotopy Theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometry+of+physics+--+homotopy+types">geometry of physics – homotopy types</a></p> </li> </ul> <p><strong>Definitions</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy">homotopy</a>, <a class="existingWikiWord" href="/nlab/show/higher+homotopy">higher homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+type">homotopy type</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Pi-algebra">Pi-algebra</a>, <a class="existingWikiWord" href="/nlab/show/spherical+object+and+Pi%28A%29-algebra">spherical object and Pi(A)-algebra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+coherent+category+theory">homotopy coherent category theory</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopical+category">homotopical category</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/model+category">model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category+of+fibrant+objects">category of fibrant objects</a>, <a class="existingWikiWord" href="/nlab/show/cofibration+category">cofibration category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Waldhausen+category">Waldhausen category</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+category">homotopy category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Ho%28Top%29">Ho(Top)</a></li> </ul> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/%28%E2%88%9E%2C1%29-category">(∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/homotopy+category+of+an+%28%E2%88%9E%2C1%29-category">homotopy category of an (∞,1)-category</a></li> </ul> </li> </ul> <p><strong>Paths and cylinders</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/left+homotopy">left homotopy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/cylinder+object">cylinder object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/right+homotopy">right homotopy</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/path+object">path object</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/generalized+universal+bundle">universal bundle</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/interval+object">interval object</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+localization">homotopy localization</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/infinitesimal+interval+object">infinitesimal interval object</a></p> </li> </ul> </li> </ul> <p><strong>Homotopy groups</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+group+of+a+topos">fundamental group of a topos</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brown-Grossman+homotopy+group">Brown-Grossman homotopy group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/categorical+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">categorical homotopy groups in an (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/geometric+homotopy+groups+in+an+%28%E2%88%9E%2C1%29-topos">geometric homotopy groups in an (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid">fundamental ∞-groupoid</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+groupoid">fundamental groupoid</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/path+groupoid">path groupoid</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+in+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid in a locally ∞-connected (∞,1)-topos</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%E2%88%9E-groupoid+of+a+locally+%E2%88%9E-connected+%28%E2%88%9E%2C1%29-topos">fundamental ∞-groupoid of a locally ∞-connected (∞,1)-topos</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+%28%E2%88%9E%2C1%29-category">fundamental (∞,1)-category</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+category">fundamental category</a></li> </ul> </li> </ul> <p><strong>Basic facts</strong></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/fundamental+group+of+the+circle+is+the+integers">fundamental group of the circle is the integers</a></li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+theorem+of+covering+spaces">fundamental theorem of covering spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freudenthal+suspension+theorem">Freudenthal suspension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Blakers-Massey+theorem">Blakers-Massey theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/higher+homotopy+van+Kampen+theorem">higher homotopy van Kampen theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nerve+theorem">nerve theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead%27s+theorem">Whitehead's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Hurewicz+theorem">Hurewicz theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Galois+theory">Galois theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+hypothesis">homotopy hypothesis</a>-theorem</p> </li> </ul> </div></div> </div> </div> <h1 id="contents">Contents</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definition'>Definition</a></li> <li><a href='#lodays_realization'>Loday’s realization</a></li> <ul> <li><a href='#theorem_loday'>Theorem (Loday)</a></li> </ul> <li><a href='#illustrations'>Illustrations</a></li> <li><a href='#relation_to_other_structures'>Relation to other structures</a></li> <ul> <li><a href='#relation_to_orientals'>Relation to orientals</a></li> <li><a href='#Categorification'>Categorified associahedra</a></li> <li><a href='#tamari_lattice'>Tamari lattice</a></li> </ul> <li><a href='#references'>References</a></li> </ul> </div> <h2 id="idea">Idea</h2> <p>The <em>associahedra</em> or <em>Stasheff polytopes</em> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>K</mi> <mi>n</mi></msub><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{K_n\}</annotation></semantics></math> are <a class="existingWikiWord" href="/nlab/show/CW+complex">CW complex</a>es that naturally arrange themselves into a topological <a class="existingWikiWord" href="/nlab/show/operad">operad</a> that resolves the standard associative operad: an <a class="existingWikiWord" href="/nlab/show/A-infinity-operad">A-infinity-operad</a>.</p> <p>The vertices of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">K_n</annotation></semantics></math> correspond to ways in which one can bracket a product of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> variables. The edges correspond to rebracketings, the faces relate different sequences of rebracketings that lead to the same result, and so on.</p> <p>The associahedra were introduced by Jim Stasheff in order to describe <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>s equipped with a multiplication operation that is associative up to every higher coherent homotopy.</p> <h2 id="definition">Definition</h2> <p>Here is the rough idea, copied, for the moment, verbatim from Markl94 <a href="http://arxiv.org/PS_cache/hep-th/pdf/9411/9411208v1.pdf#page=26">p. 26</a> (for more details see references below):</p> <p>For <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n \geq 1</annotation></semantics></math> the <strong>associahedron</strong> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">K_n</annotation></semantics></math> is an <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n-2)</annotation></semantics></math>-dimensional polyhedron whose <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math>-dimensional cells are, for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">0 \leq i \leq n-2</annotation></semantics></math>, indexed by all (meaningful) insertions of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mi>i</mi><mo>−</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(n-i-2)</annotation></semantics></math> pairs of brackets between <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> independent indeterminates, with suitably defined incidence maps.