CINXE.COM

Li-hui Chen | Nanjing University - Academia.edu

<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Li-hui Chen | Nanjing University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="/62+Cdbk3zVt0kxQnsg3VxWgxw3y8KH4fuE2GlXOrZVzgcca3q+z9oZVNZqXKaHtuH4DEvW/NRKdNhfYGW1TIA==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="li-hui chen" /> <meta name="description" content="Li-hui Chen, Nanjing University: 12 Followers, 2 Following, 21 Research papers. Research interests: Intraplate Volcanism, Mantle Geochemistry, and Isotopic…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '836a04d38e13e94dcd4e9d2b995bb1a155f81b46'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15252,"monthly_visitors":"120 million","monthly_visitor_count":120260779,"monthly_visitor_count_in_millions":120,"user_count":278658539,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1734030635000); window.Aedu.timeDifference = new Date().getTime() - 1734030635000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-2eebbf16f94e23df09908fc0eb355e7d088296bc7bbbbe96567743814345fdd9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-086d9084944b0c8a793ea96ac398b4180db6177bb674e9655034fb25e834c8b4.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://nanjing.academia.edu/LihuiChen" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&amp;c2=26766707&amp;cv=2.0&amp;cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more&nbsp<span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i>&nbsp;We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i>&nbsp;Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less&nbsp<span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-7c63369d6bc1d9729936224080f1002d6f378f0ed8d4ed7c2ee00a7b16812651.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen","photo":"https://0.academia-photos.com/53070680/14070624/15085688/s65_li-hui.chen.png","has_photo":true,"department":{"id":493707,"name":"School of Earth Sciences and Engineering","url":"https://nanjing.academia.edu/Departments/School_of_Earth_Sciences_and_Engineering/Documents","university":{"id":1161,"name":"Nanjing University","url":"https://nanjing.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":555342,"name":"Intraplate Volcanism","url":"https://www.academia.edu/Documents/in/Intraplate_Volcanism"},{"id":123325,"name":"Mantle Geochemistry","url":"https://www.academia.edu/Documents/in/Mantle_Geochemistry"},{"id":518101,"name":"Isotopic Geochemistry","url":"https://www.academia.edu/Documents/in/Isotopic_Geochemistry"},{"id":159133,"name":"Basalts","url":"https://www.academia.edu/Documents/in/Basalts"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://nanjing.academia.edu/LihuiChen&quot;,&quot;location&quot;:&quot;/LihuiChen&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;nanjing.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/LihuiChen&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-892c532a-d326-4f59-ab23-df0ebb4298a5"></div> <div id="ProfileCheckPaperUpdate-react-component-892c532a-d326-4f59-ab23-df0ebb4298a5"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Li-hui Chen" border="0" onerror="if (this.src != &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;) this.src = &#39;//a.academia-assets.com/images/s200_no_pic.png&#39;;" width="200" height="200" src="https://0.academia-photos.com/53070680/14070624/15085688/s200_li-hui.chen.png" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Li-hui Chen</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://nanjing.academia.edu/">Nanjing University</a>, <a class="u-tcGrayDarker" href="https://nanjing.academia.edu/Departments/School_of_Earth_Sciences_and_Engineering/Documents">School of Earth Sciences and Engineering</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Li-hui" data-follow-user-id="53070680" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="53070680"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">12</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">2</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-author</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;"><span class="u-fw700">Phone:&nbsp;</span>86-25-89680881<br /><b>Address:&nbsp;</b>School of Earth Sciences and Engineering<br />Nanjing University<br />163 Xianlin Ave., Nanjing 210023, China<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="53070680" href="https://www.academia.edu/Documents/in/Intraplate_Volcanism"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{&quot;inMailer&quot;:false,&quot;i18nLocale&quot;:&quot;en&quot;,&quot;i18nDefaultLocale&quot;:&quot;en&quot;,&quot;href&quot;:&quot;https://nanjing.academia.edu/LihuiChen&quot;,&quot;location&quot;:&quot;/LihuiChen&quot;,&quot;scheme&quot;:&quot;https&quot;,&quot;host&quot;:&quot;nanjing.academia.edu&quot;,&quot;port&quot;:null,&quot;pathname&quot;:&quot;/LihuiChen&quot;,&quot;search&quot;:null,&quot;httpAcceptLanguage&quot;:null,&quot;serverSide&quot;:false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Intraplate Volcanism&quot;]}" data-trace="false" data-dom-id="Pill-react-component-e287695f-59eb-4ece-9ec4-5889c54d7880"></div> <div id="Pill-react-component-e287695f-59eb-4ece-9ec4-5889c54d7880"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="53070680" href="https://www.academia.edu/Documents/in/Mantle_Geochemistry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Mantle Geochemistry&quot;]}" data-trace="false" data-dom-id="Pill-react-component-d8c31f77-1c7b-441b-9062-e7e8f83e0176"></div> <div id="Pill-react-component-d8c31f77-1c7b-441b-9062-e7e8f83e0176"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="53070680" href="https://www.academia.edu/Documents/in/Isotopic_Geochemistry"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Isotopic Geochemistry&quot;]}" data-trace="false" data-dom-id="Pill-react-component-59ef75ca-60ae-4d3f-ac26-d5fa6be05466"></div> <div id="Pill-react-component-59ef75ca-60ae-4d3f-ac26-d5fa6be05466"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="53070680" href="https://www.academia.edu/Documents/in/Basalts"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{&quot;color&quot;:&quot;gray&quot;,&quot;children&quot;:[&quot;Basalts&quot;]}" data-trace="false" data-dom-id="Pill-react-component-83c13e9d-a2f3-4519-94be-2984e35a0b1c"></div> <div id="Pill-react-component-83c13e9d-a2f3-4519-94be-2984e35a0b1c"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Li-hui Chen</h3></div><div class="js-work-strip profile--work_container" data-work-id="33449413"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/33449413/Subduction_related_metasomatism_in_the_thinning_lithosphere_Evidence_from_a_composite_dunite_orthopyroxenite_xenolith_entrained_in_Mesozoic_Laiwu_high_Mg_diorite_North_China_Craton"><img alt="Research paper thumbnail of Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton" class="work-thumbnail" src="https://attachments.academia-assets.com/53497863/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/33449413/Subduction_related_metasomatism_in_the_thinning_lithosphere_Evidence_from_a_composite_dunite_orthopyroxenite_xenolith_entrained_in_Mesozoic_Laiwu_high_Mg_diorite_North_China_Craton">Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton</a></div><div class="wp-workCard_item"><span>Geochemistry, Geophysics, Geosystems</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">2005), Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dun...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">2005), Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f838f179be2d53261a41fafb1ebbc426" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53497863,&quot;asset_id&quot;:33449413,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53497863/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="33449413"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="33449413"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33449413; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33449413]").text(description); $(".js-view-count[data-work-id=33449413]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33449413; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='33449413']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 33449413, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f838f179be2d53261a41fafb1ebbc426" } } $('.js-work-strip[data-work-id=33449413]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":33449413,"title":"Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton","translated_title":"","metadata":{"grobid_abstract":"2005), Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Geochemistry, Geophysics, Geosystems","grobid_abstract_attachment_id":53497863},"translated_abstract":null,"internal_url":"https://www.academia.edu/33449413/Subduction_related_metasomatism_in_the_thinning_lithosphere_Evidence_from_a_composite_dunite_orthopyroxenite_xenolith_entrained_in_Mesozoic_Laiwu_high_Mg_diorite_North_China_Craton","translated_internal_url":"","created_at":"2017-06-13T21:28:44.073-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53497863,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497863/thumbnails/1.jpg","file_name":"Subduction-related_metasomatism_in_the_t20170613-2943-iuo4uh.pdf","download_url":"https://www.academia.edu/attachments/53497863/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subduction_related_metasomatism_in_the_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497863/Subduction-related_metasomatism_in_the_t20170613-2943-iuo4uh-libre.pdf?1497414698=\u0026response-content-disposition=attachment%3B+filename%3DSubduction_related_metasomatism_in_the_t.pdf\u0026Expires=1734034234\u0026Signature=gOLqvkVUhB13EWOAN-BPce~qAbesQ4r5DhCKUJFrpfHDHVgNgPmPvQdkodnYGqlxn0vKJ-WeRoKyzCxmTDmESZc0Z8a~ffsOXEapxluGfq3HJ101~~dSkmtM37-vyfVBK5BqVQ-tONgu8x0rdyv9x3boMshpM3RvTXTD3glZwMcLqDOFw-AxWndP30Rv~wPdAhop-3D0DiulGZ~oH9TiH5M8D1nmKjYArUVn4u5zgUq8Te2UmiVrjubhDexGRyR1QYQ9RN3LML3Y1nKqKfTHybK8UamjR2anb5Sc1yQOy5oLq3z2smrSSu8sJZDq5Mt~O0qeZ53lBElXvPzSJ0y-qQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Subduction_related_metasomatism_in_the_thinning_lithosphere_Evidence_from_a_composite_dunite_orthopyroxenite_xenolith_entrained_in_Mesozoic_Laiwu_high_Mg_diorite_North_China_Craton","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":"2005), Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":53497863,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497863/thumbnails/1.jpg","file_name":"Subduction-related_metasomatism_in_the_t20170613-2943-iuo4uh.pdf","download_url":"https://www.academia.edu/attachments/53497863/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subduction_related_metasomatism_in_the_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497863/Subduction-related_metasomatism_in_the_t20170613-2943-iuo4uh-libre.pdf?1497414698=\u0026response-content-disposition=attachment%3B+filename%3DSubduction_related_metasomatism_in_the_t.pdf\u0026Expires=1734034234\u0026Signature=gOLqvkVUhB13EWOAN-BPce~qAbesQ4r5DhCKUJFrpfHDHVgNgPmPvQdkodnYGqlxn0vKJ-WeRoKyzCxmTDmESZc0Z8a~ffsOXEapxluGfq3HJ101~~dSkmtM37-vyfVBK5BqVQ-tONgu8x0rdyv9x3boMshpM3RvTXTD3glZwMcLqDOFw-AxWndP30Rv~wPdAhop-3D0DiulGZ~oH9TiH5M8D1nmKjYArUVn4u5zgUq8Te2UmiVrjubhDexGRyR1QYQ9RN3LML3Y1nKqKfTHybK8UamjR2anb5Sc1yQOy5oLq3z2smrSSu8sJZDq5Mt~O0qeZ53lBElXvPzSJ0y-qQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":16023,"name":"Mineral Chemistry","url":"https://www.academia.edu/Documents/in/Mineral_Chemistry"},{"id":30642,"name":"Early Cretaceous","url":"https://www.academia.edu/Documents/in/Early_Cretaceous"},{"id":98440,"name":"Silica","url":"https://www.academia.edu/Documents/in/Silica"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":134398,"name":"Mantle metasomatism","url":"https://www.academia.edu/Documents/in/Mantle_metasomatism"},{"id":191165,"name":"Pb isotopes","url":"https://www.academia.edu/Documents/in/Pb_isotopes"},{"id":281810,"name":"Mantle xenolith","url":"https://www.academia.edu/Documents/in/Mantle_xenolith"},{"id":646305,"name":"North China Craton","url":"https://www.academia.edu/Documents/in/North_China_Craton"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="33449394"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/33449394/Mantle_dynamics_and_generation_of_a_geochemical_mantle_boundary_along_the_East_Pacific_Rise_Pacific_Antarctic_ridge"><img alt="Research paper thumbnail of Mantle dynamics and generation of a geochemical mantle boundary along the East Pacific Rise – Pacific/Antarctic ridge" class="work-thumbnail" src="https://attachments.academia-assets.com/53497859/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/33449394/Mantle_dynamics_and_generation_of_a_geochemical_mantle_boundary_along_the_East_Pacific_Rise_Pacific_Antarctic_ridge">Mantle dynamics and generation of a geochemical mantle boundary along the East Pacific Rise – Pacific/Antarctic ridge</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="018ce05177756dd134b20fe3e54222e9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53497859,&quot;asset_id&quot;:33449394,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53497859/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="33449394"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="33449394"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33449394; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33449394]").text(description); $(".js-view-count[data-work-id=33449394]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33449394; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='33449394']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 33449394, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "018ce05177756dd134b20fe3e54222e9" } } $('.js-work-strip[data-work-id=33449394]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":33449394,"title":"Mantle dynamics and generation of a geochemical mantle boundary along the East Pacific Rise – Pacific/Antarctic ridge","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Earth and Planetary Science Letters"},"translated_abstract":null,"internal_url":"https://www.academia.edu/33449394/Mantle_dynamics_and_generation_of_a_geochemical_mantle_boundary_along_the_East_Pacific_Rise_Pacific_Antarctic_ridge","translated_internal_url":"","created_at":"2017-06-13T21:27:32.859-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53497859,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497859/thumbnails/1.jpg","file_name":"Mantle_dynamics_and_generation_of_a_geoc20170613-2939-1rnu7x6.pdf","download_url":"https://www.academia.edu/attachments/53497859/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mantle_dynamics_and_generation_of_a_geoc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497859/Mantle_dynamics_and_generation_of_a_geoc20170613-2939-1rnu7x6-libre.pdf?1497414697=\u0026response-content-disposition=attachment%3B+filename%3DMantle_dynamics_and_generation_of_a_geoc.pdf\u0026Expires=1734034235\u0026Signature=DPtrZc~g-C5z-gnCN9iazuDOWPw8dENVvpjWi9XezGTakbBpDuOVPMp39uvYWkqa5Gs0wmGqqhk-7~9c7XCw-1~QJrNWNp0e8tp6qFFtRhxHVfMieudxxJSn5tljCrZThCXMozXJHk3eONIcZ4ta9phyCXgpNQ6tuLinoFJzuTQNMTNLLoZf0IF01rB70~hz4NgaIE5C~GsoPAArx7G1B0VFXljJm6iCS-yacv2u~42j87IReB8fvF1VfFKw0EWLDIPpKWJu5ZPpyDKKnw4JkpXeaiqN3TkG7peUE1hitq3G1EEckhZILUakliMOFaV7HttesNLavF-FnMCMA0fRmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mantle_dynamics_and_generation_of_a_geochemical_mantle_boundary_along_the_East_Pacific_Rise_Pacific_Antarctic_ridge","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":null,"owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":53497859,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497859/thumbnails/1.jpg","file_name":"Mantle_dynamics_and_generation_of_a_geoc20170613-2939-1rnu7x6.pdf","download_url":"https://www.academia.edu/attachments/53497859/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mantle_dynamics_and_generation_of_a_geoc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497859/Mantle_dynamics_and_generation_of_a_geoc20170613-2939-1rnu7x6-libre.pdf?1497414697=\u0026response-content-disposition=attachment%3B+filename%3DMantle_dynamics_and_generation_of_a_geoc.pdf\u0026Expires=1734034235\u0026Signature=DPtrZc~g-C5z-gnCN9iazuDOWPw8dENVvpjWi9XezGTakbBpDuOVPMp39uvYWkqa5Gs0wmGqqhk-7~9c7XCw-1~QJrNWNp0e8tp6qFFtRhxHVfMieudxxJSn5tljCrZThCXMozXJHk3eONIcZ4ta9phyCXgpNQ6tuLinoFJzuTQNMTNLLoZf0IF01rB70~hz4NgaIE5C~GsoPAArx7G1B0VFXljJm6iCS-yacv2u~42j87IReB8fvF1VfFKw0EWLDIPpKWJu5ZPpyDKKnw4JkpXeaiqN3TkG7peUE1hitq3G1EEckhZILUakliMOFaV7HttesNLavF-FnMCMA0fRmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="33449393"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/33449393/SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No_1_and_Huangshandong_Cu_Ni_bearing_mafic_ultramafic_complexes_North_Xinjiang_and_geological_implications"><img alt="Research paper thumbnail of SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications" class="work-thumbnail" src="https://attachments.academia-assets.com/53497853/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/33449393/SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No_1_and_Huangshandong_Cu_Ni_bearing_mafic_ultramafic_complexes_North_Xinjiang_and_geological_implications">SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications</a></div><div class="wp-workCard_item"><span>Chinese Science Bulletin</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The SHRIMP zircon U-Pb dating was carried out and yielded 287±5 Ma (MSWD = 0.34) and 274±3 Ma (MS...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The SHRIMP zircon U-Pb dating was carried out and yielded 287±5 Ma (MSWD = 0.34) and 274±3 Ma (MSWD = 1.35) for the Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes. These ages are much more precise than pre-existing rock-mineral Rb-Sr, Sm-Nd and Re-Os isochron ages for the two complexes and constrain the timing of not only the complexes but also the magmatic Cu-Ni sulfide deposits more reliably. It is necessary to carefully reevaluate the previous chronological data for the complexes. The Cu-Ni-bearing mafic-ultramafic complexes have the ages similar to those of postcollisional A-type granites in the same area, implying that they could be related to the delamination of lithospheric mantle and upwelling and partial melting of asthenospheric mantle in postcollisional setting. Therefore, the Cu-Ni-bearing mafic-ultramafic complexes are a direct indicator of vertical growth of the continental crustal in the Central Asian Orogenic Belt.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e87a52994e4f5174981c12b9411bf0bc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53497853,&quot;asset_id&quot;:33449393,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53497853/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="33449393"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="33449393"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33449393; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33449393]").text(description); $(".js-view-count[data-work-id=33449393]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33449393; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='33449393']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 33449393, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e87a52994e4f5174981c12b9411bf0bc" } } $('.js-work-strip[data-work-id=33449393]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":33449393,"title":"SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications","translated_title":"","metadata":{"grobid_abstract":"The SHRIMP zircon U-Pb dating was carried out and yielded 287±5 Ma (MSWD = 0.34) and 274±3 Ma (MSWD = 1.35) for the Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes. These ages are much more precise than pre-existing rock-mineral Rb-Sr, Sm-Nd and Re-Os isochron ages for the two complexes and constrain the timing of not only the complexes but also the magmatic Cu-Ni sulfide deposits more reliably. It is necessary to carefully reevaluate the previous chronological data for the complexes. The Cu-Ni-bearing mafic-ultramafic complexes have the ages similar to those of postcollisional A-type granites in the same area, implying that they could be related to the delamination of lithospheric mantle and upwelling and partial melting of asthenospheric mantle in postcollisional setting. Therefore, the Cu-Ni-bearing mafic-ultramafic complexes are a direct indicator of vertical growth of the continental crustal in the Central Asian Orogenic Belt.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Chinese Science Bulletin","grobid_abstract_attachment_id":53497853},"translated_abstract":null,"internal_url":"https://www.academia.edu/33449393/SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No_1_and_Huangshandong_Cu_Ni_bearing_mafic_ultramafic_complexes_North_Xinjiang_and_geological_implications","translated_internal_url":"","created_at":"2017-06-13T21:27:32.758-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53497853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497853/thumbnails/1.jpg","file_name":"SHRIMP_zircon_U-Pb_ages_of_Kalatongke_No20170613-2939-up4t20.pdf","download_url":"https://www.academia.edu/attachments/53497853/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497853/SHRIMP_zircon_U-Pb_ages_of_Kalatongke_No20170613-2939-up4t20.pdf?1497414525=\u0026response-content-disposition=attachment%3B+filename%3DSHRIMP_zircon_U_Pb_ages_of_Kalatongke_No.pdf\u0026Expires=1734034235\u0026Signature=F0VdvXRQT974qOMJoYmIq-D1zSftEU48mT78LLidm7ofIy4tGDanT5sEXbbgRlK9ptMQBlJvF0GSHvEYHQzajpsBE2NC3ykS~OHgKfrOaY2o27TLlWVY-fug7tlmvNM8L8k3knOQ9z1vg2Zo-DGYh5GA5059aRBRZ6Ch6qUOUp5sqaQRtWXEhJLX0-dui9GkEuDh85Iow1XbN9Kjpz3W5voQtyyLkXyuTIt~s1aCCAxl3eP4Sp2b~vfs5rhsl~ahaF08VOStKTatbWXGWXNnmc5~00R5hmLUxXsgLu86mHrWf5ZDk2yrye9DfGpOMHUxqNNUchJWqMTB-g0vdB9bjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No_1_and_Huangshandong_Cu_Ni_bearing_mafic_ultramafic_complexes_North_Xinjiang_and_geological_implications","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"The SHRIMP zircon U-Pb dating was carried out and yielded 287±5 Ma (MSWD = 0.34) and 274±3 Ma (MSWD = 1.35) for the Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes. These ages are much more precise than pre-existing rock-mineral Rb-Sr, Sm-Nd and Re-Os isochron ages for the two complexes and constrain the timing of not only the complexes but also the magmatic Cu-Ni sulfide deposits more reliably. It is necessary to carefully reevaluate the previous chronological data for the complexes. The Cu-Ni-bearing mafic-ultramafic complexes have the ages similar to those of postcollisional A-type granites in the same area, implying that they could be related to the delamination of lithospheric mantle and upwelling and partial melting of asthenospheric mantle in postcollisional setting. Therefore, the Cu-Ni-bearing mafic-ultramafic complexes are a direct indicator of vertical growth of the continental crustal in the Central Asian Orogenic Belt.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":53497853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497853/thumbnails/1.jpg","file_name":"SHRIMP_zircon_U-Pb_ages_of_Kalatongke_No20170613-2939-up4t20.pdf","download_url":"https://www.academia.edu/attachments/53497853/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497853/SHRIMP_zircon_U-Pb_ages_of_Kalatongke_No20170613-2939-up4t20.pdf?1497414525=\u0026response-content-disposition=attachment%3B+filename%3DSHRIMP_zircon_U_Pb_ages_of_Kalatongke_No.pdf\u0026Expires=1734034235\u0026Signature=F0VdvXRQT974qOMJoYmIq-D1zSftEU48mT78LLidm7ofIy4tGDanT5sEXbbgRlK9ptMQBlJvF0GSHvEYHQzajpsBE2NC3ykS~OHgKfrOaY2o27TLlWVY-fug7tlmvNM8L8k3knOQ9z1vg2Zo-DGYh5GA5059aRBRZ6Ch6qUOUp5sqaQRtWXEhJLX0-dui9GkEuDh85Iow1XbN9Kjpz3W5voQtyyLkXyuTIt~s1aCCAxl3eP4Sp2b~vfs5rhsl~ahaF08VOStKTatbWXGWXNnmc5~00R5hmLUxXsgLu86mHrWf5ZDk2yrye9DfGpOMHUxqNNUchJWqMTB-g0vdB9bjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":191125,"name":"Partial Melting","url":"https://www.academia.edu/Documents/in/Partial_Melting"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="33449392"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/33449392/Lithospheric_and_asthenospheric_sources_of_lamprophyres_in_the_Jiaodong_Peninsula_A_consequence_of_rapid_lithospheric_thinning_beneath_the_North_China_Craton"><img alt="Research paper thumbnail of Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?" class="work-thumbnail" src="https://attachments.academia-assets.com/53498296/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/33449392/Lithospheric_and_asthenospheric_sources_of_lamprophyres_in_the_Jiaodong_Peninsula_A_consequence_of_rapid_lithospheric_thinning_beneath_the_North_China_Craton">Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lithospheric thinning and destruction of the North China Craton have been topics of active discus...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lithospheric thinning and destruction of the North China Craton have been topics of active discussion throughout the last two decades, but the specific processes associated with lithospheric thinning remains controversial. Here we report cooccurrence of low-Ti (TiO 2 &lt; 1.1 wt.%, Ti/Y &lt; 270) and high-Ti (TiO 2 &gt; 2 wt.%, Ti/Y &gt; 370) types of lamprophyres in the Jiaodong Peninsula, eastern North China Craton in order to address this issue. Low-Ti lamprophyres are depleted in HFSE and enriched in Pb, both typical subduction signatures. We suggest they were derived from partial melting of an ancient and enriched lithospheric mantle, which was previously modified by slab-derived hydrous fluids. In contrast, the high-Ti lamprophyre has trace element patterns similar to many oceanic basalts with depletion of Pb but little or no HFSE depletion. We infer that they originated from partial melting of a convective asthenospheric mantle. Zircon U-Pb dating shows that both types of lamprophyres intruded the eastern North China Craton about 121 Myr ago. Their indistinguishable ages thus appear to record a rapid transition from lithospheric to asthenospheric mantle source, suggesting further that the lithosphere beneath the eastern North China Craton was removed, potentially delaminated ca. 121 Myr ago beneath Jiaodong Peninsula. The detachment of cratonic lithosphere is likely related to continental arc-rifting which resulted from Palaeo-Pacific plate subduction in the Mesozoic.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cf91caa80800705338e3f2680ab3c772" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53498296,&quot;asset_id&quot;:33449392,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53498296/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="33449392"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="33449392"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33449392; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33449392]").text(description); $(".js-view-count[data-work-id=33449392]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33449392; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='33449392']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 33449392, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cf91caa80800705338e3f2680ab3c772" } } $('.js-work-strip[data-work-id=33449392]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":33449392,"title":"Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?","translated_title":"","metadata":{"grobid_abstract":"Lithospheric thinning and destruction of the North China Craton have been topics of active discussion throughout the last two decades, but the specific processes associated with lithospheric thinning remains controversial. Here we report cooccurrence of low-Ti (TiO 2 \u003c 1.1 wt.%, Ti/Y \u003c 270) and high-Ti (TiO 2 \u003e 2 wt.%, Ti/Y \u003e 370) types of lamprophyres in the Jiaodong Peninsula, eastern North China Craton in order to address this issue. Low-Ti lamprophyres are depleted in HFSE and enriched in Pb, both typical subduction signatures. We suggest they were derived from partial melting of an ancient and enriched lithospheric mantle, which was previously modified by slab-derived hydrous fluids. In contrast, the high-Ti lamprophyre has trace element patterns similar to many oceanic basalts with depletion of Pb but little or no HFSE depletion. We infer that they originated from partial melting of a convective asthenospheric mantle. Zircon U-Pb dating shows that both types of lamprophyres intruded the eastern North China Craton about 121 Myr ago. Their indistinguishable ages thus appear to record a rapid transition from lithospheric to asthenospheric mantle source, suggesting further that the lithosphere beneath the eastern North China Craton was removed, potentially delaminated ca. 121 Myr ago beneath Jiaodong Peninsula. The detachment of cratonic lithosphere is likely related to continental arc-rifting which resulted from Palaeo-Pacific plate subduction in the Mesozoic.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"grobid_abstract_attachment_id":53498296},"translated_abstract":null,"internal_url":"https://www.academia.edu/33449392/Lithospheric_and_asthenospheric_sources_of_lamprophyres_in_the_Jiaodong_Peninsula_A_consequence_of_rapid_lithospheric_thinning_beneath_the_North_China_Craton","translated_internal_url":"","created_at":"2017-06-13T21:27:32.629-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53498296,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53498296/thumbnails/1.jpg","file_name":"Lithospheric_and_asthenospheric_sources_20170613-2943-1ygcn81.pdf","download_url":"https://www.academia.edu/attachments/53498296/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithospheric_and_asthenospheric_sources.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53498296/Lithospheric_and_asthenospheric_sources_20170613-2943-1ygcn81-libre.pdf?1497418170=\u0026response-content-disposition=attachment%3B+filename%3DLithospheric_and_asthenospheric_sources.pdf\u0026Expires=1734034235\u0026Signature=USawMh-432Dz8je8FEVNz86oCV07T2NGvJibYykkcZ1YJ-rh2~U1aaAsbVxPbD9l5wwXsTQSrpIeNb-LzMx6SWXiDwDxXwAbG3AC03rzhIHYE0LP5PViGoXKQPYCLBKRwkP762ADPQwZ0hEqdeVpgAu~ZjEHt-YXzqB8PLvGKfXk1nfwQn24DB8vWmEZRzonxLguux5mgguKbbqcPmb3T4I~yOGYy4zFq2TbqNChD2U8dZVy473cKKT8p3ofq97nxPA6~Jm26wAxMU3iG-mYyeiA1NGM4LXgcasFnh9SnRvpUKlMXxcexUodHofUTq9uiKmLFr1tbCWX~ul31RiWgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lithospheric_and_asthenospheric_sources_of_lamprophyres_in_the_Jiaodong_Peninsula_A_consequence_of_rapid_lithospheric_thinning_beneath_the_North_China_Craton","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"Lithospheric thinning and destruction of the North China Craton have been topics of active discussion throughout the last two decades, but the specific processes associated with lithospheric thinning remains controversial. Here we report cooccurrence of low-Ti (TiO 2 \u003c 1.1 wt.%, Ti/Y \u003c 270) and high-Ti (TiO 2 \u003e 2 wt.%, Ti/Y \u003e 370) types of lamprophyres in the Jiaodong Peninsula, eastern North China Craton in order to address this issue. Low-Ti lamprophyres are depleted in HFSE and enriched in Pb, both typical subduction signatures. We suggest they were derived from partial melting of an ancient and enriched lithospheric mantle, which was previously modified by slab-derived hydrous fluids. In contrast, the high-Ti lamprophyre has trace element patterns similar to many oceanic basalts with depletion of Pb but little or no HFSE depletion. We infer that they originated from partial melting of a convective asthenospheric mantle. Zircon U-Pb dating shows that both types of lamprophyres intruded the eastern North China Craton about 121 Myr ago. Their indistinguishable ages thus appear to record a rapid transition from lithospheric to asthenospheric mantle source, suggesting further that the lithosphere beneath the eastern North China Craton was removed, potentially delaminated ca. 121 Myr ago beneath Jiaodong Peninsula. The detachment of cratonic lithosphere is likely related to continental arc-rifting which resulted from Palaeo-Pacific plate subduction in the Mesozoic.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":53498296,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53498296/thumbnails/1.jpg","file_name":"Lithospheric_and_asthenospheric_sources_20170613-2943-1ygcn81.pdf","download_url":"https://www.academia.edu/attachments/53498296/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithospheric_and_asthenospheric_sources.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53498296/Lithospheric_and_asthenospheric_sources_20170613-2943-1ygcn81-libre.pdf?1497418170=\u0026response-content-disposition=attachment%3B+filename%3DLithospheric_and_asthenospheric_sources.pdf\u0026Expires=1734034235\u0026Signature=USawMh-432Dz8je8FEVNz86oCV07T2NGvJibYykkcZ1YJ-rh2~U1aaAsbVxPbD9l5wwXsTQSrpIeNb-LzMx6SWXiDwDxXwAbG3AC03rzhIHYE0LP5PViGoXKQPYCLBKRwkP762ADPQwZ0hEqdeVpgAu~ZjEHt-YXzqB8PLvGKfXk1nfwQn24DB8vWmEZRzonxLguux5mgguKbbqcPmb3T4I~yOGYy4zFq2TbqNChD2U8dZVy473cKKT8p3ofq97nxPA6~Jm26wAxMU3iG-mYyeiA1NGM4LXgcasFnh9SnRvpUKlMXxcexUodHofUTq9uiKmLFr1tbCWX~ul31RiWgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301610"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301610/Growing_magma_chambers_control_the_distribution_of_small_scale_flood_basalts"><img alt="Research paper thumbnail of Growing magma chambers control the distribution of small-scale flood basalts" class="work-thumbnail" src="https://attachments.academia-assets.com/48792447/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301610/Growing_magma_chambers_control_the_distribution_of_small_scale_flood_basalts">Growing magma chambers control the distribution of small-scale flood basalts</a></div><div class="wp-workCard_item"><span>Scientific reports</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-tem...