CINXE.COM

Search results for: cell biology

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cell biology</title> <meta name="description" content="Search results for: cell biology"> <meta name="keywords" content="cell biology"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cell biology" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cell biology"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3973</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cell biology</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3973</span> The Response of Adaptive Mechanism of Fluorescent Proteins from Coral Species and Target Cell Properties on Signalling Capacity as Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Tugce%20Aksun%20Tumerkan">Elif Tugce Aksun Tumerkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluorescent proteins (FPs) have become very popular since green fluorescent protein discovered from crystal jellyfish. It is known that Anthozoa species have a wide range of chromophore organisms, and the initial crystal structure for non-fluorescent chromophores obtained from the reef-building coral has been determined. There are also differently coloured pigments in non-bioluminescent Anthozoa zooxanthellate and azooxanthellate which are frequently members of the GFP-like protein family. The development of fluorescent proteins (FPs) and their applications is an outstanding example of basic science leading to practical biotechnological and medical applications. Fluorescent proteins have several applications in science and are used as important indicators in molecular biology and cell-based research. With rising interest in cell biology, FPs have used as biosensor indicators and probes in pharmacology and cell biology. Using fluorescent proteins in genetically encoded metabolite sensors has many advantages than chemical probes for metabolites such as easily introduced into any cell or organism in any sub-cellular localization and giving chance to fixing to fluoresce of different colours or characteristics. There are different factors effects to signalling mechanism when they used as a biosensor. While there are wide ranges of research have been done on the significance and applications of fluorescent proteins, the cell signalling response of FPs and target cell are less well understood. In this study, it was aimed to clarify the response of adaptive mechanisms of coral species such as pH, temperature and symbiotic relationship and target cells properties on the signalling capacity. Corals are a rich natural source of fluorescent proteins that change with environmental conditions such as light, heat stress and injury. Adaptation mechanism of coral species to these types of environmental variations is important factor due to FPs properties have affected by this mechanism. Since fluorescent proteins obtained from nature, their own ecological property like the symbiotic relationship is observed very commonly in coral species and living conditions have the impact on FPs efficiency. Target cell properties also have an effect on signalling and visualization. The dynamicity of detector that used for reading fluorescence and the level of background fluorescence are key parameters for the quality of the fluorescent signal. Among the factors, it can be concluded that coral species adaptive characteristics have the strongest effect on FPs signalling capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensor" title="biosensor">biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20biology" title=" cell biology"> cell biology</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20conditions" title=" environmental conditions"> environmental conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20protein" title=" fluorescent protein"> fluorescent protein</a>, <a href="https://publications.waset.org/abstracts/search?q=sea%20anemone" title=" sea anemone"> sea anemone</a> </p> <a href="https://publications.waset.org/abstracts/94010/the-response-of-adaptive-mechanism-of-fluorescent-proteins-from-coral-species-and-target-cell-properties-on-signalling-capacity-as-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3972</span> SCANet: A Workflow for Single-Cell Co-Expression Based Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mhaned%20Oubounyt">Mhaned Oubounyt</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Baumbach"> Jan Baumbach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Differences in co-expression networks between two or multiple cells (sub)types across conditions is a pressing problem in single-cell RNA sequencing (scRNA-seq). A key challenge is to define those co-variations that differ between or among cell types and/or conditions and phenotypes to examine small regulatory networks that can explain mechanistic differences. To this end, we developed SCANet, an all-in-one Python package that uses state-of-the-art algorithms to facilitate the workflow of a combined single-cell GCN (Gene Correlation Network) and GRN (Gene Regulatory Networks) pipeline, including inference of gene co-expression modules from scRNA-seq, followed by trait and cell type associations, hub gene detection, co-regulatory networks, and drug-gene interactions. In an example case, we illustrate how SCANet can be applied to identify regulatory drivers behind a cytokine storm associated with mortality in patients with acute respiratory illness. SCANet is available as a free, open-source, and user-friendly Python package that can be easily integrated into systems biology pipelines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-cell" title="single-cell">single-cell</a>, <a href="https://publications.waset.org/abstracts/search?q=co-expression%20networks" title=" co-expression networks"> co-expression networks</a>, <a href="https://publications.waset.org/abstracts/search?q=drug-gene%20interactions" title=" drug-gene interactions"> drug-gene interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=co-regulatory%20networks" title=" co-regulatory networks"> co-regulatory networks</a> </p> <a href="https://publications.waset.org/abstracts/161853/scanet-a-workflow-for-single-cell-co-expression-based-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161853.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3971</span> Implementation of an Undergraduate Integrated Biology and Chemistry Course</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayson%20G.