CINXE.COM
Search results for: Janusz Kudla
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Janusz Kudla</title> <meta name="description" content="Search results for: Janusz Kudla"> <meta name="keywords" content="Janusz Kudla"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Janusz Kudla" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Janusz Kudla"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Janusz Kudla</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> The Impact of Bequest Taxation on Human Capital Accumulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Dudek">Maciej Dudek</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Kruszewski"> Robert Kruszewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Kudla"> Janusz Kudla</a>, <a href="https://publications.waset.org/abstracts/search?q=Konrad%20Walczyk"> Konrad Walczyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study how taxation of bequests affects human capital formation in the long term and short term horizon. Our underlying model is an overlapping generation model (OLG) with some degree of altruism on the part of the ancestors' generation towards their descendants. We ask the question in three separate frameworks. First, we study a simple one-sector model where a proxy of human capital is wage income. It the steady-state -for CRRA utility function and human capital produced with non-decreasing returns -the taxation of bequests is neutral to the accumulation of human capital. In the second framework, neutrality applies to the growth rates of human capital, physical capital, and consumption. In this case, taxation increases the level of bequests, leading to a lower value of current consumption. Finally in we consider two periods model instead of infinite horizon model as long as the tax revenue is at least partially rebated back to the public, the fraction of human capital engaged in the process of formation of human capital increases with the tax rate on bequests. In other words, taxation of bequests is partially offset by an increase in human capital formation. Higher human capital allows the future generation to earn higher wages, and today's generation can find it optimal to endow the future generation with more human capital when taxation is imposed on physical capital transferred to the next generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=taxation" title="taxation">taxation</a>, <a href="https://publications.waset.org/abstracts/search?q=bequests" title=" bequests"> bequests</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20capital" title=" human capital"> human capital</a> </p> <a href="https://publications.waset.org/abstracts/122668/the-impact-of-bequest-taxation-on-human-capital-accumulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Prediction of Soil Liquefaction by Using UBC3D-PLM Model in PLAXIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Daftari">A. Daftari</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Kudla"> W. Kudla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liquefaction is a phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid cyclic loading. Liquefaction and related phenomena have been responsible for huge amounts of damage in historical earthquakes around the world. Modelling of soil behaviour is the main step in soil liquefaction prediction process. Nowadays, several constitutive models for sand have been presented. Nevertheless, only some of them can satisfy this mechanism. One of the most useful models in this term is UBCSAND model. In this research, the capability of this model is considered by using PLAXIS software. The real data of superstition hills earthquake 1987 in the Imperial Valley was used. The results of the simulation have shown resembling trend of the UBC3D-PLM model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title="liquefaction">liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=plaxis" title=" plaxis"> plaxis</a>, <a href="https://publications.waset.org/abstracts/search?q=pore-water%20pressure" title=" pore-water pressure"> pore-water pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=UBC3D-PLM" title=" UBC3D-PLM"> UBC3D-PLM</a> </p> <a href="https://publications.waset.org/abstracts/2619/prediction-of-soil-liquefaction-by-using-ubc3d-plm-model-in-plaxis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Managing of Work Risk in Small and Medium-Size Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janusz%20K.%20Grabara">Janusz K. Grabara</a>, <a href="https://publications.waset.org/abstracts/search?q=Bart%C5%82omiej%20Okwiet"> Bartłomiej Okwiet</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Kot"> Sebastian Kot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the article is presentation and analysis of the aspect of job security in small and medium-size enterprises in Poland with reference to other EU countries. We show the theoretical aspects of the risk with reference to managing small and medium enterprises, next risk management in small and medium enterprises in Poland, which were subjected to a detailed analysis. We show in detail the risk associated with the operation of the mentioned above companies, as well as analyses its levels on various stages and for different kinds of conducted activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=job%20safety" title="job safety">job safety</a>, <a href="https://publications.waset.org/abstracts/search?q=SME" title=" SME"> SME</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20risk" title=" work risk"> work risk</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a> </p> <a href="https://publications.waset.org/abstracts/54406/managing-of-work-risk-in-small-and-medium-size-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Analysis of Histogram