</p> <p><a class="existingWikiWord" href="/nlab/show/simplicial+set">Simplicially</a><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mrow></mrow></mrow><annotation encoding="application/x-tex">{ }</annotation></semantics></math> <a class="existingWikiWord" href="/nlab/show/subdivision">subdivided</a> associahedra (complete with simplicial <a class="existingWikiWord" href="/nlab/show/operad">operadic</a> structure) can be presented efficiently in terms of an abstract <a class="existingWikiWord" href="/nlab/show/bar+construction">bar construction</a>. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi><mo>:</mo><mi>Set</mi><mo stretchy="false">/</mo><mi>ℕ</mi><mo>→</mo><mi>Set</mi><mo stretchy="false">/</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">\mathcal{O}: Set/\mathbb{N} \to Set/\mathbb{N}</annotation></semantics></math> be the <a class="existingWikiWord" href="/nlab/show/monad">monad</a> which takes a <a class="existingWikiWord" href="/nlab/show/graded+set">graded set</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> to the non-permutative <a class="existingWikiWord" href="/nlab/show/non-unital+operad">non-unital operad</a> freely generated by <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>, with monad multiplication denoted <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>m</mi><mo>:</mo><mi>𝒪</mi><mi>𝒪</mi><mo>→</mo><mi>𝒪</mi></mrow><annotation encoding="application/x-tex">m: \mathcal{O}\mathcal{O} \to \mathcal{O}</annotation></semantics></math>. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>t</mi> <mo>+</mo></msub></mrow><annotation encoding="application/x-tex">t_+</annotation></semantics></math> be the graded set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>X</mi> <mi>n</mi></msub><msub><mo stretchy="false">}</mo> <mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub></mrow><annotation encoding="application/x-tex">\{X_n\}_{n \geq 0}</annotation></semantics></math> that is <a class="existingWikiWord" href="/nlab/show/empty+set">empty</a> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n = 0, 1</annotation></semantics></math> and <a class="existingWikiWord" href="/nlab/show/terminal+object">terminal</a> for <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>≥</mo><mn>2</mn></mrow><annotation encoding="application/x-tex">n \geq 2</annotation></semantics></math>; this carries a unique non-unital non-permutative operad structure, via a structure map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>:</mo><mi>𝒪</mi><msub><mi>t</mi> <mo>+</mo></msub><mo>→</mo><msub><mi>t</mi> <mo>+</mo></msub></mrow><annotation encoding="application/x-tex">\alpha: \mathcal{O}t_+ \to t_+</annotation></semantics></math>. The bar construction <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>𝒪</mi><mo>,</mo><mi>𝒪</mi><mo>,</mo><msub><mi>t</mi> <mo>+</mo></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B(\mathcal{O}, \mathcal{O}, t_+)</annotation></semantics></math> is an (augmented) simplicial graded set (an object in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Set</mi> <mrow><msup><mi>Δ</mi> <mi>op</mi></msup><mo>×</mo><mi>ℕ</mi></mrow></msup></mrow><annotation encoding="application/x-tex">Set^{\Delta^{op} \times \mathbb{N}}</annotation></semantics></math>) whose face maps take the form</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>…</mi><mi>𝒪</mi><mi>𝒪</mi><mi>𝒪</mi><msub><mi>t</mi> <mo>+</mo></msub><mover><munder><mo>→</mo><mrow><mi>𝒪</mi><mi>𝒪</mi><mi>α</mi></mrow></munder><mover><munder><mo>→</mo><mrow><mi>𝒪</mi><mi>m</mi><msub><mi>t</mi> <mo>+</mo></msub></mrow></munder><mover><mo>→</mo><mrow><mi>m</mi><mi>𝒪</mi><msub><mi>t</mi> <mo>+</mo></msub></mrow></mover></mover></mover><mi>𝒪</mi><mi>𝒪</mi><msub><mi>t</mi> <mo>+</mo></msub><mover><munder><mo>→</mo><mrow><mi>𝒪</mi><mi>α</mi></mrow></munder><mover><mo>→</mo><mrow><mi>m</mi><msub><mi>t</mi> <mo>+</mo></msub></mrow></mover></mover><mi>𝒪</mi><msub><mi>t</mi> <mo>+</mo></msub><mover><mo>→</mo><mi>α</mi></mover><msub><mi>t</mi> <mo>+</mo></msub><mo>.</mo></mrow><annotation encoding="application/x-tex">\ldots \mathcal{O}\mathcal{O}\mathcal{O}t_+ \stackrel{\stackrel{\overset{m\mathcal{O} t_+}{\to}}{\underset{\mathcal{O}m t_+}{\to}}}{\underset{\mathcal{O}\mathcal{O}\alpha}{\to}} \mathcal{O}\mathcal{O}t_+ \stackrel{\overset{m t_+}{\to}}{\underset{\mathcal{O}\alpha}{\to}} \mathcal{O}t_+ \stackrel{\alpha}{\to} t_+. </annotation></semantics></math></div> <p>Intuitively, the (graded set of) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mn>0</mn></mrow><annotation encoding="application/x-tex">0</annotation></semantics></math>-cells <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>𝒪</mi><msub><mi>t</mi> <mo>+</mo></msub></mrow><annotation encoding="application/x-tex">\mathcal{O}t_+</annotation></semantics></math> consists of planar trees where each inner node has two or more incoming edges, with trees graded by number of leaves; the extreme points are binary trees [corresponding to complete binary bracketings of words], whereas other trees are barycenters of higher-dimensional faces of Stasheff polytopes. The construction <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>𝒪</mi><mo>,</mo><mi>𝒪</mi><mo>,</mo><msub><mi>t</mi> <mo>+</mo></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B(\mathcal{O}, \mathcal{O}, t_+)</annotation></semantics></math> carries a simplicial (non-permutative non-unital) operad structure, where the <a class="existingWikiWord" href="/nlab/show/geometric+realization">geometric realization</a> of the simplicial set at grade (or <a class="existingWikiWord" href="/nlab/show/arity">arity</a>) <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> defines the barycentric subdivision of the Stasheff polytope <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">K_n</annotation></semantics></math>. As the operad structure on <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi><mo stretchy="false">(</mo><mi>𝒪</mi><mo>,</mo><mi>𝒪</mi><mo>,</mo><msub><mi>t</mi> <mo>+</mo></msub><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B(\mathcal{O}, \mathcal{O}, t_+)</annotation></semantics></math> is expressed in <a class="existingWikiWord" href="/nlab/show/doctrine">finite product logic</a> and geometric realization preserves finite products, the (simplicially subdivided) associahedra form in this way the components of a topological operad.</p> <h2 id="lodays_realization">Loday’s realization</h2> <p><a class="existingWikiWord" href="/nlab/show/Jean-Louis+Loday">Jean-Louis Loday</a> gave a simple formula for realizing the Stasheff polytopes as a convex hull of integer coordinates in Euclidean space <a href="#Loday04">(Loday 2004)</a>. Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>Y</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">Y_n</annotation></semantics></math> denote the set of (rooted planar) binary trees with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n+1</annotation></semantics></math> leaves (and hence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> internal vertices). For any binary tree <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>t</mi><mo>∈</mo><msub><mi>Y</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">t \in Y_n</annotation></semantics></math>, enumerate the leaves by left-to-right order, denoted <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℓ</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>ℓ</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">\ell_1, \ldots, \ell_{n+1}</annotation></semantics></math>, and enumerate the internal vertices as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>v</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>v</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">v_1, \ldots, v_n</annotation></semantics></math> where <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>v</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">v_i</annotation></semantics></math> is the closest common ancestor of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℓ</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\ell_i</annotation></semantics></math> and <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>ℓ</mi> <mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">\ell_{i+1}</annotation></semantics></math>. Define a vector <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>M</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">M(t) \in \mathbb{R}^n</annotation></semantics></math> whose <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math>th coordinate is the product <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>a</mi> <mi>i</mi></msub><msub><mi>b</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">a_i b_i</annotation></semantics></math> of the number <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>a</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">a_i</annotation></semantics></math> of leaves that are left descendants of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>v</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">v_i</annotation></semantics></math> and the number <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>b</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">b_i</annotation></semantics></math> of leaves that are right descendants of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>v</mi> <mi>i</mi></msub></mrow><annotation encoding="application/x-tex">v_i</annotation></semantics></math>.</p> <div class="un_thm"> <h6 id="theorem_loday">Theorem (Loday)</h6> <p>The convex hull of the points <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mi>M</mi><mo stretchy="false">(</mo><mi>t</mi><mo stretchy="false">)</mo><mo>∈</mo><msup><mi>ℝ</mi> <mi>n</mi></msup><mo lspace="mediummathspace" rspace="mediummathspace">∣</mo><mi>t</mi><mo>∈</mo><msub><mi>Y</mi> <mi>n</mi></msub><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{ M(t) \in \mathbb{R}^n \mid t \in Y_n \}</annotation></semantics></math> is a realization of the Stasheff polytope of dimension <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n-1</annotation></semantics></math>, and is included in the affine hyperplane <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><mo stretchy="false">(</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>,</mo><mi>…</mi><mo>,</mo><msub><mi>x</mi> <mi>n</mi></msub><mo stretchy="false">)</mo><mo>:</mo><msub><mi>x</mi> <mn>1</mn></msub><mo>+</mo><mi>…</mi><mo>+</mo><msub><mi>x</mi> <mi>n</mi></msub><mo>=</mo><mrow><mo>(</mo><mfrac linethickness="0"><mi>n</mi><mn>2</mn></mfrac><mo>)</mo></mrow><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{(x_1, \ldots, x_n): x_1 + \ldots + x_n = \binom{n}{2}\}</annotation></semantics></math>.</p> </div> <h2 id="illustrations">Illustrations</h2> <ul> <li> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mn>1</mn></msub></mrow><annotation encoding="application/x-tex">K_1</annotation></semantics></math></strong> is the <a class="existingWikiWord" href="/nlab/show/empty+set">empty set</a>, a degenerate case not usually considered.</p> </li> <li> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mn>2</mn></msub></mrow><annotation encoding="application/x-tex">K_2</annotation></semantics></math></strong> is simply the shape of a binary operation:</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>⊗</mo><mi>y</mi><mo>,</mo></mrow><annotation encoding="application/x-tex"> x \otimes y ,</annotation></semantics></math></div> <p>which we interpret here as a single <a class="existingWikiWord" href="/nlab/show/point">point</a>.</p> </li> <li> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">K_3</annotation></semantics></math></strong> is the shape of the usual <a class="existingWikiWord" href="/nlab/show/associator">associator</a> or associative law</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>x</mi><mo>⊗</mo><mi>y</mi><mo stretchy="false">)</mo><mo>⊗</mo><mi>z</mi><mo>→</mo><mi>x</mi><mo>⊗</mo><mo stretchy="false">(</mo><mi>y</mi><mo>⊗</mo><mi>z</mi><mo stretchy="false">)</mo><mo>,</mo></mrow><annotation encoding="application/x-tex"> (x \otimes y) \otimes z \to x \otimes (y \otimes z) ,</annotation></semantics></math></div> <p>consisting of a single <a class="existingWikiWord" href="/nlab/show/interval">interval</a>.</p> </li> <li id="K4"> <p><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mn>4</mn></msub></mrow><annotation encoding="application/x-tex">K_4</annotation></semantics></math></strong> The fourth associahedron <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mn>4</mn></msub></mrow><annotation encoding="application/x-tex">K_4</annotation></semantics></math> is the <a class="existingWikiWord" href="/nlab/show/pentagon+identity">pentagon</a> which expresses the different ways a product of four elements may be bracketed</p> </li> </ul> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="541.497" height="317.98" viewBox="0 0 541.497 317.98"> <defs> <g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-0"> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-1"> <path d="M 5.265625 4.203125 C 5.265625 4.1875 5.265625 4.15625 5.21875 4.09375 C 4.421875 3.28125 2.3125 1.078125 2.3125 -4.28125 C 2.3125 -9.65625 4.390625 -11.84375 5.234375 -12.703125 C 5.234375 -12.71875 5.265625 -12.765625 5.265625 -12.8125 C 5.265625 -12.859375 5.21875 -12.890625 5.140625 -12.890625 C 4.953125 -12.890625 3.5 -11.625 2.65625 -9.734375 C 1.796875 -7.8125 1.546875 -5.953125 1.546875 -4.3125 C 1.546875 -3.0625 1.671875 -0.96875 2.703125 1.25 C 3.53125 3.046875 4.9375 4.3125 5.140625 4.3125 C 5.234375 4.3125 5.265625 4.265625 5.265625 4.203125 Z M 5.265625 4.203125 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-2"> <path d="M 4.53125 -4.28125 C 4.53125 -5.53125 4.40625 -7.625 3.375 -9.84375 C 2.546875 -11.640625 1.140625 -12.890625 0.9375 -12.890625 C 0.875 -12.890625 0.8125 -12.875 0.8125 -12.796875 C 0.8125 -12.765625 0.828125 -12.734375 0.84375 -12.703125 C 1.671875 -11.84375 3.765625 -9.65625 3.765625 -4.3125 C 3.765625 1.0625 1.6875 3.25 0.84375 4.109375 C 0.828125 4.15625 0.8125 4.171875 0.8125 4.203125 C 0.8125 4.28125 0.875 4.3125 0.9375 4.3125 C 1.125 4.3125 2.578125 3.03125 3.421875 1.140625 C 4.28125 -0.78125 4.53125 -2.640625 4.53125 -4.28125 Z M 4.53125 -4.28125 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-3"> <path d="M 2.671875 -10.609375 C 2.671875 -10.984375 2.359375 -11.3125 1.96875 -11.3125 C 1.578125 -11.3125 1.25 -11 1.25 -10.609375 C 1.25 -10.234375 1.5625 -9.90625 1.96875 -9.90625 C 2.34375 -9.90625 2.671875 -10.203125 2.671875 -10.609375 Z M 0.65625 -7.359375 L 0.65625 -6.90625 C 1.625 -6.90625 1.75 -6.796875 1.75 -5.96875 L 1.75 -1.1875 C 1.75 -0.53125 1.6875 -0.453125 0.578125 -0.453125 L 0.578125 0 C 1 -0.03125 1.734375 -0.03125 2.171875 -0.03125 C 2.578125 -0.03125 3.28125 -0.03125 3.6875 0 L 3.6875 -0.453125 C 2.671875 -0.453125 2.640625 -0.546875 2.640625 -1.171875 L 2.640625 -7.546875 Z M 0.65625 -7.359375 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-4"> <path d="M 5.03125 -11.765625 L 5.03125 -11.3125 C 6.046875 -11.3125 6.203125 -11.203125 6.203125 -10.390625 L 6.203125 -6.359375 C 6.125 -6.4375 5.421875 -7.546875 4.03125 -7.546875 C 2.265625 -7.546875 0.5625 -5.96875 0.5625 -3.703125 C 0.5625 -1.453125 2.171875 0.140625 3.859375 0.140625 C 5.328125 0.140625 6.078125 -1 6.171875 -1.125 L 6.171875 0.140625 L 8.25 0 L 8.25 -0.453125 C 7.234375 -0.453125 7.078125 -0.546875 7.078125 -1.375 L 7.078125 -11.953125 Z M 6.171875 -2.0625 C 6.171875 -1.546875 5.859375 -1.078125 5.453125 -0.734375 C 4.875 -0.21875 4.28125 -0.140625 3.953125 -0.140625 C 3.46875 -0.140625 1.671875 -0.390625 1.671875 -3.6875 C 1.671875 -7.0625 3.671875 -7.265625 4.109375 -7.265625 C 4.90625 -7.265625 5.546875 -6.8125 5.9375 -6.203125 C 6.171875 -5.84375 6.171875 -5.78125 6.171875 -5.46875 Z M 6.171875 -2.0625 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-0"> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-1"> <path d="M 5.921875 -1.046875 C 6.296875 -0.015625 7.375 0.171875 8.03125 0.171875 C 9.328125 0.171875 10.109375 -0.96875 10.59375 -2.15625 C 10.984375 -3.15625 11.625 -5.421875 11.625 -6.4375 C 11.625 -7.484375 11.09375 -7.59375 10.9375 -7.59375 C 10.515625 -7.59375 10.140625 -7.1875 10.140625 -6.828125 C 10.140625 -6.625 10.265625 -6.515625 10.34375 -6.4375 C 10.5 -6.28125 10.953125 -5.8125 10.953125 -4.921875 C 10.953125 -4.34375 10.46875 -2.71875 10.109375 -1.90625 C 9.625 -0.859375 8.984375 -0.171875 8.09375 -0.171875 C 7.125 -0.171875 6.8125 -0.890625 6.8125 -1.6875 C 6.8125 -2.1875 6.96875 -2.796875 7.046875 -3.078125 L 7.765625 -5.96875 C 7.859375 -6.3125 8 -6.921875 8 -6.984375 C 8 -7.25 7.796875 -7.421875 7.546875 -7.421875 C 7.046875 -7.421875 6.921875 -6.984375 6.8125 -6.578125 C 6.640625 -5.90625 5.921875 -3 5.859375 -2.625 C 5.78125 -2.328125 5.78125 -2.140625 5.78125 -1.75 C 5.78125 -1.34375 5.234375 -0.6875 5.21875 -0.65625 C 5.03125 -0.46875 4.75 -0.171875 4.21875 -0.171875 C 2.859375 -0.171875 2.859375 -1.46875 2.859375 -1.75 C 2.859375 -2.3125 2.984375 -3.0625 3.75 -5.109375 C 3.953125 -5.640625 4.046875 -5.875 4.046875 -6.21875 C 4.046875 -6.9375 3.53125 -7.59375 2.6875 -7.59375 C 1.109375 -7.59375 0.46875 -5.09375 0.46875 -4.953125 C 0.46875 -4.890625 0.53125 -4.796875 0.65625 -4.796875 C 0.8125 -4.796875 0.828125 -4.875 0.890625 -5.109375 C 1.328125 -6.625 2 -7.25 2.640625 -7.25 C 2.8125 -7.25 3.078125 -7.234375 3.078125 -6.6875 C 3.078125 -6.59375 3.078125 -6.234375 2.796875 -5.46875 C 1.984375 -3.328125 1.8125 -2.625 1.8125 -1.96875 C 1.8125 -0.15625 3.28125 0.171875 4.171875 0.171875 C 4.453125 0.171875 5.234375 0.171875 5.921875 -1.046875 Z M 5.921875 -1.046875 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-2"> <path d="M 8.15625 -7.03125 C 7.609375 -6.921875 7.40625 -6.515625 7.40625 -6.1875 C 7.40625 -5.765625 7.734375 -5.625 7.96875 -5.625 C 8.484375 -5.625 8.84375 -6.078125 8.84375 -6.546875 C 8.84375 -7.265625 8.03125 -7.59375 7.296875 -7.59375 C 6.25 -7.59375 5.671875 -6.5625 5.515625 -6.234375 C 5.109375 -7.53125 4.046875 -7.59375 3.734375 -7.59375 C 1.984375 -7.59375 1.046875 -5.34375 1.046875 -4.953125 C 1.046875 -4.890625 1.125 -4.796875 1.234375 -4.796875 C 1.375 -4.796875 1.40625 -4.90625 1.453125 -4.96875 C 2.03125 -6.890625 3.1875 -7.25 3.6875 -7.25 C 4.453125 -7.25 4.609375 -6.53125 4.609375 -6.109375 C 4.609375 -5.734375 4.515625 -5.34375 4.3125 -4.515625 L 3.71875 -2.15625 C 3.46875 -1.125 2.96875 -0.171875 2.046875 -0.171875 C 1.96875 -0.171875 1.53125 -0.171875 1.171875 -0.390625 C 1.796875 -0.515625 1.921875 -1.03125 1.921875 -1.234375 C 1.921875 -1.578125 1.671875 -1.796875 1.34375 -1.796875 C 0.9375 -1.796875 0.484375 -1.421875 0.484375 -0.875 C 0.484375 -0.15625 1.296875 0.171875 2.03125 0.171875 C 2.859375 0.171875 3.4375 -0.484375 3.8125 -1.1875 C 4.078125 -0.171875 4.9375 0.171875 5.578125 0.171875 C 7.328125 0.171875 8.265625 -2.078125 8.265625 -2.46875 C 8.265625 -2.546875 8.203125 -2.625 8.09375 -2.625 C 7.9375 -2.625 7.921875 -2.53125 7.875 -2.390625 C 7.40625 -0.875 6.40625 -0.171875 5.625 -0.171875 C 5.03125 -0.171875 4.703125 -0.625 4.703125 -1.328125 C 4.703125 -1.703125 4.765625 -1.984375 5.046875 -3.109375 L 5.640625 -5.453125 C 5.90625 -6.484375 6.484375 -7.25 7.28125 -7.25 C 7.3125 -7.25 7.796875 -7.25 8.15625 -7.03125 Z M 8.15625 -7.03125 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-3"> <path d="M 4.53125 1.921875 C 4.0625 2.578125 3.390625 3.171875 2.546875 3.171875 C 2.34375 3.171875 1.515625 3.140625 1.25 2.34375 C 1.3125 2.359375 1.390625 2.359375 1.421875 2.359375 C 1.953125 2.359375 2.296875 1.90625 2.296875 1.515625 C 2.296875 1.125 1.96875 0.984375 1.703125 0.984375 C 1.421875 0.984375 0.828125 1.1875 0.828125 2.03125 C 0.828125 2.90625 1.5625 3.515625 2.546875 3.515625 C 4.265625 3.515625 6.015625 1.921875 6.484375 0.015625 L 8.171875 -6.703125 C 8.203125 -6.78125 8.234375 -6.890625 8.234375 -6.984375 C 8.234375 -7.25 8.03125 -7.421875 7.765625 -7.421875 C 7.609375 -7.421875 7.25 -7.359375 7.109375 -6.828125 L 5.84375 -1.78125 C 5.75 -1.46875 5.75 -1.421875 5.609375 -1.234375 C 5.265625 -0.75 4.703125 -0.171875 3.875 -0.171875 C 2.90625 -0.171875 2.828125 -1.125 2.828125 -1.578125 C 2.828125 -2.5625 3.28125 -3.890625 3.75 -5.125 C 3.9375 -5.625 4.046875 -5.875 4.046875 -6.21875 C 4.046875 -6.9375 3.53125 -7.59375 2.6875 -7.59375 C 1.109375 -7.59375 0.46875 -5.09375 0.46875 -4.953125 C 0.46875 -4.890625 0.53125 -4.796875 0.65625 -4.796875 C 0.8125 -4.796875 0.828125 -4.875 0.890625 -5.109375 C 1.3125 -6.5625 1.96875 -7.25 2.640625 -7.25 C 2.796875 -7.25 3.078125 -7.25 3.078125 -6.6875 C 3.078125 -6.234375 2.890625 -5.734375 2.640625 -5.078125 C 1.796875 -2.828125 1.796875 -2.25 1.796875 -1.84375 C 1.796875 -0.203125 2.96875 0.171875 3.828125 0.171875 C 4.328125 0.171875 4.9375 0.015625 5.546875 -0.625 L 5.5625 -0.609375 C 5.296875 0.40625 5.125 1.078125 4.53125 1.921875 Z M 4.53125 1.921875 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-4"> <path d="M 2.1875 -1.390625 C 2.921875 -2.234375 3.53125 -2.765625 4.390625 -3.546875 C 5.421875 -4.4375 5.875 -4.875 6.109375 -5.125 C 7.3125 -6.3125 7.921875 -7.3125 7.921875 -7.453125 C 7.921875 -7.59375 7.78125 -7.59375 7.75 -7.59375 C 7.625 -7.59375 7.59375 -7.53125 7.5 -7.40625 C 7.078125 -6.65625 6.65625 -6.296875 6.21875 -6.296875 C 5.859375 -6.296875 5.671875 -6.453125 5.34375 -6.875 C 4.96875 -7.296875 4.6875 -7.59375 4.1875 -7.59375 C 2.921875 -7.59375 2.171875 -6.03125 2.171875 -5.671875 C 2.171875 -5.609375 2.1875 -5.515625 2.34375 -5.515625 C 2.484375 -5.515625 2.5 -5.578125 2.546875 -5.703125 C 2.84375 -6.390625 3.671875 -6.515625 4 -6.515625 C 4.359375 -6.515625 4.703125 -6.390625 5.0625 -6.234375 C 5.71875 -5.953125 5.984375 -5.953125 6.171875 -5.953125 C 6.28125 -5.953125 6.359375 -5.953125 6.4375 -5.96875 C 5.875 -5.296875 4.9375 -4.484375 4.171875 -3.765625 L 2.421875 -2.171875 C 1.375 -1.109375 0.734375 -0.09375 0.734375 0.03125 C 0.734375 0.140625 0.828125 0.171875 0.9375 0.171875 C 1.03125 0.171875 1.046875 0.15625 1.171875 -0.046875 C 1.453125 -0.484375 2 -1.125 2.640625 -1.125 C 3 -1.125 3.171875 -1 3.515625 -0.5625 C 3.84375 -0.1875 4.125 0.171875 4.6875 0.171875 C 6.375 0.171875 7.328125 -2.015625 7.328125 -2.40625 C 7.328125 -2.484375 7.3125 -2.578125 7.140625 -2.578125 C 7.015625 -2.578125 6.984375 -2.515625 6.9375 -2.34375 C 6.5625 -1.328125 5.546875 -0.90625 4.875 -0.90625 C 4.515625 -0.90625 4.171875 -1.03125 3.8125 -1.1875 C 3.109375 -1.46875 2.921875 -1.46875 2.703125 -1.46875 C 2.53125 -1.46875 2.34375 -1.46875 2.1875 -1.390625 Z M 2.1875 -1.390625 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-5"> <path d="M 5.1875 -2.046875 C 5.09375 -1.75 5.09375 -1.71875 4.859375 -1.390625 C 4.484375 -0.90625 3.71875 -0.171875 2.90625 -0.171875 C 2.203125 -0.171875 1.8125 -0.8125 1.8125 -1.828125 C 1.8125 -2.765625 2.34375 -4.703125 2.671875 -5.421875 C 3.25 -6.625 4.0625 -7.25 4.734375 -7.25 C 5.875 -7.25 6.09375 -5.84375 6.09375 -5.703125 C 6.09375 -5.6875 6.046875 -5.453125 6.03125 -5.421875 Z M 6.28125 -6.453125 C 6.09375 -6.90625 5.625 -7.59375 4.734375 -7.59375 C 2.796875 -7.59375 0.6875 -5.078125 0.6875 -2.53125 