CINXE.COM
Search results for: building form
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: building form</title> <meta name="description" content="Search results for: building form"> <meta name="keywords" content="building form"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="building form" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="building form"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9750</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: building form</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9750</span> 3D Visualization for the Relationship of the Urban Rule and Building Form by Using CityEngine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chin%20Ku">Chin Ku</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20liang%20Lin"> Han liang Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to visualize how the rule related to urban design influences the building form by 3D modeling software CityEngine. In order to make the goal of urban design clearly connect to urban form, urban planner or designer should understand how the rule affects the form, especially the building form. In Taiwan, the rule pertained to urban design includes traditional zoning, urban design review and building codes. However, zoning cannot precisely expect the outcome of building form and lack of thinking about public realm and 3D form. In addition to that, urban design review is based on case by case, do not have a comprehensive regulation plan and the building code is just for general regulation. Therefore, rule cannot make the urban form reach the vision or goal of the urban design. Consequently, another kind of zoning called Form-based code (FBC) has arisen. This study uses the component of FBC which pertained to urban fabric such as street width, block and plot size, etc., to be the variants of building form, and find out the relationship between the rule and building form. There are three stages of this research, it will start from a field survey of Taichung City in Taiwan to induce the rule-building form relationship by using cluster analysis and descriptive Statistics. Second, visualize the relationship through the parameterized and codified process in CityEngine which is the procedural modeling, and can analyze, monitor and visualize the 3D world. Last, compare the CityEngine result with real world to examine how extent do this model represent the real world appearance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20visualization" title="3D visualization">3D visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=CityEngine" title=" CityEngine"> CityEngine</a>, <a href="https://publications.waset.org/abstracts/search?q=form-based%20code" title=" form-based code"> form-based code</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20form" title=" urban form"> urban form</a> </p> <a href="https://publications.waset.org/abstracts/78042/3d-visualization-for-the-relationship-of-the-urban-rule-and-building-form-by-using-cityengine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9749</span> Influence of Orientation in Complex Building Architecture in Various Climatic Regions in Winter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alwetaishi">M. Alwetaishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Giulia%20Sonetti"> Giulia Sonetti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is architecturally accepted that building form and design is considered as one of the most important aspects in affecting indoor temperature. The total area of building plan might be identical, but the design will have a major influence on the total area of external walls. This will have a clear impact on the amount of heat exchange with outdoor. Moreover, it will affect the position and area of glazing system. This has not received enough consideration in research by the specialists, since most of the publications are highlighting the impact of building envelope in terms of physical heat transfer in buildings. This research will investigate the impact of orientation of various building forms in various climatic regions. It will be concluded that orientation and glazing to wall ratio were recognized to be the most effective variables despite the shape of the building. However, linear ad radial forms were found more appropriate shapes almost across the continent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architectural%20building%20design" title="architectural building design">architectural building design</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20form" title=" building form"> building form</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20design%20in%20different%20climate" title=" building design in different climate"> building design in different climate</a>, <a href="https://publications.waset.org/abstracts/search?q=indoor%20air%20temperature" title=" indoor air temperature"> indoor air temperature</a> </p> <a href="https://publications.waset.org/abstracts/71067/influence-of-orientation-in-complex-building-architecture-in-various-climatic-regions-in-winter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9748</span> Building Semantic-Relatedness Thai Word Ontology for Semantic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gridaphat%20Sriharee">Gridaphat Sriharee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building semantic-relatedness Thai word ontology can be implemented by considering word forms and word meaning. This research proposed the methodology for building the ontology, which can be used for semantic analysis. There are four categories of words: similar form and the same meaning, similar form and similar meaning, different form and opposite/same meaning, and different form and similar meaning, which will be used as initial words for building the proposed ontology. Extension of the ontology can be augmented by considering the messages that give the meaning of the word from the dictionaries. Exploiting WordNet to construct the proposed ontology was investigated and discussed. The proposed ontology was evaluated for its quality. With the proposed methodology, it is promising that the constructed ontology is a well-defined ontology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thai" title="Thai">Thai</a>, <a href="https://publications.waset.org/abstracts/search?q=NLP" title=" NLP"> NLP</a>, <a href="https://publications.waset.org/abstracts/search?q=semantics" title=" semantics"> semantics</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology" title=" ontology"> ontology</a> </p> <a href="https://publications.waset.org/abstracts/157354/building-semantic-relatedness-thai-word-ontology-for-semantic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9747</span> Thermal Simulation for Urban Planning in Early Design Phases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diego%20A.%20Romero%20Espinosa">Diego A. Romero Espinosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal simulations are used to evaluate comfort and energy consumption of buildings. However, the performance of different urban forms cannot be assessed precisely if an environmental control system and user schedules are considered. The outcome of such analysis would lead to conclusions that combine the building use, operation, services, envelope, orientation and density of the urban fabric. The influence of these factors varies during the life cycle of a building. The orientation, as well as the surroundings, can be considered a constant during the lifetime of a building. The structure impacts the thermal inertia and has the largest lifespan of all the building components. On the other hand, the building envelope is the most frequent renovated component of a building since it has a great impact on energy performance and comfort. Building services have a shorter lifespan and are replaced regularly. With the purpose of addressing the performance, an urban form, a specific orientation, and density, a thermal simulation method were developed. The solar irradiation is taken into consideration depending on the outdoor temperature. Incoming irradiation at low