Asymmetry for Waste Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Bobulski">Janusz Bobulski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamila%20Pasternak"> Kamila Pasternak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite many years of effort and research, the problem of waste management is still current. So far, no fully effective waste management system has been developed. Many programs and projects improve statistics on the percentage of waste recycled every year. In these efforts, it is worth using modern Computer Vision techniques supported by artificial intelligence. In the article, we present a method of identifying plastic waste based on the asymmetry analysis of the histogram of the image containing the waste. The method is simple but effective (94%), which allows it to be implemented on devices with low computing power, in particular on microcomputers. Such de-vices will be used both at home and in waste sorting plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title="waste management">waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection" title=" environmental protection"> environmental protection</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20vision" title=" computer vision"> computer vision</a> </p> <a href="https://publications.waset.org/abstracts/155242/analysis-of-histogram-asymmetry-for-waste-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> The Application of Fuzzy Set Theory to Mobile Internet Advertisement Fraud Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinming%20Ma">Jinming Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianbing%20Xia"> Tianbing Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Getta"> Janusz Getta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the application of fuzzy set theory to implement of mobile advertisement anti-fraud systems. Mobile anti-fraud is a method aiming to identify mobile advertisement fraudsters. One of the main problems of mobile anti-fraud is the lack of evidence to prove a user to be a fraudster. In this paper, we implement an application by using fuzzy set theory to demonstrate how to detect cheaters. The advantage of our method is that the hardship in detecting fraudsters in small data samples has been avoided. We achieved this by giving each user a suspicious degree showing how likely the user is cheating and decide whether a group of users (like all users of a certain APP) together to be fraudsters according to the average suspicious degree. This makes the process more accurate as the data of a single user is too small to be predictable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20internet" title="mobile internet">mobile internet</a>, <a href="https://publications.waset.org/abstracts/search?q=advertisement" title=" advertisement"> advertisement</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-fraud" title=" anti-fraud"> anti-fraud</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20set%20theory" title=" fuzzy set theory"> fuzzy set theory</a> </p> <a href="https://publications.waset.org/abstracts/135225/the-application-of-fuzzy-set-theory-to-mobile-internet-advertisement-fraud-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Rock Thickness Measurement by Using Self-Excited Acoustical System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Kwa%C5%9Bniewski">Janusz Kwaśniewski</a>, <a href="https://publications.waset.org/abstracts/search?q=Ireneusz%20Dominik"> Ireneusz Dominik</a>, <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Lalik"> Krzysztof Lalik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge about rock layers thickness, especially above drilled mining pavements are crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-Excited Acoustical System is presented in the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rock layer. The idea is to find two resonance frequencies of the self-exited system, which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auto-oscillator" title="auto-oscillator">auto-oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20thickness%20measurement" title=" rock thickness measurement"> rock thickness measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnic" title=" geotechnic"> geotechnic</a> </p> <a href="https://publications.waset.org/abstracts/2627/rock-thickness-measurement-by-using-self-excited-acoustical-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2627.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Performance-Based Quality Evaluation of Database Conceptual Schemas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Getta">Janusz Getta</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaoxi%20Pan"> Zhaoxi Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance-based quality evaluation of database conceptual schemas is an important aspect of database design process. It is evident that different conceptual schemas provide different logical schemas and performance of user applications strongly depends on logical and physical database structures. This work presents the entire process of performance-based quality evaluation of conceptual schemas. First, we show format. Then, the paper proposes a new specification of object algebra for representation of conceptual level database applications. Transformation of conceptual schemas and expression of object algebra into implementation schema and implementation in a particular database system allows for precise estimation of the processing costs of database applications and as a consequence for precise evaluation of performance-based quality of conceptual schemas. Then we describe an experiment as a proof of concept for the evaluation procedure presented in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conceptual%20schema" title="conceptual