C 0.6875 -0.828125 1.6875 0.171875 2.859375 0.171875 C 3.8125 0.171875 4.609375 -0.5625 5.09375 -1.140625 C 5.265625 -0.125 6.078125 0.171875 6.59375 0.171875 C 7.109375 0.171875 7.53125 -0.140625 7.828125 -0.75 C 8.109375 -1.34375 8.34375 -2.390625 8.34375 -2.46875 C 8.34375 -2.546875 8.28125 -2.625 8.171875 -2.625 C 8.03125 -2.625 8 -2.53125 7.9375 -2.265625 C 7.671875 -1.25 7.359375 -0.171875 6.640625 -0.171875 C 6.140625 -0.171875 6.109375 -0.625 6.109375 -0.96875 C 6.109375 -1.359375 6.171875 -1.546875 6.3125 -2.21875 C 6.4375 -2.65625 6.53125 -3.03125 6.65625 -3.53125 C 7.296875 -6.109375 7.453125 -6.734375 7.453125 -6.828125 C 7.453125 -7.078125 7.265625 -7.265625 7.015625 -7.265625 C 6.453125 -7.265625 6.3125 -6.65625 6.28125 -6.453125 Z M 6.28125 -6.453125 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-0"> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1"> <path d="M 12.4375 -4.3125 C 12.4375 -7.46875 9.84375 -10.03125 6.703125 -10.03125 C 3.5 -10.03125 0.953125 -7.4375 0.953125 -4.3125 C 0.953125 -1.140625 3.53125 1.421875 6.6875 1.421875 C 9.890625 1.421875 12.4375 -1.171875 12.4375 -4.3125 Z M 3.265625 -8 C 3.234375 -8.046875 3.109375 -8.15625 3.109375 -8.203125 C 3.109375 -8.265625 4.515625 -9.609375 6.6875 -9.609375 C 7.28125 -9.609375 8.875 -9.515625 10.28125 -8.203125 L 6.703125 -4.59375 Z M 2.765625 -0.703125 C 1.71875 -1.875 1.375 -3.203125 1.375 -4.3125 C 1.375 -5.625 1.875 -6.890625 2.765625 -7.90625 L 6.375 -4.3125 Z M 10.59375 -7.90625 C 11.421875 -7.03125 12 -5.71875 12 -4.3125 C 12 -2.984375 11.5 -1.71875 10.609375 -0.703125 L 7.015625 -4.3125 Z M 10.109375 -0.609375 C 10.140625 -0.5625 10.265625 -0.453125 10.265625 -0.40625 C 10.265625 -0.34375 8.875 1 6.703125 1 C 6.09375 1 4.515625 0.90625 3.09375 -0.40625 L 6.6875 -4.015625 Z M 10.109375 -0.609375 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-0"> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-1"> <path d="M 4.109375 -0.734375 C 4.375 -0.015625 5.109375 0.125 5.5625 0.125 C 6.484375 0.125 7.015625 -0.671875 7.34375 -1.5 C 7.625 -2.1875 8.0625 -3.765625 8.0625 -4.46875 C 8.0625 -5.203125 7.703125 -5.265625 7.59375 -5.265625 C 7.296875 -5.265625 7.046875 -4.984375 7.046875 -4.75 C 7.046875 -4.609375 7.125 -4.515625 7.1875 -4.46875 C 7.296875 -4.359375 7.609375 -4.046875 7.609375 -3.421875 C 7.609375 -3.015625 7.265625 -1.890625 7.015625 -1.328125 C 6.6875 -0.59375 6.234375 -0.125 5.625 -0.125 C 4.953125 -0.125 4.734375 -0.625 4.734375 -1.171875 C 4.734375 -1.515625 4.84375 -1.9375 4.890625 -2.140625 L 5.390625 -4.140625 C 5.453125 -4.390625 5.5625 -4.8125 5.5625 -4.859375 C 5.5625 -5.03125 5.421875 -5.15625 5.234375 -5.15625 C 4.890625 -5.15625 4.8125 -4.859375 4.734375 -4.5625 C 4.609375 -4.09375 4.109375 -2.078125 4.0625 -1.8125 C 4.015625 -1.609375 4.015625 -1.484375 4.015625 -1.21875 C 4.015625 -0.9375 3.640625 -0.484375 3.625 -0.453125 C 3.484375 -0.328125 3.296875 -0.125 2.921875 -0.125 C 1.984375 -0.125 1.984375 -1.015625 1.984375 -1.21875 C 1.984375 -1.609375 2.0625 -2.125 2.609375 -3.546875 C 2.75 -3.921875 2.8125 -4.078125 2.8125 -4.3125 C 2.8125 -4.8125 2.453125 -5.265625 1.859375 -5.265625 C 0.765625 -5.265625 0.328125 -3.53125 0.328125 -3.4375 C 0.328125 -3.390625 0.375 -3.328125 0.453125 -3.328125 C 0.5625 -3.328125 0.578125 -3.375 0.625 -3.546875 C 0.921875 -4.609375 1.390625 -5.03125 1.828125 -5.03125 C 1.953125 -5.03125 2.140625 -5.015625 2.140625 -4.640625 C 2.140625 -4.578125 2.140625 -4.328125 1.9375 -3.796875 C 1.375 -2.3125 1.25 -1.8125 1.25 -1.359375 C 1.25 -0.109375 2.28125 0.125 2.890625 0.125 C 3.09375 0.125 3.640625 0.125 4.109375 -0.734375 Z M 4.109375 -0.734375 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-2"> <path d="M 2.328125 0.046875 C 2.328125 -0.640625 2.109375 -1.15625 1.609375 -1.15625 C 1.234375 -1.15625 1.046875 -0.84375 1.046875 -0.578125 C 1.046875 -0.328125 1.21875 0 1.625 0 C 1.78125 0 1.90625 -0.046875 2.015625 -0.15625 C 2.046875 -0.171875 2.0625 -0.171875 2.0625 -0.171875 C 2.09375 -0.171875 2.09375 -0.015625 2.09375 0.046875 C 2.09375 0.4375 2.015625 1.21875 1.328125 2 C 1.1875 2.140625 1.1875 2.15625 1.1875 2.1875 C 1.1875 2.25 1.25 2.3125 1.3125 2.3125 C 1.40625 2.3125 2.328125 1.421875 2.328125 0.046875 Z M 2.328125 0.046875 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-3"> <path d="M 5.671875 -4.875 C 5.28125 -4.8125 5.140625 -4.515625 5.140625 -4.296875 C 5.140625 -4 5.359375 -3.90625 5.53125 -3.90625 C 5.890625 -3.90625 6.140625 -4.21875 6.140625 -4.546875 C 6.140625 -5.046875 5.5625 -5.265625 5.0625 -5.265625 C 4.34375 -5.265625 3.9375 -4.546875 3.828125 -4.328125 C 3.546875 -5.21875 2.8125 -5.265625 2.59375 -5.265625 C 1.375 -5.265625 0.734375 -3.703125 0.734375 -3.4375 C 0.734375 -3.390625 0.78125 -3.328125 0.859375 -3.328125 C 0.953125 -3.328125 0.984375 -3.40625 1 -3.453125 C 1.40625 -4.78125 2.21875 -5.03125 2.5625 -5.03125 C 3.09375 -5.03125 3.203125 -4.53125 3.203125 -4.25 C 3.203125 -3.984375 3.125 -3.703125 2.984375 -3.125 L 2.578125 -1.5 C 2.40625 -0.78125 2.0625 -0.125 1.421875 -0.125 C 1.359375 -0.125 1.0625 -0.125 0.8125 -0.28125 C 1.25 -0.359375 1.34375 -0.71875 1.34375 -0.859375 C 1.34375 -1.09375 1.15625 -1.25 0.9375 -1.25 C 0.640625 -1.25 0.328125 -0.984375 0.328125 -0.609375 C 0.328125 -0.109375 0.890625 0.125 1.40625 0.125 C 1.984375 0.125 2.390625 -0.328125 2.640625 -0.828125 C 2.828125 -0.125 3.4375 0.125 3.875 0.125 C 5.09375 0.125 5.734375 -1.453125 5.734375 -1.703125 C 5.734375 -1.765625 5.6875 -1.8125 5.625 -1.8125 C 5.515625 -1.8125 5.5 -1.75 5.46875 -1.65625 C 5.140625 -0.609375 4.453125 -0.125 3.90625 -0.125 C 3.484375 -0.125 3.265625 -0.4375 3.265625 -0.921875 C 3.265625 -1.1875 3.3125 -1.375 3.5 -2.15625 L 3.921875 -3.796875 C 4.09375 -4.5 4.5 -5.03125 5.0625 -5.03125 C 5.078125 -5.03125 5.421875 -5.03125 5.671875 -4.875 Z M 5.671875 -4.875 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-4"> <path d="M 3.140625 1.34375 C 2.828125 1.796875 2.359375 2.203125 1.765625 2.203125 C 1.625 2.203125 1.046875 2.171875 0.875 1.625 C 0.90625 1.640625 0.96875 1.640625 0.984375 1.640625 C 1.34375 1.640625 1.59375 1.328125 1.59375 1.046875 C 1.59375 0.78125 1.359375 0.6875 1.1875 0.6875 C 0.984375 0.6875 0.578125 0.828125 0.578125 1.40625 C 0.578125 2.015625 1.09375 2.4375 1.765625 2.4375 C 2.96875 2.4375 4.171875 1.34375 4.5 0.015625 L 5.671875 -4.65625 C 5.6875 -4.703125 5.71875 -4.78125 5.71875 -4.859375 C 5.71875 -5.03125 5.5625 -5.15625 5.390625 -5.15625 C 5.28125 -5.15625 5.03125 -5.109375 4.9375 -4.75 L 4.046875 -1.234375 C 4 -1.015625 4 -0.984375 3.890625 -0.859375 C 3.65625 -0.53125 3.265625 -0.125 2.6875 -0.125 C 2.015625 -0.125 1.953125 -0.78125 1.953125 -1.09375 C 1.953125 -1.78125 2.28125 -2.703125 2.609375 -3.5625 C 2.734375 -3.90625 2.8125 -4.078125 2.8125 -4.3125 C 2.8125 -4.8125 2.453125 -5.265625 1.859375 -5.265625 C 0.765625 -5.265625 0.328125 -3.53125 0.328125 -3.4375 C 0.328125 -3.390625 0.375 -3.328125 0.453125 -3.328125 C 0.5625 -3.328125 0.578125 -3.375 0.625 -3.546875 C 0.90625 -4.546875 1.359375 -5.03125 1.828125 -5.03125 C 1.9375 -5.03125 2.140625 -5.03125 2.140625 -4.640625 C 2.140625 -4.328125 2.015625 -3.984375 1.828125 -3.53125 C 1.25 -1.953125 1.25 -1.5625 1.25 -1.28125 C 1.25 -0.140625 2.0625 0.125 2.65625 0.125 C 3 0.125 3.4375 0.015625 3.84375 -0.4375 L 3.859375 -0.421875 C 3.6875 0.28125 3.5625 0.75 3.140625 1.34375 Z M 3.140625 1.34375 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-5"> <path d="M 1.515625 -0.96875 C 2.03125 -1.546875 2.453125 -1.921875 3.046875 -2.46875 C 3.765625 -3.078125 4.078125 -3.375 4.25 -3.5625 C 5.078125 -4.390625 5.5 -5.078125 5.5 -5.171875 C 5.5 -5.265625 5.40625 -5.265625 5.375 -5.265625 C 5.296875 -5.265625 5.265625 -5.21875 5.21875 -5.140625 C 4.90625 -4.625 