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 &amp;gt; 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4f619a50bd197c3edefad3a4be00c734" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48792447,&quot;asset_id&quot;:28301610,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48792447/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301610"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301610"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301610; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301610]").text(description); $(".js-view-count[data-work-id=28301610]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301610; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301610']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301610, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4f619a50bd197c3edefad3a4be00c734" } } $('.js-work-strip[data-work-id=28301610]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301610,"title":"Growing magma chambers control the distribution of small-scale flood basalts","translated_title":"","metadata":{"abstract":"Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 \u0026gt; 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of c...","ai_title_tag":"Growth of Magma Chambers Influences Small-Scale Flood Basalts","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Scientific reports"},"translated_abstract":"Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 \u0026gt; 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of c...","internal_url":"https://www.academia.edu/28301610/Growing_magma_chambers_control_the_distribution_of_small_scale_flood_basalts","translated_internal_url":"","created_at":"2016-09-07T00:09:07.230-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096663,"work_id":28301610,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Growing magma chambers control the distribution of small-scale flood basalts"}],"downloadable_attachments":[{"id":48792447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48792447/thumbnails/1.jpg","file_name":"2015-Yu_X-SR-srep16824.pdf","download_url":"https://www.academia.edu/attachments/48792447/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Growing_magma_chambers_control_the_distr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48792447/2015-Yu_X-SR-srep16824-libre.pdf?1473753123=\u0026response-content-disposition=attachment%3B+filename%3DGrowing_magma_chambers_control_the_distr.pdf\u0026Expires=1734034235\u0026Signature=CRyEILQd8MT4-ZMJCDc6Jo7h4Y9Ea5hKj6~xy8ccybwfio5YN7moTSJ5vT3p0A7g2HqMt5l56Ry3Agfhz5~LkPdy47apMfLEZVeeJMTy~LHYIQ2lHrGa~jRfTYwRjW3bnOpq~Gsf5KPqcPxUiduEriHj9Lj-uw~QLo6GQzfvclglzVB2UCxQ-Hd9xQ-DlVDr0CU0NtP8l5dOt3deT1KoVfJUKaUqhCQbJJlZTnGPvwe0nddwPvCqEXEUeApbWs1k~07t241BngywDjZMt8UaHveVxaTSC6fzIBUUKc4KIXQJB4QgSBkJfep25MMHpBKjbaK9KawYD8pf~961mIXLrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Growing_magma_chambers_control_the_distribution_of_small_scale_flood_basalts","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 \u0026gt; 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of c...","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48792447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48792447/thumbnails/1.jpg","file_name":"2015-Yu_X-SR-srep16824.pdf","download_url":"https://www.academia.edu/attachments/48792447/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Growing_magma_chambers_control_the_distr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48792447/2015-Yu_X-SR-srep16824-libre.pdf?1473753123=\u0026response-content-disposition=attachment%3B+filename%3DGrowing_magma_chambers_control_the_distr.pdf\u0026Expires=1734034235\u0026Signature=CRyEILQd8MT4-ZMJCDc6Jo7h4Y9Ea5hKj6~xy8ccybwfio5YN7moTSJ5vT3p0A7g2HqMt5l56Ry3Agfhz5~LkPdy47apMfLEZVeeJMTy~LHYIQ2lHrGa~jRfTYwRjW3bnOpq~Gsf5KPqcPxUiduEriHj9Lj-uw~QLo6GQzfvclglzVB2UCxQ-Hd9xQ-DlVDr0CU0NtP8l5dOt3deT1KoVfJUKaUqhCQbJJlZTnGPvwe0nddwPvCqEXEUeApbWs1k~07t241BngywDjZMt8UaHveVxaTSC6fzIBUUKc4KIXQJB4QgSBkJfep25MMHpBKjbaK9KawYD8pf~961mIXLrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301609"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301609/Late_Paleozoic_vertical_of_continental_crust_around_the_Junggar_Basin_Xinjiang_China_Part_I_Timing_of_post_collisional_plutonism"><img alt="Research paper thumbnail of Late Paleozoic vertical of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301609/Late_Paleozoic_vertical_of_continental_crust_around_the_Junggar_Basin_Xinjiang_China_Part_I_Timing_of_post_collisional_plutonism">Late Paleozoic vertical of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism</a></div><div class="wp-workCard_item"><span>Acta Petrologica Sinica</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301609"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301609"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301609; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301609]").text(description); $(".js-view-count[data-work-id=28301609]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301609; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301609']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301609, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28301609]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301609,"title":"Late Paleozoic vertical of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_name":"Acta Petrologica Sinica"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/28301609/Late_Paleozoic_vertical_of_continental_crust_around_the_Junggar_Basin_Xinjiang_China_Part_I_Timing_of_post_collisional_plutonism","translated_internal_url":"","created_at":"2016-09-07T00:09:07.036-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096685,"work_id":28301609,"tagging_user_id":53070680,"tagged_user_id":126590534,"co_author_invite_id":5366373,"email":"c***i@gmail.com","affiliation":"Zhejiang University","display_order":0,"name":"Lei Zhang","title":"Late Paleozoic vertical of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism"}],"downloadable_attachments":[],"slug":"Late_Paleozoic_vertical_of_continental_crust_around_the_Junggar_Basin_Xinjiang_China_Part_I_Timing_of_post_collisional_plutonism","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301608"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301608/Geochronology_and_geochemistry_of_the_Qinling_Group_in_the_eastern_Qinling_Orogen"><img alt="Research paper thumbnail of Geochronology and geochemistry of the Qinling Group in the eastern Qinling Orogen" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301608/Geochronology_and_geochemistry_of_the_Qinling_Group_in_the_eastern_Qinling_Orogen">Geochronology and geochemistry of the Qinling Group in the eastern Qinling Orogen</a></div><div class="wp-workCard_item"><span>Acta Petrologica Sinica</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301608"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301608"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301608; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301608]").text(description); $(".js-view-count[data-work-id=28301608]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301608; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301608']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301608, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28301608]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301608,"title":"Geochronology and geochemistry of the Qinling Group in the eastern Qinling Orogen","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_name":"Acta Petrologica Sinica"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/28301608/Geochronology_and_geochemistry_of_the_Qinling_Group_in_the_eastern_Qinling_Orogen","translated_internal_url":"","created_at":"2016-09-07T00:09:06.884-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096684,"work_id":28301608,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366372,"email":"j***u@hotmail.com","display_order":0,"name":"J. Qiu","title":"Geochronology and geochemistry of the Qinling Group in the eastern Qinling Orogen"}],"downloadable_attachments":[],"slug":"Geochronology_and_geochemistry_of_the_Qinling_Group_in_the_eastern_Qinling_Orogen","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301607"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301607/Sources_of_Cenozoic_alkaline_basalts_in_eastern_China_Enriched_asthenosphere_produced_by_carbonatite_metasomatism"><img alt="Research paper thumbnail of Sources of Cenozoic alkaline basalts in eastern China: Enriched asthenosphere produced by carbonatite metasomatism" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301607/Sources_of_Cenozoic_alkaline_basalts_in_eastern_China_Enriched_asthenosphere_produced_by_carbonatite_metasomatism">Sources of Cenozoic alkaline basalts in eastern China: Enriched asthenosphere produced by carbonatite metasomatism</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301607"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301607"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301607; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301607]").text(description); $(".js-view-count[data-work-id=28301607]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301607; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301607']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301607, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28301607]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301607,"title":"Sources of Cenozoic alkaline basalts in eastern China: Enriched asthenosphere produced by carbonatite metasomatism","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/28301607/Sources_of_Cenozoic_alkaline_basalts_in_eastern_China_Enriched_asthenosphere_produced_by_carbonatite_metasomatism","translated_internal_url":"","created_at":"2016-09-07T00:09:06.686-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096665,"work_id":28301607,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Sources of Cenozoic alkaline basalts in eastern China: Enriched asthenosphere produced by carbonatite metasomatism"}],"downloadable_attachments":[],"slug":"Sources_of_Cenozoic_alkaline_basalts_in_eastern_China_Enriched_asthenosphere_produced_by_carbonatite_metasomatism","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301606"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301606/Magmatic_recharge_in_continental_flood_basalts_Insights_from_the_Chifeng_igneous_province_in_Inner_Mongolia"><img alt="Research paper thumbnail of Magmatic recharge in continental flood basalts: Insights from the Chifeng igneous province in Inner Mongolia" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301606/Magmatic_recharge_in_continental_flood_basalts_Insights_from_the_Chifeng_igneous_province_in_Inner_Mongolia">Magmatic recharge in continental flood basalts: Insights from the Chifeng igneous province in Inner Mongolia</a></div><div class="wp-workCard_item"><span>Geochemistry, Geophysics, Geosystems</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301606"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301606"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301606; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301606]").text(description); $(".js-view-count[data-work-id=28301606]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301606; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301606']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301606, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28301606]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301606,"title":"Magmatic recharge in continental flood basalts: Insights from the Chifeng igneous province in Inner Mongolia","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Geochemistry, Geophysics, Geosystems"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/28301606/Magmatic_recharge_in_continental_flood_basalts_Insights_from_the_Chifeng_igneous_province_in_Inner_Mongolia","translated_internal_url":"","created_at":"2016-09-07T00:09:06.511-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096662,"work_id":28301606,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Magmatic recharge in continental flood basalts: Insights from the Chifeng igneous province in Inner Mongolia"}],"downloadable_attachments":[],"slug":"Magmatic_recharge_in_continental_flood_basalts_Insights_from_the_Chifeng_igneous_province_in_Inner_Mongolia","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301605"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301605/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China"><img alt="Research paper thumbnail of Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China" class="work-thumbnail" src="https://attachments.academia-assets.com/48633921/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301605/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China">Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The genesis of intra-plate alkaline basalts remains controversial, and three sources have been pr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of &quot;carbonatitic fingerprints.&quot; Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cc28b4b803c2d7a409873b66c8a191b6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633921,&quot;asset_id&quot;:28301605,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633921/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301605"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301605"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301605; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301605]").text(description); $(".js-view-count[data-work-id=28301605]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301605; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301605']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301605, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cc28b4b803c2d7a409873b66c8a191b6" } } $('.js-work-strip[data-work-id=28301605]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301605,"title":"Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China","translated_title":"","metadata":{"grobid_abstract":"The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of \"carbonatitic fingerprints.\" Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":48633921},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301605/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China","translated_internal_url":"","created_at":"2016-09-07T00:09:06.402-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096664,"work_id":28301605,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China"}],"downloadable_attachments":[{"id":48633921,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633921/thumbnails/1.jpg","file_name":"Carbonated_mantle_sources_for_Cenozoic_i20160907-26726-o03wsc.pdf","download_url":"https://www.academia.edu/attachments/48633921/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Carbonated_mantle_sources_for_Cenozoic_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633921/Carbonated_mantle_sources_for_Cenozoic_i20160907-26726-o03wsc-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DCarbonated_mantle_sources_for_Cenozoic_i.pdf\u0026Expires=1734034235\u0026Signature=WZf9FTlUKk2~LlGx8fuhAIMiPoeokUMhvDaNrxiJgYEpRvU~wInrFn7eUx3dVgrKtCBqmiJOW-vWtm5P2nW9PBPJKWW9A6kT0yF5KfQUv18JMIgZiDnxRNebFAocr~Ogi2fGuIuLrzEhRtBzO5ufvYJgRs-VjH5tyjY~5s8Wet6aiohcu3fIDIDaLINVpUknN9jFi~qkgpVcID9adRYgZKYleUsnL77b5MnlCd9HxuUoYreESoOBeFgfImiV~YHDGzarF2bcc1GzzEZDJTirNZ-K4DGED6BW-0i6FtDnRMhSX8KF9kOw93IOib4LI6j5loYeaQhx2jYt-WeKlCDUnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of \"carbonatitic fingerprints.\" Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633921,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633921/thumbnails/1.jpg","file_name":"Carbonated_mantle_sources_for_Cenozoic_i20160907-26726-o03wsc.pdf","download_url":"https://www.academia.edu/attachments/48633921/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Carbonated_mantle_sources_for_Cenozoic_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633921/Carbonated_mantle_sources_for_Cenozoic_i20160907-26726-o03wsc-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DCarbonated_mantle_sources_for_Cenozoic_i.pdf\u0026Expires=1734034235\u0026Signature=WZf9FTlUKk2~LlGx8fuhAIMiPoeokUMhvDaNrxiJgYEpRvU~wInrFn7eUx3dVgrKtCBqmiJOW-vWtm5P2nW9PBPJKWW9A6kT0yF5KfQUv18JMIgZiDnxRNebFAocr~Ogi2fGuIuLrzEhRtBzO5ufvYJgRs-VjH5tyjY~5s8Wet6aiohcu3fIDIDaLINVpUknN9jFi~qkgpVcID9adRYgZKYleUsnL77b5MnlCd9HxuUoYreESoOBeFgfImiV~YHDGzarF2bcc1GzzEZDJTirNZ-K4DGED6BW-0i6FtDnRMhSX8KF9kOw93IOib4LI6j5loYeaQhx2jYt-WeKlCDUnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":16024,"name":"Chemical Geology","url":"https://www.academia.edu/Documents/in/Chemical_Geology"},{"id":274263,"name":"Rare Earth Element Mineralization","url":"https://www.academia.edu/Documents/in/Rare_Earth_Element_Mineralization"},{"id":679783,"name":"Boolean Satisfiability","url":"https://www.academia.edu/Documents/in/Boolean_Satisfiability"},{"id":1464622,"name":"Carbonatite","url":"https://www.academia.edu/Documents/in/Carbonatite"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301604"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301604/IODP_Expedition_330_Drilling_the_Louisville_Seamount_Trail_in_the_SW_Pacific"><img alt="Research paper thumbnail of IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific" class="work-thumbnail" src="https://attachments.academia-assets.com/48633953/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301604/IODP_Expedition_330_Drilling_the_Louisville_Seamount_Trail_in_the_SW_Pacific">IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific</a></div><div class="wp-workCard_item"><span>Scientific Drilling</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Deep-Earth convection can be understood by studying hotspot volcanoes that form where mantle plum...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Deep-Earth convection can be understood by studying hotspot volcanoes that form where mantle plumes rise up and intersect the lithosphere, the Earth&#39;s rigid outer layer. Hotspots characteristically leave age-progressive trails of volcanoes and seamounts on top of oceanic lithosphere, which in turn allow us to decipher the motion of these plates relative to &quot;fixed&quot; deep-mantle plumes, and their (isotope) geochemistry provides insights into the long-term evolution of mantle source regions. However, it is strongly suggested that the Hawaiian mantle plume moved ~15° south between 80 and 50 million years ago. This raises a fundamental question about other hotspot systems in the Pacific, whether or not their mantle plumes experienced a similar amount and direction of motion. Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamounts showed that the Louisville hotspot in the South Pacific behaved in a different manner, as its mantle plume remained more or less fixed around 48°S latitude during that same time period. Our findings demonstrate that the Pacific hotspots move independently and that their trajectories may be controlled by differences in subduction zone geometry. Additionally, shipboard geochemistry data shows that, in contrast to Hawaiian volcanoes, the construction of the Louisville Seamounts doesn&#39;t involve a shield-building phase dominated by tholeiitic lavas, and trace elements confirm the rather homogenous nature of the Louisville mantle source. Both observations set Louisville apart from the Hawaiian-Emperor seamount trail, whereby the latter has been erupting abundant tholeiites (characteristically up to 95% in volume) and which exhibit a large variability in (isotope) geochemistry and their mantle source components.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="486f4c22d8ad3c809742920024ac15e1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633953,&quot;asset_id&quot;:28301604,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633953/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301604"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301604"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301604; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301604]").text(description); $(".js-view-count[data-work-id=28301604]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301604; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301604']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301604, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "486f4c22d8ad3c809742920024ac15e1" } } $('.js-work-strip[data-work-id=28301604]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301604,"title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific","translated_title":"","metadata":{"grobid_abstract":"Deep-Earth convection can be understood by studying hotspot volcanoes that form where mantle plumes rise up and intersect the lithosphere, the Earth's rigid outer layer. Hotspots characteristically leave age-progressive trails of volcanoes and seamounts on top of oceanic lithosphere, which in turn allow us to decipher the motion of these plates relative to \"fixed\" deep-mantle plumes, and their (isotope) geochemistry provides insights into the long-term evolution of mantle source regions. However, it is strongly suggested that the Hawaiian mantle plume moved ~15° south between 80 and 50 million years ago. This raises a fundamental question about other hotspot systems in the Pacific, whether or not their mantle plumes experienced a similar amount and direction of motion. Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamounts showed that the Louisville hotspot in the South Pacific behaved in a different manner, as its mantle plume remained more or less fixed around 48°S latitude during that same time period. Our findings demonstrate that the Pacific hotspots move independently and that their trajectories may be controlled by differences in subduction zone geometry. Additionally, shipboard geochemistry data shows that, in contrast to Hawaiian volcanoes, the construction of the Louisville Seamounts doesn't involve a shield-building phase dominated by tholeiitic lavas, and trace elements confirm the rather homogenous nature of the Louisville mantle source. Both observations set Louisville apart from the Hawaiian-Emperor seamount trail, whereby the latter has been erupting abundant tholeiites (characteristically up to 95% in volume) and which exhibit a large variability in (isotope) geochemistry and their mantle source components.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Scientific Drilling","grobid_abstract_attachment_id":48633953},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301604/IODP_Expedition_330_Drilling_the_Louisville_Seamount_Trail_in_the_SW_Pacific","translated_internal_url":"","created_at":"2016-09-07T00:09:06.270-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096666,"work_id":28301604,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366364,"email":"d***a@ucsd.edu","display_order":0,"name":"D. Ebuna","title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific"},{"id":24096669,"work_id":28301604,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366365,"email":"l***s@durham.ac.uk","display_order":4194304,"name":"L. Kalnins","title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific"},{"id":24096672,"work_id":28301604,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366366,"email":"s***i@unimelb.edu.au","display_order":6291456,"name":"S. Machida","title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific"},{"id":24096675,"work_id":28301604,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366367,"email":"n***g@unimelb.edu.au","display_order":7340032,"name":"Nicola Pressling","title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific"},{"id":24096678,"work_id":28301604,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366368,"email":"s***h@uni-bremen.de","display_order":7864320,"name":"Svenja Rausch","title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific"}],"downloadable_attachments":[{"id":48633953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633953/thumbnails/1.jpg","file_name":"IODP_Expedition_330_Drilling_the_Louisvi20160907-11755-sbnpd1.pdf","download_url":"https://www.academia.edu/attachments/48633953/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"IODP_Expedition_330_Drilling_the_Louisvi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633953/IODP_Expedition_330_Drilling_the_Louisvi20160907-11755-sbnpd1-libre.pdf?1473232868=\u0026response-content-disposition=attachment%3B+filename%3DIODP_Expedition_330_Drilling_the_Louisvi.pdf\u0026Expires=1734034235\u0026Signature=V3J64RjpToP1p1mVcDHEYWInJkYnF-h2MvafKPq7gij2wopx36uWCq07YYy6jUX9Nexhz3uyivsOxU2t64EAb3NmpoCzwA3qCuqYEDmMbiSEY3vfRdilqgbvhoM5BzkehDgEYaC7K8fdnwbUUQ7si58ZbGlnrKfMLPUSToKgCNa4fYh1OQzAQHoKUKylSpXL9Armur8qqed-ArsfLCWxCqOG-0pAObLVdPA7pYdybw1JYiVNc2ybnoCEoXH3SAK5U3ivAtfR8Ihfr7PMALs83ONe0wbwSOaJhyZZrClYJlj45HBlW3DWOf67Qg~JVYL1MJzAf1xnBslrrLEtfRPXng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"IODP_Expedition_330_Drilling_the_Louisville_Seamount_Trail_in_the_SW_Pacific","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Deep-Earth convection can be understood by studying hotspot volcanoes that form where mantle plumes rise up and intersect the lithosphere, the Earth's rigid outer layer. Hotspots characteristically leave age-progressive trails of volcanoes and seamounts on top of oceanic lithosphere, which in turn allow us to decipher the motion of these plates relative to \"fixed\" deep-mantle plumes, and their (isotope) geochemistry provides insights into the long-term evolution of mantle source regions. However, it is strongly suggested that the Hawaiian mantle plume moved ~15° south between 80 and 50 million years ago. This raises a fundamental question about other hotspot systems in the Pacific, whether or not their mantle plumes experienced a similar amount and direction of motion. Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamounts showed that the Louisville hotspot in the South Pacific behaved in a different manner, as its mantle plume remained more or less fixed around 48°S latitude during that same time period. Our findings demonstrate that the Pacific hotspots move independently and that their trajectories may be controlled by differences in subduction zone geometry. Additionally, shipboard geochemistry data shows that, in contrast to Hawaiian volcanoes, the construction of the Louisville Seamounts doesn't involve a shield-building phase dominated by tholeiitic lavas, and trace elements confirm the rather homogenous nature of the Louisville mantle source. Both observations set Louisville apart from the Hawaiian-Emperor seamount trail, whereby the latter has been erupting abundant tholeiites (characteristically up to 95% in volume) and which exhibit a large variability in (isotope) geochemistry and their mantle source components.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633953/thumbnails/1.jpg","file_name":"IODP_Expedition_330_Drilling_the_Louisvi20160907-11755-sbnpd1.pdf","download_url":"https://www.academia.edu/attachments/48633953/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"IODP_Expedition_330_Drilling_the_Louisvi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633953/IODP_Expedition_330_Drilling_the_Louisvi20160907-11755-sbnpd1-libre.pdf?1473232868=\u0026response-content-disposition=attachment%3B+filename%3DIODP_Expedition_330_Drilling_the_Louisvi.pdf\u0026Expires=1734034235\u0026Signature=V3J64RjpToP1p1mVcDHEYWInJkYnF-h2MvafKPq7gij2wopx36uWCq07YYy6jUX9Nexhz3uyivsOxU2t64EAb3NmpoCzwA3qCuqYEDmMbiSEY3vfRdilqgbvhoM5BzkehDgEYaC7K8fdnwbUUQ7si58ZbGlnrKfMLPUSToKgCNa4fYh1OQzAQHoKUKylSpXL9Armur8qqed-ArsfLCWxCqOG-0pAObLVdPA7pYdybw1JYiVNc2ybnoCEoXH3SAK5U3ivAtfR8Ihfr7PMALs83ONe0wbwSOaJhyZZrClYJlj45HBlW3DWOf67Qg~JVYL1MJzAf1xnBslrrLEtfRPXng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301603"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301603/Limited_latitudinal_mantle_plume_motion_for_the_Louisville_hotspot"><img alt="Research paper thumbnail of Limited latitudinal mantle plume motion for the Louisville hotspot" class="work-thumbnail" src="https://attachments.academia-assets.com/48633917/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301603/Limited_latitudinal_mantle_plume_motion_for_the_Louisville_hotspot">Limited latitudinal mantle plume motion for the Louisville hotspot</a></div><div class="wp-workCard_item"><span>Nature Geoscience</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave na...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave narrow trails of volcanic seamounts as a tectonic plate moves over their location. These seamount trails are excellent recorders of Earth&#39;s deep processes and allow us to untangle ancient mantle plume motions. During ascent it is likely that mantle plumes are pushed away from their vertical upwelling trajectories by mantle convection forces. It has been proposed that a large-scale lateral displacement, termed the mantle wind, existed in the Pacific between about 80 and 50 million years ago, and shifted the Hawaiian mantle plume southwards by about 15 • of latitude. Here we use 40 Ar/ 39 Ar age dating and palaeomagnetic inclination data from four seamounts associated with the Louisville hotspot in the South Pacific Ocean to show that this hotspot has been relatively stable in terms of its location. Specifically, the Louisville hotspot-the southern hemisphere counterpart of Hawai&#39;i-has remained within 3-5 • of its present-day latitude of about 51 • S between 70 and 50 million years ago. Although we cannot exclude a more significant southward motion before that time, we suggest that the Louisville and Hawaiian hotspots are moving independently, and not as part of a large-scale mantle wind in the Pacific.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ddd60e3798317804beb4f77d18fb981c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633917,&quot;asset_id&quot;:28301603,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633917/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301603"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301603"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301603; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301603]").text(description); $(".js-view-count[data-work-id=28301603]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301603; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301603']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301603, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ddd60e3798317804beb4f77d18fb981c" } } $('.js-work-strip[data-work-id=28301603]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301603,"title":"Limited latitudinal mantle plume motion for the Louisville hotspot","translated_title":"","metadata":{"grobid_abstract":"Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave narrow trails of volcanic seamounts as a tectonic plate moves over their location. These seamount trails are excellent recorders of Earth's deep processes and allow us to untangle ancient mantle plume motions. During ascent it is likely that mantle plumes are pushed away from their vertical upwelling trajectories by mantle convection forces. It has been proposed that a large-scale lateral displacement, termed the mantle wind, existed in the Pacific between about 80 and 50 million years ago, and shifted the Hawaiian mantle plume southwards by about 15 • of latitude. Here we use 40 Ar/ 39 Ar age dating and palaeomagnetic inclination data from four seamounts associated with the Louisville hotspot in the South Pacific Ocean to show that this hotspot has been relatively stable in terms of its location. Specifically, the Louisville hotspot-the southern hemisphere counterpart of Hawai'i-has remained within 3-5 • of its present-day latitude of about 51 • S between 70 and 50 million years ago. Although we cannot exclude a more significant southward motion before that time, we suggest that the Louisville and Hawaiian hotspots are moving independently, and not as part of a large-scale mantle wind in the Pacific.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Nature Geoscience","grobid_abstract_attachment_id":48633917},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301603/Limited_latitudinal_mantle_plume_motion_for_the_Louisville_hotspot","translated_internal_url":"","created_at":"2016-09-07T00:09:06.123-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096668,"work_id":28301603,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366364,"email":"d***a@ucsd.edu","display_order":0,"name":"D. Ebuna","title":"Limited latitudinal mantle plume motion for the Louisville hotspot"},{"id":24096671,"work_id":28301603,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366365,"email":"l***s@durham.ac.uk","display_order":4194304,"name":"L. Kalnins","title":"Limited latitudinal mantle plume motion for the Louisville hotspot"},{"id":24096674,"work_id":28301603,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366366,"email":"s***i@unimelb.edu.au","display_order":6291456,"name":"S. Machida","title":"Limited latitudinal mantle plume motion for the Louisville hotspot"},{"id":24096677,"work_id":28301603,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366367,"email":"n***g@unimelb.edu.au","display_order":7340032,"name":"Nicola Pressling","title":"Limited latitudinal mantle plume motion for the Louisville hotspot"},{"id":24096680,"work_id":28301603,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366368,"email":"s***h@uni-bremen.de","display_order":7864320,"name":"Svenja Rausch","title":"Limited latitudinal mantle plume motion for the Louisville hotspot"}],"downloadable_attachments":[{"id":48633917,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633917/thumbnails/1.jpg","file_name":"Limited_latitudinal_mantle_plume_motion_20160907-7765-1u8g8eb.pdf","download_url":"https://www.academia.edu/attachments/48633917/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Limited_latitudinal_mantle_plume_motion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633917/Limited_latitudinal_mantle_plume_motion_20160907-7765-1u8g8eb-libre.pdf?1473232863=\u0026response-content-disposition=attachment%3B+filename%3DLimited_latitudinal_mantle_plume_motion.pdf\u0026Expires=1734034235\u0026Signature=cqQgYBH8rsJYkm1BbaetadS~hDeTOWQYItSGn4FLcUSdTW0A3B0wxiYrX2DLd-22dYfy7N9xVo5ZY22YDuknKd8Awjmmd40VXPprrQtXGOnndf6tg-PBd2VBplxzKBH8fcu5bQjBQazDfRaIGeQoauWprwAXDJxHkE1J9WSCA-lvy4YSw6BDfTvFtZZmSBmOme3EFPvpx3GMwAPGcSBOANieF1aQy7vqfFLdKHXdlGIbIAmkSIzUpq999O4nIS~ufTTe3Crdg6IuP70ixsXJrHvQCwlp5mMbdeq-WqEuRORdZ8acZ-oVjU1I~maGvlhmZEzM9GEAGpNm4rE7IjTBHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Limited_latitudinal_mantle_plume_motion_for_the_Louisville_hotspot","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave narrow trails of volcanic seamounts as a tectonic plate moves over their location. These seamount trails are excellent recorders of Earth's deep processes and allow us to untangle ancient mantle plume motions. During ascent it is likely that mantle plumes are pushed away from their vertical upwelling trajectories by mantle convection forces. It has been proposed that a large-scale lateral displacement, termed the mantle wind, existed in the Pacific between about 80 and 50 million years ago, and shifted the Hawaiian mantle plume southwards by about 15 • of latitude. Here we use 40 Ar/ 39 Ar age dating and palaeomagnetic inclination data from four seamounts associated with the Louisville hotspot in the South Pacific Ocean to show that this hotspot has been relatively stable in terms of its location. Specifically, the Louisville hotspot-the southern hemisphere counterpart of Hawai'i-has remained within 3-5 • of its present-day latitude of about 51 • S between 70 and 50 million years ago. Although we cannot exclude a more significant southward motion before that time, we suggest that the Louisville and Hawaiian hotspots are moving independently, and not as part of a large-scale mantle wind in the Pacific.