schema">conceptual schema</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation%20schema" title=" implementation schema"> implementation schema</a>, <a href="https://publications.waset.org/abstracts/search?q=logical%20schema" title=" logical schema"> logical schema</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20algebra" title=" object algebra"> object algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=query%20processing" title=" query processing"> query processing</a> </p> <a href="https://publications.waset.org/abstracts/71218/performance-based-quality-evaluation-of-database-conceptual-schemas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> FlexPoints: Efficient Algorithm for Detection of Electrocardiogram Characteristic Points</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Bulanda">Daniel Bulanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Janusz%20A.%20Starzyk"> Janusz A. Starzyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrian%20Horzyk"> Adrian Horzyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electrocardiogram (ECG) is one of the most commonly used medical tests, essential for correct diagnosis and treatment of the patient. While ECG devices generate a huge amount of data, only a small part of them carries valuable medical information. To deal with this problem, many compression algorithms and filters have been developed over the past years. However, the rapid development of new machine learning techniques poses new challenges. To address this class of problems, we created the FlexPoints algorithm that searches for characteristic points on the ECG signal and ignores all other points that do not carry relevant medical information. The conducted experiments proved that the presented algorithm can significantly reduce the number of data points which represents ECG signal without losing valuable medical information. These sparse but essential characteristic points (flex points) can be a perfect input for some modern machine learning models, which works much better using flex points as an input instead of raw data or data compressed by many popular algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20points" title="characteristic points">characteristic points</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocardiogram" title=" electrocardiogram"> electrocardiogram</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20compression" title=" signal compression"> signal compression</a> </p> <a href="https://publications.waset.org/abstracts/132090/flexpoints-efficient-algorithm-for-detection-of-electrocardiogram-characteristic-points" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Open Source, Open Hardware Ground Truth for Visual Odometry and Simultaneous Localization and Mapping Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Bedkowski">Janusz Bedkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Kisala"> Grzegorz Kisala</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Wlasiuk"> Michal Wlasiuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Pokorski"> Piotr Pokorski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ground-truth data is essential for VO (Visual Odometry) and SLAM (Simultaneous Localization and Mapping) quantitative evaluation using e.g. ATE (Absolute Trajectory Error) and RPE (Relative Pose Error). Many open-access data sets provide raw and ground-truth data for benchmark purposes. The issue appears when one would like to validate Visual Odometry and/or SLAM approaches on data captured using the device for which the algorithm is targeted for example mobile phone and disseminate data for other researchers. For this reason, we propose an open source, open hardware groundtruth system that provides an accurate and precise trajectory with a 3D point cloud. It is based on LiDAR Livox Mid-360 with a non-repetitive scanning pattern, on-board Raspberry Pi 4B computer, battery and software for off-line calculations (camera to LiDAR calibration, LiDAR odometry, SLAM, georeferencing). We show how this system can be used for the evaluation of various the state of the art algorithms (Stella SLAM, ORB SLAM3, DSO) in typical indoor monocular VO/SLAM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SLAM" title="SLAM">SLAM</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20truth" title=" ground truth"> ground truth</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation" title=" navigation"> navigation</a>, <a href="https://publications.waset.org/abstracts/search?q=LiDAR" title=" LiDAR"> LiDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20odometry" title=" visual odometry"> visual odometry</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a> </p> <a href="https://publications.waset.org/abstracts/187389/open-source-open-hardware-ground-truth-for-visual-odometry-and-simultaneous-localization-and-mapping-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Development of a Laboratory Laser-Produced Plasma “Water Window” X-Ray Source for Radiobiology Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Adjei">Daniel Adjei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesfin%20Getachew%20Ayele"> Mesfin Getachew Ayele</a>, <a href="https://publications.waset.org/abstracts/search?q=Przemyslaw%20Wachulak"> Przemyslaw Wachulak</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Bartnik"> Andrzej Bartnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Lud%C4%9Bk%20Vy%C5%A1%C3%ADn"> Luděk Vyšín</a>, <a href="https://publications.waset.org/abstracts/search?q=Henryk%20Fiedorowicz"> Henryk Fiedorowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Inam%20Ul%20Ahad"> Inam Ul Ahad</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Wegrzynski"> Lukasz Wegrzynski</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Wiechecka"> Anna Wiechecka</a>, <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Lekki"> Janusz Lekki</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20M.