%20Balansag">Jayson G. Balansag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An integrated biology and chemistry (iBC) course for freshmen college students was developed in University of Delaware. This course will prepare students to (1) become interdisciplinary thinkers in the field of biology and (2) collaboratively work with others from multiple disciplines in the future. This paper documents and describes the implementation of the course. The information gathered from reading literature, classroom observations, and interviews were used to carry out the purpose of this paper. The major goal of the iBC course is to align the concepts between Biology and Chemistry, so that students can draw science concepts from both disciplines which they can apply in their interdisciplinary researches. This course is offered every fall and spring semesters of each school year. Students enrolled in Biology are also enrolled in Chemistry during the same semester. The iBC is composed of lectures, laboratories, studio sessions, and workshops and is taught by the faculty from the biology and chemistry departments. In addition, the preceptors, graduate teaching assistants, and studio fellows facilitate the laboratory and studio sessions. These roles are interdependent with each other. The iBC can be used as a model for higher education institutions who wish to implement an integrated biology course. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrated%20biology%20and%20chemistry" title="integrated biology and chemistry">integrated biology and chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a>, <a href="https://publications.waset.org/abstracts/search?q=interdisciplinary%20research" title=" interdisciplinary research"> interdisciplinary research</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20biology" title=" new biology"> new biology</a>, <a href="https://publications.waset.org/abstracts/search?q=undergraduate%20science%20education" title=" undergraduate science education"> undergraduate science education</a> </p> <a href="https://publications.waset.org/abstracts/76611/implementation-of-an-undergraduate-integrated-biology-and-chemistry-course" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3970</span> Microfluidic Chambers with Fluid Walls for Cell Biology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cristian%20Soitu">Cristian Soitu</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Feuerborn"> Alexander Feuerborn</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Deroy"> Cyril Deroy</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfonso%20Castrejon-Pita"> Alfonso Castrejon-Pita</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20R.%20Cook"> Peter R. Cook</a>, <a href="https://publications.waset.org/abstracts/search?q=Edmond%20J.%20Walsh"> Edmond J. Walsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microfluidics now stands as an academically mature technology after a quarter of a century research activities have delivered a vast array of proof of concepts for many biological workflows. However, translation to industry remains poor, with only a handful of notable exceptions – e.g. digital PCR, DNA sequencing – mainly because of biocompatibility issues, limited range of readouts supported or complex operation required. This technology exploits the domination of interfacial forces over gravitational ones at the microscale, replacing solid walls with fluid ones as building blocks for cell micro-environments. By employing only materials used by biologists for decades, the system is shown to be biocompatible, and easy to manufacture and operate. The method consists in displacing a continuous fluid layer into a pattern of isolated chambers overlaid with an immiscible liquid to prevent evaporation. The resulting fluid arrangements can be arrays of micro-chambers with rectangular footprint, which use the maximum surface area available, or structures with irregular patterns. Pliant, self-healing fluid walls confine volumes as small as 1 nl. Such fluidic structures can be reconfigured during the assays, giving the platform an unprecedented level of flexibility. Common workflows in cell biology are demonstrated – e.g. cell growth and retrieval, cloning, cryopreservation, fixation and immunolabeling, CRISPR-Cas9 gene editing, and proof-of-concept drug tests. This fluid-shaping technology is shown to have potential for high-throughput cell- and organism-based assays. The ability to make and reconfigure on-demand microfluidic circuits on standard Petri dishes should find many applications in biology, and yield more relevant phenotypic and genotypic responses when compared to standard microfluidic assays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20walls" title="fluid walls">fluid walls</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-chambers" title=" micro-chambers"> micro-chambers</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable" title=" reconfigurable"> reconfigurable</a>, <a href="https://publications.waset.org/abstracts/search?q=freestyle" title=" freestyle"> freestyle</a> </p> <a href="https://publications.waset.org/abstracts/100339/microfluidic-chambers-with-fluid-walls-for-cell-biology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3969</span> Understanding Chromosome Movement in Starfish Oocytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bryony%20Davies">Bryony Davies</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many cell and tissue culture practices ignore the effects of gravity on cell biology, and little is known about how cell components may move in response to gravitational forces. Starfish oocytes provide an excellent model for interrogating the movement of cell components due to their unusually large size, ease of handling, and high transparency. Chromosomes from starfish oocytes can be visualised by microinjection of the histone-H2B-mCherry plasmid into the oocytes. The movement of the chromosomes can then be tracked by live-cell fluorescence microscopy. The results from experiments using these methods suggest that there is a replicable downward movement of centrally located chromosomes at a median velocity of 0.39 μm/min. Chromosomes nearer the nuclear boundary showed more restricted movement. Chromosome density and shape could also be altered by