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633917,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633917/thumbnails/1.jpg","file_name":"Limited_latitudinal_mantle_plume_motion_20160907-7765-1u8g8eb.pdf","download_url":"https://www.academia.edu/attachments/48633917/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Limited_latitudinal_mantle_plume_motion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633917/Limited_latitudinal_mantle_plume_motion_20160907-7765-1u8g8eb-libre.pdf?1473232863=\u0026response-content-disposition=attachment%3B+filename%3DLimited_latitudinal_mantle_plume_motion.pdf\u0026Expires=1734034235\u0026Signature=cqQgYBH8rsJYkm1BbaetadS~hDeTOWQYItSGn4FLcUSdTW0A3B0wxiYrX2DLd-22dYfy7N9xVo5ZY22YDuknKd8Awjmmd40VXPprrQtXGOnndf6tg-PBd2VBplxzKBH8fcu5bQjBQazDfRaIGeQoauWprwAXDJxHkE1J9WSCA-lvy4YSw6BDfTvFtZZmSBmOme3EFPvpx3GMwAPGcSBOANieF1aQy7vqfFLdKHXdlGIbIAmkSIzUpq999O4nIS~ufTTe3Crdg6IuP70ixsXJrHvQCwlp5mMbdeq-WqEuRORdZ8acZ-oVjU1I~maGvlhmZEzM9GEAGpNm4rE7IjTBHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":15989,"name":"Igneous petrology","url":"https://www.academia.edu/Documents/in/Igneous_petrology"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":32312,"name":"Palaeomagnetism","url":"https://www.academia.edu/Documents/in/Palaeomagnetism"},{"id":181670,"name":"Mantle plumes","url":"https://www.academia.edu/Documents/in/Mantle_plumes"},{"id":610091,"name":"Louisville Seamount Chain","url":"https://www.academia.edu/Documents/in/Louisville_Seamount_Chain"},{"id":870062,"name":"HotSpot","url":"https://www.academia.edu/Documents/in/HotSpot"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301602"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301602/Genesis_of_Cenozoic_low_Ca_alkaline_basalts_in_the_Nanjing_basaltic_field_eastern_China_The_case_for_mantle_xenolith_magma_interaction"><img alt="Research paper thumbnail of Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: The case for mantle xenolith-magma interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/48633934/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301602/Genesis_of_Cenozoic_low_Ca_alkaline_basalts_in_the_Nanjing_basaltic_field_eastern_China_The_case_for_mantle_xenolith_magma_interaction">Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: The case for mantle xenolith-magma interaction</a></div><div class="wp-workCard_item"><span>Geochemistry, Geophysics, Geosystems</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">1] Although peridotite xenoliths are common in alkaline basalts, it is still unclear whether the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">1] Although peridotite xenoliths are common in alkaline basalts, it is still unclear whether the chemical compositions of their host rocks have been affected by these mantle fragments and, if so, what processes are involved in this alteration of the host basalts. Here, we document a kind of xenolith-rich alkaline basalts from the Nanjing basaltic field, eastern China. These basalts contain lower concentrations of CaO (4.1-7.8 wt %) and Sc (3.3-17.8 ppm) and have lower Ca/Al (0.3-0.6) and higher Na/Ti ratios (2.8-11.2) than other Cenozoic basalts in this area. These xenolith-rich basalts show good correlations between elemental ratios (e.g., Lu/Hf and Ca/Al) and e Hf values, which are indicative of mixing of two distinct components during the genesis of the magmas that formed these basalts: a high-e Hf end-member (with low Lu/Hf and Ca/Al ratios) and the primitive melt-related low-e Hf end-member. In addition, peridotite xenoliths hosted in these basalts have distinct core-mantle textures, with the margins having higher modal olivine abundances (70%) than the xenolith cores (52%). Within the xenolith margins, some orthopyroxenes are enclosed in the olivines, and all clinopyroxenes are sponge textured. These sponge-textured clinopyroxenes have higher CaO and Sc concentrations, higher Ca/Al ratios, and lower Na/Ti ratios than clinopyroxenes within the cores of the xenoliths, suggesting that the xenoliths underwent low-pressure melting within the host magma. This indicates that xenolith-rich magmas within the study area were contaminated during ascent by melts derived from mantle xenoliths within the magmas, transforming the magmas into the low-Ca alkaline basalts.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8d6ede79e1ad66cf29a321697dc610d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633934,&quot;asset_id&quot;:28301602,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633934/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301602"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301602"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301602; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301602]").text(description); $(".js-view-count[data-work-id=28301602]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301602; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301602']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301602, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8d6ede79e1ad66cf29a321697dc610d3" } } $('.js-work-strip[data-work-id=28301602]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301602,"title":"Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: The case for mantle xenolith-magma interaction","translated_title":"","metadata":{"grobid_abstract":"1] Although peridotite xenoliths are common in alkaline basalts, it is still unclear whether the chemical compositions of their host rocks have been affected by these mantle fragments and, if so, what processes are involved in this alteration of the host basalts. Here, we document a kind of xenolith-rich alkaline basalts from the Nanjing basaltic field, eastern China. These basalts contain lower concentrations of CaO (4.1-7.8 wt %) and Sc (3.3-17.8 ppm) and have lower Ca/Al (0.3-0.6) and higher Na/Ti ratios (2.8-11.2) than other Cenozoic basalts in this area. These xenolith-rich basalts show good correlations between elemental ratios (e.g., Lu/Hf and Ca/Al) and e Hf values, which are indicative of mixing of two distinct components during the genesis of the magmas that formed these basalts: a high-e Hf end-member (with low Lu/Hf and Ca/Al ratios) and the primitive melt-related low-e Hf end-member. In addition, peridotite xenoliths hosted in these basalts have distinct core-mantle textures, with the margins having higher modal olivine abundances (70%) than the xenolith cores (52%). Within the xenolith margins, some orthopyroxenes are enclosed in the olivines, and all clinopyroxenes are sponge textured. These sponge-textured clinopyroxenes have higher CaO and Sc concentrations, higher Ca/Al ratios, and lower Na/Ti ratios than clinopyroxenes within the cores of the xenoliths, suggesting that the xenoliths underwent low-pressure melting within the host magma. This indicates that xenolith-rich magmas within the study area were contaminated during ascent by melts derived from mantle xenoliths within the magmas, transforming the magmas into the low-Ca alkaline basalts.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Geochemistry, Geophysics, Geosystems","grobid_abstract_attachment_id":48633934},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301602/Genesis_of_Cenozoic_low_Ca_alkaline_basalts_in_the_Nanjing_basaltic_field_eastern_China_The_case_for_mantle_xenolith_magma_interaction","translated_internal_url":"","created_at":"2016-09-07T00:09:05.997-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096660,"work_id":28301602,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: The case for mantle xenolith-magma interaction"},{"id":24096686,"work_id":28301602,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366374,"email":"l***n@pku.edu.cn","display_order":4194304,"name":"Liang-feng Yang","title":"Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: The case for mantle xenolith-magma interaction"}],"downloadable_attachments":[{"id":48633934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633934/thumbnails/1.jpg","file_name":"Genesis_of_Cenozoic_low-Ca_alkaline_basa20160907-1707-5yr4be.pdf","download_url":"https://www.academia.edu/attachments/48633934/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genesis_of_Cenozoic_low_Ca_alkaline_basa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633934/Genesis_of_Cenozoic_low-Ca_alkaline_basa20160907-1707-5yr4be-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DGenesis_of_Cenozoic_low_Ca_alkaline_basa.pdf\u0026Expires=1734034235\u0026Signature=WoaLz4mjiZKGQYUY7QBWMehen3m0cNzMuPYJ4u8Ogu-nbEHg7rEmhQsZpmUVg~sJ7DK3By8WU3RbD4cBHZSUFFW3Cweui0ro-tnAjhhFQYS24sILPlz2oxXbub-rN1zfm0txhw9Ih8y9KwawyqosTrSV7SxHFZ5ukqHg~w6Qp7Y~gh8Kr-8Cs~MeQTb9DbYbJDCgMos-4KpkHSClrgrxEQRgDXv5wDxFqz3fW1HUtmsYJfg-ZTL5u6CekHlm7z5e55WsRb7Zc2mxwSlV-LCnkY55wx-0RxwNwWxdfVYiPrdIsQpEwuzrj2zQ0cFIkD-h1NY-m~o4NO0Zgg~jxj5vRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Genesis_of_Cenozoic_low_Ca_alkaline_basalts_in_the_Nanjing_basaltic_field_eastern_China_The_case_for_mantle_xenolith_magma_interaction","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"1] Although peridotite xenoliths are common in alkaline basalts, it is still unclear whether the chemical compositions of their host rocks have been affected by these mantle fragments and, if so, what processes are involved in this alteration of the host basalts. Here, we document a kind of xenolith-rich alkaline basalts from the Nanjing basaltic field, eastern China. These basalts contain lower concentrations of CaO (4.1-7.8 wt %) and Sc (3.3-17.8 ppm) and have lower Ca/Al (0.3-0.6) and higher Na/Ti ratios (2.8-11.2) than other Cenozoic basalts in this area. These xenolith-rich basalts show good correlations between elemental ratios (e.g., Lu/Hf and Ca/Al) and e Hf values, which are indicative of mixing of two distinct components during the genesis of the magmas that formed these basalts: a high-e Hf end-member (with low Lu/Hf and Ca/Al ratios) and the primitive melt-related low-e Hf end-member. In addition, peridotite xenoliths hosted in these basalts have distinct core-mantle textures, with the margins having higher modal olivine abundances (70%) than the xenolith cores (52%). Within the xenolith margins, some orthopyroxenes are enclosed in the olivines, and all clinopyroxenes are sponge textured. These sponge-textured clinopyroxenes have higher CaO and Sc concentrations, higher Ca/Al ratios, and lower Na/Ti ratios than clinopyroxenes within the cores of the xenoliths, suggesting that the xenoliths underwent low-pressure melting within the host magma. This indicates that xenolith-rich magmas within the study area were contaminated during ascent by melts derived from mantle xenoliths within the magmas, transforming the magmas into the low-Ca alkaline basalts.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633934/thumbnails/1.jpg","file_name":"Genesis_of_Cenozoic_low-Ca_alkaline_basa20160907-1707-5yr4be.pdf","download_url":"https://www.academia.edu/attachments/48633934/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genesis_of_Cenozoic_low_Ca_alkaline_basa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633934/Genesis_of_Cenozoic_low-Ca_alkaline_basa20160907-1707-5yr4be-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DGenesis_of_Cenozoic_low_Ca_alkaline_basa.pdf\u0026Expires=1734034235\u0026Signature=WoaLz4mjiZKGQYUY7QBWMehen3m0cNzMuPYJ4u8Ogu-nbEHg7rEmhQsZpmUVg~sJ7DK3By8WU3RbD4cBHZSUFFW3Cweui0ro-tnAjhhFQYS24sILPlz2oxXbub-rN1zfm0txhw9Ih8y9KwawyqosTrSV7SxHFZ5ukqHg~w6Qp7Y~gh8Kr-8Cs~MeQTb9DbYbJDCgMos-4KpkHSClrgrxEQRgDXv5wDxFqz3fW1HUtmsYJfg-ZTL5u6CekHlm7z5e55WsRb7Zc2mxwSlV-LCnkY55wx-0RxwNwWxdfVYiPrdIsQpEwuzrj2zQ0cFIkD-h1NY-m~o4NO0Zgg~jxj5vRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301601"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301601/Crust_recycling_in_the_sources_of_two_parallel_volcanic_chains_in_Shandong_North_China"><img alt="Research paper thumbnail of Crust recycling in the sources of two parallel volcanic chains in Shandong, North China" class="work-thumbnail" src="https://attachments.academia-assets.com/48633922/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301601/Crust_recycling_in_the_sources_of_two_parallel_volcanic_chains_in_Shandong_North_China">Crust recycling in the sources of two parallel volcanic chains in Shandong, North China</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Keywords: alkaline basalts intra-continental volcanic chains crustal recycling lower continental ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Keywords: alkaline basalts intra-continental volcanic chains crustal recycling lower continental crust lithosphere thickness Recycled crustal components have been documented for many sources of hotspot-related ocean island basalts, but they have been difficult to identify in continental basalts, because in continental settings, hotspots are often obscured and recycled crustal sources are difficult to distinguish from crustal contamination. We show major, trace element and Sr-Nd-Hf isotopic compositions for two parallel chains of Cenozoic volcanoes from Shandong Province, North China, which are free of crustal contamination and show clear evidence for recycling of mafic lower crust. Sr, Nd, and Hf isotopes in the two volcanic chains form separate binary mixing arrays, which converge on the composition of Dashan, an isolated, nephelinitic volcano with the most depleted isotopic signature. The two chains have lower CaO values and significantly diverging isotope enrichment trends from this common endmember. Both trends deviate from the normal Sr-Nd and Hf-Nd mantle array toward lower 87 Sr/ 86 Sr and higher ε Hf values, all features that point to a (recycled) eclogitic source. We invoke a two-stage evolution model to generate the endmembers of these two mixing trends. In the first stage, recycled mafic crust (eclogite) is depleted by earlier (late Mesozoic) melt extraction, which elevates the Lu/Hf of the residue relative to Sm/Nd due to garnet control during melting. Subsequently, these silica-deficient residues are transported to the deeper mantle. Finally, in Cenozoic time, upwelling mantle (possibly a plume) transports lenses of residual eclogites into the shallow asthenosphere. The recycled crustal components beneath the two chains differ somewhat in isotopic composition due to different degree of the earlier melting. The upwelling mantle spreads beneath the lithosphere and flows toward regions of thinned lithosphere, e.g. the Tan-Lu Fault Zone in North China, where the recycled crust undergo remelting and mix with peridotite-derived melts to produce the two mixing trends observed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0dd3bd30f20722492674e9358e0901fd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633922,&quot;asset_id&quot;:28301601,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633922/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301601"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301601"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301601; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301601]").text(description); $(".js-view-count[data-work-id=28301601]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301601; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301601']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301601, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0dd3bd30f20722492674e9358e0901fd" } } $('.js-work-strip[data-work-id=28301601]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301601,"title":"Crust recycling in the sources of two parallel volcanic chains in Shandong, North China","translated_title":"","metadata":{"grobid_abstract":"Keywords: alkaline basalts intra-continental volcanic chains crustal recycling lower continental crust lithosphere thickness Recycled crustal components have been documented for many sources of hotspot-related ocean island basalts, but they have been difficult to identify in continental basalts, because in continental settings, hotspots are often obscured and recycled crustal sources are difficult to distinguish from crustal contamination. We show major, trace element and Sr-Nd-Hf isotopic compositions for two parallel chains of Cenozoic volcanoes from Shandong Province, North China, which are free of crustal contamination and show clear evidence for recycling of mafic lower crust. Sr, Nd, and Hf isotopes in the two volcanic chains form separate binary mixing arrays, which converge on the composition of Dashan, an isolated, nephelinitic volcano with the most depleted isotopic signature. The two chains have lower CaO values and significantly diverging isotope enrichment trends from this common endmember. Both trends deviate from the normal Sr-Nd and Hf-Nd mantle array toward lower 87 Sr/ 86 Sr and higher ε Hf values, all features that point to a (recycled) eclogitic source. We invoke a two-stage evolution model to generate the endmembers of these two mixing trends. In the first stage, recycled mafic crust (eclogite) is depleted by earlier (late Mesozoic) melt extraction, which elevates the Lu/Hf of the residue relative to Sm/Nd due to garnet control during melting. Subsequently, these silica-deficient residues are transported to the deeper mantle. Finally, in Cenozoic time, upwelling mantle (possibly a plume) transports lenses of residual eclogites into the shallow asthenosphere. The recycled crustal components beneath the two chains differ somewhat in isotopic composition due to different degree of the earlier melting. The upwelling mantle spreads beneath the lithosphere and flows toward regions of thinned lithosphere, e.g. the Tan-Lu Fault Zone in North China, where the recycled crust undergo remelting and mix with peridotite-derived melts to produce the two mixing trends observed.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Earth and Planetary Science Letters","grobid_abstract_attachment_id":48633922},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301601/Crust_recycling_in_the_sources_of_two_parallel_volcanic_chains_in_Shandong_North_China","translated_internal_url":"","created_at":"2016-09-07T00:09:05.909-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096661,"work_id":28301601,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Crust recycling in the sources of two parallel volcanic chains in Shandong, North China"}],"downloadable_attachments":[{"id":48633922,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633922/thumbnails/1.jpg","file_name":"Crust_recycling_in_the_sources_of_two_pa20160907-7760-75tc6h.pdf","download_url":"https://www.academia.edu/attachments/48633922/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crust_recycling_in_the_sources_of_two_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633922/Crust_recycling_in_the_sources_of_two_pa20160907-7760-75tc6h-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DCrust_recycling_in_the_sources_of_two_pa.pdf\u0026Expires=1734034235\u0026Signature=Cjh8wTbD~DWReQPoNz~ChZjZ~K7rWXH6be8GrQTNvrgpDa1C2xJTiHLAalUXF79DM4GBVmVgY8CbpTwuX5I7UYBGlcGfQ~~cCzTWUrP0U-BwP6K0~oJSKInHR19JZywTzNDjzcvdLr0GKIsAOm9~megBLJvi89LndIg2DN61ro0QdkMP~sTiaJnRgCprLUukustIl3yZ9hYkwJbqE-dItX6cM1C-tZgPkG5pQ~6XJPic5OWS~rQYFtj7-3Z7EfyW~aATjHsQ5Hj--6IOCH-fiG54RSlEAO1wNPU~~~oRvRUqKhUghJBS~4o-HNjR3H3NOn1e1TUPcjauSSClk6UhXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Crust_recycling_in_the_sources_of_two_parallel_volcanic_chains_in_Shandong_North_China","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Keywords: alkaline basalts intra-continental volcanic chains crustal recycling lower continental crust lithosphere thickness Recycled crustal components have been documented for many sources of hotspot-related ocean island basalts, but they have been difficult to identify in continental basalts, because in continental settings, hotspots are often obscured and recycled crustal sources are difficult to distinguish from crustal contamination. We show major, trace element and Sr-Nd-Hf isotopic compositions for two parallel chains of Cenozoic volcanoes from Shandong Province, North China, which are free of crustal contamination and show clear evidence for recycling of mafic lower crust. Sr, Nd, and Hf isotopes in the two volcanic chains form separate binary mixing arrays, which converge on the composition of Dashan, an isolated, nephelinitic volcano with the most depleted isotopic signature. The two chains have lower CaO values and significantly diverging isotope enrichment trends from this common endmember. Both trends deviate from the normal Sr-Nd and Hf-Nd mantle array toward lower 87 Sr/ 86 Sr and higher ε Hf values, all features that point to a (recycled) eclogitic source. We invoke a two-stage evolution model to generate the endmembers of these two mixing trends. In the first stage, recycled mafic crust (eclogite) is depleted by earlier (late Mesozoic) melt extraction, which elevates the Lu/Hf of the residue relative to Sm/Nd due to garnet control during melting. Subsequently, these silica-deficient residues are transported to the deeper mantle. Finally, in Cenozoic time, upwelling mantle (possibly a plume) transports lenses of residual eclogites into the shallow asthenosphere. The recycled crustal components beneath the two chains differ somewhat in isotopic composition due to different degree of the earlier melting. The upwelling mantle spreads beneath the lithosphere and flows toward regions of thinned lithosphere, e.g. the Tan-Lu Fault Zone in North China, where the recycled crust undergo remelting and mix with peridotite-derived melts to produce the two mixing trends observed.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633922,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633922/thumbnails/1.jpg","file_name":"Crust_recycling_in_the_sources_of_two_pa20160907-7760-75tc6h.pdf","download_url":"https://www.academia.edu/attachments/48633922/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crust_recycling_in_the_sources_of_two_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633922/Crust_recycling_in_the_sources_of_two_pa20160907-7760-75tc6h-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DCrust_recycling_in_the_sources_of_two_pa.pdf\u0026Expires=1734034235\u0026Signature=Cjh8wTbD~DWReQPoNz~ChZjZ~K7rWXH6be8GrQTNvrgpDa1C2xJTiHLAalUXF79DM4GBVmVgY8CbpTwuX5I7UYBGlcGfQ~~cCzTWUrP0U-BwP6K0~oJSKInHR19JZywTzNDjzcvdLr0GKIsAOm9~megBLJvi89LndIg2DN61ro0QdkMP~sTiaJnRgCprLUukustIl3yZ9hYkwJbqE-dItX6cM1C-tZgPkG5pQ~6XJPic5OWS~rQYFtj7-3Z7EfyW~aATjHsQ5Hj--6IOCH-fiG54RSlEAO1wNPU~~~oRvRUqKhUghJBS~4o-HNjR3H3NOn1e1TUPcjauSSClk6UhXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":421956,"name":"Continental Crust","url":"https://www.academia.edu/Documents/in/Continental_Crust"},{"id":689537,"name":"Crustal Recycling","url":"https://www.academia.edu/Documents/in/Crustal_Recycling"},{"id":709300,"name":"Trace element","url":"https://www.academia.edu/Documents/in/Trace_element"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301600"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301600/Sources_of_Anfengshan_basalts_Subducted_lower_crust_in_the_Sulu_UHP_belt_China"><img alt="Research paper thumbnail of Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China" class="work-thumbnail" src="https://attachments.academia-assets.com/48633927/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301600/Sources_of_Anfengshan_basalts_Subducted_lower_crust_in_the_Sulu_UHP_belt_China">Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Keywords: continental subduction eclogite crustal recycling alkaline basalt mantle heterogeneity ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Keywords: continental subduction eclogite crustal recycling alkaline basalt mantle heterogeneity Deep subduction of lower continental crust to mantle depths has been recognized in outcrops and drill cores of eclogites and other ultra-high pressure (UHP) rocks of the Sulu intra-continental orogenic belt. In a search of evidence for such subducted crustal sources of melts, we study the elemental and isotope geochemistry of basalts from Anfengshan, a Miocene volcano located in the Sulu UHP belt, as well as Nd-Hf isotopes of eclogites from the Sulu belt itself. The Anfengshan basalts are basanites and nephelinites with low SiO 2 , high incompatible element contents, positive Nb, Ta, Sr, and negative K, Pb, Zr, Hf, and Ti anomalies. Radiogenic isotopes ( 87 Sr/ 86 Sr = 0.70337-0.70359, ε Nd = + 5.1-+ 6.7, ε Hf = + 10.6-+ 12.3, 206 Pb/ 204 Pb = 17.5-18.0) show some highly unusual correlations: ε Nd correlates positively with 87 Sr/ 86 Sr, but negatively with ε Hf . 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, and 206 Pb/ 204 Pb ratios all correlate negatively with Δε Hf (= deviation from the global ε Hf -ε Nd correlation). The correlations form two distinct mixing arrays with one common, high-ε Nd end-member. Superchondritic Zr/Hf ratios (~55), and negative Zr, Hf, Ti anomalies indicate that the common mantle source component has been metasomatized by carbonatitic liquids. We suggest that the other two source components are eclogites derived from subducted lower crust: both of these differ from ordinary mantle components by their low 87 Sr/ 86 Sr and low ε Nd and 206 Pb/ 204 Pb, but high Δε Hf . The ε Nd -ε Hf values of the eclogites form two groups, both of which lie close to the Hf-Nd mantle array, and are therefore not direct analogues of possible source eclogites for the basalts. We explain the shift toward high Δε Hf -basalt sources as follows: an early Cretaceous igneous event extracted partial melts from the eclogites residing in the mantle, thereby increasing their (residual) Lu/Hf ratios, while changing Sm/Nd only slightly. During the Anfengshan melting event, these garnet-rich sources produced melts with low Zr/Hf and increased Nb/Nb*, Hf/Hf *, Sm/Yb ratios relative to the peridotitic source end-member. We therefore suggest that the eclogites represent the residues of mafic lower continental crust subducted during the Triassic continent-continent collision. This interpretation is supported by recent seismic tomography, which revealed a high-velocity anomaly in the uppermost mantle beneath the Sulu belt.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="53488df7a1612514488dfc2e787cf432" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633927,&quot;asset_id&quot;:28301600,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633927/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301600"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301600"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301600; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301600]").text(description); $(".js-view-count[data-work-id=28301600]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301600; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301600']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301600, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "53488df7a1612514488dfc2e787cf432" } } $('.js-work-strip[data-work-id=28301600]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301600,"title":"Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China","translated_title":"","metadata":{"grobid_abstract":"Keywords: continental subduction eclogite crustal recycling alkaline basalt mantle heterogeneity Deep subduction of lower continental crust to mantle depths has been recognized in outcrops and drill cores of eclogites and other ultra-high pressure (UHP) rocks of the Sulu intra-continental orogenic belt. In a search of evidence for such subducted crustal sources of melts, we study the elemental and isotope geochemistry of basalts from Anfengshan, a Miocene volcano located in the Sulu UHP belt, as well as Nd-Hf isotopes of eclogites from the Sulu belt itself. The Anfengshan basalts are basanites and nephelinites with low SiO 2 , high incompatible element contents, positive Nb, Ta, Sr, and negative K, Pb, Zr, Hf, and Ti anomalies. Radiogenic isotopes ( 87 Sr/ 86 Sr = 0.70337-0.70359, ε Nd = + 5.1-+ 6.7, ε Hf = + 10.6-+ 12.3, 206 Pb/ 204 Pb = 17.5-18.0) show some highly unusual correlations: ε Nd correlates positively with 87 Sr/ 86 Sr, but negatively with ε Hf . 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, and 206 Pb/ 204 Pb ratios all correlate negatively with Δε Hf (= deviation from the global ε Hf -ε Nd correlation). The correlations form two distinct mixing arrays with one common, high-ε Nd end-member. Superchondritic Zr/Hf ratios (~55), and negative Zr, Hf, Ti anomalies indicate that the common mantle source component has been metasomatized by carbonatitic liquids. We suggest that the other two source components are eclogites derived from subducted lower crust: both of these differ from ordinary mantle components by their low 87 Sr/ 86 Sr and low ε Nd and 206 Pb/ 204 Pb, but high Δε Hf . The ε Nd -ε Hf values of the eclogites form two groups, both of which lie close to the Hf-Nd mantle array, and are therefore not direct analogues of possible source eclogites for the basalts. We explain the shift toward high Δε Hf -basalt sources as follows: an early Cretaceous igneous event extracted partial melts from the eclogites residing in the mantle, thereby increasing their (residual) Lu/Hf ratios, while changing Sm/Nd only slightly. During the Anfengshan melting event, these garnet-rich sources produced melts with low Zr/Hf and increased Nb/Nb*, Hf/Hf *, Sm/Yb ratios relative to the peridotitic source end-member. We therefore suggest that the eclogites represent the residues of mafic lower continental crust subducted during the Triassic continent-continent collision. This interpretation is supported by recent seismic tomography, which revealed a high-velocity anomaly in the uppermost mantle beneath the Sulu belt.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Earth and Planetary Science Letters","grobid_abstract_attachment_id":48633927},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301600/Sources_of_Anfengshan_basalts_Subducted_lower_crust_in_the_Sulu_UHP_belt_China","translated_internal_url":"","created_at":"2016-09-07T00:09:05.806-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096659,"work_id":28301600,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China"}],"downloadable_attachments":[{"id":48633927,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633927/thumbnails/1.jpg","file_name":"Sources_of_Anfengshan_basalts_Subducted_20160907-26257-1u5j6j5.pdf","download_url":"https://www.academia.edu/attachments/48633927/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sources_of_Anfengshan_basalts_Subducted.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633927/Sources_of_Anfengshan_basalts_Subducted_20160907-26257-1u5j6j5-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DSources_of_Anfengshan_basalts_Subducted.pdf\u0026Expires=1733971374\u0026Signature=d7N0n2FnYdy8TaxaSYT7HIXfx0DUec6TIji5ykBXOzLBldY22wGFzMMiK8MoGdhYwtHMM8pkD1vHzH5glL2jGNipUJ~zz186j5PfWWU8P1P08TnocdyTPbM15vOR41tFBbbvhDQW0EERJCl938SSZTfzRqEAPaXSWXK-aR3VLxCMpEH9aK4aUUGQqon5CLFaEGKXBFMkuaRSoK8hmjUq80yH9iHsrmSQ5ub-KcKMtoX8iiccsMq7j8SOnBviMXThXl6phy0sJFRqmcUrMwiHLnmM0rF9IB9GUjy0eZig8Q8oi2zlsWZDdsbccHjZvDB6pnuBMbWtNnGTfdMgqEvuCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sources_of_Anfengshan_basalts_Subducted_lower_crust_in_the_Sulu_UHP_belt_China","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Keywords: continental subduction eclogite crustal recycling alkaline basalt mantle heterogeneity Deep subduction of lower continental crust to mantle depths has been recognized in outcrops and drill cores of eclogites and other ultra-high pressure (UHP) rocks of the Sulu intra-continental orogenic belt. In a search of evidence for such subducted crustal sources of melts, we study the elemental and isotope geochemistry of basalts from Anfengshan, a Miocene volcano located in the Sulu UHP belt, as well as Nd-Hf isotopes of eclogites from the Sulu belt itself. The Anfengshan basalts are basanites and nephelinites with low SiO 2 , high incompatible element contents, positive Nb, Ta, Sr, and negative K, Pb, Zr, Hf, and Ti anomalies. Radiogenic isotopes ( 87 Sr/ 86 Sr = 0.70337-0.70359, ε Nd = + 5.1-+ 6.7, ε Hf = + 10.6-+ 12.3, 206 Pb/ 204 Pb = 17.5-18.0) show some highly unusual correlations: ε Nd correlates positively with 87 Sr/ 86 Sr, but negatively with ε Hf . 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, and 206 Pb/ 204 Pb ratios all correlate negatively with Δε Hf (= deviation from the global ε Hf -ε Nd correlation). The correlations form two distinct mixing arrays with one common, high-ε Nd end-member. Superchondritic Zr/Hf ratios (~55), and negative Zr, Hf, Ti anomalies indicate that the common mantle source component has been metasomatized by carbonatitic liquids. We suggest that the other two source components are eclogites derived from subducted lower crust: both of these differ from ordinary mantle components by their low 87 Sr/ 86 Sr and low ε Nd and 206 Pb/ 204 Pb, but high Δε Hf . The ε Nd -ε Hf values of the eclogites form two groups, both of which lie close to the Hf-Nd mantle array, and are therefore not direct analogues of possible source eclogites for the basalts. We explain the shift toward high Δε Hf -basalt sources as follows: an early Cretaceous igneous event extracted partial melts from the eclogites residing in the mantle, thereby increasing their (residual) Lu/Hf ratios, while changing Sm/Nd only slightly. During the Anfengshan melting event, these garnet-rich sources produced melts with low Zr/Hf and increased Nb/Nb*, Hf/Hf *, Sm/Yb ratios relative to the peridotitic source end-member. We therefore suggest that the eclogites represent the residues of mafic lower continental crust subducted during the Triassic continent-continent collision. This interpretation is supported by recent seismic tomography, which revealed a high-velocity anomaly in the uppermost mantle beneath the Sulu belt.