%20Kwiatek"> Wojciech M. Kwiatek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laser produced plasma light sources, emitting high intensity pulses of X-rays, delivering high doses are useful to understand the mechanisms of high dose effects on biological samples. In this study, a desk-top laser plasma soft X-ray source, developed for radio biology research, is presented. The source is based on a double-stream gas puff target, irradiated with a commercial Nd:YAG laser (EKSPLA), which generates laser pulses of 4 ns time duration and energy up to 800 mJ at 10 Hz repetition rate. The source has been optimized for maximum emission in the “water window” wavelength range from 2.3 nm to 4.4 nm by using pure gas (argon, nitrogen and krypton) and spectral filtering. Results of the source characterization measurements and dosimetry of the produced soft X-ray radiation are shown and discussed. The high brightness of the laser produced plasma soft X-ray source and the low penetration depth of the produced X-ray radiation in biological specimen allows a high dose rate to be delivered to the specimen of over 28 Gy/shot; and 280 Gy/s at the maximum repetition rate of the laser system. The source has a unique capability for irradiation of cells with high pulse dose both in vacuum and He-environment. Demonstration of the source to induce DNA double- and single strand breaks will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20produced%20plasma" title="laser produced plasma">laser produced plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20X-rays" title=" soft X-rays"> soft X-rays</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20biology%20experiments" title=" radio biology experiments"> radio biology experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=dosimetry" title=" dosimetry"> dosimetry</a> </p> <a href="https://publications.waset.org/abstracts/13094/development-of-a-laboratory-laser-produced-plasma-water-window-x-ray-source-for-radiobiology-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Multimedia Container for Autonomous Car</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Bobulski">Janusz Bobulski</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Kubanek"> Mariusz Kubanek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main goal of the research is to develop a multimedia container structure containing three types of images: RGB, lidar and infrared, properly calibrated to each other. An additional goal is to develop program libraries for creating and saving this type of file and for restoring it. It will also be necessary to develop a method of data synchronization from lidar and RGB cameras as well as infrared. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. Autonomous cars are increasingly breaking into our consciousness. No one seems to have any doubts that self-driving cars are the future of motoring. Manufacturers promise that moving the first of them to showrooms is the prospect of the next few years. Many experts believe that creating a network of communicating autonomous cars will be able to completely eliminate accidents. However, to make this possible, it is necessary to develop effective methods of detection of objects around the moving vehicle. In bad weather conditions, this task is difficult on the basis of the RGB(red, green, blue) image. Therefore, in such situations, you should be supported by information from other sources, such as lidar or infrared cameras. The problem is the different data formats that individual types of devices return. In addition to these differences, there is a problem with the synchronization of these data and the formatting of this data. The goal of the project is to develop a file structure that could be containing a different type of data. This type of file is calling a multimedia container. A multimedia container is a container that contains many data streams, which allows you to store complete multimedia material in one file. Among the data streams located in such a container should be indicated streams of images, films, sounds, subtitles, as well as additional information, i.e., metadata. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. As shown by preliminary studies, the use of combining RGB and InfraRed images with Lidar data allows for easier data analysis. Thanks to this application, it will be possible to display the distance to the object in a color photo. Such information can be very useful for drivers and for systems in autonomous cars. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=an%20autonomous%20car" title="an autonomous car">an autonomous car</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=lidar" title=" lidar"> lidar</a>, <a href="https://publications.waset.org/abstracts/search?q=obstacle%20detection" title=" obstacle detection"> obstacle detection</a> </p> <a href="https://publications.waset.org/abstracts/133088/multimedia-container-for-autonomous-car" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Alkali Activated Materials Based on Natural Clay from Raciszyn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michal%20Lach">Michal Lach</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Hebdowska-Krupa"> Maria Hebdowska-Krupa</a>, <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Stefanek"> Justyna Stefanek</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Stanek"> Artur Stanek</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Stefanska"> Anna Stefanska</a>, <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Mikula"> Janusz Mikula</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Hebda"> Marek