temperatures has a positive impact increasing the indoor temperature. Consequently, overheating would be the combination of high outdoor temperature and high irradiation at the façade. On this basis, the indoor temperature is simulated for a specific orientation of the evaluated urban form. Thermal inertia and building envelope performance are considered additionally as the materiality of the building. The results of different thermal zones are summarized using the 'Degree day method' for cooling and heating. During the early phase of a design process for a project, such as Masterplan, conclusions regarding urban form, density and materiality can be drawn by means of this analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=masterplanning" title=" masterplanning"> masterplanning</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20form" title=" urban form"> urban form</a> </p> <a href="https://publications.waset.org/abstracts/93163/thermal-simulation-for-urban-planning-in-early-design-phases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9746</span> Paraffin/Expanded Perlite Composite as a Novel Form-Stable Phase Change Material for Latent Heat Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awni%20Alkhazaleh">Awni Alkhazaleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Latent heat storage using Phase Change Materials (PCMs) has attracted growing attention recently in the renewable energy utilization and building energy efficiency. Paraffin (PA) of low melting temperature, which is close to human comfort temperature in the range of 24-28 °C has been considered to be used in building applications. A form-stable composite Paraffin/Expanded perlite (PA-EP) has been prepared by retaining PA into porous particles of EP. DSC (Differential scanning calorimeter) is used to measure the thermal properties of PA in the form-stable composite with/without building materials. TGA (Thermal gravimetric analysis) shows that the composite is thermally stable. SEM (Scanning electron microscope) demonstrates that the layer structure of the EP particles is uniformly absorbed by PA. The mechanical properties in flexural mode have been discussed. The thermal energy storage performance has been evaluated using a small test room (100 mm ×100 mm ×100 mm) with thickness 10 mm. The flammability test of modified sample has been discussed using a cone calorimeter. The results confirm that the form-stable composite PA has the function of reducing building energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flammability" title="flammability">flammability</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20heat%20storage" title=" latent heat storage"> latent heat storage</a>, <a href="https://publications.waset.org/abstracts/search?q=paraffin" title=" paraffin"> paraffin</a>, <a href="https://publications.waset.org/abstracts/search?q=plasterboard" title=" plasterboard"> plasterboard</a> </p> <a href="https://publications.waset.org/abstracts/76078/paraffinexpanded-perlite-composite-as-a-novel-form-stable-phase-change-material-for-latent-heat-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9745</span> Modern Forms and Aesthetics in Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chukwuma%20Anya">Chukwuma Anya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekwa%20Eme"> Mekwa Eme</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The term ‘’FORM’’ in design could be referred to as the combination of various shapes of different sizes and assembling them in appropriate positions to achieve a unique figure of high aesthetic value. A deduction from this definition is that forms contribute immensely to the actualization of aesthetics in a building. When these various shapes and figures are properly assembled, it may give rise to a concept in design. However some architects and other designers either misuse or abuse the use of these shapes, hence resulting to a design imbalance, lack of uniformity and expression. This academic work is designed to educate the public on the proper usage of some regular shapes like circles, rectangles, pentagons, hexagons, triangles etc, to achieve a unique form in design. By the end of this work, one should be able to assemble different shapes to express different emotions of the mind, such as peace, love, confusion, war, and unity. Some elements of design, such as balance, stability, functionality and aesthetics, will also be achieved even as the building maintains its unique form. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aesthetics" title="aesthetics">aesthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=form" title=" form"> form</a>, <a href="https://publications.waset.org/abstracts/search?q=balance" title=" balance"> balance</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/168695/modern-forms-and-aesthetics-in-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9744</span> Derivation of Technology Element for Automation in Table Formwork in a Tall Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junehyuck%20Lee">Junehyuck Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongmin%20Lee"> Dongmin Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hunhee%20Cho"> Hunhee Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyung-In%20Kang"> Kyung-In Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A table formwork method has recently been widely applied in reinforced concrete structures in a tall building construction to improve safety and productivity. However, this method still depended mainly on manpower. Therefore, this study aimed at derivation of technology element to apply the automation in table formwork in a tall building construction. These results will contribute to improve productivity and labor saving in table formwork in tall building construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=table%20form" title="table form">table form</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/61287/derivation-of-technology-element-for-automation-in-table-formwork-in-a-tall-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9743</span> Combining the Noble Values of Traditional Architecture on Modern Architecture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dwi%20Retno%20Sri%20Ambarwati">Dwi Retno Sri Ambarwati </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the traditional architecture were getting lost, replaced by modern architecture. The existence of many traditional houses often changing the function and change the values in an effort to adjust to the modern lifestyle, whereas the spiritual background of traditional architectural design is very specific and be the basis for consideration in the construction of the building, both in terms of determining the location of the building, the direction toward building, the spatial pattern and organization of space, zoning, hierarchical space, building form, ornamentation, the selection of building materials, and so on. The changes in function and form will transformed the spiritual values contained in it, because the architecture affects human behavior and reflects the culture. The traditional architecture views the architecture as a concept that has different tendencies in terms of orientation, shape, and attitude toward nature that tends to harmony with the social environment and local culture. The concept of the spirit of place made the architecture looks familiar, not arrogant and give a positive value to the surrounding environment. Every culture has a traditional architecture that full of spiritual values, although in the simplest form. Humans can learn about human values and local wisdom through the positive values that contained in traditional architecture, the desire to balance themselves with nature and the environment, not overbearing, strict adherence to the prevailing norms, openness in public life and intimacy family life that form a harmonious in life. The great and the wise value of traditional architecture should be revived in modern architecture that tends to ignore the spiritual values and more concerned with the functional and aesthetic pleasure, by combining the noble values of