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633927,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633927/thumbnails/1.jpg","file_name":"Sources_of_Anfengshan_basalts_Subducted_20160907-26257-1u5j6j5.pdf","download_url":"https://www.academia.edu/attachments/48633927/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sources_of_Anfengshan_basalts_Subducted.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633927/Sources_of_Anfengshan_basalts_Subducted_20160907-26257-1u5j6j5-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DSources_of_Anfengshan_basalts_Subducted.pdf\u0026Expires=1733971374\u0026Signature=d7N0n2FnYdy8TaxaSYT7HIXfx0DUec6TIji5ykBXOzLBldY22wGFzMMiK8MoGdhYwtHMM8pkD1vHzH5glL2jGNipUJ~zz186j5PfWWU8P1P08TnocdyTPbM15vOR41tFBbbvhDQW0EERJCl938SSZTfzRqEAPaXSWXK-aR3VLxCMpEH9aK4aUUGQqon5CLFaEGKXBFMkuaRSoK8hmjUq80yH9iHsrmSQ5ub-KcKMtoX8iiccsMq7j8SOnBviMXThXl6phy0sJFRqmcUrMwiHLnmM0rF9IB9GUjy0eZig8Q8oi2zlsWZDdsbccHjZvDB6pnuBMbWtNnGTfdMgqEvuCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":191125,"name":"Partial Melting","url":"https://www.academia.edu/Documents/in/Partial_Melting"},{"id":241723,"name":"Earth and Planetary Science","url":"https://www.academia.edu/Documents/in/Earth_and_Planetary_Science"},{"id":421956,"name":"Continental Crust","url":"https://www.academia.edu/Documents/in/Continental_Crust"},{"id":491689,"name":"Seismic Tomography","url":"https://www.academia.edu/Documents/in/Seismic_Tomography"},{"id":689537,"name":"Crustal Recycling","url":"https://www.academia.edu/Documents/in/Crustal_Recycling"},{"id":1749179,"name":"Eclogite","url":"https://www.academia.edu/Documents/in/Eclogite"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301599"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301599/Fluid_melt_inclusions_in_Cenozoic_mantle_xenoliths_from_Linqu_Shandong_Province_eastern_China_Implications_for_asthenosphere_lithosphere_interactions"><img alt="Research paper thumbnail of Fluid/melt inclusions in Cenozoic mantle xenoliths from Linqu, Shandong Province, eastern China: Implications for asthenosphere-lithosphere interactions" class="work-thumbnail" src="https://attachments.academia-assets.com/48633920/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301599/Fluid_melt_inclusions_in_Cenozoic_mantle_xenoliths_from_Linqu_Shandong_Province_eastern_China_Implications_for_asthenosphere_lithosphere_interactions">Fluid/melt inclusions in Cenozoic mantle xenoliths from Linqu, Shandong Province, eastern China: Implications for asthenosphere-lithosphere interactions</a></div><div class="wp-workCard_item"><span>Chinese Science Bulletin</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liqui...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liquids. Here we apply Raman microspectroscopy and microthermometry to fluid/melt inclusions in lherzolite xenoliths in Qiaoshan basalts, a Miocene volcano in Linqu, Shandong Province, eastern China. These inclusions include (1) early CO 2 fluid inclusions, (2) early carbonate melt inclusions, (3) late CO 2 fluid inclusions, and (4) late silicate melt inclusions. Among the early CO 2 fluid inclusions, most consist of high-density pure CO 2 , while others have small amounts of other components besides of CO 2 , including graphite, magnesite, Mg-calcite, CO and N 2 . The lowest trapping pressures are estimated to be 1.42 GPa and 0.80 GPa for the early and the late fluid inclusions, respectively. Because orthopyroxene is the main host mineral for the early carbonate melt inclusions, we propose that the formation of these carbonate melts is genetically associated with the interactions between CO 2 fluids and silicate minerals, e.g. olivine and clinopyroxene. The diversity of minor components in the early CO 2 fluid inclusions indicates that mantle peridotites had undergone redox reactions with penetrating fluids/melts. These observations suggest that the compositions of the lithospheric mantle beneath the studied area had been changed by asthenosphere-derived CO 2 -rich fluids/melts.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="348cee78209354f08787a2f5c8bfe39b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633920,&quot;asset_id&quot;:28301599,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633920/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301599"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301599"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301599; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301599]").text(description); $(".js-view-count[data-work-id=28301599]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301599; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301599']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301599, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "348cee78209354f08787a2f5c8bfe39b" } } $('.js-work-strip[data-work-id=28301599]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301599,"title":"Fluid/melt inclusions in Cenozoic mantle xenoliths from Linqu, Shandong Province, eastern China: Implications for asthenosphere-lithosphere interactions","translated_title":"","metadata":{"grobid_abstract":"Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liquids. Here we apply Raman microspectroscopy and microthermometry to fluid/melt inclusions in lherzolite xenoliths in Qiaoshan basalts, a Miocene volcano in Linqu, Shandong Province, eastern China. These inclusions include (1) early CO 2 fluid inclusions, (2) early carbonate melt inclusions, (3) late CO 2 fluid inclusions, and (4) late silicate melt inclusions. Among the early CO 2 fluid inclusions, most consist of high-density pure CO 2 , while others have small amounts of other components besides of CO 2 , including graphite, magnesite, Mg-calcite, CO and N 2 . The lowest trapping pressures are estimated to be 1.42 GPa and 0.80 GPa for the early and the late fluid inclusions, respectively. Because orthopyroxene is the main host mineral for the early carbonate melt inclusions, we propose that the formation of these carbonate melts is genetically associated with the interactions between CO 2 fluids and silicate minerals, e.g. olivine and clinopyroxene. The diversity of minor components in the early CO 2 fluid inclusions indicates that mantle peridotites had undergone redox reactions with penetrating fluids/melts. These observations suggest that the compositions of the lithospheric mantle beneath the studied area had been changed by asthenosphere-derived CO 2 -rich fluids/melts.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Chinese Science Bulletin","grobid_abstract_attachment_id":48633920},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301599/Fluid_melt_inclusions_in_Cenozoic_mantle_xenoliths_from_Linqu_Shandong_Province_eastern_China_Implications_for_asthenosphere_lithosphere_interactions","translated_internal_url":"","created_at":"2016-09-07T00:09:05.695-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096681,"work_id":28301599,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366369,"email":"j***n@gmail.com","display_order":0,"name":"Jiqiang Liu","title":"Fluid/melt inclusions in Cenozoic mantle xenoliths from Linqu, Shandong Province, eastern China: Implications for asthenosphere-lithosphere interactions"}],"downloadable_attachments":[{"id":48633920,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633920/thumbnails/1.jpg","file_name":"Fluidmelt_inclusions_in_Cenozoic_mantle_20160907-11746-1d4xwh5.pdf","download_url":"https://www.academia.edu/attachments/48633920/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_melt_inclusions_in_Cenozoic_mantle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633920/Fluidmelt_inclusions_in_Cenozoic_mantle_20160907-11746-1d4xwh5-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DFluid_melt_inclusions_in_Cenozoic_mantle.pdf\u0026Expires=1734034235\u0026Signature=O9m-b4Ar9uuHl6fzIiQVDwAmNdJNPiV1JRpZouiTnXGErtYgrAdhJadm2XNifPQgLKb2dA4ENN0vF7zLKzoNFW0DlTibQ492jzbNiRnXryImUXNdkOOi~aGt7O17~H8A0oQCVF1eNFg9owtb5Fi231Kb69hgW-uI4cL6wCXR65Ot8OFpzV1YyozAY-uN-vJ~uy66iNgxfEyjHUidIkSJz8tBW3ACwfG9bOZABB2N7bprLO6z9xEIyKOP1sOCW4fUbCJNjBCTQ7vL1KOPGUuOgPH9~5~0~cBL512QSfwGAQ43lApvKEk5UW~lHgtFRzLygDWWZDolMT7hK3t3r5nvCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fluid_melt_inclusions_in_Cenozoic_mantle_xenoliths_from_Linqu_Shandong_Province_eastern_China_Implications_for_asthenosphere_lithosphere_interactions","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liquids. Here we apply Raman microspectroscopy and microthermometry to fluid/melt inclusions in lherzolite xenoliths in Qiaoshan basalts, a Miocene volcano in Linqu, Shandong Province, eastern China. These inclusions include (1) early CO 2 fluid inclusions, (2) early carbonate melt inclusions, (3) late CO 2 fluid inclusions, and (4) late silicate melt inclusions. Among the early CO 2 fluid inclusions, most consist of high-density pure CO 2 , while others have small amounts of other components besides of CO 2 , including graphite, magnesite, Mg-calcite, CO and N 2 . The lowest trapping pressures are estimated to be 1.42 GPa and 0.80 GPa for the early and the late fluid inclusions, respectively. Because orthopyroxene is the main host mineral for the early carbonate melt inclusions, we propose that the formation of these carbonate melts is genetically associated with the interactions between CO 2 fluids and silicate minerals, e.g. olivine and clinopyroxene. The diversity of minor components in the early CO 2 fluid inclusions indicates that mantle peridotites had undergone redox reactions with penetrating fluids/melts. These observations suggest that the compositions of the lithospheric mantle beneath the studied area had been changed by asthenosphere-derived CO 2 -rich fluids/melts.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633920,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633920/thumbnails/1.jpg","file_name":"Fluidmelt_inclusions_in_Cenozoic_mantle_20160907-11746-1d4xwh5.pdf","download_url":"https://www.academia.edu/attachments/48633920/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_melt_inclusions_in_Cenozoic_mantle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633920/Fluidmelt_inclusions_in_Cenozoic_mantle_20160907-11746-1d4xwh5-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DFluid_melt_inclusions_in_Cenozoic_mantle.pdf\u0026Expires=1734034235\u0026Signature=O9m-b4Ar9uuHl6fzIiQVDwAmNdJNPiV1JRpZouiTnXGErtYgrAdhJadm2XNifPQgLKb2dA4ENN0vF7zLKzoNFW0DlTibQ492jzbNiRnXryImUXNdkOOi~aGt7O17~H8A0oQCVF1eNFg9owtb5Fi231Kb69hgW-uI4cL6wCXR65Ot8OFpzV1YyozAY-uN-vJ~uy66iNgxfEyjHUidIkSJz8tBW3ACwfG9bOZABB2N7bprLO6z9xEIyKOP1sOCW4fUbCJNjBCTQ7vL1KOPGUuOgPH9~5~0~cBL512QSfwGAQ43lApvKEk5UW~lHgtFRzLygDWWZDolMT7hK3t3r5nvCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":735504,"name":"Genetic Association","url":"https://www.academia.edu/Documents/in/Genetic_Association"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301598"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301598/Mantle_metasomatism_by_P_and_F_rich_melt_fluids_evidence_from_phosphate_glass_in_spinel_lherzolite_xenolith_in_Keluo_Heilongjiang_Province"><img alt="Research paper thumbnail of Mantle metasomatism by P- and F-rich melt/fluids: evidence from phosphate glass in spinel lherzolite xenolith in Keluo, Heilongjiang Province" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301598/Mantle_metasomatism_by_P_and_F_rich_melt_fluids_evidence_from_phosphate_glass_in_spinel_lherzolite_xenolith_in_Keluo_Heilongjiang_Province">Mantle metasomatism by P- and F-rich melt/fluids: evidence from phosphate glass in spinel lherzolite xenolith in Keluo, Heilongjiang Province</a></div><div class="wp-workCard_item"><span>Chinese Science Bulletin</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301598"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301598"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301598; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301598]").text(description); $(".js-view-count[data-work-id=28301598]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301598; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301598']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301598, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28301598]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301598,"title":"Mantle metasomatism by P- and F-rich melt/fluids: evidence from phosphate glass in spinel lherzolite xenolith in Keluo, Heilongjiang Province","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Chinese Science Bulletin"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/28301598/Mantle_metasomatism_by_P_and_F_rich_melt_fluids_evidence_from_phosphate_glass_in_spinel_lherzolite_xenolith_in_Keluo_Heilongjiang_Province","translated_internal_url":"","created_at":"2016-09-07T00:09:05.576-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096683,"work_id":28301598,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366371,"email":"z***o@hotmail.com","display_order":0,"name":"Jian Shao","title":"Mantle metasomatism by P- and F-rich melt/fluids: evidence from phosphate glass in spinel lherzolite xenolith in Keluo, Heilongjiang Province"}],"downloadable_attachments":[],"slug":"Mantle_metasomatism_by_P_and_F_rich_melt_fluids_evidence_from_phosphate_glass_in_spinel_lherzolite_xenolith_in_Keluo_Heilongjiang_Province","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301597"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301597/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China"><img alt="Research paper thumbnail of Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China" class="work-thumbnail" src="https://attachments.academia-assets.com/48633932/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301597/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China">Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China</a></div><div class="wp-workCard_item"><span>Chemical Geology</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The genesis of intra-plate alkaline basalts remains controversial, and three sources have been pr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of &quot;carbonatitic fingerprints.&quot; Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2d944275003e43189c5f010fc94a2b75" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633932,&quot;asset_id&quot;:28301597,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633932/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301597"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301597"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301597; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301597]").text(description); $(".js-view-count[data-work-id=28301597]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301597; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301597']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301597, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2d944275003e43189c5f010fc94a2b75" } } $('.js-work-strip[data-work-id=28301597]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301597,"title":"Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China","translated_title":"","metadata":{"grobid_abstract":"The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of \"carbonatitic fingerprints.\" Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Chemical Geology","grobid_abstract_attachment_id":48633932},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301597/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China","translated_internal_url":"","created_at":"2016-09-07T00:09:05.450-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096658,"work_id":28301597,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China"}],"downloadable_attachments":[{"id":48633932,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633932/thumbnails/1.jpg","file_name":"Carbonated_mantle_sources_for_Cenozoic_i20160907-3869-b8c2rr.pdf","download_url":"https://www.academia.edu/attachments/48633932/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Carbonated_mantle_sources_for_Cenozoic_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633932/Carbonated_mantle_sources_for_Cenozoic_i20160907-3869-b8c2rr-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DCarbonated_mantle_sources_for_Cenozoic_i.pdf\u0026Expires=1733971374\u0026Signature=EynXEStyM46nvbGz6R1GGIEqTIJQOq8fA9BPUd1uxC1FyIB-fqWtrQ5K2n~bR2x7Ejap487Tj5hVH-Hh3Lw9JjfPgUpUX7AebC2~Qr6ReuduvTlRSutLwzvLOqxYeSkNNHpcCw5EFYT74qyJksAvpwDbYyNzjUvhUlkQJ4d8JUGdiIAzFd4ofQ0gavhnF5q-2FmPCEI2R661EwzxBoiG0oVPWZctCttNDfCMq-e0ucpPb1fwiNAxtxkEdcacywesE1Zg7CHDTgTY8PJHoGYcqZtw3p8P24cXgCWnR2O7JUbVdyJBe-bPq9Prl1N~fmJWwHX-XNh70YR3orXY3Jz5hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of \"carbonatitic fingerprints.\" Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633932,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633932/thumbnails/1.jpg","file_name":"Carbonated_mantle_sources_for_Cenozoic_i20160907-3869-b8c2rr.pdf","download_url":"https://www.academia.edu/attachments/48633932/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Carbonated_mantle_sources_for_Cenozoic_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633932/Carbonated_mantle_sources_for_Cenozoic_i20160907-3869-b8c2rr-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DCarbonated_mantle_sources_for_Cenozoic_i.pdf\u0026Expires=1733971375\u0026Signature=e81L3Kc9CTbmCAzD2pixWX58HFFDqgfF30Zot1xoNwhlIH7n3scapMsGAIcyjxNSoKL2ieT11yCFPf7l~uEZPMjHA-StYeOuhST4Sht3zePvvjpwsJjQ7tjxRv3FQ2PgxeYeREsbwMIC7Vao5jSZGg-kHAsCZUeraBfXBVjBJG0Rg93Nf0pnEzBnLciIVEWMPKN5MPLbPfs2alZCXXj5B33pQHKriLYt2aPKVASmxzCcyQiDX5zq0OnszJGegJgqcYpijnt~-Fc3m0qmo5b1KcIS1Tgmpx9IfqA8FDoo732jp4Go-Si30gAdcii-RuRPKHQWq~iA~A6oo8TPyfrGzw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":16024,"name":"Chemical Geology","url":"https://www.academia.edu/Documents/in/Chemical_Geology"},{"id":274263,"name":"Rare Earth Element Mineralization","url":"https://www.academia.edu/Documents/in/Rare_Earth_Element_Mineralization"},{"id":679783,"name":"Boolean Satisfiability","url":"https://www.academia.edu/Documents/in/Boolean_Satisfiability"},{"id":1464622,"name":"Carbonatite","url":"https://www.academia.edu/Documents/in/Carbonatite"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301596"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301596/Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_character_of_Paleogene_basalts_from_the_Xialiaohe_Depression_northern_Bohai_Bay_Basin_implications_for_transformation_of_the_subcontinental_lithospheric_mantle_under_the_eastern_North_China_Craton"><img alt="Research paper thumbnail of Ar–Ar dating and Sr–Nd–Pb isotopic character of Paleogene basalts from the Xialiaohe Depression, northern Bohai Bay Basin: implications for transformation of the subcontinental lithospheric mantle under the eastern North China Craton" class="work-thumbnail" src="https://attachments.academia-assets.com/48633916/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301596/Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_character_of_Paleogene_basalts_from_the_Xialiaohe_Depression_northern_Bohai_Bay_Basin_implications_for_transformation_of_the_subcontinental_lithospheric_mantle_under_the_eastern_North_China_Craton">Ar–Ar dating and Sr–Nd–Pb isotopic character of Paleogene basalts from the Xialiaohe Depression, northern Bohai Bay Basin: implications for transformation of the subcontinental lithospheric mantle under the eastern North China Craton</a></div><div class="wp-workCard_item"><span>Canadian Journal of Earth Sciences</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Paleogene basalts are widely distributed in the Xialiaohe Depression, which lies in the northern ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Paleogene basalts are widely distributed in the Xialiaohe Depression, which lies in the northern part of the Bohai Bay Basin, the second largest petroleum-bearing basin of China, in the northeastern part of the North China Craton. The basalts mainly occur in three formations: the Paleocene Fangshenpao Formation (PFF), the Eocene Shahejie Formation (ESF), and the Oligocene Dongyin Formation (ODF). The PFF is dominated by tholeiites, whereas the ESF and ODF are characterized by alkaline basalts with minor tholeiites. These basalts contain generally lower contents in large-ion lithophile elements (LILEs) and most high-field-strength elements (HFSEs) relative to ocean-island basalts (OIBs), except for positive anomalies for Ba, Sr, Eu, and Ti, and are characterized by OIB-like Sr and Nd isotopic compositions and by abnormally low radiogenic lead isotopic composition. They display a positive correlation between 206 Pb/ 204 Pb and 143 Nd/ 144 Nd, and a negative correlation between 206 Pb/ 204 Pb and 87 Sr/ 86 Sr. The geochemical characteristics of these basalts are quite different from that expected from magmas derived from crustal contamination or melting from a uniform asthenospheric mantle source, but is consistent with derivation from newly formed lithospheric mantle. Combined with the geochemical character of the ESF and ODF basalts, we ascribe the abnormally low radiogenic lead isotopic composition for the Paleocene PFF basalts to newly formed lithospheric mantle that originated from recycling of delaminated thickened lithosphere in Late Mesozoic, including a lower crustal component.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e12a7078f2c42ebf1a272345ae5a3ef4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633916,&quot;asset_id&quot;:28301596,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633916/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301596"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301596"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301596; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301596]").text(description); $(".js-view-count[data-work-id=28301596]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301596; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301596']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301596, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e12a7078f2c42ebf1a272345ae5a3ef4" } } $('.js-work-strip[data-work-id=28301596]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301596,"title":"Ar–Ar dating and Sr–Nd–Pb isotopic character of Paleogene basalts from the Xialiaohe Depression, northern Bohai Bay Basin: implications for transformation of the subcontinental lithospheric mantle under the eastern North China Craton","translated_title":"","metadata":{"grobid_abstract":"Paleogene basalts are widely distributed in the Xialiaohe Depression, which lies in the northern part of the Bohai Bay Basin, the second largest petroleum-bearing basin of China, in the northeastern part of the North China Craton. The basalts mainly occur in three formations: the Paleocene Fangshenpao Formation (PFF), the Eocene Shahejie Formation (ESF), and the Oligocene Dongyin Formation (ODF). The PFF is dominated by tholeiites, whereas the ESF and ODF are characterized by alkaline basalts with minor tholeiites. These basalts contain generally lower contents in large-ion lithophile elements (LILEs) and most high-field-strength elements (HFSEs) relative to ocean-island basalts (OIBs), except for positive anomalies for Ba, Sr, Eu, and Ti, and are characterized by OIB-like Sr and Nd isotopic compositions and by abnormally low radiogenic lead isotopic composition. They display a positive correlation between 206 Pb/ 204 Pb and 143 Nd/ 144 Nd, and a negative correlation between 206 Pb/ 204 Pb and 87 Sr/ 86 Sr. The geochemical characteristics of these basalts are quite different from that expected from magmas derived from crustal contamination or melting from a uniform asthenospheric mantle source, but is consistent with derivation from newly formed lithospheric mantle. Combined with the geochemical character of the ESF and ODF basalts, we ascribe the abnormally low radiogenic lead isotopic composition for the Paleocene PFF basalts to newly formed lithospheric mantle that originated from recycling of delaminated thickened lithosphere in Late Mesozoic, including a lower crustal component.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Canadian Journal of Earth Sciences","grobid_abstract_attachment_id":48633916},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301596/Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_character_of_Paleogene_basalts_from_the_Xialiaohe_Depression_northern_Bohai_Bay_Basin_implications_for_transformation_of_the_subcontinental_lithospheric_mantle_under_the_eastern_North_China_Craton","translated_internal_url":"","created_at":"2016-09-07T00:09:05.298-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096682,"work_id":28301596,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366370,"email":"g***7@columbia.edu","display_order":0,"name":"Guang-da Yang","title":"Ar–Ar dating and Sr–Nd–Pb isotopic character of Paleogene basalts from the Xialiaohe Depression, northern Bohai Bay Basin: implications for transformation of the subcontinental lithospheric mantle under the eastern North China Craton"}],"downloadable_attachments":[{"id":48633916,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633916/thumbnails/1.jpg","file_name":"Ar-Ar_dating_and_Sr-Nd-Pb_isotopic_chara20160907-23370-1nvihf5.pdf","download_url":"https://www.academia.edu/attachments/48633916/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_chara.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633916/Ar-Ar_dating_and_Sr-Nd-Pb_isotopic_chara20160907-23370-1nvihf5-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DAr_Ar_dating_and_Sr_Nd_Pb_isotopic_chara.pdf\u0026Expires=1734034235\u0026Signature=gv34luDrtvDJCkld-nMgAqRiMXn-JvRB4RqeBYu6cdYFK63~UPid-nwZC~kOA9AAQlGsGvuaoJBREeCmC-5UJV9loW-fj099sTV59ia-e60jwVY2HIqU4xNIDuH-6rU48ePj70Ni9~lr-hYaAf9XfDRDEVXZR5oem9vVgoKP-~Ao25oY6G4i2jgRIGMHmJlvUj5~yYsd1P5xL4DJSEzsr-RzIohD~ofPlbQmiNkJbWjRMivk41f79MdpU~YbDLrGc98WY24QFKLWeWNO6gXixJApuEo3gV3Gy3hx4mBqI1HDT2VU9c04d0eYLhDidc9z6O3nD5rWqbhWOmxg0KgrcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_character_of_Paleogene_basalts_from_the_Xialiaohe_Depression_northern_Bohai_Bay_Basin_implications_for_transformation_of_the_subcontinental_lithospheric_mantle_under_the_eastern_North_China_Craton","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Paleogene basalts are widely distributed in the Xialiaohe Depression, which lies in the northern part of the Bohai Bay Basin, the second largest petroleum-bearing basin of China, in the northeastern part of the North China Craton. The basalts mainly occur in three formations: the Paleocene Fangshenpao Formation (PFF), the Eocene Shahejie Formation (ESF), and the Oligocene Dongyin Formation (ODF). The PFF is dominated by tholeiites, whereas the ESF and ODF are characterized by alkaline basalts with minor tholeiites. These basalts contain generally lower contents in large-ion lithophile elements (LILEs) and most high-field-strength elements (HFSEs) relative to ocean-island basalts (OIBs), except for positive anomalies for Ba, Sr, Eu, and Ti, and are characterized by OIB-like Sr and Nd isotopic compositions and by abnormally low radiogenic lead isotopic composition. They display a positive correlation between 206 Pb/ 204 Pb and 143 Nd/ 144 Nd, and a negative correlation between 206 Pb/ 204 Pb and 87 Sr/ 86 Sr. The geochemical characteristics of these basalts are quite different from that expected from magmas derived from crustal contamination or melting from a uniform asthenospheric mantle source, but is consistent with derivation from newly formed lithospheric mantle. Combined with the geochemical character of the ESF and ODF basalts, we ascribe the abnormally low radiogenic lead isotopic composition for the Paleocene PFF basalts to newly formed lithospheric mantle that originated from recycling of delaminated thickened lithosphere in Late Mesozoic, including a lower crustal component.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633916,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633916/thumbnails/1.jpg","file_name":"Ar-Ar_dating_and_Sr-Nd-Pb_isotopic_chara20160907-23370-1nvihf5.pdf","download_url":"https://www.academia.edu/attachments/48633916/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_chara.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633916/Ar-Ar_dating_and_Sr-Nd-Pb_isotopic_chara20160907-23370-1nvihf5-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DAr_Ar_dating_and_Sr_Nd_Pb_isotopic_chara.pdf\u0026Expires=1734034235\u0026Signature=gv34luDrtvDJCkld-nMgAqRiMXn-JvRB4RqeBYu6cdYFK63~UPid-nwZC~kOA9AAQlGsGvuaoJBREeCmC-5UJV9loW-fj099sTV59ia-e60jwVY2HIqU4xNIDuH-6rU48ePj70Ni9~lr-hYaAf9XfDRDEVXZR5oem9vVgoKP-~Ao25oY6G4i2jgRIGMHmJlvUj5~yYsd1P5xL4DJSEzsr-RzIohD~ofPlbQmiNkJbWjRMivk41f79MdpU~YbDLrGc98WY24QFKLWeWNO6gXixJApuEo3gV3Gy3hx4mBqI1HDT2VU9c04d0eYLhDidc9z6O3nD5rWqbhWOmxg0KgrcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301595"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301595/Louisville_Seamount_Trail_implications_for_geodynamic_mantle_flow_models_and_the_geochemical_evolution_of_primary_hotspots"><img alt="Research paper thumbnail of Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots" class="work-thumbnail" src="https://attachments.academia-assets.com/48633964/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301595/Louisville_Seamount_Trail_implications_for_geodynamic_mantle_flow_models_and_the_geochemical_evolution_of_primary_hotspots">Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2f3a619a068829a525c112cadaf2d463" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633964,&quot;asset_id&quot;:28301595,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633964/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301595"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301595"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301595; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301595]").text(description); $(".js-view-count[data-work-id=28301595]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301595; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301595']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301595, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2f3a619a068829a525c112cadaf2d463" } } $('.js-work-strip[data-work-id=28301595]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301595,"title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots","translated_title":"","metadata":{"ai_abstract":"The Louisville Seamount Trail is a 4300 km long volcanic chain built over 80 million years as the Pacific plate traveled above a mantle melting anomaly, providing comparisons with the Hawaiian hotspot. This study investigates the geochemical composition and evolution of lavas from the Louisville hotspot during IODP Expedition 330, exploring the characteristics of this primary hotspot and its dynamic interactions with the lithosphere over time, while also examining the implications for mantle flow models and the historical movements of hotspot locations.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301595/Louisville_Seamount_Trail_implications_for_geodynamic_mantle_flow_models_and_the_geochemical_evolution_of_primary_hotspots","translated_internal_url":"","created_at":"2016-09-07T00:09:05.176-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096667,"work_id":28301595,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366364,"email":"d***a@ucsd.edu","display_order":0,"name":"D. Ebuna","title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots"},{"id":24096670,"work_id":28301595,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366365,"email":"l***s@durham.ac.uk","display_order":4194304,"name":"L. Kalnins","title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots"},{"id":24096673,"work_id":28301595,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366366,"email":"s***i@unimelb.edu.au","display_order":6291456,"name":"S. Machida","title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots"},{"id":24096676,"work_id":28301595,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366367,"email":"n***g@unimelb.edu.au","display_order":7340032,"name":"Nicola Pressling","title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots"},{"id":24096679,"work_id":28301595,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366368,"email":"s***h@uni-bremen.de","display_order":7864320,"name":"Svenja Rausch","title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots"}],"downloadable_attachments":[{"id":48633964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633964/thumbnails/1.jpg","file_name":"Louisville_Seamount_Trail_implications_f20160907-26711-i3qs4j.pdf","download_url":"https://www.academia.edu/attachments/48633964/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Louisville_Seamount_Trail_implications_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633964/Louisville_Seamount_Trail_implications_f20160907-26711-i3qs4j-libre.pdf?1473232900=\u0026response-content-disposition=attachment%3B+filename%3DLouisville_Seamount_Trail_implications_f.pdf\u0026Expires=1734034235\u0026Signature=UU9~2MK4~yunHvJOiM7QFoUiNBGsD9Qxrp89tLo59rA5XCt2CYITPQ7LQ6UkTQCyAriGAGX7q--0HTqDynXrJ2LlR2c0PWzahNJShxjefHsb0P4dHgZqLrvWTWB-18G3YYd-ce~45-vgq-susbdaUunj3IIiLQ9qDn2-qtEeoeKOOMgdDBVrA9nx8skonJAtK758cBtyxtlXtBL8FEy7GkqOsd2nv4ZE27uRhY0jEhecTB2M-2XytULgvv4Ym7Q65814T~93TT0mLNH9lDeDRMpfrWe~MPxyFdyBAAWWMvdO8G1c8jy4kWfHbXwXQbGC6jnTwc1CYNLldYbaO7esUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Louisville_Seamount_Trail_implications_for_geodynamic_mantle_flow_models_and_the_geochemical_evolution_of_primary_hotspots","translated_slug":"","page_count":174,"language":"en","content_type":"Work","summary":null,"owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633964/thumbnails/1.jpg","file_name":"Louisville_Seamount_Trail_implications_f20160907-26711-i3qs4j.pdf","download_url":"https://www.academia.edu/attachments/48633964/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Louisville_Seamount_Trail_implications_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633964/Louisville_Seamount_Trail_implications_f20160907-26711-i3qs4j-libre.pdf?1473232900=\u0026response-content-disposition=attachment%3B+filename%3DLouisville_Seamount_Trail_implications_f.pdf\u0026Expires=1734034235\u0026Signature=UU9~2MK4~yunHvJOiM7QFoUiNBGsD9Qxrp89tLo59rA5XCt2CYITPQ7LQ6UkTQCyAriGAGX7q--0HTqDynXrJ2LlR2c0PWzahNJShxjefHsb0P4dHgZqLrvWTWB-18G3YYd-ce~45-vgq-susbdaUunj3IIiLQ9qDn2-qtEeoeKOOMgdDBVrA9nx8skonJAtK758cBtyxtlXtBL8FEy7GkqOsd2nv4ZE27uRhY0jEhecTB2M-2XytULgvv4Ym7Q65814T~93TT0mLNH9lDeDRMpfrWe~MPxyFdyBAAWWMvdO8G1c8jy4kWfHbXwXQbGC6jnTwc1CYNLldYbaO7esUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5770007" id="papers"><div class="js-work-strip profile--work_container" data-work-id="33449413"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/33449413/Subduction_related_metasomatism_in_the_thinning_lithosphere_Evidence_from_a_composite_dunite_orthopyroxenite_xenolith_entrained_in_Mesozoic_Laiwu_high_Mg_diorite_North_China_Craton"><img alt="Research paper thumbnail of Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton" class="work-thumbnail" src="https://attachments.academia-assets.com/53497863/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/33449413/Subduction_related_metasomatism_in_the_thinning_lithosphere_Evidence_from_a_composite_dunite_orthopyroxenite_xenolith_entrained_in_Mesozoic_Laiwu_high_Mg_diorite_North_China_Craton">Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton</a></div><div class="wp-workCard_item"><span>Geochemistry, Geophysics, Geosystems</span><span>, 2005</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">2005), Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dun...