Hebda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Limited resources of raw materials determine the necessity of obtaining materials from other sources. In this area, the most known and widespread are recycling processes, which are mainly focused on the reuse of material. Another possible solution used in various companies to achieve improvement in sustainable development is waste-free production. It involves the production exclusively from such materials, whose waste is included in the group of renewable raw materials. This means that they can: (i) be recycled directly during the manufacturing process of further products or (ii) be raw material obtained by other companies for the production of alternative products. The article presents the possibility of using post-production clay from the Jurassic limestone deposit "Raciszyn II" as a raw material for the production of alkali activated materials (AAM). Such products are currently increasingly used, mostly in various building applications. However, their final properties depend significantly on many factors; the most important of them are: chemical composition of the raw material, particle size, specific surface area, type and concentration of the activator and the temperature range of the heat treatment. Conducted mineralogical and chemical analyzes of clay from the “Raciszyn II” deposit confirmed that this material, due to its high content of aluminosilicates, can be used as raw material for the production of AAM. In order to obtain the product with the best properties, the optimization of the clay calcining process was also carried out. Based on the obtained results, it was found that this process should occur in the range between 750 oC and 800 oC. The use of a lower temperature causes getting a raw material with low metakaolin content which is the main component of materials suitable for alkaline activation processes. On the other hand, higher heat treatment temperatures cause thermal dissociation of large amounts of calcite, which is associated with the release of large amounts of CO2 and the formation of calcium oxide. This compound significantly accelerates the binding process, which consequently often prevents the correct formation of geopolymer mass. The effect of the use of various activators: (i) NaOH, (ii) KOH and (iii) a mixture of KOH to NaOH in a ratio of 10%, 25% and 50% by volume on the compressive strength of the AAM was also analyzed. Obtained results depending on the activator used were in the range from 25 MPa to 40 MPa. These values are comparable with the results obtained for materials produced on the basis of Portland cement, which is one of the most popular building materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline%20activation" title="alkaline activation">alkaline activation</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminosilicates" title=" aluminosilicates"> aluminosilicates</a>, <a href="https://publications.waset.org/abstracts/search?q=calcination" title=" calcination"> calcination</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/97862/alkali-activated-materials-based-on-natural-clay-from-raciszyn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Heavy Metals in the Water of Lakes in the 'Bory Tucholskie' National Park of Biosphere Reserve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Gwozdzinski">Krzysztof Gwozdzinski</a>, <a href="https://publications.waset.org/abstracts/search?q=Janusz%20Mazur"> Janusz Mazur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bory Tucholskie (Tucholskie Forest) is one of the largest pine forest complexes in Poland. It occupies approx. 3,000 square kilometers of Sandr in the Brda and Wda basin and the Tuchola Plain and the Charzykowskie Plain. Since 2010 it has transformed into The Bory Tucholskie Biosphere Reserve, according to the UNESCO decision. The area of the Bory Tucholskie National Park (BTNP), the park area, has been designated in 1996. There is little data on the presence of heavy metals in the Park's lakes. Concentration of heavy metals in the water of 19 lakes in the BTNP was examined. The lakes were divided into two groups: subglacial channel lakes of Struga Siedmiu Jezior (the Seven Lakes Stream) and other lakes. Heavy metals (transition metals) belong to d-block of elements. The part of these metals plays an important role in the function of living organisms as metalloproteins (enzymes, hemoproteins, vitamins, etc.). However, heavy metals are also typical; heavy metals are typical anthropogenic pollutants. Water samples were collected at the deepest points of lakes during spring and during summer stagnation. The analysis of metals was performed in an atomic absorption spectrophotometer Varian Spectra A300/400 in electric atomizer (GTA 96) in graphite cuvette. In the waters of the Seven Lakes Stream (Ostrowite, Zielone, Jelen, Belczak, Glowka, Plesno, Skrzynka, Mielnica) the increase in the concentration of the manganese and iron from outflow to inflow of Charzykowskie lake was found, while the concentration of copper (approx. 4 μg dm⁻³) and cadmium ( < 0.5 μg dm⁻³) was similar in all lakes. The concentration of the lead also varied within 2.1-3.6 μg dm⁻³. The concentration of nickel was approx. 