traditional architecture into modern architecture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=architecture" title="architecture">architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=combining%20noble%20values" title=" combining noble values"> combining noble values</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20wisdom" title=" local wisdom"> local wisdom</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20architecture" title=" traditional architecture"> traditional architecture</a> </p> <a href="https://publications.waset.org/abstracts/15167/combining-the-noble-values-of-traditional-architecture-on-modern-architecture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9742</span> Soap Film Enneper Minimal Surface Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yee%20Hooi%20Min">Yee Hooi Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohdnasir%20Abdul%20Hadi"> Mohdnasir Abdul Hadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tensioned membrane structure in the form of Enneper minimal surface can be considered as a sustainable development for the green environment and technology, it also can be used to support the effectiveness used of energy and the structure. Soap film in the form of Enneper minimal surface model has been studied. The combination of shape and internal forces for the purpose of stiffness and strength is an important feature of membrane surface. For this purpose, form-finding using soap film model has been carried out for Enneper minimal surface models with variables u=v=0.6 and u=v=1.0. Enneper soap film models with variables u=v=0.6 and u=v=1.0 provides an alternative choice for structural engineers to consider the tensioned membrane structure in the form of Enneper minimal surface applied in the building industry. It is expected to become an alternative building material to be considered by the designer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enneper" title="Enneper">Enneper</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20surface" title=" minimal surface"> minimal surface</a>, <a href="https://publications.waset.org/abstracts/search?q=soap%20film" title=" soap film"> soap film</a>, <a href="https://publications.waset.org/abstracts/search?q=tensioned%20membrane%20structure" title=" tensioned membrane structure"> tensioned membrane structure</a> </p> <a href="https://publications.waset.org/abstracts/20780/soap-film-enneper-minimal-surface-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20780.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9741</span> An Analysis of Transition in Building Form from Abolition of Diagonal Plane Control by Street Width: Focusing on Site Plan and Urban Block</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joohyun%20Park">Joohyun Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Baek"> Jin Baek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to Analyze the role and effect arise from Diagonal Plane Control by Street Width (DPCSW) in Architecture in Seoul, and to predict the aspect of transition about the relationship among buildings and Urban morphology After the abolition. To find the tendency of building shape regulation, This study review Building Acts concerned with form making (the building to land Ratio, building designated line, wall designated line, building height limit (DPCSW) and etc.) and simulate the shape of urban blocks made by Acts in drawings. The review results show DPCSW is not only limitation about height, but also making the building setback from road and make the Road broader. And it makes the typical shape of the urban block that buildings are moving away from surrounding road After the Abolition of DPCSW; it is expected by the legislature that domestic real estate’s market would be promoted by increased total floor areas in each building. Some substitution from the legislature is announced, but it just deals with Building Maximum unit by Block unit except the regulation about arrangement in urban Figure and Ground. In conclusion, refrain from the uncontrolled development of city, It is important to make regulation about not only height factors but limitation line in land. Furthermore, through revising District Unit Plan, It is positively necessary to reset the relationship between buildings for the making the city space better. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diagonal%20plane%20control%20by%20street%20width" title="diagonal plane control by street width">diagonal plane control by street width</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20maximum%20height" title=" building maximum height"> building maximum height</a>, <a href="https://publications.waset.org/abstracts/search?q=district%20unit%20plan" title=" district unit plan"> district unit plan</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20acts" title=" building acts"> building acts</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20block%20type" title=" urban block type"> urban block type</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20shape" title=" building shape"> building shape</a> </p> <a href="https://publications.waset.org/abstracts/49935/an-analysis-of-transition-in-building-form-from-abolition-of-diagonal-plane-control-by-street-width-focusing-on-site-plan-and-urban-block" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9740</span> Visual Simulation for the Relationship of Urban Fabric</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ting-Yu%20Lin">Ting-Yu Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Han-Liang%20Lin"> Han-Liang Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article is about the urban form of visualization by Cityengine. City is composed of different domains, and each domain has its own fabric because of arrangement. For example, a neighborhood unit contains fabrics such as schools, street networks, residential and commercial spaces. Therefore, studying urban morphology can help us understand the urban form in planning process. Streets, plots, and buildings seem as urban fabrics, and they configure urban form. Traditionally, urban morphology usually discussed single parameter, which is building type, ignoring other parameters such as streets and plots. However, urban space is three-dimensional, instead of two-dimensional. People perceive urban space by their visualization. Therefore, using visualization can fill the gap between two dimensions and three dimensions. Hence, the study of urban morphology will strengthen the understanding of whole appearance of a city. Cityengine is a software which can edit, analyze and monitor the data and visualize the result for GIS, a common tool to analyze data and display the map for urban plan and urban design. Cityengine can parameterize the data of streets, plots and building types and visualize the result in three-dimensional way. The research will reappear the real urban form by visualizing. We can know whether the urban form can be parameterized and the parameterized result can match the real urban form. Then, visualizing the result by software in three dimension to analyze the rule of urban form. There will be three stages of the research. It will start with a field survey of Tainan East District in Taiwan to conclude the relationships between urban fabrics of street networks, plots and building types. Second, to visualize the relationship, it will turn the relationship into codes which Cityengine can read. Last, Cityengine will automatically display the result by visualizing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cityengine" title="Cityengine">Cityengine</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20fabric" title=" urban fabric"> urban fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20morphology" title=" urban morphology"> urban morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20simulation" title=" visual simulation"> visual simulation</a> </p> <a href="https://publications.waset.org/abstracts/59888/visual-simulation-for-the-relationship-of-urban-fabric" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9739</span> A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valeriya%20Tyo">Valeriya Tyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Serikbolat%20Yessengabulov"> Serikbolat Yessengabulov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regions with extreme climate conditions such as Astana city require energy saving measures to increase the energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of the key factors to be considered. The architectural form of a building has the impact on space heating and cooling energy use, however, the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20geometry" title="building geometry">building geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20gain" title=" heat gain"> heat gain</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20loss" title=" heat loss"> heat loss</a> </p> <a href="https://publications.waset.org/abstracts/37694/a-comparative-case-study-of-the-impact-of-square-and-yurt-shape-buildings-on-energy-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9738</span> Cross Ventilation Potential in an Array of Building Blocks: The Case Study of Alexandria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bakr%20Gomaa">Bakr Gomaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wind driven Cross ventilation is achieved when air moves indoors due to the pressure difference on the building envelope. This is especially important in breezy moderate to humid settings in which fast air flow can promote thermal comfort. Studies have shown that the use of simple building forms or ignoring the urban context when studying natural ventilation can lead to inaccurate results. In this paper, the impact of the urban form of a regular array of buildings is investigated to define the impact of this urban setting on cross ventilation potential. The objective of this paper is to provide the necessary tools to achieve natural ventilation for cooling purposes in an array of building blocks context. The array urban form has been studied before for natural ventilation purposes yet to the best of our knowledge no study has considered the relationship between the urban form and the pressure patterns that develop on the buildings envelope for cross ventilation. For this we use detailed weather data for a case study city of Alexandria (Egypt), as well as a validated CFD simulations to investigate the cross ventilation potential in terms of pressure patterns in waterfront as well as in-city wind flows perpendicular to the buildings array. it was found that for both waterfront and in-city wind speeds the windows needed for cross ventilation in rear raws of the array are significantly larger than those needed for front raw. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alexandria" title="Alexandria">Alexandria</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=cross%20ventilation" title=" cross ventilation"> cross ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20coefficient" title=" pressure coefficient"> pressure coefficient</a> </p> <a href="https://publications.waset.org/abstracts/56728/cross-ventilation-potential-in-an-array-of-building-blocks-the-case-study-of-alexandria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56728.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9737</span> Thermal and Flammability Properties of Paraffin/Nanoclay Composite Phase Change Materials Incorporated in Building Materials for Thermal Energy Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awni%20H.%20Alkhazaleh">Awni H. Alkhazaleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Baljinder%20K.%20Kandola"> Baljinder K. Kandola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a form-stable composite Paraffin/Nanoclay (PA-NC) has been prepared by absorbing PA into porous particles of NC to be used for low-temperature latent heat thermal energy storage. The leakage test shows that the maximum mass fraction of PA that can be incorporated in NC without leakage is 60 wt.%. Differential scanning calorimetry (DSC) has been used to measure the thermal properties of the PA and PA-NC both before and after incorporation in plasterboard (PL). The mechanical performance of the samples has been evaluated in flexural mode. The thermal energy storage performance has been studied using a small test chamber (100 mm × 100 mm × 100 mm) made from 10 mm thick PL and measuring the temperatures using thermocouples. The flammability of the PL+PL-NC has been discussed using a cone calorimeter. The results indicate that the form composite PA has good potential for use as thermal energy storage materials in building applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=flammability" title=" flammability"> flammability</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a> </p> <a href="https://publications.waset.org/abstracts/67209/thermal-and-flammability-properties-of-paraffinnanoclay-composite-phase-change-materials-incorporated-in-building-materials-for-thermal-energy-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9736</span> State of Conservation of the British Colonial Architectural Heritage of Karachi: Case Study of Damage Mapping of Empress Market Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tania%20Ali%20Soomro">Tania Ali Soomro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 1839, the British, after the annexation of the port city of Karachi, established a new urban centre consisting of various quarters and introduced new settlements there. These quarters were out of the boundaries of fortified native old area and now contain much of the oldest parts of the city and signify the colonial history of Karachi, in particular the Saddar Bazaar and the neighboring areas of Kharadar and Mithadar. These quarters bestow a mix of functional typology built in a hybrid form of construction - an adaptation of the western architectural attributes to regional requirements and characteristics. This approach is referred to as the Anglo Vernacular, Colonial or the Domestic Gothic architectural form. This research paper investigates the historical and architectural value of one such property: the Empress Market designed by then Municipal Architect, Ar. James Strachan in 1889 as a commemorative monument for the jubilee of Her Majesty the Queen Victoria; Empress of British India, at that time. This paper presents information on the present conservation status of the market building and highlights its role as a catalyst to the community interconnection. This building has survived to present day and functioned well, despite undergoing numerous transformations. A detailed analysis of the bio-degradation (Natural-Chemical dissolution of material) and the bio-deterioration (Manmade-Negative state change of the material) of the building, based on the examination of the prevailing causes of these bio-alterations is carried out, and is presented in form of a damage atlas containing both the categories of bio-alteration/ changes occurred to the building over the time. The research methodology followed in this paper starts with the available archival analysis, physical observation, photographic documentation, the statistics review and the interviews with the direct and indirect stakeholders. The results and findings of this research portray that these bio-alterations and changes are the essential part of the life cycle of Empress Market building which illustrate the historic development of the premise and therefore ought to be given due importance (depending upon their condition) while developing the conservation plan for the building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=British%20colonial%20architecture" title="British colonial architecture">British colonial architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-alteration" title=" bio-alteration"> bio-alteration</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-degradation" title=" bio-degradation"> bio-degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-deterioration" title=" bio-deterioration"> bio-deterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=domestic%20gothic%20architectural%20form" title=" domestic gothic architectural form"> domestic gothic architectural form</a> </p> <a href="https://publications.waset.org/abstracts/84836/state-of-conservation-of-the-british-colonial-architectural-heritage-of-karachi-case-study-of-damage-mapping-of-empress-market-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9735</span> A Study of Carbon Emissions during Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jonggeon%20Lee">Jonggeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungho%20Tae"> Sungho Tae</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungjoon%20Suk"> Sungjoon Suk</a>, <a href="https://publications.waset.org/abstracts/search?q=Keunhyeok%20Yang"> Keunhyeok Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Ford"> George Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20E.