4.625 -4.375 4.3125 -4.375 C 4.0625 -4.375 3.9375 -4.484375 3.703125 -4.765625 C 3.453125 -5.0625 3.25 -5.265625 2.90625 -5.265625 C 2.03125 -5.265625 1.5 -4.1875 1.5 -3.9375 C 1.5 -3.890625 1.515625 -3.828125 1.625 -3.828125 C 1.71875 -3.828125 1.734375 -3.875 1.765625 -3.953125 C 1.96875 -4.4375 2.546875 -4.515625 2.765625 -4.515625 C 3.03125 -4.515625 3.265625 -4.4375 3.515625 -4.328125 C 3.96875 -4.140625 4.15625 -4.140625 4.28125 -4.140625 C 4.359375 -4.140625 4.40625 -4.140625 4.46875 -4.140625 C 4.078125 -3.6875 3.4375 -3.109375 2.890625 -2.625 L 1.6875 -1.5 C 0.953125 -0.765625 0.515625 -0.0625 0.515625 0.03125 C 0.515625 0.09375 0.578125 0.125 0.640625 0.125 C 0.71875 0.125 0.734375 0.109375 0.8125 -0.03125 C 1 -0.328125 1.390625 -0.78125 1.828125 -0.78125 C 2.078125 -0.78125 2.203125 -0.6875 2.4375 -0.390625 C 2.671875 -0.125 2.875 0.125 3.25 0.125 C 4.421875 0.125 5.09375 -1.40625 5.09375 -1.671875 C 5.09375 -1.71875 5.078125 -1.796875 4.953125 -1.796875 C 4.859375 -1.796875 4.859375 -1.75 4.8125 -1.625 C 4.546875 -0.921875 3.84375 -0.640625 3.375 -0.640625 C 3.125 -0.640625 2.890625 -0.71875 2.640625 -0.828125 C 2.15625 -1.015625 2.03125 -1.015625 1.875 -1.015625 C 1.75 -1.015625 1.625 -1.015625 1.515625 -0.96875 Z M 1.515625 -0.96875 "></path> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-4-0"> </g> <g id="a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-4-1"> <path d="M 8.625 -2.984375 C 8.625 -5.1875 6.84375 -6.96875 4.65625 -6.96875 C 2.421875 -6.96875 0.65625 -5.15625 0.65625 -2.984375 C 0.65625 -0.78125 2.453125 0.984375 4.640625 0.984375 C 6.859375 0.984375 8.625 -0.8125 8.625 -2.984375 Z M 2.265625 -5.5625 C 2.25 -5.578125 2.15625 -5.671875 2.15625 -5.6875 C 2.15625 -5.734375 3.125 -6.671875 4.640625 -6.671875 C 5.0625 -6.671875 6.15625 -6.609375 7.140625 -5.6875 L 4.65625 -3.1875 Z M 1.921875 -0.484375 C 1.1875 -1.296875 0.953125 -2.21875 0.953125 -2.984375 C 0.953125 -3.90625 1.296875 -4.78125 1.921875 -5.484375 L 4.421875 -2.984375 Z M 7.34375 -5.484375 C 7.921875 -4.875 8.328125 -3.96875 8.328125 -2.984375 C 8.328125 -2.0625 7.984375 -1.1875 7.359375 -0.484375 L 4.859375 -2.984375 Z M 7.015625 -0.421875 C 7.046875 -0.390625 7.125 -0.3125 7.125 -0.28125 C 7.125 -0.234375 6.15625 0.6875 4.65625 0.6875 C 4.234375 0.6875 3.125 0.640625 2.15625 -0.28125 L 4.640625 -2.78125 Z M 7.015625 -0.421875 "></path> </g> </g> </defs> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-1" x="207.231" y="17.271"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-1" x="213.327" y="17.271"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="229.666" y="17.271"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-2" x="246.881" y="17.271"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-2" x="256.46" y="17.271"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="266.382" y="17.271"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-1" x="283.598" y="17.271"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-3" x="289.694" y="17.271"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="302.357" y="17.271"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-4" x="319.572" y="17.271"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-2" x="328.17" y="17.271"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-1" x="5.147" y="160.267"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-1" x="11.242973" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-1" x="17.34" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="33.679" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-2" x="50.894" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-2" x="60.473" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="70.395" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-3" x="87.611" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-2" x="96.448" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="106.37" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-4" x="123.585" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-1" x="409.314" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="425.653" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-1" x="442.868" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-2" x="448.965" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="462.369" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-1" x="479.585" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-3" x="485.681" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="498.344" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-4" x="515.559" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-2" x="524.157" y="160.267"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-2" x="530.252973" y="160.267"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-1" x="106.189" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-1" x="112.286" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="128.624" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-1" x="145.84" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-2" x="151.936" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="165.341" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-3" x="182.556" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-2" x="191.393" y="303.263"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-2" x="197.488973" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="207.412" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-4" x="224.627" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-1" x="308.272" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="324.611" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-1" x="341.826" y="303.263"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-1" x="347.921973" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-2" x="354.019" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="367.424" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-3" x="384.64" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-2" x="393.476" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="403.398" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-4" x="420.614" y="303.263"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-2" x="429.212" y="303.263"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 16.751 129.831187 L 181.254906 13.444469 " transform="matrix(1, 0, 0, -1, 270.749, 155.964)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.487074 2.870506 C -2.033908 1.147791 -1.018522 0.334874 -0.0000825845 -0.0021364 C -1.018364 -0.334958 -2.031999 -1.147807 -2.486152 -2.86643 " transform="matrix(0.8163, 0.57753, 0.57753, -0.8163, 452.20052, 142.65846)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-5" x="372.759" y="76.746"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-1" x="381.608" y="79.329"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-2" x="390.298235" y="79.329"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-3" x="393.550049" y="79.329"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-2" x="400.201923" y="79.329"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-4" x="403.453737" y="79.329"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-4-1" x="409.589" y="79.329"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-5" x="418.888" y="79.329"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -181.651344 13.167125 L -17.120094 129.553844 " transform="matrix(1, 0, 0, -1, 270.749, 155.964)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488803 2.868638 C -2.031323 1.147822 -1.017635 0.335068 -0.00159647 -0.000852062 C -1.017738 -0.334754 -2.033041 -1.147744 -2.486056 -2.870472 " transform="matrix(0.81636, -0.57747, -0.57747, -0.81636, 253.82503, 