3-fold higher in Ostrowite lake than other lakes of Struga. In turn the waters of the lakes Ostrowite, Jelen and Belczak were rich in zinc. The lowest level of heavy metals was observed in Zielone lake. In the second group of lakes, i.e., Krzywce Wielkie and Krzywce Male the heavy metal concentrations were lower than in the waters of Struga but higher than in oligotrophic lakes, i.e., Nierybno, Gluche, Kociol, Gacno Wielkie, Gacno Mae, Dlugie, Zabionek, and Sosnowek. The concentration of cadmium was below 0.5 μg dm⁻³ in all the studied lakes from this group. In the group of oligotrophic lakes the highest concentrations of metals such as manganese, iron, zinc and nickel in Gacno Male and Gacno Wielkie were observed. The high level of manganese in Sosnowek and Gacno Wielkie lakes was found. The lead level was also high in Nierybno lake and nickel in Gacno Wielkie lake. The lower level of heavy metals was in oligotrophic lakes such as Kociol, Dlugie, Zabionek and α-mesotrophic lake, Krzywce Wielkie. Generally, the level of heavy metals in studied lakes situated in Bory Tucholskie National Park was lower than in other lakes of Bory Tucholskie Biosphere Reserve. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bory%20Tucholskie%20Biosphere%20Reserve" title="Bory Tucholskie Biosphere Reserve">Bory Tucholskie Biosphere Reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=Bory%20Tucholskie%20National%20Park" title=" Bory Tucholskie National Park"> Bory Tucholskie National Park</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=lakes" title=" lakes"> lakes</a> </p> <a href="https://publications.waset.org/abstracts/99811/heavy-metals-in-the-water-of-lakes-in-the-bory-tucholskie-national-park-of-biosphere-reserve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Risk Factors Associated with Increased Emergency Department Visits and Hospital Admissions Among Child and Adolescent Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lalanthica%20Yogendran">Lalanthica Yogendran</a>, <a href="https://publications.waset.org/abstracts/search?q=Manassa%20Hany"> Manassa Hany</a>, <a href="https://publications.waset.org/abstracts/search?q=Saira%20Pasha"> Saira Pasha</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Chaucer"> Benjamin Chaucer</a>, <a href="https://publications.waset.org/abstracts/search?q=Simarpreet%20Kaur"> Simarpreet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Janusz"> Christopher Janusz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Children and adolescent patients visit the Psychiatric Emergency Department (ED) for multiple reasons. Visiting the Psychiatric ED itself can be a traumatic experience that can affect an adolescents mental well-being, regardless of a history of mental illness. Despite this, limited research exists in this domain. Prospective studies have correlated adverse psychosocial determinants among adolescents to risk factors for poor well-being and unfavorable behavior outcomes. Studies have also shown that physiological stress is a contributor in the development of health problems and an increase in substance abuse in adolescents. This study aimed to retrospectively determine which psychosocial factors are associated with an increase in psychiatric ED visits. 600 charts of patients who had a psychiatric ED and inpatient admission visit from January 2014 through December 2014 were reviewed. Sociodemographics, diagnoses, ED visits and inpatient admissions were collected. Descriptive statistics, chi-square tests and independent t-test analyses were utilized to examine differences in the sample to determine which factors affected ED visits and admissions. The sample was 50% female, 35.2% self-identified black, and had a mean age of 13 years. The majority, 85%, went to public school and 17% were in special education. Attention Deficit Hyperactivity Disorder was the most common admitting diagnosis, found in 132(23%) responders. Most patients came from single parent household 305 (53%). The mean ages of patients that were sexually active, with legal issues, and reporting marijuana substance abuse were 15, 14.35, and 15 years respectively. Patients from two biological parent households had significantly fewer ED visits (1.2 vs. 1.7, p < 0.01) and admissions (0.09 vs. 0.26, p < 0.01). Among social factors, those who reported sexual, physical or emotional abuse had a significantly greater number of ED visits (2.1 vs. 1.5, p < 0.01) and admissions (0.61 vs. 0.14, p < 0.01) than those who did not. Patients that were sexually active or had legal issues or substance abuse with marijuana had a significantly greater number of admissions (0.43 vs. 0.17, p < 0.01), (0.54 vs. .18, p < 0.01) and (0.46 vs. 0.18, p < 0.01) respectively. This data supports the theory of the stability of a two parent home. Dual parenting plays a role in creating a safe space where a child can develop; this is shown by subsequent decreases in psychiatric ED visits and admissions. This may highlight the psychological protective role of a two parent household. Abuse can exacerbate existing psychiatric illness or initiate the onset of new disease. Substance abuse and legal issues result in early induction to the criminal system. Results show that this causes an increase in frequency of visits and severity of symptoms. Only marijuana, but not other illicit substances, correlated with higher incidence of psychiatric ED visits. This may speak to the psychotropic nature of tetrahydrocannabinols and their role in mental illness. This study demonstrates the array of psychosocial factors that lead to increased ED visits and admissions in children and adolescents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adolescent" title="adolescent">adolescent</a>, <a href="https://publications.waset.org/abstracts/search?q=child%20psychiatry" title=" child psychiatry"> child psychiatry</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20department" title=" emergency department"> emergency department</a>, <a href="https://publications.waset.org/abstracts/search?q=substance%20abuse" title=" substance abuse"> substance abuse</a> </p> <a href="https://publications.waset.org/abstracts/51500/risk-factors-associated-with-increased-emergency-department-visits-and-hospital-admissions-among-child-and-adolescent-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>