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">2005), Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f838f179be2d53261a41fafb1ebbc426" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53497863,&quot;asset_id&quot;:33449413,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53497863/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="33449413"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="33449413"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33449413; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33449413]").text(description); $(".js-view-count[data-work-id=33449413]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33449413; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='33449413']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 33449413, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f838f179be2d53261a41fafb1ebbc426" } } $('.js-work-strip[data-work-id=33449413]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":33449413,"title":"Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in Mesozoic Laiwu high-Mg diorite, North China Craton","translated_title":"","metadata":{"grobid_abstract":"2005), Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in","publication_date":{"day":null,"month":null,"year":2005,"errors":{}},"publication_name":"Geochemistry, Geophysics, Geosystems","grobid_abstract_attachment_id":53497863},"translated_abstract":null,"internal_url":"https://www.academia.edu/33449413/Subduction_related_metasomatism_in_the_thinning_lithosphere_Evidence_from_a_composite_dunite_orthopyroxenite_xenolith_entrained_in_Mesozoic_Laiwu_high_Mg_diorite_North_China_Craton","translated_internal_url":"","created_at":"2017-06-13T21:28:44.073-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53497863,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497863/thumbnails/1.jpg","file_name":"Subduction-related_metasomatism_in_the_t20170613-2943-iuo4uh.pdf","download_url":"https://www.academia.edu/attachments/53497863/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subduction_related_metasomatism_in_the_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497863/Subduction-related_metasomatism_in_the_t20170613-2943-iuo4uh-libre.pdf?1497414698=\u0026response-content-disposition=attachment%3B+filename%3DSubduction_related_metasomatism_in_the_t.pdf\u0026Expires=1734034234\u0026Signature=gOLqvkVUhB13EWOAN-BPce~qAbesQ4r5DhCKUJFrpfHDHVgNgPmPvQdkodnYGqlxn0vKJ-WeRoKyzCxmTDmESZc0Z8a~ffsOXEapxluGfq3HJ101~~dSkmtM37-vyfVBK5BqVQ-tONgu8x0rdyv9x3boMshpM3RvTXTD3glZwMcLqDOFw-AxWndP30Rv~wPdAhop-3D0DiulGZ~oH9TiH5M8D1nmKjYArUVn4u5zgUq8Te2UmiVrjubhDexGRyR1QYQ9RN3LML3Y1nKqKfTHybK8UamjR2anb5Sc1yQOy5oLq3z2smrSSu8sJZDq5Mt~O0qeZ53lBElXvPzSJ0y-qQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Subduction_related_metasomatism_in_the_thinning_lithosphere_Evidence_from_a_composite_dunite_orthopyroxenite_xenolith_entrained_in_Mesozoic_Laiwu_high_Mg_diorite_North_China_Craton","translated_slug":"","page_count":20,"language":"en","content_type":"Work","summary":"2005), Subduction-related metasomatism in the thinning lithosphere: Evidence from a composite dunite-orthopyroxenite xenolith entrained in","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":53497863,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497863/thumbnails/1.jpg","file_name":"Subduction-related_metasomatism_in_the_t20170613-2943-iuo4uh.pdf","download_url":"https://www.academia.edu/attachments/53497863/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Subduction_related_metasomatism_in_the_t.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497863/Subduction-related_metasomatism_in_the_t20170613-2943-iuo4uh-libre.pdf?1497414698=\u0026response-content-disposition=attachment%3B+filename%3DSubduction_related_metasomatism_in_the_t.pdf\u0026Expires=1734034234\u0026Signature=gOLqvkVUhB13EWOAN-BPce~qAbesQ4r5DhCKUJFrpfHDHVgNgPmPvQdkodnYGqlxn0vKJ-WeRoKyzCxmTDmESZc0Z8a~ffsOXEapxluGfq3HJ101~~dSkmtM37-vyfVBK5BqVQ-tONgu8x0rdyv9x3boMshpM3RvTXTD3glZwMcLqDOFw-AxWndP30Rv~wPdAhop-3D0DiulGZ~oH9TiH5M8D1nmKjYArUVn4u5zgUq8Te2UmiVrjubhDexGRyR1QYQ9RN3LML3Y1nKqKfTHybK8UamjR2anb5Sc1yQOy5oLq3z2smrSSu8sJZDq5Mt~O0qeZ53lBElXvPzSJ0y-qQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":16023,"name":"Mineral Chemistry","url":"https://www.academia.edu/Documents/in/Mineral_Chemistry"},{"id":30642,"name":"Early Cretaceous","url":"https://www.academia.edu/Documents/in/Early_Cretaceous"},{"id":98440,"name":"Silica","url":"https://www.academia.edu/Documents/in/Silica"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":122773,"name":"Subduction","url":"https://www.academia.edu/Documents/in/Subduction"},{"id":134398,"name":"Mantle metasomatism","url":"https://www.academia.edu/Documents/in/Mantle_metasomatism"},{"id":191165,"name":"Pb isotopes","url":"https://www.academia.edu/Documents/in/Pb_isotopes"},{"id":281810,"name":"Mantle xenolith","url":"https://www.academia.edu/Documents/in/Mantle_xenolith"},{"id":646305,"name":"North China Craton","url":"https://www.academia.edu/Documents/in/North_China_Craton"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="33449394"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/33449394/Mantle_dynamics_and_generation_of_a_geochemical_mantle_boundary_along_the_East_Pacific_Rise_Pacific_Antarctic_ridge"><img alt="Research paper thumbnail of Mantle dynamics and generation of a geochemical mantle boundary along the East Pacific Rise – Pacific/Antarctic ridge" class="work-thumbnail" src="https://attachments.academia-assets.com/53497859/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/33449394/Mantle_dynamics_and_generation_of_a_geochemical_mantle_boundary_along_the_East_Pacific_Rise_Pacific_Antarctic_ridge">Mantle dynamics and generation of a geochemical mantle boundary along the East Pacific Rise – Pacific/Antarctic ridge</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2013</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="018ce05177756dd134b20fe3e54222e9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53497859,&quot;asset_id&quot;:33449394,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53497859/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="33449394"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="33449394"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33449394; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33449394]").text(description); $(".js-view-count[data-work-id=33449394]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33449394; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='33449394']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 33449394, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "018ce05177756dd134b20fe3e54222e9" } } $('.js-work-strip[data-work-id=33449394]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":33449394,"title":"Mantle dynamics and generation of a geochemical mantle boundary along the East Pacific Rise – Pacific/Antarctic ridge","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Earth and Planetary Science Letters"},"translated_abstract":null,"internal_url":"https://www.academia.edu/33449394/Mantle_dynamics_and_generation_of_a_geochemical_mantle_boundary_along_the_East_Pacific_Rise_Pacific_Antarctic_ridge","translated_internal_url":"","created_at":"2017-06-13T21:27:32.859-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53497859,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497859/thumbnails/1.jpg","file_name":"Mantle_dynamics_and_generation_of_a_geoc20170613-2939-1rnu7x6.pdf","download_url":"https://www.academia.edu/attachments/53497859/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mantle_dynamics_and_generation_of_a_geoc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497859/Mantle_dynamics_and_generation_of_a_geoc20170613-2939-1rnu7x6-libre.pdf?1497414697=\u0026response-content-disposition=attachment%3B+filename%3DMantle_dynamics_and_generation_of_a_geoc.pdf\u0026Expires=1734034235\u0026Signature=DPtrZc~g-C5z-gnCN9iazuDOWPw8dENVvpjWi9XezGTakbBpDuOVPMp39uvYWkqa5Gs0wmGqqhk-7~9c7XCw-1~QJrNWNp0e8tp6qFFtRhxHVfMieudxxJSn5tljCrZThCXMozXJHk3eONIcZ4ta9phyCXgpNQ6tuLinoFJzuTQNMTNLLoZf0IF01rB70~hz4NgaIE5C~GsoPAArx7G1B0VFXljJm6iCS-yacv2u~42j87IReB8fvF1VfFKw0EWLDIPpKWJu5ZPpyDKKnw4JkpXeaiqN3TkG7peUE1hitq3G1EEckhZILUakliMOFaV7HttesNLavF-FnMCMA0fRmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mantle_dynamics_and_generation_of_a_geochemical_mantle_boundary_along_the_East_Pacific_Rise_Pacific_Antarctic_ridge","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":null,"owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":53497859,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497859/thumbnails/1.jpg","file_name":"Mantle_dynamics_and_generation_of_a_geoc20170613-2939-1rnu7x6.pdf","download_url":"https://www.academia.edu/attachments/53497859/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mantle_dynamics_and_generation_of_a_geoc.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497859/Mantle_dynamics_and_generation_of_a_geoc20170613-2939-1rnu7x6-libre.pdf?1497414697=\u0026response-content-disposition=attachment%3B+filename%3DMantle_dynamics_and_generation_of_a_geoc.pdf\u0026Expires=1734034235\u0026Signature=DPtrZc~g-C5z-gnCN9iazuDOWPw8dENVvpjWi9XezGTakbBpDuOVPMp39uvYWkqa5Gs0wmGqqhk-7~9c7XCw-1~QJrNWNp0e8tp6qFFtRhxHVfMieudxxJSn5tljCrZThCXMozXJHk3eONIcZ4ta9phyCXgpNQ6tuLinoFJzuTQNMTNLLoZf0IF01rB70~hz4NgaIE5C~GsoPAArx7G1B0VFXljJm6iCS-yacv2u~42j87IReB8fvF1VfFKw0EWLDIPpKWJu5ZPpyDKKnw4JkpXeaiqN3TkG7peUE1hitq3G1EEckhZILUakliMOFaV7HttesNLavF-FnMCMA0fRmA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="33449393"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/33449393/SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No_1_and_Huangshandong_Cu_Ni_bearing_mafic_ultramafic_complexes_North_Xinjiang_and_geological_implications"><img alt="Research paper thumbnail of SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications" class="work-thumbnail" src="https://attachments.academia-assets.com/53497853/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/33449393/SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No_1_and_Huangshandong_Cu_Ni_bearing_mafic_ultramafic_complexes_North_Xinjiang_and_geological_implications">SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications</a></div><div class="wp-workCard_item"><span>Chinese Science Bulletin</span><span>, 2004</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The SHRIMP zircon U-Pb dating was carried out and yielded 287±5 Ma (MSWD = 0.34) and 274±3 Ma (MS...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The SHRIMP zircon U-Pb dating was carried out and yielded 287±5 Ma (MSWD = 0.34) and 274±3 Ma (MSWD = 1.35) for the Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes. These ages are much more precise than pre-existing rock-mineral Rb-Sr, Sm-Nd and Re-Os isochron ages for the two complexes and constrain the timing of not only the complexes but also the magmatic Cu-Ni sulfide deposits more reliably. It is necessary to carefully reevaluate the previous chronological data for the complexes. The Cu-Ni-bearing mafic-ultramafic complexes have the ages similar to those of postcollisional A-type granites in the same area, implying that they could be related to the delamination of lithospheric mantle and upwelling and partial melting of asthenospheric mantle in postcollisional setting. Therefore, the Cu-Ni-bearing mafic-ultramafic complexes are a direct indicator of vertical growth of the continental crustal in the Central Asian Orogenic Belt.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e87a52994e4f5174981c12b9411bf0bc" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53497853,&quot;asset_id&quot;:33449393,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53497853/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="33449393"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="33449393"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33449393; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33449393]").text(description); $(".js-view-count[data-work-id=33449393]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33449393; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='33449393']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 33449393, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e87a52994e4f5174981c12b9411bf0bc" } } $('.js-work-strip[data-work-id=33449393]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":33449393,"title":"SHRIMP zircon U-Pb ages of Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications","translated_title":"","metadata":{"grobid_abstract":"The SHRIMP zircon U-Pb dating was carried out and yielded 287±5 Ma (MSWD = 0.34) and 274±3 Ma (MSWD = 1.35) for the Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes. These ages are much more precise than pre-existing rock-mineral Rb-Sr, Sm-Nd and Re-Os isochron ages for the two complexes and constrain the timing of not only the complexes but also the magmatic Cu-Ni sulfide deposits more reliably. It is necessary to carefully reevaluate the previous chronological data for the complexes. The Cu-Ni-bearing mafic-ultramafic complexes have the ages similar to those of postcollisional A-type granites in the same area, implying that they could be related to the delamination of lithospheric mantle and upwelling and partial melting of asthenospheric mantle in postcollisional setting. Therefore, the Cu-Ni-bearing mafic-ultramafic complexes are a direct indicator of vertical growth of the continental crustal in the Central Asian Orogenic Belt.","publication_date":{"day":null,"month":null,"year":2004,"errors":{}},"publication_name":"Chinese Science Bulletin","grobid_abstract_attachment_id":53497853},"translated_abstract":null,"internal_url":"https://www.academia.edu/33449393/SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No_1_and_Huangshandong_Cu_Ni_bearing_mafic_ultramafic_complexes_North_Xinjiang_and_geological_implications","translated_internal_url":"","created_at":"2017-06-13T21:27:32.758-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53497853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497853/thumbnails/1.jpg","file_name":"SHRIMP_zircon_U-Pb_ages_of_Kalatongke_No20170613-2939-up4t20.pdf","download_url":"https://www.academia.edu/attachments/53497853/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497853/SHRIMP_zircon_U-Pb_ages_of_Kalatongke_No20170613-2939-up4t20.pdf?1497414525=\u0026response-content-disposition=attachment%3B+filename%3DSHRIMP_zircon_U_Pb_ages_of_Kalatongke_No.pdf\u0026Expires=1734034235\u0026Signature=F0VdvXRQT974qOMJoYmIq-D1zSftEU48mT78LLidm7ofIy4tGDanT5sEXbbgRlK9ptMQBlJvF0GSHvEYHQzajpsBE2NC3ykS~OHgKfrOaY2o27TLlWVY-fug7tlmvNM8L8k3knOQ9z1vg2Zo-DGYh5GA5059aRBRZ6Ch6qUOUp5sqaQRtWXEhJLX0-dui9GkEuDh85Iow1XbN9Kjpz3W5voQtyyLkXyuTIt~s1aCCAxl3eP4Sp2b~vfs5rhsl~ahaF08VOStKTatbWXGWXNnmc5~00R5hmLUxXsgLu86mHrWf5ZDk2yrye9DfGpOMHUxqNNUchJWqMTB-g0vdB9bjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No_1_and_Huangshandong_Cu_Ni_bearing_mafic_ultramafic_complexes_North_Xinjiang_and_geological_implications","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"The SHRIMP zircon U-Pb dating was carried out and yielded 287±5 Ma (MSWD = 0.34) and 274±3 Ma (MSWD = 1.35) for the Kalatongke No. 1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes. These ages are much more precise than pre-existing rock-mineral Rb-Sr, Sm-Nd and Re-Os isochron ages for the two complexes and constrain the timing of not only the complexes but also the magmatic Cu-Ni sulfide deposits more reliably. It is necessary to carefully reevaluate the previous chronological data for the complexes. The Cu-Ni-bearing mafic-ultramafic complexes have the ages similar to those of postcollisional A-type granites in the same area, implying that they could be related to the delamination of lithospheric mantle and upwelling and partial melting of asthenospheric mantle in postcollisional setting. Therefore, the Cu-Ni-bearing mafic-ultramafic complexes are a direct indicator of vertical growth of the continental crustal in the Central Asian Orogenic Belt.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":53497853,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53497853/thumbnails/1.jpg","file_name":"SHRIMP_zircon_U-Pb_ages_of_Kalatongke_No20170613-2939-up4t20.pdf","download_url":"https://www.academia.edu/attachments/53497853/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"SHRIMP_zircon_U_Pb_ages_of_Kalatongke_No.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53497853/SHRIMP_zircon_U-Pb_ages_of_Kalatongke_No20170613-2939-up4t20.pdf?1497414525=\u0026response-content-disposition=attachment%3B+filename%3DSHRIMP_zircon_U_Pb_ages_of_Kalatongke_No.pdf\u0026Expires=1734034235\u0026Signature=F0VdvXRQT974qOMJoYmIq-D1zSftEU48mT78LLidm7ofIy4tGDanT5sEXbbgRlK9ptMQBlJvF0GSHvEYHQzajpsBE2NC3ykS~OHgKfrOaY2o27TLlWVY-fug7tlmvNM8L8k3knOQ9z1vg2Zo-DGYh5GA5059aRBRZ6Ch6qUOUp5sqaQRtWXEhJLX0-dui9GkEuDh85Iow1XbN9Kjpz3W5voQtyyLkXyuTIt~s1aCCAxl3eP4Sp2b~vfs5rhsl~ahaF08VOStKTatbWXGWXNnmc5~00R5hmLUxXsgLu86mHrWf5ZDk2yrye9DfGpOMHUxqNNUchJWqMTB-g0vdB9bjA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":191125,"name":"Partial Melting","url":"https://www.academia.edu/Documents/in/Partial_Melting"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="33449392"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/33449392/Lithospheric_and_asthenospheric_sources_of_lamprophyres_in_the_Jiaodong_Peninsula_A_consequence_of_rapid_lithospheric_thinning_beneath_the_North_China_Craton"><img alt="Research paper thumbnail of Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?" class="work-thumbnail" src="https://attachments.academia-assets.com/53498296/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/33449392/Lithospheric_and_asthenospheric_sources_of_lamprophyres_in_the_Jiaodong_Peninsula_A_consequence_of_rapid_lithospheric_thinning_beneath_the_North_China_Craton">Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Lithospheric thinning and destruction of the North China Craton have been topics of active discus...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Lithospheric thinning and destruction of the North China Craton have been topics of active discussion throughout the last two decades, but the specific processes associated with lithospheric thinning remains controversial. Here we report cooccurrence of low-Ti (TiO 2 &lt; 1.1 wt.%, Ti/Y &lt; 270) and high-Ti (TiO 2 &gt; 2 wt.%, Ti/Y &gt; 370) types of lamprophyres in the Jiaodong Peninsula, eastern North China Craton in order to address this issue. Low-Ti lamprophyres are depleted in HFSE and enriched in Pb, both typical subduction signatures. We suggest they were derived from partial melting of an ancient and enriched lithospheric mantle, which was previously modified by slab-derived hydrous fluids. In contrast, the high-Ti lamprophyre has trace element patterns similar to many oceanic basalts with depletion of Pb but little or no HFSE depletion. We infer that they originated from partial melting of a convective asthenospheric mantle. Zircon U-Pb dating shows that both types of lamprophyres intruded the eastern North China Craton about 121 Myr ago. Their indistinguishable ages thus appear to record a rapid transition from lithospheric to asthenospheric mantle source, suggesting further that the lithosphere beneath the eastern North China Craton was removed, potentially delaminated ca. 121 Myr ago beneath Jiaodong Peninsula. The detachment of cratonic lithosphere is likely related to continental arc-rifting which resulted from Palaeo-Pacific plate subduction in the Mesozoic.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cf91caa80800705338e3f2680ab3c772" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:53498296,&quot;asset_id&quot;:33449392,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/53498296/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="33449392"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="33449392"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 33449392; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=33449392]").text(description); $(".js-view-count[data-work-id=33449392]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 33449392; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='33449392']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 33449392, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cf91caa80800705338e3f2680ab3c772" } } $('.js-work-strip[data-work-id=33449392]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":33449392,"title":"Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton?","translated_title":"","metadata":{"grobid_abstract":"Lithospheric thinning and destruction of the North China Craton have been topics of active discussion throughout the last two decades, but the specific processes associated with lithospheric thinning remains controversial. Here we report cooccurrence of low-Ti (TiO 2 \u003c 1.1 wt.%, Ti/Y \u003c 270) and high-Ti (TiO 2 \u003e 2 wt.%, Ti/Y \u003e 370) types of lamprophyres in the Jiaodong Peninsula, eastern North China Craton in order to address this issue. Low-Ti lamprophyres are depleted in HFSE and enriched in Pb, both typical subduction signatures. We suggest they were derived from partial melting of an ancient and enriched lithospheric mantle, which was previously modified by slab-derived hydrous fluids. In contrast, the high-Ti lamprophyre has trace element patterns similar to many oceanic basalts with depletion of Pb but little or no HFSE depletion. We infer that they originated from partial melting of a convective asthenospheric mantle. Zircon U-Pb dating shows that both types of lamprophyres intruded the eastern North China Craton about 121 Myr ago. Their indistinguishable ages thus appear to record a rapid transition from lithospheric to asthenospheric mantle source, suggesting further that the lithosphere beneath the eastern North China Craton was removed, potentially delaminated ca. 121 Myr ago beneath Jiaodong Peninsula. The detachment of cratonic lithosphere is likely related to continental arc-rifting which resulted from Palaeo-Pacific plate subduction in the Mesozoic.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"grobid_abstract_attachment_id":53498296},"translated_abstract":null,"internal_url":"https://www.academia.edu/33449392/Lithospheric_and_asthenospheric_sources_of_lamprophyres_in_the_Jiaodong_Peninsula_A_consequence_of_rapid_lithospheric_thinning_beneath_the_North_China_Craton","translated_internal_url":"","created_at":"2017-06-13T21:27:32.629-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":53498296,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53498296/thumbnails/1.jpg","file_name":"Lithospheric_and_asthenospheric_sources_20170613-2943-1ygcn81.pdf","download_url":"https://www.academia.edu/attachments/53498296/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithospheric_and_asthenospheric_sources.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53498296/Lithospheric_and_asthenospheric_sources_20170613-2943-1ygcn81-libre.pdf?1497418170=\u0026response-content-disposition=attachment%3B+filename%3DLithospheric_and_asthenospheric_sources.pdf\u0026Expires=1734034235\u0026Signature=USawMh-432Dz8je8FEVNz86oCV07T2NGvJibYykkcZ1YJ-rh2~U1aaAsbVxPbD9l5wwXsTQSrpIeNb-LzMx6SWXiDwDxXwAbG3AC03rzhIHYE0LP5PViGoXKQPYCLBKRwkP762ADPQwZ0hEqdeVpgAu~ZjEHt-YXzqB8PLvGKfXk1nfwQn24DB8vWmEZRzonxLguux5mgguKbbqcPmb3T4I~yOGYy4zFq2TbqNChD2U8dZVy473cKKT8p3ofq97nxPA6~Jm26wAxMU3iG-mYyeiA1NGM4LXgcasFnh9SnRvpUKlMXxcexUodHofUTq9uiKmLFr1tbCWX~ul31RiWgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Lithospheric_and_asthenospheric_sources_of_lamprophyres_in_the_Jiaodong_Peninsula_A_consequence_of_rapid_lithospheric_thinning_beneath_the_North_China_Craton","translated_slug":"","page_count":22,"language":"en","content_type":"Work","summary":"Lithospheric thinning and destruction of the North China Craton have been topics of active discussion throughout the last two decades, but the specific processes associated with lithospheric thinning remains controversial. Here we report cooccurrence of low-Ti (TiO 2 \u003c 1.1 wt.%, Ti/Y \u003c 270) and high-Ti (TiO 2 \u003e 2 wt.%, Ti/Y \u003e 370) types of lamprophyres in the Jiaodong Peninsula, eastern North China Craton in order to address this issue. Low-Ti lamprophyres are depleted in HFSE and enriched in Pb, both typical subduction signatures. We suggest they were derived from partial melting of an ancient and enriched lithospheric mantle, which was previously modified by slab-derived hydrous fluids. In contrast, the high-Ti lamprophyre has trace element patterns similar to many oceanic basalts with depletion of Pb but little or no HFSE depletion. We infer that they originated from partial melting of a convective asthenospheric mantle. Zircon U-Pb dating shows that both types of lamprophyres intruded the eastern North China Craton about 121 Myr ago. Their indistinguishable ages thus appear to record a rapid transition from lithospheric to asthenospheric mantle source, suggesting further that the lithosphere beneath the eastern North China Craton was removed, potentially delaminated ca. 121 Myr ago beneath Jiaodong Peninsula. The detachment of cratonic lithosphere is likely related to continental arc-rifting which resulted from Palaeo-Pacific plate subduction in the Mesozoic.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":53498296,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/53498296/thumbnails/1.jpg","file_name":"Lithospheric_and_asthenospheric_sources_20170613-2943-1ygcn81.pdf","download_url":"https://www.academia.edu/attachments/53498296/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Lithospheric_and_asthenospheric_sources.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/53498296/Lithospheric_and_asthenospheric_sources_20170613-2943-1ygcn81-libre.pdf?1497418170=\u0026response-content-disposition=attachment%3B+filename%3DLithospheric_and_asthenospheric_sources.pdf\u0026Expires=1734034235\u0026Signature=USawMh-432Dz8je8FEVNz86oCV07T2NGvJibYykkcZ1YJ-rh2~U1aaAsbVxPbD9l5wwXsTQSrpIeNb-LzMx6SWXiDwDxXwAbG3AC03rzhIHYE0LP5PViGoXKQPYCLBKRwkP762ADPQwZ0hEqdeVpgAu~ZjEHt-YXzqB8PLvGKfXk1nfwQn24DB8vWmEZRzonxLguux5mgguKbbqcPmb3T4I~yOGYy4zFq2TbqNChD2U8dZVy473cKKT8p3ofq97nxPA6~Jm26wAxMU3iG-mYyeiA1NGM4LXgcasFnh9SnRvpUKlMXxcexUodHofUTq9uiKmLFr1tbCWX~ul31RiWgg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301610"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301610/Growing_magma_chambers_control_the_distribution_of_small_scale_flood_basalts"><img alt="Research paper thumbnail of Growing magma chambers control the distribution of small-scale flood basalts" class="work-thumbnail" src="https://attachments.academia-assets.com/48792447/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301610/Growing_magma_chambers_control_the_distribution_of_small_scale_flood_basalts">Growing magma chambers control the distribution of small-scale flood basalts</a></div><div class="wp-workCard_item"><span>Scientific reports</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-tem...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 &amp;gt; 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of c...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4f619a50bd197c3edefad3a4be00c734" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48792447,&quot;asset_id&quot;:28301610,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48792447/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301610"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301610"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301610; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301610]").text(description); $(".js-view-count[data-work-id=28301610]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301610; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301610']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301610, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4f619a50bd197c3edefad3a4be00c734" } } $('.js-work-strip[data-work-id=28301610]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301610,"title":"Growing magma chambers control the distribution of small-scale flood basalts","translated_title":"","metadata":{"abstract":"Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 \u0026gt; 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of c...","ai_title_tag":"Growth of Magma Chambers Influences Small-Scale Flood Basalts","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Scientific reports"},"translated_abstract":"Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 \u0026gt; 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of c...","internal_url":"https://www.academia.edu/28301610/Growing_magma_chambers_control_the_distribution_of_small_scale_flood_basalts","translated_internal_url":"","created_at":"2016-09-07T00:09:07.230-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096663,"work_id":28301610,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Growing magma chambers control the distribution of small-scale flood basalts"}],"downloadable_attachments":[{"id":48792447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48792447/thumbnails/1.jpg","file_name":"2015-Yu_X-SR-srep16824.pdf","download_url":"https://www.academia.edu/attachments/48792447/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Growing_magma_chambers_control_the_distr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48792447/2015-Yu_X-SR-srep16824-libre.pdf?1473753123=\u0026response-content-disposition=attachment%3B+filename%3DGrowing_magma_chambers_control_the_distr.pdf\u0026Expires=1734034235\u0026Signature=CRyEILQd8MT4-ZMJCDc6Jo7h4Y9Ea5hKj6~xy8ccybwfio5YN7moTSJ5vT3p0A7g2HqMt5l56Ry3Agfhz5~LkPdy47apMfLEZVeeJMTy~LHYIQ2lHrGa~jRfTYwRjW3bnOpq~Gsf5KPqcPxUiduEriHj9Lj-uw~QLo6GQzfvclglzVB2UCxQ-Hd9xQ-DlVDr0CU0NtP8l5dOt3deT1KoVfJUKaUqhCQbJJlZTnGPvwe0nddwPvCqEXEUeApbWs1k~07t241BngywDjZMt8UaHveVxaTSC6fzIBUUKc4KIXQJB4QgSBkJfep25MMHpBKjbaK9KawYD8pf~961mIXLrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Growing_magma_chambers_control_the_distribution_of_small_scale_flood_basalts","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 \u0026gt; 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of c...","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48792447,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48792447/thumbnails/1.jpg","file_name":"2015-Yu_X-SR-srep16824.pdf","download_url":"https://www.academia.edu/attachments/48792447/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Growing_magma_chambers_control_the_distr.