26.27182)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-5" x="116.149" y="76.746"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-1" x="124.997" y="79.329"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-4-1" x="133.687" y="79.329"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-3" x="142.985" y="79.329"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-2" x="149.636873" y="79.329"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-4" x="152.888688" y="79.329"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-2" x="159.026487" y="79.329"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-5" x="162.278302" y="79.329"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -193.709938 -13.168813 L -111.538063 -129.438344 " transform="matrix(1, 0, 0, -1, 270.749, 155.964)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.484655 2.869516 C -2.031855 1.147936 -1.020045 0.332425 -0.00158584 0.000136465 C -1.017598 -0.334219 -2.03256 -1.147671 -2.488014 -2.868374 " transform="matrix(0.5771, 0.8166, 0.8166, -0.5771, 159.34846, 285.59903)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-5" x="37.521" y="242.23"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-1" x="46.369" y="244.812"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-2" x="55.059235" y="244.812"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-3" x="58.311049" y="244.812"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-2" x="64.962923" y="244.812"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-4" x="68.214737" y="244.812"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="78.675" y="242.23"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-3" x="95.89" y="242.23"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-4" x="100.186964" y="242.23"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-5" x="108.983" y="244.812"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -32.178688 -144.313344 L 31.700219 -144.313344 " transform="matrix(1, 0, 0, -1, 270.749, 155.964)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.488391 2.87002 C -2.03136 1.147364 -1.019641 0.334864 -0.00011 -0.00107375 C -1.019641 -0.333105 -2.03136 -1.149511 -2.488391 -2.868261 " transform="matrix(1, 0, 0, -1, 302.68761, 300.27627)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-5" x="244.45" y="310.499"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-1" x="253.299" y="313.082"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-2" x="261.989235" y="313.082"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-3" x="265.241049" y="313.082"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-4-1" x="271.892" y="313.082"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-4" x="281.19" y="313.082"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-2" x="287.3278" y="313.082"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-5" x="290.579614" y="313.082"></use> </g> <path fill="none" stroke-width="0.47818" stroke-linecap="butt" stroke-linejoin="miter" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M 111.258812 -129.828969 L 193.446312 -13.559438 " transform="matrix(1, 0, 0, -1, 270.749, 155.964)"></path> <path fill="none" stroke-width="0.47818" stroke-linecap="round" stroke-linejoin="round" stroke="rgb(0%, 0%, 0%)" stroke-opacity="1" stroke-miterlimit="10" d="M -2.485031 2.870263 C -2.032621 1.147369 -1.0176 0.334017 -0.00157282 -0.000243767 C -1.019989 -0.332618 -2.031713 -1.148207 -2.484355 -2.869805 " transform="matrix(0.57718, -0.81656, -0.81656, -0.57718, 464.33274, 169.3267)"></path> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-3" x="426.05" y="242.23"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-0-4" x="430.346964" y="242.23"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-1" x="439.142" y="244.812"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-2-1" x="452.156" y="242.23"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-1-5" x="469.371" y="242.23"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-3" x="478.22" y="244.812"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-2" x="484.871873" y="244.812"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-4" x="488.123688" y="244.812"></use> </g> <g fill="rgb(0%, 0%, 0%)" fill-opacity="1"> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-2" x="494.261487" y="244.812"></use> <use xlink:href="#a4FjenFyZwM9R98g1SfXtszSbZA=-glyph-3-5" x="497.513302" y="244.812"></use> </g> </svg> <p>One can also think of this as the top-level structure of the 4th <a class="existingWikiWord" href="/nlab/show/oriental">oriental</a>. This controls in particular the <em>pentagon identity</em> in the definition of <a class="existingWikiWord" href="/nlab/show/monoidal+category">monoidal category</a>, as discussed there.</p> <ul> <li><strong><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mn>5</mn></msub></mrow><annotation encoding="application/x-tex">K_5</annotation></semantics></math></strong> is the <a href="http://en.wikipedia.org/wiki/Dual_polyhedron">dual polyhedron</a> to the <a href="http://en.wikipedia.org/wiki/Triaugmented_triangular_prism">triaugmented triangular prism</a></li> </ul> <div style="text-align:center"> <p><img src="https://ncatlab.org/nlab/files/K5associahedron.png" alt="" /></p> <p><br /></p> <p>(image from the <a href="http://commons.wikimedia.org/wiki/File:Polytope_K3.svg">Wikimedia Commons</a>)</p> </div> <ul> <li> <p>One can rotate and explore Stasheff polyhedra in <a href="https://ltrujello.github.io/associahedron/">this interactive associahedron app</a>.</p> </li> <li> <p>Illustrations of some polytopes, including <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mn>5</mn></msub></mrow><annotation encoding="application/x-tex">K_5</annotation></semantics></math>, can also be found <a href="http://irma.math.unistra.fr/~chapoton/galerie.html">here</a>.</p> </li> <li> <p>A template which can be cut out and assembled into a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mn>5</mn></msub></mrow><annotation encoding="application/x-tex">K_5</annotation></semantics></math> can be found in Appendix B of <a href="#ChengLauda2004">ChengLauda2004</a>.</p> </li> </ul> <h2 id="relation_to_other_structures">Relation to other structures</h2> <h3 id="relation_to_orientals">Relation to orientals</h3> <p>The above list shows that the first few Stasheff polytopes are nothing but the first few <a class="existingWikiWord" href="/nlab/show/oriental">oriental</a>s. This doesn’t remain true as <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> increases. The orientals are free <strong>strict</strong> <a class="existingWikiWord" href="/nlab/show/omega-category">omega-categories</a> on <a class="existingWikiWord" href="/nlab/show/simplex">simplex</a>es as parity complexes. This means that certain interchange cells (e.g., Gray tensorators) show up as thin in the oriental description.</p> <p>The first place this happens is the sixth oriental: where there are three tensorator squares and six pentagons in Stasheff’s <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mn>5</mn></msub></mrow><annotation encoding="application/x-tex">K_5</annotation></semantics></math>, the corresponding tensorator squares coming from <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>O</mi><mo stretchy="false">(</mo><mn>5</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">O(5)</annotation></semantics></math> are collapsed.</p> <p>It was when <a class="existingWikiWord" href="/nlab/show/Todd+Trimble">Todd Trimble</a> made this point to <a class="existingWikiWord" href="/nlab/show/Ross+Street">Ross Street</a> that Street began to think about using associahedra to define weak <a class="existingWikiWord" href="/nlab/show/n-category">n-categories</a>.