%20Smith"> Michael E. Smith</a>, <a href="https://publications.waset.org/abstracts/search?q=Omidreza%20Shoghli"> Omidreza Shoghli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20construction%20phase" title="building construction phase">building construction phase</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions%20assessment" title=" carbon emissions assessment"> carbon emissions assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20life%20cycle" title=" building life cycle "> building life cycle </a> </p> <a href="https://publications.waset.org/abstracts/29496/a-study-of-carbon-emissions-during-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">751</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9734</span> Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Anuar">S. A. Anuar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20H.%20Hamid"> N. H. Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Hashim"> M. H. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20D.%20Salleh"> S. M. D. Salleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper present the experimental work on the seismic performance of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested at ±0.01%, ±0.1%, ±0.25%, ±0.5%, ±0.75% and ±1.0% drifts until the structure achieves its strength degradation. After that, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. A similar testing approach is applied to the specimen after repair and retrofit. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22 in pushing direction and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel%20form%20building" title="tunnel form building">tunnel form building</a>, <a href="https://publications.waset.org/abstracts/search?q=in-plane%20lateral%20cyclic%20loading" title=" in-plane lateral cyclic loading"> in-plane lateral cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20pattern" title=" crack pattern"> crack pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20strength" title=" lateral strength"> lateral strength</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=ductility" title=" ductility"> ductility</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalent%20viscous%20damping" title=" equivalent viscous damping"> equivalent viscous damping</a>, <a href="https://publications.waset.org/abstracts/search?q=repair%20and%20retrofit" title=" repair and retrofit"> repair and retrofit</a> </p> <a href="https://publications.waset.org/abstracts/11546/comparison-of-double-unit-tunnel-form-building-before-and-after-repair-and-retrofit-under-in-plane-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9733</span> Recommendation of Semi Permanent Buildings for Tsunami Prone Areas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fitri%20Nugraheni">Fitri Nugraheni</a>, <a href="https://publications.waset.org/abstracts/search?q=Adwitya%20Bhaskara"> Adwitya Bhaskara</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Faried%20Hanafi"> N. Faried Hanafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coastal is one area that can be a place to live. Various buildings can be built in the area around the beach. Many Indonesians use beaches as housing and work, but we know that coastal areas are identical to tsunami and wind. Costs incurred due to permanent damage caused by tsunamis and wind disasters in Indonesia can be minimized by replacing permanent buildings into semi-permanent buildings. Semi-permanent buildings can be realized by using cold-formed steel as a building. Thus, the purpose of this research is to provide efficient semi-permanent building recommendations for residents around the coast. The research is done by first designing the building model by using sketch-up software, then the validation phase is done in consultation with the expert consultant of cold form steel structure. Based on the results of the interview there are several revisions on several sides of the building by adding some bracing rods on the roof, walls and floor frame. The result of this research is recommendation of semi-permanent building model, where the nature of the building; easy to disassemble and install (knockdown), tsunami-friendly (continue the tsunami load), cost and time efficient (using cold-formed-steel and prefabricated GRC), zero waste, does not require many workers (less labor). The recommended building design concept also keeps the architecture side in mind thus it remains a comfortable occupancy for the residents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20method" title="construction method">construction method</a>, <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title=" cold-formed steel"> cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-permanent%20building" title=" semi-permanent building"> semi-permanent building</a>, <a href="https://publications.waset.org/abstracts/search?q=tsunami" title=" tsunami"> tsunami</a> </p> <a href="https://publications.waset.org/abstracts/84906/recommendation-of-semi-permanent-buildings-for-tsunami-prone-areas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9732</span> Interpreting Form Based Code in Historic Residential Corridor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diljan%20C.%20K.">Diljan C. K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every location on the planet has a history and culture that give it its own identity and character, making it distinct from others. urbanised world, it is fashionable to remould its original character and impression in a contemporary style. The new character and impression of places show a complete detachment from their roots. The heritage and cultural values of the place are replaced by new impressions, and as a result, they eventually lose their identity and character and never have sustenance. In this situation, form-based coding acts as a tool in the urban design process, helping to come up with solutions that strongly bind individuals to their neighbourhood and are closely related to culture through the physical spaces they are associated with. Form-based code was made by pioneers of new urbanism in 1987 in the United States of America. Since then, it has been used in various projects inside and outside the USA with varied scales, from the design of a single building to the design of a whole community. This research makes an effort to interpret the form-based code in historic corridors to establish the association of physical form and space with the public realm to uphold the context and culture. Many of the historic corridors are undergoing a tremendous transformation in their physical form, avoiding their culture and context. This will lead to it losing its identity in form and function. If the case of Valiyashala in Trivandrum is taken as the case, which is transforming its form and will lead to the loss of its identity, the form-based code will be a suitable tool to strengthen its historical value. The study concludes by analysing the existing code (KMBR) of Valiyashala and form-based code to find the requirements in form-based code for Valiyashala. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=form%20based%20code" title="form based code">form based code</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20conservation" title=" urban conservation"> urban conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage" title=" heritage"> heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=historic%20corridor" title=" historic corridor"> historic corridor</a> </p> <a href="https://publications.waset.org/abstracts/155925/interpreting-form-based-code-in-historic-residential-corridor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9731</span> Research on Architectural Steel Structure Design Based on BIM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianyu%20Gao">Tianyu Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital architectures use computer-aided design, programming, simulation, and imaging to create virtual forms and physical structures. Today's customers want to know more about their buildings. They want an automatic thermostat to learn their behavior and contact them, such as the doors and windows they want to open with a mobile app. Therefore, the architectural display form is more closely related to the customer's experience. Based on the purpose of building informationization, this paper studies the steel structure design based on BIM. Taking the Zigan office building in Hangzhou as an example, it is divided into four parts, namely, the digital design modulus of the steel structure, the node analysis of the steel structure, the digital production and construction of the steel structure. Through the application of BIM software, the architectural design can be synergized, and the building components can be informationized. Not only can the architectural design be feedback in the early stage, but also the stability of the construction can be guaranteed. In this way, the monitoring of the entire life cycle of the building and the meeting of customer needs can be realized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20architectures" title="digital architectures">digital architectures</a>, <a href="https://publications.waset.org/abstracts/search?q=BIM" title=" BIM"> BIM</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20structure" title=" steel structure"> steel structure</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20design" title=" architectural design"> architectural design</a> </p> <a href="https://publications.waset.org/abstracts/107854/research-on-architectural-steel-structure-design-based-on-bim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9730</span> An Exploration of Architecture Design Methods in Urban Fringe Belt Based on Typo-Morphological Research- A Case of Expansion Project of the Second Middle School in Xuancheng, China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dong%20Yinan">Dong Yinan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhou%20Zijie"> Zhou Zijie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban fringe belt is an important part of urban morphology research. Different from the relatively fixed central district of city, the position of fringe belt is changing. In the process of urban expansion, the original fringe belt is likely to be merged by the new-built city, even become new city public center. During the change, we are facing the dialectic between restoring the organicity of old urban form and creating new urban image. There are lots of relevant research in urban scale, but when we focus on building scale, rare design method can be proposed, thus some new individual building cannot match the overall urban planning intent. The expansion project of the second middle school in Xuancheng is facing this situation. The existing campus is located in the south fringe belt of Xuancheng, Anhui province, China, adjacent to farmland and ponds. While based on the Xucheng urban planning, the farmland and ponds will be transformed into a big lake, around which new public center will be built; the expansion of the school becomes an important part of the boundary of the new public center. Therefore, the expansion project faces challenges from both urban and building scale. In urban scale, we analyze and summarize the fringe belt characters through the reading of existing and future urban organism, in order to determine the form of the expansion project. Meanwhile, in building scale, we study on different types of school buildings and select appropriate type which can satisfy to both urban form and school function. This research attempts to investigate design methods based on an under construction project in Xuancheng, a historic city in southeast China. It also aims to bridge the gap from urban design to individual building design through the typo-morphological research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20methods" title="design methods">design methods</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20fringe%20belt" title=" urban fringe belt"> urban fringe belt</a>, <a href="https://publications.waset.org/abstracts/search?q=typo-morphological%20research" title=" typo-morphological research"> typo-morphological research</a>, <a href="https://publications.waset.org/abstracts/search?q=middle%20school" title=" middle school"> middle school</a> </p> <a href="https://publications.waset.org/abstracts/29048/an-exploration-of-architecture-design-methods-in-urban-fringe-belt-based-on-typo-morphological-research-a-case-of-expansion-project-of-the-second-middle-school-in-xuancheng-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9729</span> Wind Interference Effect on Tall Building</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atul%20K.%20Desai">Atul K. Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Jigar%20K.%20Sevalia"> Jigar K. Sevalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20A.%20Vasanwala"> Sandip A. Vasanwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When a building is located in an urban area, it is exposed to a wind of different characteristics then wind over an open terrain. This is development of turbulent wake region behind an upstream building. The interaction with upstream building can produce significant changes in the response of the tall building. Here, in this paper, an attempt has been made to study wind induced interference effects on tall building. In order to study wind induced interference effect (IF) on Tall Building, initially a tall building (which is termed as Principal Building now on wards) with square plan shape has been considered with different Height to Width Ratio and total drag force is obtained considering different terrain conditions as well as different incident wind direction. Then total drag force on Principal Building is obtained by considering adjacent building which is termed as Interfering Building now on wards with different terrain conditions and incident wind angle. To execute study, Computational Fluid Dynamics (CFD) Code namely Fluent and Gambit have been used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title="computational fluid dynamics">computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=tall%20building" title=" tall building"> tall building</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent" title=" turbulent"> turbulent</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20region" title=" wake region"> wake region</a>, <a href="https://publications.waset.org/abstracts/search?q=wind" title=" wind"> wind</a> </p> <a href="https://publications.waset.org/abstracts/6233/wind-interference-effect-on-tall-building" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9728</span> Evaluation of the Need for Seismic Retrofitting of the Foundation of a Five Story Steel Building Because of Adding of a New Story</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Baradaran">Mohammadreza Baradaran</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzezarghani"> F. Hamzezarghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every year in different points of the world it occurs with different strengths and thousands of people lose their lives because of this natural phenomenon. One of the reasons for destruction of buildings because of earthquake in addition to the passing of time and the effect of environmental conditions and the wearing-out of a building is changing the uses of the building and change the structure and skeleton of the building. A large number of structures that are located in