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48792447/2015-Yu_X-SR-srep16824-libre.pdf?1473753123=\u0026response-content-disposition=attachment%3B+filename%3DGrowing_magma_chambers_control_the_distr.pdf\u0026Expires=1734034235\u0026Signature=CRyEILQd8MT4-ZMJCDc6Jo7h4Y9Ea5hKj6~xy8ccybwfio5YN7moTSJ5vT3p0A7g2HqMt5l56Ry3Agfhz5~LkPdy47apMfLEZVeeJMTy~LHYIQ2lHrGa~jRfTYwRjW3bnOpq~Gsf5KPqcPxUiduEriHj9Lj-uw~QLo6GQzfvclglzVB2UCxQ-Hd9xQ-DlVDr0CU0NtP8l5dOt3deT1KoVfJUKaUqhCQbJJlZTnGPvwe0nddwPvCqEXEUeApbWs1k~07t241BngywDjZMt8UaHveVxaTSC6fzIBUUKc4KIXQJB4QgSBkJfep25MMHpBKjbaK9KawYD8pf~961mIXLrg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301609"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301609/Late_Paleozoic_vertical_of_continental_crust_around_the_Junggar_Basin_Xinjiang_China_Part_I_Timing_of_post_collisional_plutonism"><img alt="Research paper thumbnail of Late Paleozoic vertical of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301609/Late_Paleozoic_vertical_of_continental_crust_around_the_Junggar_Basin_Xinjiang_China_Part_I_Timing_of_post_collisional_plutonism">Late Paleozoic vertical of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism</a></div><div class="wp-workCard_item"><span>Acta Petrologica Sinica</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301609"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301609"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301609; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301609]").text(description); $(".js-view-count[data-work-id=28301609]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301609; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301609']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301609, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28301609]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301609,"title":"Late Paleozoic vertical of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_name":"Acta Petrologica Sinica"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/28301609/Late_Paleozoic_vertical_of_continental_crust_around_the_Junggar_Basin_Xinjiang_China_Part_I_Timing_of_post_collisional_plutonism","translated_internal_url":"","created_at":"2016-09-07T00:09:07.036-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096685,"work_id":28301609,"tagging_user_id":53070680,"tagged_user_id":126590534,"co_author_invite_id":5366373,"email":"c***i@gmail.com","affiliation":"Zhejiang University","display_order":0,"name":"Lei Zhang","title":"Late Paleozoic vertical of continental crust around the Junggar Basin, Xinjiang, China (Part I): Timing of post-collisional plutonism"}],"downloadable_attachments":[],"slug":"Late_Paleozoic_vertical_of_continental_crust_around_the_Junggar_Basin_Xinjiang_China_Part_I_Timing_of_post_collisional_plutonism","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301608"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301608/Geochronology_and_geochemistry_of_the_Qinling_Group_in_the_eastern_Qinling_Orogen"><img alt="Research paper thumbnail of Geochronology and geochemistry of the Qinling Group in the eastern Qinling Orogen" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301608/Geochronology_and_geochemistry_of_the_Qinling_Group_in_the_eastern_Qinling_Orogen">Geochronology and geochemistry of the Qinling Group in the eastern Qinling Orogen</a></div><div class="wp-workCard_item"><span>Acta Petrologica Sinica</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301608"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301608"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301608; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301608]").text(description); $(".js-view-count[data-work-id=28301608]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301608; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301608']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301608, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28301608]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301608,"title":"Geochronology and geochemistry of the Qinling Group in the eastern Qinling Orogen","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_name":"Acta Petrologica Sinica"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/28301608/Geochronology_and_geochemistry_of_the_Qinling_Group_in_the_eastern_Qinling_Orogen","translated_internal_url":"","created_at":"2016-09-07T00:09:06.884-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096684,"work_id":28301608,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366372,"email":"j***u@hotmail.com","display_order":0,"name":"J. Qiu","title":"Geochronology and geochemistry of the Qinling Group in the eastern Qinling Orogen"}],"downloadable_attachments":[],"slug":"Geochronology_and_geochemistry_of_the_Qinling_Group_in_the_eastern_Qinling_Orogen","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301607"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301607/Sources_of_Cenozoic_alkaline_basalts_in_eastern_China_Enriched_asthenosphere_produced_by_carbonatite_metasomatism"><img alt="Research paper thumbnail of Sources of Cenozoic alkaline basalts in eastern China: Enriched asthenosphere produced by carbonatite metasomatism" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301607/Sources_of_Cenozoic_alkaline_basalts_in_eastern_China_Enriched_asthenosphere_produced_by_carbonatite_metasomatism">Sources of Cenozoic alkaline basalts in eastern China: Enriched asthenosphere produced by carbonatite metasomatism</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301607"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301607"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301607; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301607]").text(description); $(".js-view-count[data-work-id=28301607]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301607; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301607']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301607, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28301607]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301607,"title":"Sources of Cenozoic alkaline basalts in eastern China: Enriched asthenosphere produced by carbonatite metasomatism","translated_title":"","metadata":{"abstract":"ABSTRACT"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/28301607/Sources_of_Cenozoic_alkaline_basalts_in_eastern_China_Enriched_asthenosphere_produced_by_carbonatite_metasomatism","translated_internal_url":"","created_at":"2016-09-07T00:09:06.686-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096665,"work_id":28301607,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Sources of Cenozoic alkaline basalts in eastern China: Enriched asthenosphere produced by carbonatite metasomatism"}],"downloadable_attachments":[],"slug":"Sources_of_Cenozoic_alkaline_basalts_in_eastern_China_Enriched_asthenosphere_produced_by_carbonatite_metasomatism","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301606"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301606/Magmatic_recharge_in_continental_flood_basalts_Insights_from_the_Chifeng_igneous_province_in_Inner_Mongolia"><img alt="Research paper thumbnail of Magmatic recharge in continental flood basalts: Insights from the Chifeng igneous province in Inner Mongolia" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301606/Magmatic_recharge_in_continental_flood_basalts_Insights_from_the_Chifeng_igneous_province_in_Inner_Mongolia">Magmatic recharge in continental flood basalts: Insights from the Chifeng igneous province in Inner Mongolia</a></div><div class="wp-workCard_item"><span>Geochemistry, Geophysics, Geosystems</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301606"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301606"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301606; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301606]").text(description); $(".js-view-count[data-work-id=28301606]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301606; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301606']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301606, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28301606]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301606,"title":"Magmatic recharge in continental flood basalts: Insights from the Chifeng igneous province in Inner Mongolia","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Geochemistry, Geophysics, Geosystems"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/28301606/Magmatic_recharge_in_continental_flood_basalts_Insights_from_the_Chifeng_igneous_province_in_Inner_Mongolia","translated_internal_url":"","created_at":"2016-09-07T00:09:06.511-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096662,"work_id":28301606,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Magmatic recharge in continental flood basalts: Insights from the Chifeng igneous province in Inner Mongolia"}],"downloadable_attachments":[],"slug":"Magmatic_recharge_in_continental_flood_basalts_Insights_from_the_Chifeng_igneous_province_in_Inner_Mongolia","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301605"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301605/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China"><img alt="Research paper thumbnail of Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China" class="work-thumbnail" src="https://attachments.academia-assets.com/48633921/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301605/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China">Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The genesis of intra-plate alkaline basalts remains controversial, and three sources have been pr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of &quot;carbonatitic fingerprints.&quot; Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cc28b4b803c2d7a409873b66c8a191b6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633921,&quot;asset_id&quot;:28301605,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633921/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301605"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301605"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301605; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301605]").text(description); $(".js-view-count[data-work-id=28301605]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301605; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301605']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301605, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cc28b4b803c2d7a409873b66c8a191b6" } } $('.js-work-strip[data-work-id=28301605]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301605,"title":"Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China","translated_title":"","metadata":{"grobid_abstract":"The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of \"carbonatitic fingerprints.\" Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"grobid_abstract_attachment_id":48633921},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301605/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China","translated_internal_url":"","created_at":"2016-09-07T00:09:06.402-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096664,"work_id":28301605,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China"}],"downloadable_attachments":[{"id":48633921,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633921/thumbnails/1.jpg","file_name":"Carbonated_mantle_sources_for_Cenozoic_i20160907-26726-o03wsc.pdf","download_url":"https://www.academia.edu/attachments/48633921/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Carbonated_mantle_sources_for_Cenozoic_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633921/Carbonated_mantle_sources_for_Cenozoic_i20160907-26726-o03wsc-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DCarbonated_mantle_sources_for_Cenozoic_i.pdf\u0026Expires=1734034235\u0026Signature=WZf9FTlUKk2~LlGx8fuhAIMiPoeokUMhvDaNrxiJgYEpRvU~wInrFn7eUx3dVgrKtCBqmiJOW-vWtm5P2nW9PBPJKWW9A6kT0yF5KfQUv18JMIgZiDnxRNebFAocr~Ogi2fGuIuLrzEhRtBzO5ufvYJgRs-VjH5tyjY~5s8Wet6aiohcu3fIDIDaLINVpUknN9jFi~qkgpVcID9adRYgZKYleUsnL77b5MnlCd9HxuUoYreESoOBeFgfImiV~YHDGzarF2bcc1GzzEZDJTirNZ-K4DGED6BW-0i6FtDnRMhSX8KF9kOw93IOib4LI6j5loYeaQhx2jYt-WeKlCDUnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of \"carbonatitic fingerprints.\" Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633921,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633921/thumbnails/1.jpg","file_name":"Carbonated_mantle_sources_for_Cenozoic_i20160907-26726-o03wsc.pdf","download_url":"https://www.academia.edu/attachments/48633921/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Carbonated_mantle_sources_for_Cenozoic_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633921/Carbonated_mantle_sources_for_Cenozoic_i20160907-26726-o03wsc-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DCarbonated_mantle_sources_for_Cenozoic_i.pdf\u0026Expires=1734034235\u0026Signature=WZf9FTlUKk2~LlGx8fuhAIMiPoeokUMhvDaNrxiJgYEpRvU~wInrFn7eUx3dVgrKtCBqmiJOW-vWtm5P2nW9PBPJKWW9A6kT0yF5KfQUv18JMIgZiDnxRNebFAocr~Ogi2fGuIuLrzEhRtBzO5ufvYJgRs-VjH5tyjY~5s8Wet6aiohcu3fIDIDaLINVpUknN9jFi~qkgpVcID9adRYgZKYleUsnL77b5MnlCd9HxuUoYreESoOBeFgfImiV~YHDGzarF2bcc1GzzEZDJTirNZ-K4DGED6BW-0i6FtDnRMhSX8KF9kOw93IOib4LI6j5loYeaQhx2jYt-WeKlCDUnA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":16024,"name":"Chemical Geology","url":"https://www.academia.edu/Documents/in/Chemical_Geology"},{"id":274263,"name":"Rare Earth Element Mineralization","url":"https://www.academia.edu/Documents/in/Rare_Earth_Element_Mineralization"},{"id":679783,"name":"Boolean Satisfiability","url":"https://www.academia.edu/Documents/in/Boolean_Satisfiability"},{"id":1464622,"name":"Carbonatite","url":"https://www.academia.edu/Documents/in/Carbonatite"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301604"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301604/IODP_Expedition_330_Drilling_the_Louisville_Seamount_Trail_in_the_SW_Pacific"><img alt="Research paper thumbnail of IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific" class="work-thumbnail" src="https://attachments.academia-assets.com/48633953/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301604/IODP_Expedition_330_Drilling_the_Louisville_Seamount_Trail_in_the_SW_Pacific">IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific</a></div><div class="wp-workCard_item"><span>Scientific Drilling</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Deep-Earth convection can be understood by studying hotspot volcanoes that form where mantle plum...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Deep-Earth convection can be understood by studying hotspot volcanoes that form where mantle plumes rise up and intersect the lithosphere, the Earth&#39;s rigid outer layer. Hotspots characteristically leave age-progressive trails of volcanoes and seamounts on top of oceanic lithosphere, which in turn allow us to decipher the motion of these plates relative to &quot;fixed&quot; deep-mantle plumes, and their (isotope) geochemistry provides insights into the long-term evolution of mantle source regions. However, it is strongly suggested that the Hawaiian mantle plume moved ~15° south between 80 and 50 million years ago. This raises a fundamental question about other hotspot systems in the Pacific, whether or not their mantle plumes experienced a similar amount and direction of motion. Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamounts showed that the Louisville hotspot in the South Pacific behaved in a different manner, as its mantle plume remained more or less fixed around 48°S latitude during that same time period. Our findings demonstrate that the Pacific hotspots move independently and that their trajectories may be controlled by differences in subduction zone geometry. Additionally, shipboard geochemistry data shows that, in contrast to Hawaiian volcanoes, the construction of the Louisville Seamounts doesn&#39;t involve a shield-building phase dominated by tholeiitic lavas, and trace elements confirm the rather homogenous nature of the Louisville mantle source. Both observations set Louisville apart from the Hawaiian-Emperor seamount trail, whereby the latter has been erupting abundant tholeiites (characteristically up to 95% in volume) and which exhibit a large variability in (isotope) geochemistry and their mantle source components.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="486f4c22d8ad3c809742920024ac15e1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633953,&quot;asset_id&quot;:28301604,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633953/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301604"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301604"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301604; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301604]").text(description); $(".js-view-count[data-work-id=28301604]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301604; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301604']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301604, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "486f4c22d8ad3c809742920024ac15e1" } } $('.js-work-strip[data-work-id=28301604]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301604,"title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific","translated_title":"","metadata":{"grobid_abstract":"Deep-Earth convection can be understood by studying hotspot volcanoes that form where mantle plumes rise up and intersect the lithosphere, the Earth's rigid outer layer. Hotspots characteristically leave age-progressive trails of volcanoes and seamounts on top of oceanic lithosphere, which in turn allow us to decipher the motion of these plates relative to \"fixed\" deep-mantle plumes, and their (isotope) geochemistry provides insights into the long-term evolution of mantle source regions. However, it is strongly suggested that the Hawaiian mantle plume moved ~15° south between 80 and 50 million years ago. This raises a fundamental question about other hotspot systems in the Pacific, whether or not their mantle plumes experienced a similar amount and direction of motion. Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamounts showed that the Louisville hotspot in the South Pacific behaved in a different manner, as its mantle plume remained more or less fixed around 48°S latitude during that same time period. Our findings demonstrate that the Pacific hotspots move independently and that their trajectories may be controlled by differences in subduction zone geometry. Additionally, shipboard geochemistry data shows that, in contrast to Hawaiian volcanoes, the construction of the Louisville Seamounts doesn't involve a shield-building phase dominated by tholeiitic lavas, and trace elements confirm the rather homogenous nature of the Louisville mantle source. Both observations set Louisville apart from the Hawaiian-Emperor seamount trail, whereby the latter has been erupting abundant tholeiites (characteristically up to 95% in volume) and which exhibit a large variability in (isotope) geochemistry and their mantle source components.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Scientific Drilling","grobid_abstract_attachment_id":48633953},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301604/IODP_Expedition_330_Drilling_the_Louisville_Seamount_Trail_in_the_SW_Pacific","translated_internal_url":"","created_at":"2016-09-07T00:09:06.270-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096666,"work_id":28301604,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366364,"email":"d***a@ucsd.edu","display_order":0,"name":"D. Ebuna","title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific"},{"id":24096669,"work_id":28301604,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366365,"email":"l***s@durham.ac.uk","display_order":4194304,"name":"L. Kalnins","title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific"},{"id":24096672,"work_id":28301604,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366366,"email":"s***i@unimelb.edu.au","display_order":6291456,"name":"S. Machida","title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific"},{"id":24096675,"work_id":28301604,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366367,"email":"n***g@unimelb.edu.au","display_order":7340032,"name":"Nicola Pressling","title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific"},{"id":24096678,"work_id":28301604,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366368,"email":"s***h@uni-bremen.de","display_order":7864320,"name":"Svenja Rausch","title":"IODP Expedition 330: Drilling the Louisville Seamount Trail in the SW Pacific"}],"downloadable_attachments":[{"id":48633953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633953/thumbnails/1.jpg","file_name":"IODP_Expedition_330_Drilling_the_Louisvi20160907-11755-sbnpd1.pdf","download_url":"https://www.academia.edu/attachments/48633953/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"IODP_Expedition_330_Drilling_the_Louisvi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633953/IODP_Expedition_330_Drilling_the_Louisvi20160907-11755-sbnpd1-libre.pdf?1473232868=\u0026response-content-disposition=attachment%3B+filename%3DIODP_Expedition_330_Drilling_the_Louisvi.pdf\u0026Expires=1734034235\u0026Signature=V3J64RjpToP1p1mVcDHEYWInJkYnF-h2MvafKPq7gij2wopx36uWCq07YYy6jUX9Nexhz3uyivsOxU2t64EAb3NmpoCzwA3qCuqYEDmMbiSEY3vfRdilqgbvhoM5BzkehDgEYaC7K8fdnwbUUQ7si58ZbGlnrKfMLPUSToKgCNa4fYh1OQzAQHoKUKylSpXL9Armur8qqed-ArsfLCWxCqOG-0pAObLVdPA7pYdybw1JYiVNc2ybnoCEoXH3SAK5U3ivAtfR8Ihfr7PMALs83ONe0wbwSOaJhyZZrClYJlj45HBlW3DWOf67Qg~JVYL1MJzAf1xnBslrrLEtfRPXng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"IODP_Expedition_330_Drilling_the_Louisville_Seamount_Trail_in_the_SW_Pacific","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Deep-Earth convection can be understood by studying hotspot volcanoes that form where mantle plumes rise up and intersect the lithosphere, the Earth's rigid outer layer. Hotspots characteristically leave age-progressive trails of volcanoes and seamounts on top of oceanic lithosphere, which in turn allow us to decipher the motion of these plates relative to \"fixed\" deep-mantle plumes, and their (isotope) geochemistry provides insights into the long-term evolution of mantle source regions. However, it is strongly suggested that the Hawaiian mantle plume moved ~15° south between 80 and 50 million years ago. This raises a fundamental question about other hotspot systems in the Pacific, whether or not their mantle plumes experienced a similar amount and direction of motion. Integrated Ocean Drilling Program (IODP) Expedition 330 to the Louisville Seamounts showed that the Louisville hotspot in the South Pacific behaved in a different manner, as its mantle plume remained more or less fixed around 48°S latitude during that same time period. Our findings demonstrate that the Pacific hotspots move independently and that their trajectories may be controlled by differences in subduction zone geometry. Additionally, shipboard geochemistry data shows that, in contrast to Hawaiian volcanoes, the construction of the Louisville Seamounts doesn't involve a shield-building phase dominated by tholeiitic lavas, and trace elements confirm the rather homogenous nature of the Louisville mantle source. Both observations set Louisville apart from the Hawaiian-Emperor seamount trail, whereby the latter has been erupting abundant tholeiites (characteristically up to 95% in volume) and which exhibit a large variability in (isotope) geochemistry and their mantle source components.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633953,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633953/thumbnails/1.jpg","file_name":"IODP_Expedition_330_Drilling_the_Louisvi20160907-11755-sbnpd1.pdf","download_url":"https://www.academia.edu/attachments/48633953/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"IODP_Expedition_330_Drilling_the_Louisvi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633953/IODP_Expedition_330_Drilling_the_Louisvi20160907-11755-sbnpd1-libre.pdf?1473232868=\u0026response-content-disposition=attachment%3B+filename%3DIODP_Expedition_330_Drilling_the_Louisvi.pdf\u0026Expires=1734034235\u0026Signature=V3J64RjpToP1p1mVcDHEYWInJkYnF-h2MvafKPq7gij2wopx36uWCq07YYy6jUX9Nexhz3uyivsOxU2t64EAb3NmpoCzwA3qCuqYEDmMbiSEY3vfRdilqgbvhoM5BzkehDgEYaC7K8fdnwbUUQ7si58ZbGlnrKfMLPUSToKgCNa4fYh1OQzAQHoKUKylSpXL9Armur8qqed-ArsfLCWxCqOG-0pAObLVdPA7pYdybw1JYiVNc2ybnoCEoXH3SAK5U3ivAtfR8Ihfr7PMALs83ONe0wbwSOaJhyZZrClYJlj45HBlW3DWOf67Qg~JVYL1MJzAf1xnBslrrLEtfRPXng__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301603"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301603/Limited_latitudinal_mantle_plume_motion_for_the_Louisville_hotspot"><img alt="Research paper thumbnail of Limited latitudinal mantle plume motion for the Louisville hotspot" class="work-thumbnail" src="https://attachments.academia-assets.com/48633917/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301603/Limited_latitudinal_mantle_plume_motion_for_the_Louisville_hotspot">Limited latitudinal mantle plume motion for the Louisville hotspot</a></div><div class="wp-workCard_item"><span>Nature Geoscience</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave na...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave narrow trails of volcanic seamounts as a tectonic plate moves over their location. These seamount trails are excellent recorders of Earth&#39;s deep processes and allow us to untangle ancient mantle plume motions. During ascent it is likely that mantle plumes are pushed away from their vertical upwelling trajectories by mantle convection forces. It has been proposed that a large-scale lateral displacement, termed the mantle wind, existed in the Pacific between about 80 and 50 million years ago, and shifted the Hawaiian mantle plume southwards by about 15 • of latitude. Here we use 40 Ar/ 39 Ar age dating and palaeomagnetic inclination data from four seamounts associated with the Louisville hotspot in the South Pacific Ocean to show that this hotspot has been relatively stable in terms of its location. Specifically, the Louisville hotspot-the southern hemisphere counterpart of Hawai&#39;i-has remained within 3-5 • of its present-day latitude of about 51 • S between 70 and 50 million years ago. Although we cannot exclude a more significant southward motion before that time, we suggest that the Louisville and Hawaiian hotspots are moving independently, and not as part of a large-scale mantle wind in the Pacific.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ddd60e3798317804beb4f77d18fb981c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633917,&quot;asset_id&quot;:28301603,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633917/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301603"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301603"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301603; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301603]").text(description); $(".js-view-count[data-work-id=28301603]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301603; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301603']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301603, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ddd60e3798317804beb4f77d18fb981c" } } $('.js-work-strip[data-work-id=28301603]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301603,"title":"Limited latitudinal mantle plume motion for the Louisville hotspot","translated_title":"","metadata":{"grobid_abstract":"Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave narrow trails of volcanic seamounts as a tectonic plate moves over their location. These seamount trails are excellent recorders of Earth's deep processes and allow us to untangle ancient mantle plume motions. During ascent it is likely that mantle plumes are pushed away from their vertical upwelling trajectories by mantle convection forces. It has been proposed that a large-scale lateral displacement, termed the mantle wind, existed in the Pacific between about 80 and 50 million years ago, and shifted the Hawaiian mantle plume southwards by about 15 • of latitude. Here we use 40 Ar/ 39 Ar age dating and palaeomagnetic inclination data from four seamounts associated with the Louisville hotspot in the South Pacific Ocean to show that this hotspot has been relatively stable in terms of its location. Specifically, the Louisville hotspot-the southern hemisphere counterpart of Hawai'i-has remained within 3-5 • of its present-day latitude of about 51 • S between 70 and 50 million years ago. Although we cannot exclude a more significant southward motion before that time, we suggest that the Louisville and Hawaiian hotspots are moving independently, and not as part of a large-scale mantle wind in the Pacific.","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Nature Geoscience","grobid_abstract_attachment_id":48633917},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301603/Limited_latitudinal_mantle_plume_motion_for_the_Louisville_hotspot","translated_internal_url":"","created_at":"2016-09-07T00:09:06.123-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096668,"work_id":28301603,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366364,"email":"d***a@ucsd.edu","display_order":0,"name":"D. Ebuna","title":"Limited latitudinal mantle plume motion for the Louisville hotspot"},{"id":24096671,"work_id":28301603,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366365,"email":"l***s@durham.ac.uk","display_order":4194304,"name":"L. Kalnins","title":"Limited latitudinal mantle plume motion for the Louisville hotspot"},{"id":24096674,"work_id":28301603,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366366,"email":"s***i@unimelb.edu.au","display_order":6291456,"name":"S. Machida","title":"Limited latitudinal mantle plume motion for the Louisville hotspot"},{"id":24096677,"work_id":28301603,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366367,"email":"n***g@unimelb.edu.au","display_order":7340032,"name":"Nicola Pressling","title":"Limited latitudinal mantle plume motion for the Louisville hotspot"},{"id":24096680,"work_id":28301603,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366368,"email":"s***h@uni-bremen.de","display_order":7864320,"name":"Svenja Rausch","title":"Limited latitudinal mantle plume motion for the Louisville hotspot"}],"downloadable_attachments":[{"id":48633917,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633917/thumbnails/1.jpg","file_name":"Limited_latitudinal_mantle_plume_motion_20160907-7765-1u8g8eb.pdf","download_url":"https://www.academia.edu/attachments/48633917/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Limited_latitudinal_mantle_plume_motion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633917/Limited_latitudinal_mantle_plume_motion_20160907-7765-1u8g8eb-libre.pdf?1473232863=\u0026response-content-disposition=attachment%3B+filename%3DLimited_latitudinal_mantle_plume_motion.pdf\u0026Expires=1734034235\u0026Signature=cqQgYBH8rsJYkm1BbaetadS~hDeTOWQYItSGn4FLcUSdTW0A3B0wxiYrX2DLd-22dYfy7N9xVo5ZY22YDuknKd8Awjmmd40VXPprrQtXGOnndf6tg-PBd2VBplxzKBH8fcu5bQjBQazDfRaIGeQoauWprwAXDJxHkE1J9WSCA-lvy4YSw6BDfTvFtZZmSBmOme3EFPvpx3GMwAPGcSBOANieF1aQy7vqfFLdKHXdlGIbIAmkSIzUpq999O4nIS~ufTTe3Crdg6IuP70ixsXJrHvQCwlp5mMbdeq-WqEuRORdZ8acZ-oVjU1I~maGvlhmZEzM9GEAGpNm4rE7IjTBHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Limited_latitudinal_mantle_plume_motion_for_the_Louisville_hotspot","translated_slug":"","page_count":7,"language":"en","content_type":"Work","summary":"Hotspots that form above upwelling plumes of hot material from the deep mantle typically leave narrow trails of volcanic seamounts as a tectonic plate moves over their location. These seamount trails are excellent recorders of Earth's deep processes and allow us to untangle ancient mantle plume motions. During ascent it is likely that mantle plumes are pushed away from their vertical upwelling trajectories by mantle convection forces. It has been proposed that a large-scale lateral displacement, termed the mantle wind, existed in the Pacific between about 80 and 50 million years ago, and shifted the Hawaiian mantle plume southwards by about 15 • of latitude. Here we use 40 Ar/ 39 Ar age dating and palaeomagnetic inclination data from four seamounts associated with the Louisville hotspot in the South Pacific Ocean to show that this hotspot has been relatively stable in terms of its location. Specifically, the Louisville hotspot-the southern hemisphere counterpart of Hawai'i-has remained within 3-5 • of its present-day latitude of about 51 • S between 70 and 50 million years ago. Although we cannot exclude a more significant southward motion before that time, we suggest that the Louisville and Hawaiian hotspots are moving independently, and not as part of a large-scale mantle wind in the Pacific.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633917,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633917/thumbnails/1.jpg","file_name":"Limited_latitudinal_mantle_plume_motion_20160907-7765-1u8g8eb.pdf","download_url":"https://www.academia.edu/attachments/48633917/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Limited_latitudinal_mantle_plume_motion.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633917/Limited_latitudinal_mantle_plume_motion_20160907-7765-1u8g8eb-libre.pdf?1473232863=\u0026response-content-disposition=attachment%3B+filename%3DLimited_latitudinal_mantle_plume_motion.pdf\u0026Expires=1734034235\u0026Signature=cqQgYBH8rsJYkm1BbaetadS~hDeTOWQYItSGn4FLcUSdTW0A3B0wxiYrX2DLd-22dYfy7N9xVo5ZY22YDuknKd8Awjmmd40VXPprrQtXGOnndf6tg-PBd2VBplxzKBH8fcu5bQjBQazDfRaIGeQoauWprwAXDJxHkE1J9WSCA-lvy4YSw6BDfTvFtZZmSBmOme3EFPvpx3GMwAPGcSBOANieF1aQy7vqfFLdKHXdlGIbIAmkSIzUpq999O4nIS~ufTTe3Crdg6IuP70ixsXJrHvQCwlp5mMbdeq-WqEuRORdZ8acZ-oVjU1I~maGvlhmZEzM9GEAGpNm4rE7IjTBHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":15989,"name":"Igneous petrology","url":"https://www.academia.edu/Documents/in/Igneous_petrology"},{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":32312,"name":"Palaeomagnetism","url":"https://www.academia.edu/Documents/in/Palaeomagnetism"},{"id":181670,"name":"Mantle plumes","url":"https://www.academia.edu/Documents/in/Mantle_plumes"},{"id":610091,"name":"Louisville Seamount Chain","url":"https://www.academia.edu/Documents/in/Louisville_Seamount_Chain"},{"id":870062,"name":"HotSpot","url":"https://www.academia.edu/Documents/in/HotSpot"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301602"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301602/Genesis_of_Cenozoic_low_Ca_alkaline_basalts_in_the_Nanjing_basaltic_field_eastern_China_The_case_for_mantle_xenolith_magma_interaction"><img alt="Research paper thumbnail of Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: The case for mantle xenolith-magma interaction" class="work-thumbnail" src="https://attachments.academia-assets.com/48633934/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301602/Genesis_of_Cenozoic_low_Ca_alkaline_basalts_in_the_Nanjing_basaltic_field_eastern_China_The_case_for_mantle_xenolith_magma_interaction">Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: The case for mantle xenolith-magma interaction</a></div><div class="wp-workCard_item"><span>Geochemistry, Geophysics, Geosystems</span><span>, 2013</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">1] Although peridotite xenoliths are common in alkaline basalts, it is still unclear whether the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">1] Although peridotite xenoliths are common in alkaline basalts, it is still unclear whether the chemical compositions of their host rocks have been affected by these mantle fragments and, if so, what processes are involved in this alteration of the host basalts. Here, we document a kind of xenolith-rich alkaline basalts from the Nanjing basaltic field, eastern China. These basalts contain lower concentrations of CaO (4.1-7.8 wt %) and Sc (3.3-17.8 ppm) and have lower Ca/Al (0.3-0.6) and higher Na/Ti ratios (2.8-11.2) than other Cenozoic basalts in this area. These xenolith-rich basalts show good correlations between elemental ratios (e.g., Lu/Hf and Ca/Al) and e Hf values, which are indicative of mixing of two distinct components during the genesis of the magmas that formed these basalts: a high-e Hf end-member (with low Lu/Hf and Ca/Al ratios) and the primitive melt-related low-e Hf end-member. In addition, peridotite xenoliths hosted in these basalts have distinct core-mantle textures, with the margins having higher modal olivine abundances (70%) than the xenolith cores (52%). Within the xenolith margins, some orthopyroxenes are enclosed in the olivines, and all clinopyroxenes are sponge textured. These sponge-textured clinopyroxenes have higher CaO and Sc concentrations, higher Ca/Al ratios, and lower Na/Ti ratios than clinopyroxenes within the cores of the xenoliths, suggesting that the xenoliths underwent low-pressure melting within the host magma. This indicates that xenolith-rich magmas within the study area were contaminated during ascent by melts derived from mantle xenoliths within the magmas, transforming the magmas into the low-Ca alkaline basalts.