</p> <h3 id="Categorification">Categorified associahedra</h3> <p>There is a <a class="existingWikiWord" href="/nlab/show/vertical+categorification">categorification</a> of associahedra discussed in</p> <ul> <li>S. Saneblidze, R. Umble, Diagonals on the permutahedra, multiplihedra and associahedra, Homology Homotopy Appl. 6(1) (2004) 363–411.</li> <li id="Forcey12"><a class="existingWikiWord" href="/nlab/show/Stefan+Forcey">Stefan Forcey</a>, <em>Quotients of the multiplihedron as categorified associahedra</em>, Homology Homotopy Appl. <strong>10</strong>:2 (2008) 227–256 (<a href="http://projecteuclid.org/euclid.hha/1251811075">Euclid</a>)</li> </ul> <h3 id="tamari_lattice">Tamari lattice</h3> <p>The associahedron is closely related to a structure known as the <em>Tamari lattice</em>, which is especially well-studied in <a class="existingWikiWord" href="/nlab/show/combinatorics">combinatorics</a>. The Tamari lattice <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">T_n</annotation></semantics></math> can be defined as the <a class="existingWikiWord" href="/nlab/show/poset">poset</a> of all parenthesizations of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n+1</annotation></semantics></math> variables with the order generated by rightwards reassociation <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">(</mo><mi>a</mi><mi>b</mi><mo stretchy="false">)</mo><mi>c</mi><mo>≤</mo><mi>a</mi><mo stretchy="false">(</mo><mi>b</mi><mi>c</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">(a b)c \le a(b c)</annotation></semantics></math>, or equivalently as the poset of all binary trees with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math> internal nodes (and hence <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">n+1</annotation></semantics></math> leaves), with the order generated by rightwards tree rotation. (Note the off-by-one offset from the convention for associahedra: the Tamari lattice <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mi>n</mi></msub></mrow><annotation encoding="application/x-tex">T_n</annotation></semantics></math> corresponds to the associahedron <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow><annotation encoding="application/x-tex">K_{n+1}</annotation></semantics></math>.) It was originally introduced by Dov Tamari in his thesis “Monoïdes préordonnés et chaînes de Malcev” (Université de Paris, 1951), around a decade before Jim Stasheff’s work.<sup id="fnref:1"><a href="#fn:1" rel="footnote">1</a></sup></p> <p>As the name suggests, the Tamari lattice also carries the structure of a <a class="existingWikiWord" href="/nlab/show/lattice">lattice</a>. This property was originally established by Haya Friedman and Tamari (1967), and later simplified by Samuel Huang and Tamari (1972).</p> <h2 id="references">References</h2> <p>The original articles that define associahedra and in which the operad <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>K</mi></mrow><annotation encoding="application/x-tex">K</annotation></semantics></math> that gives <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi><mo stretchy="false">(</mo><mn>∞</mn><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">A(\infty)</annotation></semantics></math>-topological spaces is implicit are</p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Jim+Stasheff">Jim Stasheff</a>, <em>Homotopy associativity of H-spaces I</em>, Trans. Amer. Math. Soc. 108 (1963), 275–312. (<a href="http://www.jstor.org/stable/1993608">web</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Jim+Stasheff">Jim Stasheff</a>, <em>Homotopy associativity of H-spaces II</em>, Trans. Amer. Math. Soc. 108 (1963), 293–312. (<a href="http://www.jstor.org/stable/1993609">web</a>)</p> </li> </ul> <p>A textbook discussion (slightly modified) is in section 1.6 of the book</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Martin+Markl">Martin Markl</a>, <a class="existingWikiWord" href="/nlab/show/Steven+Shnider">Steven Shnider</a>, <a class="existingWikiWord" href="/nlab/show/Jim+Stasheff">Jim Stasheff</a>, <em>Operads in Algebra, Topology and Physics</em> (<a href="http://books.google.de/books?id=fMhZjT9lQo0C&pg=PA56&lpg=PA56&dq=Stasheff+associahedra&source=bl&ots=ZuGXjT4zbp&sig=V-taGG2LHS0msHK-PTxmUXXCvEY&hl=de#PPP1,M1">web</a>)</li> </ul> <p>Loday’s original article on the Stasheff polytope is</p> <ul> <li id="Loday04"><a class="existingWikiWord" href="/nlab/show/Jean-Louis+Loday">Jean-Louis Loday</a>, Realization of the Stasheff polytope, <em>Archiv der Mathematik</em> 83 (2004), 267-278. (<a href="https://dx.doi.org/10.1007%2Fs00013-004-1026-y">doi</a>)</li> </ul> <p>Further explanations and references are collected at</p> <ul> <li> <p><a href="http://www.ams.org/featurecolumn/archive/associahedra.html">AMS entry on associahedra</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Alexander+Postnikov">Alexander Postnikov</a>, <em>Permutohedra, associahedra and beyond</em>, <a href="http://arxiv.org/abs/math/0507163">math.CO/0507163</a> <a href="http://math.mit.edu/~apost/papers/permutohedron.pdf">pdf</a></p> </li> </ul> <p>The connection to Tamari lattices as well as other developments are in</p> <ul> <li id="TomariFestschrift">Folkert Müller-Hoissen, Jean Marcel Pallo, <a class="existingWikiWord" href="/nlab/show/Jim+Stasheff">Jim Stasheff</a> (editors), <em>Associahedra, Tamari Lattices, and Related Structures: Tamari Memorial Festschrift</em>, Birkhäuser, 2012. (<a href="https://books.google.fr/books?id=Y01d6g5UemQC&lpg=PP1&pg=PP1#v=onepage&q&f=false">google books</a>)</li> </ul> <p>For a template of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>K</mi> <mn>5</mn></msub></mrow><annotation encoding="application/x-tex">K_5</annotation></semantics></math>, see Appendix B of the following.</p> <ul> <li id="ChengLauda2004"><a class="existingWikiWord" href="/nlab/show/Eugenia+Cheng">Eugenia Cheng</a>, <a class="existingWikiWord" href="/nlab/show/Aaron+Lauda">Aaron Lauda</a>, <em>Higher-dimensional categories: an illustrated guidebook</em>, 2004, <a href="http://eugeniacheng.com/guidebook/">available here</a>.</li> </ul> <p>For the combinatorics of associahedra, see</p> <ul> <li><a class="existingWikiWord" href="/nlab/show/Viviane+Pons">Viviane Pons</a>, <em>Combinatorics of the Permutahedra, Associahedra, and Friends</em> (<a href="https://arxiv.org/abs/2310.12687">arXiv:2310.12687</a>)</li> </ul> <div class="property">category: <a class="category_link" href="/nlab/all_pages/combinatorics">combinatorics</a></div><div class="footnotes"><hr /><ol><li id="fn:1"> <p><a class="existingWikiWord" href="/nlab/show/Jim+Stasheff">Jim Stasheff</a> comments on this in an essay titled “How I ‘met’ Dov Tamari” <a href="#TomariFestschrift">(Tamari Memorial Festschrift 2012)</a>, writing that the “so-called Stasheff polytope … more accurately should be called the Tamari or Tamari-Stasheff polytope”. <a href="#fnref:1" rev="footnote">↩</a></p> </li></ol></div></body></html> </div> <div class="revisedby"> <p> Last revised on July 18, 2024 at 19:02:14. See the <a href="/nlab/history/associahedron" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/associahedron" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/536/#Item_14">Discuss</a><span class="backintime"><a href="/nlab/revision/associahedron/34" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/associahedron" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/associahedron" accesskey="S" class="navlink" id="history" rel="nofollow">History (34 revisions)</a> <a href="/nlab/show/associahedron/cite" style="color: black">Cite</a> <a href="/nlab/print/associahedron" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/associahedron" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>