earthquake bearing areas have been designed according to the old quake design regulations which are out dated. In addition, many of the major earthquakes which have occurred in recent years, emphasize retrofitting to decrease the dangers of quakes. Retrofitting structural quakes available is one of the most effective methods for reducing dangers and compensating lack of resistance caused by the weaknesses existing. In this article the foundation of a five-floor steel building with the moment frame system has been evaluated for quakes and the effect of adding a floor to this five-floor steel building has been evaluated and analyzed. The considered building is with a metallic skeleton and a piled roof and clayed block which after addition of a floor has increased to a six-floor foundation of 1416 square meters, and the height of the sixth floor from ground state has increased 18.95 meters. After analysis of the foundation model, the behavior of the soil under the foundation and also the behavior of the body or element of the foundation has been evaluated and the model of the foundation and its type of change in form and the amount of stress of the soil under the foundation for some of the composition has been determined many times in the SAFE software modeling and finally the need for retrofitting of the building's foundation has been determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic" title="seismic">seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20building" title=" steel building"> steel building</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation" title=" foundation"> foundation</a> </p> <a href="https://publications.waset.org/abstracts/52562/evaluation-of-the-need-for-seismic-retrofitting-of-the-foundation-of-a-five-story-steel-building-because-of-adding-of-a-new-story" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9727</span> Assessment of Causes of Building Collapse in Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olufemi%20Oyedele">Olufemi Oyedele</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building collapse (BC) in Nigeria is becoming a regular occurrence, each recording great casualties in the number of lives and materials lost. Building collapse is a situation where building which has been completed and occupied, completed but not occupied or under construction, collapses on its own due to action or inaction of man or due to natural event like earthquake, storm, flooding, tsunami or wildfire. It is different from building demolition. There are various causes of building collapse and each case requires expert judgment to decide the cause of its collapse. Rate of building collapse is a reflection of the level of organization and control of building activities and degree of sophistication of the construction professionals in a country. This study explored the use of case study by examining the causes of six (6) collapsed buildings (CB) across Nigeria. Samples of materials from the sites of the collapsed buildings were taken for testing and analysis, while critical observations were made at the sites to note the conditions of the ground (building base). The study found out that majority of the building collapses in Nigeria were due to poor workmanship, sub-standard building materials, followed by bad building base and poor design. The National Building Code 2006 is not effective due to lack of enforcement and the Physical Development Departments of states and Federal Capital Territory are just mere agents of corruption allowing all types of construction without building approvals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20collapse" title="building collapse">building collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20tests" title=" concrete tests"> concrete tests</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20settlement" title=" differential settlement"> differential settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=integrity%20test" title=" integrity test"> integrity test</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a> </p> <a href="https://publications.waset.org/abstracts/57378/assessment-of-causes-of-building-collapse-in-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9726</span> Optimization of Waqf Land through Sukuk Al-Intifa’ to Build MSMEs in Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khadijah%20Hasim">Khadijah Hasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Achmad%20Fauzan%20Firdaus"> Achmad Fauzan Firdaus</a>, <a href="https://publications.waset.org/abstracts/search?q=Choirunnisa"> Choirunnisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waqf land which previously was idle assets can be built on top of a building that is a means for people to conduct business. Nadzir (waqf managers) lease of waqf lands it manages, the agreed rental fee, which is payable in the form of the building, not in cash. After standing building, the developer will lease to interested companies. Given the magnitude of the beginning funds needed, The company later issuing sukuk al-intifa on the trading floor. With this sukuk issuance, the company has sufficient capital to begin operations and pay obligations of the rental fee to the developer each year. Building that had stood trade area will be established (Micro, Small, Middle Entreprises) MSMEs. It is expected that through the sukuk al-intifa, can help to make waqf land previously unproductive due to lack of capital to be very beneficial and help awaken the people of Indonesian MSMEs <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukuk%20Al-Intifa" title="Sukuk Al-Intifa">Sukuk Al-Intifa</a>, <a href="https://publications.waset.org/abstracts/search?q=MSMEs" title=" MSMEs"> MSMEs</a>, <a href="https://publications.waset.org/abstracts/search?q=waqf%20land" title=" waqf land"> waqf land</a>, <a href="https://publications.waset.org/abstracts/search?q=underlying%20asset" title=" underlying asset"> underlying asset</a> </p> <a href="https://publications.waset.org/abstracts/12977/optimization-of-waqf-land-through-sukuk-al-intifa-to-build-msmes-in-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9725</span> Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirhossein%20Eisapour">Amirhossein Eisapour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Emamjome%20Kashan"> Mohammad Emamjome Kashan</a>, <a href="https://publications.waset.org/abstracts/search?q=Alan%20S.%20Fung"> Alan S. Fung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=insulated%20concrete%20form" title="insulated concrete form">insulated concrete form</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title=" thermal energy storage"> thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20osmosis" title=" reverse osmosis"> reverse osmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20systems" title=" building energy systems"> building energy systems</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20thermal%20collector" title=" solar thermal collector"> solar thermal collector</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20thermal" title=" photovoltaic thermal"> photovoltaic thermal</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20pump" title=" heat pump"> heat pump</a> </p> <a href="https://publications.waset.org/abstracts/184025/integrating-insulated-concrete-form-icf-with-solar-driven-reverse-osmosis-desalination-for-building-integrated-energy-storage-in-cold-climates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9724</span> Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Lyu">Yan Lyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiqun%20Pan"> Yiqun Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhizhong%20Huang"> Zhizhong Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building, Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that this simplification would only lead to the error that is less than 7% for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which can cover most situations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20energy%20model" title="building energy model">building energy model</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20simplification" title=" geometric simplification"> geometric simplification</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a> </p> <a href="https://publications.waset.org/abstracts/139548/geometric-simplification-method-of-building-energy-model-based-on-building-performance-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9723</span> Nest-Building Using Place Cells for Spatial Navigation in an Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomas%20E.