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8d6ede79e1ad66cf29a321697dc610d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633934,&quot;asset_id&quot;:28301602,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633934/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301602"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301602"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301602; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301602]").text(description); $(".js-view-count[data-work-id=28301602]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301602; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301602']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301602, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8d6ede79e1ad66cf29a321697dc610d3" } } $('.js-work-strip[data-work-id=28301602]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301602,"title":"Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: The case for mantle xenolith-magma interaction","translated_title":"","metadata":{"grobid_abstract":"1] Although peridotite xenoliths are common in alkaline basalts, it is still unclear whether the chemical compositions of their host rocks have been affected by these mantle fragments and, if so, what processes are involved in this alteration of the host basalts. Here, we document a kind of xenolith-rich alkaline basalts from the Nanjing basaltic field, eastern China. These basalts contain lower concentrations of CaO (4.1-7.8 wt %) and Sc (3.3-17.8 ppm) and have lower Ca/Al (0.3-0.6) and higher Na/Ti ratios (2.8-11.2) than other Cenozoic basalts in this area. These xenolith-rich basalts show good correlations between elemental ratios (e.g., Lu/Hf and Ca/Al) and e Hf values, which are indicative of mixing of two distinct components during the genesis of the magmas that formed these basalts: a high-e Hf end-member (with low Lu/Hf and Ca/Al ratios) and the primitive melt-related low-e Hf end-member. In addition, peridotite xenoliths hosted in these basalts have distinct core-mantle textures, with the margins having higher modal olivine abundances (70%) than the xenolith cores (52%). Within the xenolith margins, some orthopyroxenes are enclosed in the olivines, and all clinopyroxenes are sponge textured. These sponge-textured clinopyroxenes have higher CaO and Sc concentrations, higher Ca/Al ratios, and lower Na/Ti ratios than clinopyroxenes within the cores of the xenoliths, suggesting that the xenoliths underwent low-pressure melting within the host magma. This indicates that xenolith-rich magmas within the study area were contaminated during ascent by melts derived from mantle xenoliths within the magmas, transforming the magmas into the low-Ca alkaline basalts.","publication_date":{"day":null,"month":null,"year":2013,"errors":{}},"publication_name":"Geochemistry, Geophysics, Geosystems","grobid_abstract_attachment_id":48633934},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301602/Genesis_of_Cenozoic_low_Ca_alkaline_basalts_in_the_Nanjing_basaltic_field_eastern_China_The_case_for_mantle_xenolith_magma_interaction","translated_internal_url":"","created_at":"2016-09-07T00:09:05.997-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096660,"work_id":28301602,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: The case for mantle xenolith-magma interaction"},{"id":24096686,"work_id":28301602,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366374,"email":"l***n@pku.edu.cn","display_order":4194304,"name":"Liang-feng Yang","title":"Genesis of Cenozoic low-Ca alkaline basalts in the Nanjing basaltic field, eastern China: The case for mantle xenolith-magma interaction"}],"downloadable_attachments":[{"id":48633934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633934/thumbnails/1.jpg","file_name":"Genesis_of_Cenozoic_low-Ca_alkaline_basa20160907-1707-5yr4be.pdf","download_url":"https://www.academia.edu/attachments/48633934/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genesis_of_Cenozoic_low_Ca_alkaline_basa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633934/Genesis_of_Cenozoic_low-Ca_alkaline_basa20160907-1707-5yr4be-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DGenesis_of_Cenozoic_low_Ca_alkaline_basa.pdf\u0026Expires=1734034235\u0026Signature=WoaLz4mjiZKGQYUY7QBWMehen3m0cNzMuPYJ4u8Ogu-nbEHg7rEmhQsZpmUVg~sJ7DK3By8WU3RbD4cBHZSUFFW3Cweui0ro-tnAjhhFQYS24sILPlz2oxXbub-rN1zfm0txhw9Ih8y9KwawyqosTrSV7SxHFZ5ukqHg~w6Qp7Y~gh8Kr-8Cs~MeQTb9DbYbJDCgMos-4KpkHSClrgrxEQRgDXv5wDxFqz3fW1HUtmsYJfg-ZTL5u6CekHlm7z5e55WsRb7Zc2mxwSlV-LCnkY55wx-0RxwNwWxdfVYiPrdIsQpEwuzrj2zQ0cFIkD-h1NY-m~o4NO0Zgg~jxj5vRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Genesis_of_Cenozoic_low_Ca_alkaline_basalts_in_the_Nanjing_basaltic_field_eastern_China_The_case_for_mantle_xenolith_magma_interaction","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"1] Although peridotite xenoliths are common in alkaline basalts, it is still unclear whether the chemical compositions of their host rocks have been affected by these mantle fragments and, if so, what processes are involved in this alteration of the host basalts. Here, we document a kind of xenolith-rich alkaline basalts from the Nanjing basaltic field, eastern China. These basalts contain lower concentrations of CaO (4.1-7.8 wt %) and Sc (3.3-17.8 ppm) and have lower Ca/Al (0.3-0.6) and higher Na/Ti ratios (2.8-11.2) than other Cenozoic basalts in this area. These xenolith-rich basalts show good correlations between elemental ratios (e.g., Lu/Hf and Ca/Al) and e Hf values, which are indicative of mixing of two distinct components during the genesis of the magmas that formed these basalts: a high-e Hf end-member (with low Lu/Hf and Ca/Al ratios) and the primitive melt-related low-e Hf end-member. In addition, peridotite xenoliths hosted in these basalts have distinct core-mantle textures, with the margins having higher modal olivine abundances (70%) than the xenolith cores (52%). Within the xenolith margins, some orthopyroxenes are enclosed in the olivines, and all clinopyroxenes are sponge textured. These sponge-textured clinopyroxenes have higher CaO and Sc concentrations, higher Ca/Al ratios, and lower Na/Ti ratios than clinopyroxenes within the cores of the xenoliths, suggesting that the xenoliths underwent low-pressure melting within the host magma. This indicates that xenolith-rich magmas within the study area were contaminated during ascent by melts derived from mantle xenoliths within the magmas, transforming the magmas into the low-Ca alkaline basalts.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633934,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633934/thumbnails/1.jpg","file_name":"Genesis_of_Cenozoic_low-Ca_alkaline_basa20160907-1707-5yr4be.pdf","download_url":"https://www.academia.edu/attachments/48633934/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genesis_of_Cenozoic_low_Ca_alkaline_basa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633934/Genesis_of_Cenozoic_low-Ca_alkaline_basa20160907-1707-5yr4be-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DGenesis_of_Cenozoic_low_Ca_alkaline_basa.pdf\u0026Expires=1734034235\u0026Signature=WoaLz4mjiZKGQYUY7QBWMehen3m0cNzMuPYJ4u8Ogu-nbEHg7rEmhQsZpmUVg~sJ7DK3By8WU3RbD4cBHZSUFFW3Cweui0ro-tnAjhhFQYS24sILPlz2oxXbub-rN1zfm0txhw9Ih8y9KwawyqosTrSV7SxHFZ5ukqHg~w6Qp7Y~gh8Kr-8Cs~MeQTb9DbYbJDCgMos-4KpkHSClrgrxEQRgDXv5wDxFqz3fW1HUtmsYJfg-ZTL5u6CekHlm7z5e55WsRb7Zc2mxwSlV-LCnkY55wx-0RxwNwWxdfVYiPrdIsQpEwuzrj2zQ0cFIkD-h1NY-m~o4NO0Zgg~jxj5vRw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301601"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301601/Crust_recycling_in_the_sources_of_two_parallel_volcanic_chains_in_Shandong_North_China"><img alt="Research paper thumbnail of Crust recycling in the sources of two parallel volcanic chains in Shandong, North China" class="work-thumbnail" src="https://attachments.academia-assets.com/48633922/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301601/Crust_recycling_in_the_sources_of_two_parallel_volcanic_chains_in_Shandong_North_China">Crust recycling in the sources of two parallel volcanic chains in Shandong, North China</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2011</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Keywords: alkaline basalts intra-continental volcanic chains crustal recycling lower continental ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Keywords: alkaline basalts intra-continental volcanic chains crustal recycling lower continental crust lithosphere thickness Recycled crustal components have been documented for many sources of hotspot-related ocean island basalts, but they have been difficult to identify in continental basalts, because in continental settings, hotspots are often obscured and recycled crustal sources are difficult to distinguish from crustal contamination. We show major, trace element and Sr-Nd-Hf isotopic compositions for two parallel chains of Cenozoic volcanoes from Shandong Province, North China, which are free of crustal contamination and show clear evidence for recycling of mafic lower crust. Sr, Nd, and Hf isotopes in the two volcanic chains form separate binary mixing arrays, which converge on the composition of Dashan, an isolated, nephelinitic volcano with the most depleted isotopic signature. The two chains have lower CaO values and significantly diverging isotope enrichment trends from this common endmember. Both trends deviate from the normal Sr-Nd and Hf-Nd mantle array toward lower 87 Sr/ 86 Sr and higher ε Hf values, all features that point to a (recycled) eclogitic source. We invoke a two-stage evolution model to generate the endmembers of these two mixing trends. In the first stage, recycled mafic crust (eclogite) is depleted by earlier (late Mesozoic) melt extraction, which elevates the Lu/Hf of the residue relative to Sm/Nd due to garnet control during melting. Subsequently, these silica-deficient residues are transported to the deeper mantle. Finally, in Cenozoic time, upwelling mantle (possibly a plume) transports lenses of residual eclogites into the shallow asthenosphere. The recycled crustal components beneath the two chains differ somewhat in isotopic composition due to different degree of the earlier melting. The upwelling mantle spreads beneath the lithosphere and flows toward regions of thinned lithosphere, e.g. the Tan-Lu Fault Zone in North China, where the recycled crust undergo remelting and mix with peridotite-derived melts to produce the two mixing trends observed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0dd3bd30f20722492674e9358e0901fd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633922,&quot;asset_id&quot;:28301601,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633922/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301601"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301601"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301601; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301601]").text(description); $(".js-view-count[data-work-id=28301601]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301601; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301601']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301601, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0dd3bd30f20722492674e9358e0901fd" } } $('.js-work-strip[data-work-id=28301601]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301601,"title":"Crust recycling in the sources of two parallel volcanic chains in Shandong, North China","translated_title":"","metadata":{"grobid_abstract":"Keywords: alkaline basalts intra-continental volcanic chains crustal recycling lower continental crust lithosphere thickness Recycled crustal components have been documented for many sources of hotspot-related ocean island basalts, but they have been difficult to identify in continental basalts, because in continental settings, hotspots are often obscured and recycled crustal sources are difficult to distinguish from crustal contamination. We show major, trace element and Sr-Nd-Hf isotopic compositions for two parallel chains of Cenozoic volcanoes from Shandong Province, North China, which are free of crustal contamination and show clear evidence for recycling of mafic lower crust. Sr, Nd, and Hf isotopes in the two volcanic chains form separate binary mixing arrays, which converge on the composition of Dashan, an isolated, nephelinitic volcano with the most depleted isotopic signature. The two chains have lower CaO values and significantly diverging isotope enrichment trends from this common endmember. Both trends deviate from the normal Sr-Nd and Hf-Nd mantle array toward lower 87 Sr/ 86 Sr and higher ε Hf values, all features that point to a (recycled) eclogitic source. We invoke a two-stage evolution model to generate the endmembers of these two mixing trends. In the first stage, recycled mafic crust (eclogite) is depleted by earlier (late Mesozoic) melt extraction, which elevates the Lu/Hf of the residue relative to Sm/Nd due to garnet control during melting. Subsequently, these silica-deficient residues are transported to the deeper mantle. Finally, in Cenozoic time, upwelling mantle (possibly a plume) transports lenses of residual eclogites into the shallow asthenosphere. The recycled crustal components beneath the two chains differ somewhat in isotopic composition due to different degree of the earlier melting. The upwelling mantle spreads beneath the lithosphere and flows toward regions of thinned lithosphere, e.g. the Tan-Lu Fault Zone in North China, where the recycled crust undergo remelting and mix with peridotite-derived melts to produce the two mixing trends observed.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}},"publication_name":"Earth and Planetary Science Letters","grobid_abstract_attachment_id":48633922},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301601/Crust_recycling_in_the_sources_of_two_parallel_volcanic_chains_in_Shandong_North_China","translated_internal_url":"","created_at":"2016-09-07T00:09:05.909-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096661,"work_id":28301601,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Crust recycling in the sources of two parallel volcanic chains in Shandong, North China"}],"downloadable_attachments":[{"id":48633922,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633922/thumbnails/1.jpg","file_name":"Crust_recycling_in_the_sources_of_two_pa20160907-7760-75tc6h.pdf","download_url":"https://www.academia.edu/attachments/48633922/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crust_recycling_in_the_sources_of_two_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633922/Crust_recycling_in_the_sources_of_two_pa20160907-7760-75tc6h-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DCrust_recycling_in_the_sources_of_two_pa.pdf\u0026Expires=1734034235\u0026Signature=Cjh8wTbD~DWReQPoNz~ChZjZ~K7rWXH6be8GrQTNvrgpDa1C2xJTiHLAalUXF79DM4GBVmVgY8CbpTwuX5I7UYBGlcGfQ~~cCzTWUrP0U-BwP6K0~oJSKInHR19JZywTzNDjzcvdLr0GKIsAOm9~megBLJvi89LndIg2DN61ro0QdkMP~sTiaJnRgCprLUukustIl3yZ9hYkwJbqE-dItX6cM1C-tZgPkG5pQ~6XJPic5OWS~rQYFtj7-3Z7EfyW~aATjHsQ5Hj--6IOCH-fiG54RSlEAO1wNPU~~~oRvRUqKhUghJBS~4o-HNjR3H3NOn1e1TUPcjauSSClk6UhXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Crust_recycling_in_the_sources_of_two_parallel_volcanic_chains_in_Shandong_North_China","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Keywords: alkaline basalts intra-continental volcanic chains crustal recycling lower continental crust lithosphere thickness Recycled crustal components have been documented for many sources of hotspot-related ocean island basalts, but they have been difficult to identify in continental basalts, because in continental settings, hotspots are often obscured and recycled crustal sources are difficult to distinguish from crustal contamination. We show major, trace element and Sr-Nd-Hf isotopic compositions for two parallel chains of Cenozoic volcanoes from Shandong Province, North China, which are free of crustal contamination and show clear evidence for recycling of mafic lower crust. Sr, Nd, and Hf isotopes in the two volcanic chains form separate binary mixing arrays, which converge on the composition of Dashan, an isolated, nephelinitic volcano with the most depleted isotopic signature. The two chains have lower CaO values and significantly diverging isotope enrichment trends from this common endmember. Both trends deviate from the normal Sr-Nd and Hf-Nd mantle array toward lower 87 Sr/ 86 Sr and higher ε Hf values, all features that point to a (recycled) eclogitic source. We invoke a two-stage evolution model to generate the endmembers of these two mixing trends. In the first stage, recycled mafic crust (eclogite) is depleted by earlier (late Mesozoic) melt extraction, which elevates the Lu/Hf of the residue relative to Sm/Nd due to garnet control during melting. Subsequently, these silica-deficient residues are transported to the deeper mantle. Finally, in Cenozoic time, upwelling mantle (possibly a plume) transports lenses of residual eclogites into the shallow asthenosphere. The recycled crustal components beneath the two chains differ somewhat in isotopic composition due to different degree of the earlier melting. The upwelling mantle spreads beneath the lithosphere and flows toward regions of thinned lithosphere, e.g. the Tan-Lu Fault Zone in North China, where the recycled crust undergo remelting and mix with peridotite-derived melts to produce the two mixing trends observed.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633922,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633922/thumbnails/1.jpg","file_name":"Crust_recycling_in_the_sources_of_two_pa20160907-7760-75tc6h.pdf","download_url":"https://www.academia.edu/attachments/48633922/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Crust_recycling_in_the_sources_of_two_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633922/Crust_recycling_in_the_sources_of_two_pa20160907-7760-75tc6h-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DCrust_recycling_in_the_sources_of_two_pa.pdf\u0026Expires=1734034235\u0026Signature=Cjh8wTbD~DWReQPoNz~ChZjZ~K7rWXH6be8GrQTNvrgpDa1C2xJTiHLAalUXF79DM4GBVmVgY8CbpTwuX5I7UYBGlcGfQ~~cCzTWUrP0U-BwP6K0~oJSKInHR19JZywTzNDjzcvdLr0GKIsAOm9~megBLJvi89LndIg2DN61ro0QdkMP~sTiaJnRgCprLUukustIl3yZ9hYkwJbqE-dItX6cM1C-tZgPkG5pQ~6XJPic5OWS~rQYFtj7-3Z7EfyW~aATjHsQ5Hj--6IOCH-fiG54RSlEAO1wNPU~~~oRvRUqKhUghJBS~4o-HNjR3H3NOn1e1TUPcjauSSClk6UhXw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":421956,"name":"Continental Crust","url":"https://www.academia.edu/Documents/in/Continental_Crust"},{"id":689537,"name":"Crustal Recycling","url":"https://www.academia.edu/Documents/in/Crustal_Recycling"},{"id":709300,"name":"Trace element","url":"https://www.academia.edu/Documents/in/Trace_element"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301600"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301600/Sources_of_Anfengshan_basalts_Subducted_lower_crust_in_the_Sulu_UHP_belt_China"><img alt="Research paper thumbnail of Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China" class="work-thumbnail" src="https://attachments.academia-assets.com/48633927/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301600/Sources_of_Anfengshan_basalts_Subducted_lower_crust_in_the_Sulu_UHP_belt_China">Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China</a></div><div class="wp-workCard_item"><span>Earth and Planetary Science Letters</span><span>, 2009</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Keywords: continental subduction eclogite crustal recycling alkaline basalt mantle heterogeneity ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Keywords: continental subduction eclogite crustal recycling alkaline basalt mantle heterogeneity Deep subduction of lower continental crust to mantle depths has been recognized in outcrops and drill cores of eclogites and other ultra-high pressure (UHP) rocks of the Sulu intra-continental orogenic belt. In a search of evidence for such subducted crustal sources of melts, we study the elemental and isotope geochemistry of basalts from Anfengshan, a Miocene volcano located in the Sulu UHP belt, as well as Nd-Hf isotopes of eclogites from the Sulu belt itself. The Anfengshan basalts are basanites and nephelinites with low SiO 2 , high incompatible element contents, positive Nb, Ta, Sr, and negative K, Pb, Zr, Hf, and Ti anomalies. Radiogenic isotopes ( 87 Sr/ 86 Sr = 0.70337-0.70359, ε Nd = + 5.1-+ 6.7, ε Hf = + 10.6-+ 12.3, 206 Pb/ 204 Pb = 17.5-18.0) show some highly unusual correlations: ε Nd correlates positively with 87 Sr/ 86 Sr, but negatively with ε Hf . 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, and 206 Pb/ 204 Pb ratios all correlate negatively with Δε Hf (= deviation from the global ε Hf -ε Nd correlation). The correlations form two distinct mixing arrays with one common, high-ε Nd end-member. Superchondritic Zr/Hf ratios (~55), and negative Zr, Hf, Ti anomalies indicate that the common mantle source component has been metasomatized by carbonatitic liquids. We suggest that the other two source components are eclogites derived from subducted lower crust: both of these differ from ordinary mantle components by their low 87 Sr/ 86 Sr and low ε Nd and 206 Pb/ 204 Pb, but high Δε Hf . The ε Nd -ε Hf values of the eclogites form two groups, both of which lie close to the Hf-Nd mantle array, and are therefore not direct analogues of possible source eclogites for the basalts. We explain the shift toward high Δε Hf -basalt sources as follows: an early Cretaceous igneous event extracted partial melts from the eclogites residing in the mantle, thereby increasing their (residual) Lu/Hf ratios, while changing Sm/Nd only slightly. During the Anfengshan melting event, these garnet-rich sources produced melts with low Zr/Hf and increased Nb/Nb*, Hf/Hf *, Sm/Yb ratios relative to the peridotitic source end-member. We therefore suggest that the eclogites represent the residues of mafic lower continental crust subducted during the Triassic continent-continent collision. This interpretation is supported by recent seismic tomography, which revealed a high-velocity anomaly in the uppermost mantle beneath the Sulu belt.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="53488df7a1612514488dfc2e787cf432" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633927,&quot;asset_id&quot;:28301600,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633927/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301600"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301600"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301600; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301600]").text(description); $(".js-view-count[data-work-id=28301600]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301600; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301600']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301600, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "53488df7a1612514488dfc2e787cf432" } } $('.js-work-strip[data-work-id=28301600]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301600,"title":"Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China","translated_title":"","metadata":{"grobid_abstract":"Keywords: continental subduction eclogite crustal recycling alkaline basalt mantle heterogeneity Deep subduction of lower continental crust to mantle depths has been recognized in outcrops and drill cores of eclogites and other ultra-high pressure (UHP) rocks of the Sulu intra-continental orogenic belt. In a search of evidence for such subducted crustal sources of melts, we study the elemental and isotope geochemistry of basalts from Anfengshan, a Miocene volcano located in the Sulu UHP belt, as well as Nd-Hf isotopes of eclogites from the Sulu belt itself. The Anfengshan basalts are basanites and nephelinites with low SiO 2 , high incompatible element contents, positive Nb, Ta, Sr, and negative K, Pb, Zr, Hf, and Ti anomalies. Radiogenic isotopes ( 87 Sr/ 86 Sr = 0.70337-0.70359, ε Nd = + 5.1-+ 6.7, ε Hf = + 10.6-+ 12.3, 206 Pb/ 204 Pb = 17.5-18.0) show some highly unusual correlations: ε Nd correlates positively with 87 Sr/ 86 Sr, but negatively with ε Hf . 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, and 206 Pb/ 204 Pb ratios all correlate negatively with Δε Hf (= deviation from the global ε Hf -ε Nd correlation). The correlations form two distinct mixing arrays with one common, high-ε Nd end-member. Superchondritic Zr/Hf ratios (~55), and negative Zr, Hf, Ti anomalies indicate that the common mantle source component has been metasomatized by carbonatitic liquids. We suggest that the other two source components are eclogites derived from subducted lower crust: both of these differ from ordinary mantle components by their low 87 Sr/ 86 Sr and low ε Nd and 206 Pb/ 204 Pb, but high Δε Hf . The ε Nd -ε Hf values of the eclogites form two groups, both of which lie close to the Hf-Nd mantle array, and are therefore not direct analogues of possible source eclogites for the basalts. We explain the shift toward high Δε Hf -basalt sources as follows: an early Cretaceous igneous event extracted partial melts from the eclogites residing in the mantle, thereby increasing their (residual) Lu/Hf ratios, while changing Sm/Nd only slightly. During the Anfengshan melting event, these garnet-rich sources produced melts with low Zr/Hf and increased Nb/Nb*, Hf/Hf *, Sm/Yb ratios relative to the peridotitic source end-member. We therefore suggest that the eclogites represent the residues of mafic lower continental crust subducted during the Triassic continent-continent collision. This interpretation is supported by recent seismic tomography, which revealed a high-velocity anomaly in the uppermost mantle beneath the Sulu belt.","publication_date":{"day":null,"month":null,"year":2009,"errors":{}},"publication_name":"Earth and Planetary Science Letters","grobid_abstract_attachment_id":48633927},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301600/Sources_of_Anfengshan_basalts_Subducted_lower_crust_in_the_Sulu_UHP_belt_China","translated_internal_url":"","created_at":"2016-09-07T00:09:05.806-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096659,"work_id":28301600,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China"}],"downloadable_attachments":[{"id":48633927,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633927/thumbnails/1.jpg","file_name":"Sources_of_Anfengshan_basalts_Subducted_20160907-26257-1u5j6j5.pdf","download_url":"https://www.academia.edu/attachments/48633927/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sources_of_Anfengshan_basalts_Subducted.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633927/Sources_of_Anfengshan_basalts_Subducted_20160907-26257-1u5j6j5-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DSources_of_Anfengshan_basalts_Subducted.pdf\u0026Expires=1733971374\u0026Signature=d7N0n2FnYdy8TaxaSYT7HIXfx0DUec6TIji5ykBXOzLBldY22wGFzMMiK8MoGdhYwtHMM8pkD1vHzH5glL2jGNipUJ~zz186j5PfWWU8P1P08TnocdyTPbM15vOR41tFBbbvhDQW0EERJCl938SSZTfzRqEAPaXSWXK-aR3VLxCMpEH9aK4aUUGQqon5CLFaEGKXBFMkuaRSoK8hmjUq80yH9iHsrmSQ5ub-KcKMtoX8iiccsMq7j8SOnBviMXThXl6phy0sJFRqmcUrMwiHLnmM0rF9IB9GUjy0eZig8Q8oi2zlsWZDdsbccHjZvDB6pnuBMbWtNnGTfdMgqEvuCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Sources_of_Anfengshan_basalts_Subducted_lower_crust_in_the_Sulu_UHP_belt_China","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Keywords: continental subduction eclogite crustal recycling alkaline basalt mantle heterogeneity Deep subduction of lower continental crust to mantle depths has been recognized in outcrops and drill cores of eclogites and other ultra-high pressure (UHP) rocks of the Sulu intra-continental orogenic belt. In a search of evidence for such subducted crustal sources of melts, we study the elemental and isotope geochemistry of basalts from Anfengshan, a Miocene volcano located in the Sulu UHP belt, as well as Nd-Hf isotopes of eclogites from the Sulu belt itself. The Anfengshan basalts are basanites and nephelinites with low SiO 2 , high incompatible element contents, positive Nb, Ta, Sr, and negative K, Pb, Zr, Hf, and Ti anomalies. Radiogenic isotopes ( 87 Sr/ 86 Sr = 0.70337-0.70359, ε Nd = + 5.1-+ 6.7, ε Hf = + 10.6-+ 12.3, 206 Pb/ 204 Pb = 17.5-18.0) show some highly unusual correlations: ε Nd correlates positively with 87 Sr/ 86 Sr, but negatively with ε Hf . 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, and 206 Pb/ 204 Pb ratios all correlate negatively with Δε Hf (= deviation from the global ε Hf -ε Nd correlation). The correlations form two distinct mixing arrays with one common, high-ε Nd end-member. Superchondritic Zr/Hf ratios (~55), and negative Zr, Hf, Ti anomalies indicate that the common mantle source component has been metasomatized by carbonatitic liquids. We suggest that the other two source components are eclogites derived from subducted lower crust: both of these differ from ordinary mantle components by their low 87 Sr/ 86 Sr and low ε Nd and 206 Pb/ 204 Pb, but high Δε Hf . The ε Nd -ε Hf values of the eclogites form two groups, both of which lie close to the Hf-Nd mantle array, and are therefore not direct analogues of possible source eclogites for the basalts. We explain the shift toward high Δε Hf -basalt sources as follows: an early Cretaceous igneous event extracted partial melts from the eclogites residing in the mantle, thereby increasing their (residual) Lu/Hf ratios, while changing Sm/Nd only slightly. During the Anfengshan melting event, these garnet-rich sources produced melts with low Zr/Hf and increased Nb/Nb*, Hf/Hf *, Sm/Yb ratios relative to the peridotitic source end-member. We therefore suggest that the eclogites represent the residues of mafic lower continental crust subducted during the Triassic continent-continent collision. This interpretation is supported by recent seismic tomography, which revealed a high-velocity anomaly in the uppermost mantle beneath the Sulu belt.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633927,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633927/thumbnails/1.jpg","file_name":"Sources_of_Anfengshan_basalts_Subducted_20160907-26257-1u5j6j5.pdf","download_url":"https://www.academia.edu/attachments/48633927/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Sources_of_Anfengshan_basalts_Subducted.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633927/Sources_of_Anfengshan_basalts_Subducted_20160907-26257-1u5j6j5-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DSources_of_Anfengshan_basalts_Subducted.pdf\u0026Expires=1733971374\u0026Signature=d7N0n2FnYdy8TaxaSYT7HIXfx0DUec6TIji5ykBXOzLBldY22wGFzMMiK8MoGdhYwtHMM8pkD1vHzH5glL2jGNipUJ~zz186j5PfWWU8P1P08TnocdyTPbM15vOR41tFBbbvhDQW0EERJCl938SSZTfzRqEAPaXSWXK-aR3VLxCMpEH9aK4aUUGQqon5CLFaEGKXBFMkuaRSoK8hmjUq80yH9iHsrmSQ5ub-KcKMtoX8iiccsMq7j8SOnBviMXThXl6phy0sJFRqmcUrMwiHLnmM0rF9IB9GUjy0eZig8Q8oi2zlsWZDdsbccHjZvDB6pnuBMbWtNnGTfdMgqEvuCQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":118582,"name":"Physical sciences","url":"https://www.academia.edu/Documents/in/Physical_sciences"},{"id":191125,"name":"Partial Melting","url":"https://www.academia.edu/Documents/in/Partial_Melting"},{"id":241723,"name":"Earth and Planetary Science","url":"https://www.academia.edu/Documents/in/Earth_and_Planetary_Science"},{"id":421956,"name":"Continental Crust","url":"https://www.academia.edu/Documents/in/Continental_Crust"},{"id":491689,"name":"Seismic Tomography","url":"https://www.academia.edu/Documents/in/Seismic_Tomography"},{"id":689537,"name":"Crustal Recycling","url":"https://www.academia.edu/Documents/in/Crustal_Recycling"},{"id":1749179,"name":"Eclogite","url":"https://www.academia.edu/Documents/in/Eclogite"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301599"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301599/Fluid_melt_inclusions_in_Cenozoic_mantle_xenoliths_from_Linqu_Shandong_Province_eastern_China_Implications_for_asthenosphere_lithosphere_interactions"><img alt="Research paper thumbnail of Fluid/melt inclusions in Cenozoic mantle xenoliths from Linqu, Shandong Province, eastern China: Implications for asthenosphere-lithosphere interactions" class="work-thumbnail" src="https://attachments.academia-assets.com/48633920/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301599/Fluid_melt_inclusions_in_Cenozoic_mantle_xenoliths_from_Linqu_Shandong_Province_eastern_China_Implications_for_asthenosphere_lithosphere_interactions">Fluid/melt inclusions in Cenozoic mantle xenoliths from Linqu, Shandong Province, eastern China: Implications for asthenosphere-lithosphere interactions</a></div><div class="wp-workCard_item"><span>Chinese Science Bulletin</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liqui...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liquids. Here we apply Raman microspectroscopy and microthermometry to fluid/melt inclusions in lherzolite xenoliths in Qiaoshan basalts, a Miocene volcano in Linqu, Shandong Province, eastern China. These inclusions include (1) early CO 2 fluid inclusions, (2) early carbonate melt inclusions, (3) late CO 2 fluid inclusions, and (4) late silicate melt inclusions. Among the early CO 2 fluid inclusions, most consist of high-density pure CO 2 , while others have small amounts of other components besides of CO 2 , including graphite, magnesite, Mg-calcite, CO and N 2 . The lowest trapping pressures are estimated to be 1.42 GPa and 0.80 GPa for the early and the late fluid inclusions, respectively. Because orthopyroxene is the main host mineral for the early carbonate melt inclusions, we propose that the formation of these carbonate melts is genetically associated with the interactions between CO 2 fluids and silicate minerals, e.g. olivine and clinopyroxene. The diversity of minor components in the early CO 2 fluid inclusions indicates that mantle peridotites had undergone redox reactions with penetrating fluids/melts. These observations suggest that the compositions of the lithospheric mantle beneath the studied area had been changed by asthenosphere-derived CO 2 -rich fluids/melts.