%20Portegys">Thomas E. Portegys</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An animal behavior problem is presented in the form of a nest-building task that involves two cooperating virtual birds, a male and female. The female builds a nest into which she lays an egg. The male's job is to forage in a forest for food for both himself and the female. In addition, the male must fetch stones from a nearby desert for the female to use as nesting material. The task is completed when the nest is built, and an egg is laid in it. A goal-seeking neural network and a recurrent neural network were trained and tested with little success. The goal-seeking network was then enhanced with “place cells”, allowing the birds to spatially navigate the world, building the nest while keeping themselves fed. Place cells are neurons in the hippocampus that map space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20animal%20intelligence" title="artificial animal intelligence">artificial animal intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20life" title=" artificial life"> artificial life</a>, <a href="https://publications.waset.org/abstracts/search?q=goal-seeking%20neural%20network" title=" goal-seeking neural network"> goal-seeking neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=nest-building" title=" nest-building"> nest-building</a>, <a href="https://publications.waset.org/abstracts/search?q=place%20cells" title=" place cells"> place cells</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20navigation" title=" spatial navigation"> spatial navigation</a> </p> <a href="https://publications.waset.org/abstracts/178999/nest-building-using-place-cells-for-spatial-navigation-in-an-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9722</span> Prevalence of Plastic Use in Building and Construction: An Analysis of 250 Common Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Teresa%20McGrath">Teresa McGrath</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20Johnson"> Ryan Johnson</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Stamm"> Rebecca Stamm</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassidy%20Clarity"> Cassidy Clarity</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yung%20Lui"> Wei Yung Lui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building and construction is the second largest plastic user behind packaging, accounting for 16% of plastic production. Building and construction is also by far the largest user of one of the most impactful plastics, polyvinyl chloride (aka vinyl or PVC), accounting for 69% of PVC production. Building materials also have an outsized contribution to plastic pollution, including microplastic pollution. Yet building materials are often overlooked in plastic waste and pollution reduction efforts. Habitable will present a plastics and petrochemical analysis of over 250 common building material types and demonstrate how changes to building material selection towards safer, renewable, and lower carbon materials can reduce global consumption of plastics and associated pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=fenceline%20communities" title=" fenceline communities"> fenceline communities</a>, <a href="https://publications.waset.org/abstracts/search?q=microplastics" title=" microplastics"> microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=safer%20alternatives" title=" safer alternatives"> safer alternatives</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20analysis" title=" life cycle analysis"> life cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemicals" title=" petrochemicals"> petrochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20chemistry" title=" green chemistry"> green chemistry</a> </p> <a href="https://publications.waset.org/abstracts/190126/prevalence-of-plastic-use-in-building-and-construction-an-analysis-of-250-common-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9721</span> The Impact of Building Technologies on Local Identity of Urban Settlements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eman%20Nagi%20Gowid%20Selim">Eman Nagi Gowid Selim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the relevance of places to people has been questioned from different perspectives. This is attributed to the fact that many international concrete blocks were used to create multi-use public spaces in neighborhoods based on the techniques of mass-productions concepts that became one of the most effective ways in building construction, replacing the local and traditional built environment. During the last decades, the world has become increasingly globalized and citizen more mobilized, and thus, ignoring the social and environmental dimensions of the local identity. The main enquiries of the research are “How did building technologies affect urban settlement’s identity?” and “What are the impacts of technologies and globalization on local identities in urban spaces? “From this perspective, the research presents firstly, a historical review that shows how old civilizations enhance their local identities using the newly discovered building materials in each era in different urban settlement and fabrics without losing the identity. The second part of the research highlights the different approaches of building technologies and urban design to present a clear understanding of ways of applying and merging between different methodologies to achieve the most efficient urban space design. The third part aims at analyzing some international and national case studies where the form and structure of particular spaces are vital to identifying the morphological elements of urban settlements and the links existing between them. In addition, it determines how the building materials are used to enrich the vocabulary of the local identity. This part ends with the deduction of the guidelines for the integration of the environmental and social dimensions within the building technologies` approaches to enhance the sustainability of local identities and thus, ending up with redefining "Urban Identity" to guide future research in such cultural areas. Finally, the research uses the comparative methodology for applying the deduced guidelines on a national case study namely “Othman`s Towers” in corniche El Maadi, and then ends up by some results in the form of strategies for future researcher, that identifies how to ensure local identity in urban settlements using new building materials and technologies to achieve social and environmental comfort within the cultural areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20technologies" title="building technologies">building technologies</a>, <a href="https://publications.waset.org/abstracts/search?q=cultural%20context" title=" cultural context"> cultural context</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20approach" title=" environmental approach"> environmental approach</a>, <a href="https://publications.waset.org/abstracts/search?q=participatory%20design" title=" participatory design"> participatory design</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20dimension" title=" social dimension"> social dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20spaces" title=" urban spaces "> urban spaces </a> </p> <a href="https://publications.waset.org/abstracts/50367/the-impact-of-building-technologies-on-local-identity-of-urban-settlements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=324">324</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=325">325</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=building%20form&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>