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="348cee78209354f08787a2f5c8bfe39b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633920,&quot;asset_id&quot;:28301599,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633920/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301599"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301599"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301599; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301599]").text(description); $(".js-view-count[data-work-id=28301599]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301599; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301599']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301599, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "348cee78209354f08787a2f5c8bfe39b" } } $('.js-work-strip[data-work-id=28301599]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301599,"title":"Fluid/melt inclusions in Cenozoic mantle xenoliths from Linqu, Shandong Province, eastern China: Implications for asthenosphere-lithosphere interactions","translated_title":"","metadata":{"grobid_abstract":"Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liquids. Here we apply Raman microspectroscopy and microthermometry to fluid/melt inclusions in lherzolite xenoliths in Qiaoshan basalts, a Miocene volcano in Linqu, Shandong Province, eastern China. These inclusions include (1) early CO 2 fluid inclusions, (2) early carbonate melt inclusions, (3) late CO 2 fluid inclusions, and (4) late silicate melt inclusions. Among the early CO 2 fluid inclusions, most consist of high-density pure CO 2 , while others have small amounts of other components besides of CO 2 , including graphite, magnesite, Mg-calcite, CO and N 2 . The lowest trapping pressures are estimated to be 1.42 GPa and 0.80 GPa for the early and the late fluid inclusions, respectively. Because orthopyroxene is the main host mineral for the early carbonate melt inclusions, we propose that the formation of these carbonate melts is genetically associated with the interactions between CO 2 fluids and silicate minerals, e.g. olivine and clinopyroxene. The diversity of minor components in the early CO 2 fluid inclusions indicates that mantle peridotites had undergone redox reactions with penetrating fluids/melts. These observations suggest that the compositions of the lithospheric mantle beneath the studied area had been changed by asthenosphere-derived CO 2 -rich fluids/melts.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Chinese Science Bulletin","grobid_abstract_attachment_id":48633920},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301599/Fluid_melt_inclusions_in_Cenozoic_mantle_xenoliths_from_Linqu_Shandong_Province_eastern_China_Implications_for_asthenosphere_lithosphere_interactions","translated_internal_url":"","created_at":"2016-09-07T00:09:05.695-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096681,"work_id":28301599,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366369,"email":"j***n@gmail.com","display_order":0,"name":"Jiqiang Liu","title":"Fluid/melt inclusions in Cenozoic mantle xenoliths from Linqu, Shandong Province, eastern China: Implications for asthenosphere-lithosphere interactions"}],"downloadable_attachments":[{"id":48633920,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633920/thumbnails/1.jpg","file_name":"Fluidmelt_inclusions_in_Cenozoic_mantle_20160907-11746-1d4xwh5.pdf","download_url":"https://www.academia.edu/attachments/48633920/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_melt_inclusions_in_Cenozoic_mantle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633920/Fluidmelt_inclusions_in_Cenozoic_mantle_20160907-11746-1d4xwh5-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DFluid_melt_inclusions_in_Cenozoic_mantle.pdf\u0026Expires=1734034235\u0026Signature=O9m-b4Ar9uuHl6fzIiQVDwAmNdJNPiV1JRpZouiTnXGErtYgrAdhJadm2XNifPQgLKb2dA4ENN0vF7zLKzoNFW0DlTibQ492jzbNiRnXryImUXNdkOOi~aGt7O17~H8A0oQCVF1eNFg9owtb5Fi231Kb69hgW-uI4cL6wCXR65Ot8OFpzV1YyozAY-uN-vJ~uy66iNgxfEyjHUidIkSJz8tBW3ACwfG9bOZABB2N7bprLO6z9xEIyKOP1sOCW4fUbCJNjBCTQ7vL1KOPGUuOgPH9~5~0~cBL512QSfwGAQ43lApvKEk5UW~lHgtFRzLygDWWZDolMT7hK3t3r5nvCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Fluid_melt_inclusions_in_Cenozoic_mantle_xenoliths_from_Linqu_Shandong_Province_eastern_China_Implications_for_asthenosphere_lithosphere_interactions","translated_slug":"","page_count":10,"language":"en","content_type":"Work","summary":"Fluid and melt inclusions in mantle xenoliths are thought as direct samples to study mantle liquids. Here we apply Raman microspectroscopy and microthermometry to fluid/melt inclusions in lherzolite xenoliths in Qiaoshan basalts, a Miocene volcano in Linqu, Shandong Province, eastern China. These inclusions include (1) early CO 2 fluid inclusions, (2) early carbonate melt inclusions, (3) late CO 2 fluid inclusions, and (4) late silicate melt inclusions. Among the early CO 2 fluid inclusions, most consist of high-density pure CO 2 , while others have small amounts of other components besides of CO 2 , including graphite, magnesite, Mg-calcite, CO and N 2 . The lowest trapping pressures are estimated to be 1.42 GPa and 0.80 GPa for the early and the late fluid inclusions, respectively. Because orthopyroxene is the main host mineral for the early carbonate melt inclusions, we propose that the formation of these carbonate melts is genetically associated with the interactions between CO 2 fluids and silicate minerals, e.g. olivine and clinopyroxene. The diversity of minor components in the early CO 2 fluid inclusions indicates that mantle peridotites had undergone redox reactions with penetrating fluids/melts. These observations suggest that the compositions of the lithospheric mantle beneath the studied area had been changed by asthenosphere-derived CO 2 -rich fluids/melts.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633920,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633920/thumbnails/1.jpg","file_name":"Fluidmelt_inclusions_in_Cenozoic_mantle_20160907-11746-1d4xwh5.pdf","download_url":"https://www.academia.edu/attachments/48633920/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Fluid_melt_inclusions_in_Cenozoic_mantle.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633920/Fluidmelt_inclusions_in_Cenozoic_mantle_20160907-11746-1d4xwh5-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DFluid_melt_inclusions_in_Cenozoic_mantle.pdf\u0026Expires=1734034235\u0026Signature=O9m-b4Ar9uuHl6fzIiQVDwAmNdJNPiV1JRpZouiTnXGErtYgrAdhJadm2XNifPQgLKb2dA4ENN0vF7zLKzoNFW0DlTibQ492jzbNiRnXryImUXNdkOOi~aGt7O17~H8A0oQCVF1eNFg9owtb5Fi231Kb69hgW-uI4cL6wCXR65Ot8OFpzV1YyozAY-uN-vJ~uy66iNgxfEyjHUidIkSJz8tBW3ACwfG9bOZABB2N7bprLO6z9xEIyKOP1sOCW4fUbCJNjBCTQ7vL1KOPGUuOgPH9~5~0~cBL512QSfwGAQ43lApvKEk5UW~lHgtFRzLygDWWZDolMT7hK3t3r5nvCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"},{"id":735504,"name":"Genetic Association","url":"https://www.academia.edu/Documents/in/Genetic_Association"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301598"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301598/Mantle_metasomatism_by_P_and_F_rich_melt_fluids_evidence_from_phosphate_glass_in_spinel_lherzolite_xenolith_in_Keluo_Heilongjiang_Province"><img alt="Research paper thumbnail of Mantle metasomatism by P- and F-rich melt/fluids: evidence from phosphate glass in spinel lherzolite xenolith in Keluo, Heilongjiang Province" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301598/Mantle_metasomatism_by_P_and_F_rich_melt_fluids_evidence_from_phosphate_glass_in_spinel_lherzolite_xenolith_in_Keluo_Heilongjiang_Province">Mantle metasomatism by P- and F-rich melt/fluids: evidence from phosphate glass in spinel lherzolite xenolith in Keluo, Heilongjiang Province</a></div><div class="wp-workCard_item"><span>Chinese Science Bulletin</span><span>, 2007</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301598"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301598"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301598; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301598]").text(description); $(".js-view-count[data-work-id=28301598]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301598; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301598']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301598, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=28301598]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301598,"title":"Mantle metasomatism by P- and F-rich melt/fluids: evidence from phosphate glass in spinel lherzolite xenolith in Keluo, Heilongjiang Province","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":2007,"errors":{}},"publication_name":"Chinese Science Bulletin"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/28301598/Mantle_metasomatism_by_P_and_F_rich_melt_fluids_evidence_from_phosphate_glass_in_spinel_lherzolite_xenolith_in_Keluo_Heilongjiang_Province","translated_internal_url":"","created_at":"2016-09-07T00:09:05.576-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096683,"work_id":28301598,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366371,"email":"z***o@hotmail.com","display_order":0,"name":"Jian Shao","title":"Mantle metasomatism by P- and F-rich melt/fluids: evidence from phosphate glass in spinel lherzolite xenolith in Keluo, Heilongjiang Province"}],"downloadable_attachments":[],"slug":"Mantle_metasomatism_by_P_and_F_rich_melt_fluids_evidence_from_phosphate_glass_in_spinel_lherzolite_xenolith_in_Keluo_Heilongjiang_Province","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[],"research_interests":[{"id":28235,"name":"Multidisciplinary","url":"https://www.academia.edu/Documents/in/Multidisciplinary"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301597"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301597/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China"><img alt="Research paper thumbnail of Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China" class="work-thumbnail" src="https://attachments.academia-assets.com/48633932/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301597/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China">Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China</a></div><div class="wp-workCard_item"><span>Chemical Geology</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The genesis of intra-plate alkaline basalts remains controversial, and three sources have been pr...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of &quot;carbonatitic fingerprints.&quot; Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2d944275003e43189c5f010fc94a2b75" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633932,&quot;asset_id&quot;:28301597,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633932/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301597"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301597"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301597; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301597]").text(description); $(".js-view-count[data-work-id=28301597]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301597; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301597']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301597, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2d944275003e43189c5f010fc94a2b75" } } $('.js-work-strip[data-work-id=28301597]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301597,"title":"Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China","translated_title":"","metadata":{"grobid_abstract":"The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of \"carbonatitic fingerprints.\" Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Chemical Geology","grobid_abstract_attachment_id":48633932},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301597/Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China","translated_internal_url":"","created_at":"2016-09-07T00:09:05.450-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096658,"work_id":28301597,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366363,"email":"g***g@gmail.com","display_order":0,"name":"Gang Zeng","title":"Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China"}],"downloadable_attachments":[{"id":48633932,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633932/thumbnails/1.jpg","file_name":"Carbonated_mantle_sources_for_Cenozoic_i20160907-3869-b8c2rr.pdf","download_url":"https://www.academia.edu/attachments/48633932/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Carbonated_mantle_sources_for_Cenozoic_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633932/Carbonated_mantle_sources_for_Cenozoic_i20160907-3869-b8c2rr-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DCarbonated_mantle_sources_for_Cenozoic_i.pdf\u0026Expires=1733971374\u0026Signature=EynXEStyM46nvbGz6R1GGIEqTIJQOq8fA9BPUd1uxC1FyIB-fqWtrQ5K2n~bR2x7Ejap487Tj5hVH-Hh3Lw9JjfPgUpUX7AebC2~Qr6ReuduvTlRSutLwzvLOqxYeSkNNHpcCw5EFYT74qyJksAvpwDbYyNzjUvhUlkQJ4d8JUGdiIAzFd4ofQ0gavhnF5q-2FmPCEI2R661EwzxBoiG0oVPWZctCttNDfCMq-e0ucpPb1fwiNAxtxkEdcacywesE1Zg7CHDTgTY8PJHoGYcqZtw3p8P24cXgCWnR2O7JUbVdyJBe-bPq9Prl1N~fmJWwHX-XNh70YR3orXY3Jz5hg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Carbonated_mantle_sources_for_Cenozoic_intra_plate_alkaline_basalts_in_Shandong_North_China","translated_slug":"","page_count":11,"language":"en","content_type":"Work","summary":"The genesis of intra-plate alkaline basalts remains controversial, and three sources have been proposed: silica-deficient eclogite-pyroxenite, hornblendite, and carbonated peridotite. Here, we assess these models by analyzing Cenozoic intra-continental alkaline basalts from Shandong province, North China. The Cenozoic basalts of Shandong province consist of an early sequence of weakly alkaline rocks (alkali olivine basalts) and a late sequence of strongly alkaline rocks (basanites and nephelinites). In comparison with the weakly alkaline rocks, the strongly alkaline rocks have lower concentrations of SiO 2 (39.2-45.1 wt.%) and Al 2 O 3 (10.3-13.8 wt.%), higher alkalis (Na 2 O + K 2 O = 4.3-8.6 wt.%) and CaO (8.0-12.6 wt.%), higher concentrations of most incompatible elements, and higher values of Ca/Al (0.7-1.3), La/Yb (39.4-65.7), and Sm/Yb (6.1-9.9). On the whole, primitive-mantle normalized spidergrams reveal that the strongly alkaline rocks have stronger negative K, Zr, Hf, and Ti anomalies (Hf/Hf* = 0.59-0.77, Ti/Ti* = 0.46-0.71) than do the weakly alkaline rocks. All these rocks have superchondritic Zr/Hf ratios (N44). Inverse rare earth element (REE) modeling suggests that the strongly and weakly alkaline rocks represent melting amounts of b 3% and 3-10%, respectively. Neither silica-deficient eclogite-pyroxenite melts nor hornblendite melts can satisfy all the features mentioned above. Here we prefer a carbonated mantle source because the main characteristics of the strongly alkaline rocks resemble those of carbonatites (e.g., enrichment of most incompatible elements, high Ca/Al ratios, superchondritic Zr/Hf ratios, and negative K, Zr, Hf, and Ti anomalies). Since dry peridotite has a higher solidus temperature than does carbonated peridotite in the mantle, an increased degree of melting under higher temperatures may result in the dilution of \"carbonatitic fingerprints.\" Although contributions from silica-deficient eclogite-pyroxenite or hornblendite cannot be ruled out, our observations suggest that carbonated peridotite is the main source for the Cenozoic strongly alkaline basalts of Shandong.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633932,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633932/thumbnails/1.jpg","file_name":"Carbonated_mantle_sources_for_Cenozoic_i20160907-3869-b8c2rr.pdf","download_url":"https://www.academia.edu/attachments/48633932/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Carbonated_mantle_sources_for_Cenozoic_i.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633932/Carbonated_mantle_sources_for_Cenozoic_i20160907-3869-b8c2rr-libre.pdf?1473232859=\u0026response-content-disposition=attachment%3B+filename%3DCarbonated_mantle_sources_for_Cenozoic_i.pdf\u0026Expires=1733971375\u0026Signature=e81L3Kc9CTbmCAzD2pixWX58HFFDqgfF30Zot1xoNwhlIH7n3scapMsGAIcyjxNSoKL2ieT11yCFPf7l~uEZPMjHA-StYeOuhST4Sht3zePvvjpwsJjQ7tjxRv3FQ2PgxeYeREsbwMIC7Vao5jSZGg-kHAsCZUeraBfXBVjBJG0Rg93Nf0pnEzBnLciIVEWMPKN5MPLbPfs2alZCXXj5B33pQHKriLYt2aPKVASmxzCcyQiDX5zq0OnszJGegJgqcYpijnt~-Fc3m0qmo5b1KcIS1Tgmpx9IfqA8FDoo732jp4Go-Si30gAdcii-RuRPKHQWq~iA~A6oo8TPyfrGzw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":406,"name":"Geology","url":"https://www.academia.edu/Documents/in/Geology"},{"id":407,"name":"Geochemistry","url":"https://www.academia.edu/Documents/in/Geochemistry"},{"id":16024,"name":"Chemical Geology","url":"https://www.academia.edu/Documents/in/Chemical_Geology"},{"id":274263,"name":"Rare Earth Element Mineralization","url":"https://www.academia.edu/Documents/in/Rare_Earth_Element_Mineralization"},{"id":679783,"name":"Boolean Satisfiability","url":"https://www.academia.edu/Documents/in/Boolean_Satisfiability"},{"id":1464622,"name":"Carbonatite","url":"https://www.academia.edu/Documents/in/Carbonatite"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301596"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301596/Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_character_of_Paleogene_basalts_from_the_Xialiaohe_Depression_northern_Bohai_Bay_Basin_implications_for_transformation_of_the_subcontinental_lithospheric_mantle_under_the_eastern_North_China_Craton"><img alt="Research paper thumbnail of Ar–Ar dating and Sr–Nd–Pb isotopic character of Paleogene basalts from the Xialiaohe Depression, northern Bohai Bay Basin: implications for transformation of the subcontinental lithospheric mantle under the eastern North China Craton" class="work-thumbnail" src="https://attachments.academia-assets.com/48633916/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301596/Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_character_of_Paleogene_basalts_from_the_Xialiaohe_Depression_northern_Bohai_Bay_Basin_implications_for_transformation_of_the_subcontinental_lithospheric_mantle_under_the_eastern_North_China_Craton">Ar–Ar dating and Sr–Nd–Pb isotopic character of Paleogene basalts from the Xialiaohe Depression, northern Bohai Bay Basin: implications for transformation of the subcontinental lithospheric mantle under the eastern North China Craton</a></div><div class="wp-workCard_item"><span>Canadian Journal of Earth Sciences</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Paleogene basalts are widely distributed in the Xialiaohe Depression, which lies in the northern ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Paleogene basalts are widely distributed in the Xialiaohe Depression, which lies in the northern part of the Bohai Bay Basin, the second largest petroleum-bearing basin of China, in the northeastern part of the North China Craton. The basalts mainly occur in three formations: the Paleocene Fangshenpao Formation (PFF), the Eocene Shahejie Formation (ESF), and the Oligocene Dongyin Formation (ODF). The PFF is dominated by tholeiites, whereas the ESF and ODF are characterized by alkaline basalts with minor tholeiites. These basalts contain generally lower contents in large-ion lithophile elements (LILEs) and most high-field-strength elements (HFSEs) relative to ocean-island basalts (OIBs), except for positive anomalies for Ba, Sr, Eu, and Ti, and are characterized by OIB-like Sr and Nd isotopic compositions and by abnormally low radiogenic lead isotopic composition. They display a positive correlation between 206 Pb/ 204 Pb and 143 Nd/ 144 Nd, and a negative correlation between 206 Pb/ 204 Pb and 87 Sr/ 86 Sr. The geochemical characteristics of these basalts are quite different from that expected from magmas derived from crustal contamination or melting from a uniform asthenospheric mantle source, but is consistent with derivation from newly formed lithospheric mantle. Combined with the geochemical character of the ESF and ODF basalts, we ascribe the abnormally low radiogenic lead isotopic composition for the Paleocene PFF basalts to newly formed lithospheric mantle that originated from recycling of delaminated thickened lithosphere in Late Mesozoic, including a lower crustal component.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e12a7078f2c42ebf1a272345ae5a3ef4" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633916,&quot;asset_id&quot;:28301596,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633916/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301596"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301596"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301596; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301596]").text(description); $(".js-view-count[data-work-id=28301596]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301596; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301596']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301596, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e12a7078f2c42ebf1a272345ae5a3ef4" } } $('.js-work-strip[data-work-id=28301596]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301596,"title":"Ar–Ar dating and Sr–Nd–Pb isotopic character of Paleogene basalts from the Xialiaohe Depression, northern Bohai Bay Basin: implications for transformation of the subcontinental lithospheric mantle under the eastern North China Craton","translated_title":"","metadata":{"grobid_abstract":"Paleogene basalts are widely distributed in the Xialiaohe Depression, which lies in the northern part of the Bohai Bay Basin, the second largest petroleum-bearing basin of China, in the northeastern part of the North China Craton. The basalts mainly occur in three formations: the Paleocene Fangshenpao Formation (PFF), the Eocene Shahejie Formation (ESF), and the Oligocene Dongyin Formation (ODF). The PFF is dominated by tholeiites, whereas the ESF and ODF are characterized by alkaline basalts with minor tholeiites. These basalts contain generally lower contents in large-ion lithophile elements (LILEs) and most high-field-strength elements (HFSEs) relative to ocean-island basalts (OIBs), except for positive anomalies for Ba, Sr, Eu, and Ti, and are characterized by OIB-like Sr and Nd isotopic compositions and by abnormally low radiogenic lead isotopic composition. They display a positive correlation between 206 Pb/ 204 Pb and 143 Nd/ 144 Nd, and a negative correlation between 206 Pb/ 204 Pb and 87 Sr/ 86 Sr. The geochemical characteristics of these basalts are quite different from that expected from magmas derived from crustal contamination or melting from a uniform asthenospheric mantle source, but is consistent with derivation from newly formed lithospheric mantle. Combined with the geochemical character of the ESF and ODF basalts, we ascribe the abnormally low radiogenic lead isotopic composition for the Paleocene PFF basalts to newly formed lithospheric mantle that originated from recycling of delaminated thickened lithosphere in Late Mesozoic, including a lower crustal component.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Canadian Journal of Earth Sciences","grobid_abstract_attachment_id":48633916},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301596/Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_character_of_Paleogene_basalts_from_the_Xialiaohe_Depression_northern_Bohai_Bay_Basin_implications_for_transformation_of_the_subcontinental_lithospheric_mantle_under_the_eastern_North_China_Craton","translated_internal_url":"","created_at":"2016-09-07T00:09:05.298-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096682,"work_id":28301596,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366370,"email":"g***7@columbia.edu","display_order":0,"name":"Guang-da Yang","title":"Ar–Ar dating and Sr–Nd–Pb isotopic character of Paleogene basalts from the Xialiaohe Depression, northern Bohai Bay Basin: implications for transformation of the subcontinental lithospheric mantle under the eastern North China Craton"}],"downloadable_attachments":[{"id":48633916,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633916/thumbnails/1.jpg","file_name":"Ar-Ar_dating_and_Sr-Nd-Pb_isotopic_chara20160907-23370-1nvihf5.pdf","download_url":"https://www.academia.edu/attachments/48633916/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_chara.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633916/Ar-Ar_dating_and_Sr-Nd-Pb_isotopic_chara20160907-23370-1nvihf5-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DAr_Ar_dating_and_Sr_Nd_Pb_isotopic_chara.pdf\u0026Expires=1734034235\u0026Signature=gv34luDrtvDJCkld-nMgAqRiMXn-JvRB4RqeBYu6cdYFK63~UPid-nwZC~kOA9AAQlGsGvuaoJBREeCmC-5UJV9loW-fj099sTV59ia-e60jwVY2HIqU4xNIDuH-6rU48ePj70Ni9~lr-hYaAf9XfDRDEVXZR5oem9vVgoKP-~Ao25oY6G4i2jgRIGMHmJlvUj5~yYsd1P5xL4DJSEzsr-RzIohD~ofPlbQmiNkJbWjRMivk41f79MdpU~YbDLrGc98WY24QFKLWeWNO6gXixJApuEo3gV3Gy3hx4mBqI1HDT2VU9c04d0eYLhDidc9z6O3nD5rWqbhWOmxg0KgrcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_character_of_Paleogene_basalts_from_the_Xialiaohe_Depression_northern_Bohai_Bay_Basin_implications_for_transformation_of_the_subcontinental_lithospheric_mantle_under_the_eastern_North_China_Craton","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Paleogene basalts are widely distributed in the Xialiaohe Depression, which lies in the northern part of the Bohai Bay Basin, the second largest petroleum-bearing basin of China, in the northeastern part of the North China Craton. The basalts mainly occur in three formations: the Paleocene Fangshenpao Formation (PFF), the Eocene Shahejie Formation (ESF), and the Oligocene Dongyin Formation (ODF). The PFF is dominated by tholeiites, whereas the ESF and ODF are characterized by alkaline basalts with minor tholeiites. These basalts contain generally lower contents in large-ion lithophile elements (LILEs) and most high-field-strength elements (HFSEs) relative to ocean-island basalts (OIBs), except for positive anomalies for Ba, Sr, Eu, and Ti, and are characterized by OIB-like Sr and Nd isotopic compositions and by abnormally low radiogenic lead isotopic composition. They display a positive correlation between 206 Pb/ 204 Pb and 143 Nd/ 144 Nd, and a negative correlation between 206 Pb/ 204 Pb and 87 Sr/ 86 Sr. The geochemical characteristics of these basalts are quite different from that expected from magmas derived from crustal contamination or melting from a uniform asthenospheric mantle source, but is consistent with derivation from newly formed lithospheric mantle. Combined with the geochemical character of the ESF and ODF basalts, we ascribe the abnormally low radiogenic lead isotopic composition for the Paleocene PFF basalts to newly formed lithospheric mantle that originated from recycling of delaminated thickened lithosphere in Late Mesozoic, including a lower crustal component.","owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633916,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633916/thumbnails/1.jpg","file_name":"Ar-Ar_dating_and_Sr-Nd-Pb_isotopic_chara20160907-23370-1nvihf5.pdf","download_url":"https://www.academia.edu/attachments/48633916/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Ar_Ar_dating_and_Sr_Nd_Pb_isotopic_chara.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633916/Ar-Ar_dating_and_Sr-Nd-Pb_isotopic_chara20160907-23370-1nvihf5-libre.pdf?1473232860=\u0026response-content-disposition=attachment%3B+filename%3DAr_Ar_dating_and_Sr_Nd_Pb_isotopic_chara.pdf\u0026Expires=1734034235\u0026Signature=gv34luDrtvDJCkld-nMgAqRiMXn-JvRB4RqeBYu6cdYFK63~UPid-nwZC~kOA9AAQlGsGvuaoJBREeCmC-5UJV9loW-fj099sTV59ia-e60jwVY2HIqU4xNIDuH-6rU48ePj70Ni9~lr-hYaAf9XfDRDEVXZR5oem9vVgoKP-~Ao25oY6G4i2jgRIGMHmJlvUj5~yYsd1P5xL4DJSEzsr-RzIohD~ofPlbQmiNkJbWjRMivk41f79MdpU~YbDLrGc98WY24QFKLWeWNO6gXixJApuEo3gV3Gy3hx4mBqI1HDT2VU9c04d0eYLhDidc9z6O3nD5rWqbhWOmxg0KgrcA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="28301595"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/28301595/Louisville_Seamount_Trail_implications_for_geodynamic_mantle_flow_models_and_the_geochemical_evolution_of_primary_hotspots"><img alt="Research paper thumbnail of Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots" class="work-thumbnail" src="https://attachments.academia-assets.com/48633964/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/28301595/Louisville_Seamount_Trail_implications_for_geodynamic_mantle_flow_models_and_the_geochemical_evolution_of_primary_hotspots">Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2f3a619a068829a525c112cadaf2d463" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{&quot;attachment_id&quot;:48633964,&quot;asset_id&quot;:28301595,&quot;asset_type&quot;:&quot;Work&quot;,&quot;button_location&quot;:&quot;profile&quot;}" href="https://www.academia.edu/attachments/48633964/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="28301595"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="28301595"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 28301595; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=28301595]").text(description); $(".js-view-count[data-work-id=28301595]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 28301595; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='28301595']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 28301595, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2f3a619a068829a525c112cadaf2d463" } } $('.js-work-strip[data-work-id=28301595]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":28301595,"title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots","translated_title":"","metadata":{"ai_abstract":"The Louisville Seamount Trail is a 4300 km long volcanic chain built over 80 million years as the Pacific plate traveled above a mantle melting anomaly, providing comparisons with the Hawaiian hotspot. This study investigates the geochemical composition and evolution of lavas from the Louisville hotspot during IODP Expedition 330, exploring the characteristics of this primary hotspot and its dynamic interactions with the lithosphere over time, while also examining the implications for mantle flow models and the historical movements of hotspot locations.","publication_date":{"day":null,"month":null,"year":2011,"errors":{}}},"translated_abstract":null,"internal_url":"https://www.academia.edu/28301595/Louisville_Seamount_Trail_implications_for_geodynamic_mantle_flow_models_and_the_geochemical_evolution_of_primary_hotspots","translated_internal_url":"","created_at":"2016-09-07T00:09:05.176-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":53070680,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":24096667,"work_id":28301595,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366364,"email":"d***a@ucsd.edu","display_order":0,"name":"D. Ebuna","title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots"},{"id":24096670,"work_id":28301595,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366365,"email":"l***s@durham.ac.uk","display_order":4194304,"name":"L. Kalnins","title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots"},{"id":24096673,"work_id":28301595,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366366,"email":"s***i@unimelb.edu.au","display_order":6291456,"name":"S. Machida","title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots"},{"id":24096676,"work_id":28301595,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366367,"email":"n***g@unimelb.edu.au","display_order":7340032,"name":"Nicola Pressling","title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots"},{"id":24096679,"work_id":28301595,"tagging_user_id":53070680,"tagged_user_id":null,"co_author_invite_id":5366368,"email":"s***h@uni-bremen.de","display_order":7864320,"name":"Svenja Rausch","title":"Louisville Seamount Trail: implications for geodynamic mantle flow models and the geochemical evolution of primary hotspots"}],"downloadable_attachments":[{"id":48633964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633964/thumbnails/1.jpg","file_name":"Louisville_Seamount_Trail_implications_f20160907-26711-i3qs4j.pdf","download_url":"https://www.academia.edu/attachments/48633964/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Louisville_Seamount_Trail_implications_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633964/Louisville_Seamount_Trail_implications_f20160907-26711-i3qs4j-libre.pdf?1473232900=\u0026response-content-disposition=attachment%3B+filename%3DLouisville_Seamount_Trail_implications_f.pdf\u0026Expires=1734034235\u0026Signature=UU9~2MK4~yunHvJOiM7QFoUiNBGsD9Qxrp89tLo59rA5XCt2CYITPQ7LQ6UkTQCyAriGAGX7q--0HTqDynXrJ2LlR2c0PWzahNJShxjefHsb0P4dHgZqLrvWTWB-18G3YYd-ce~45-vgq-susbdaUunj3IIiLQ9qDn2-qtEeoeKOOMgdDBVrA9nx8skonJAtK758cBtyxtlXtBL8FEy7GkqOsd2nv4ZE27uRhY0jEhecTB2M-2XytULgvv4Ym7Q65814T~93TT0mLNH9lDeDRMpfrWe~MPxyFdyBAAWWMvdO8G1c8jy4kWfHbXwXQbGC6jnTwc1CYNLldYbaO7esUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Louisville_Seamount_Trail_implications_for_geodynamic_mantle_flow_models_and_the_geochemical_evolution_of_primary_hotspots","translated_slug":"","page_count":174,"language":"en","content_type":"Work","summary":null,"owner":{"id":53070680,"first_name":"Li-hui","middle_initials":null,"last_name":"Chen","page_name":"LihuiChen","domain_name":"nanjing","created_at":"2016-09-07T00:04:45.075-07:00","display_name":"Li-hui Chen","url":"https://nanjing.academia.edu/LihuiChen"},"attachments":[{"id":48633964,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/48633964/thumbnails/1.jpg","file_name":"Louisville_Seamount_Trail_implications_f20160907-26711-i3qs4j.pdf","download_url":"https://www.academia.edu/attachments/48633964/download_file?st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&st=MTczNDAzMDYzNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Louisville_Seamount_Trail_implications_f.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/48633964/Louisville_Seamount_Trail_implications_f20160907-26711-i3qs4j-libre.pdf?1473232900=\u0026response-content-disposition=attachment%3B+filename%3DLouisville_Seamount_Trail_implications_f.pdf\u0026Expires=1734034235\u0026Signature=UU9~2MK4~yunHvJOiM7QFoUiNBGsD9Qxrp89tLo59rA5XCt2CYITPQ7LQ6UkTQCyAriGAGX7q--0HTqDynXrJ2LlR2c0PWzahNJShxjefHsb0P4dHgZqLrvWTWB-18G3YYd-ce~45-vgq-susbdaUunj3IIiLQ9qDn2-qtEeoeKOOMgdDBVrA9nx8skonJAtK758cBtyxtlXtBL8FEy7GkqOsd2nv4ZE27uRhY0jEhecTB2M-2XytULgvv4Ym7Q65814T~93TT0mLNH9lDeDRMpfrWe~MPxyFdyBAAWWMvdO8G1c8jy4kWfHbXwXQbGC6jnTwc1CYNLldYbaO7esUQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "fc34216b090947a44a39c1ec2813fe3e8a669f85faec0a2c24c1b52c29838468", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="NidRP8LqV/ORO/hDAUyc7Af6OMLmF3b6QmcAXtafYce6CygsyqE7MHq8gYkIrQpWqiT83eFY4hChsCGcmjyfcg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://nanjing.academia.edu/LihuiChen" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Zc7LIr8lxOk1fzEgWdhviqmezKwdNJARAwYDZHAOcRnp4rIxt26oKt74SOpQOfkwBEAIsxp7BPvg0SKmPK2PrA==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10