microinjection of restriction enzymes, primarily Alu1, before imaging. This was found to alter the speed of chromosome movement, with chromosomes from Alu1-injected nuclei showing a median downward velocity of 0.60 μm/min. Overall, these results suggest that there is a non-negligible movement of chromosomes in response to gravitational forces and that this movement can be altered by enzyme activity. Future directions based on these results could interrogate if this observed downward movement extends to other cell components and to other cell types. Additionally, it may be important to understand whether gravitational orientation and vertical positioning of cell components alter cell behaviour. The findings here may have implications for current cell culture practices, which do not replicate cell orientations or external forces experienced in vivo. It is possible that a failure to account for gravitational forces in 2D cell culture alters experimental results and the accuracy of conclusions drawn from them. Understanding possible behavioural changes in cells due to the effects of gravity would therefore be beneficial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=starfish" title="starfish">starfish</a>, <a href="https://publications.waset.org/abstracts/search?q=oocytes" title=" oocytes"> oocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=live-cell%20imaging" title=" live-cell imaging"> live-cell imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=microinjection" title=" microinjection"> microinjection</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosome%20dynamics" title=" chromosome dynamics"> chromosome dynamics</a> </p> <a href="https://publications.waset.org/abstracts/158323/understanding-chromosome-movement-in-starfish-oocytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3968</span> The Molecular Bases of Δβ T-Cell Mediated Antigen Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20Chabrol">Eric Chabrol</a>, <a href="https://publications.waset.org/abstracts/search?q=Sidonia%20B.G.%20Eckle"> Sidonia B.G. Eckle</a>, <a href="https://publications.waset.org/abstracts/search?q=Renate%20de%20Boer"> Renate de Boer</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20McCluskey"> James McCluskey</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamie%20Rossjohn"> Jamie Rossjohn</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirjam%20H.M.%20Heemskerk"> Mirjam H.M. Heemskerk</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Gras"> Stephanie Gras </a> </p> <p class="card-text"><strong>Abstract:</strong></p> αβ and γδ T-cells are disparate T-cell lineages that, via their use of either αβ or γδ T-cell antigen receptors (TCRs) respectively, can respond to distinct antigens. Here we characterise a new population of human T-cells, term δβ T-cells, that express TCRs comprising a TCR-δ variable gene fused to a Joining-α/Constant-α domain, paired with an array of TCR-β chains. We characterised the cellular, functional, biophysical and structural characteristic feature of this new T-cells population that reveal some new insight into TCR diversity. We provide molecular bases of how δβ T-cells can recognise viral peptide presented by Human Leukocyte Antigen (HLA) molecule. Our findings highlight how components from αβ and γδTCR gene loci can recombine to confer antigen specificity thus expanding our understanding of T-cell biology and TCR diversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20delta-beta%20TCR" title="new delta-beta TCR">new delta-beta TCR</a>, <a href="https://publications.waset.org/abstracts/search?q=HLA" title=" HLA"> HLA</a>, <a href="https://publications.waset.org/abstracts/search?q=viral%20peptide" title=" viral peptide"> viral peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20immunology" title=" structural immunology"> structural immunology</a> </p> <a href="https://publications.waset.org/abstracts/29618/the-molecular-bases-of-dv-t-cell-mediated-antigen-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3967</span> Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reyhane%20Hamed%20Kamran">Reyhane Hamed Kamran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science, and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell" title="cell">cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20damage" title=" tissue damage"> tissue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenesis" title=" morphogenesis"> morphogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20conduct" title=" cell conduct"> cell conduct</a> </p> <a href="https://publications.waset.org/abstracts/154753/cell-patterns-and-tissue-metamorphoses-based-on-cell-surface-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3966</span> Cell Patterns and Tissue Metamorphoses Based on Cell Surface Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narin%20Salehiyan">Narin Salehiyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Early stage morphogenesis requires the execution of complex systems that direct the nearby conduct of gatherings of cells. The organization of such instruments has been, for the most part, deciphered through the recognizable proof of moderated groups of flagging pathways that spatially and transiently control cell conduct. In any case, how this data is handled to control cell shape and cell elements is an open territory of examination. The structure that rises up out of differing controls, for example, cell science, material science and formative science, focuses to bond and cortical actin arranges as controllers of cell surface mechanics. In this specific circumstance, a scope of formative marvels can be clarified by the guideline of cell surface pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell" title="cell">cell</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20damage" title=" tissue damage"> tissue damage</a>, <a href="https://publications.waset.org/abstracts/search?q=morphogenesis" title=" morphogenesis"> morphogenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20conduct" title=" cell conduct"> cell conduct</a> </p> <a href="https://publications.waset.org/abstracts/170992/cell-patterns-and-tissue-metamorphoses-based-on-cell-surface-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3965</span> Exploring and Evaluating the Current Style of Teaching Biology in Saudi Universities from Teachers&#039; Points of View</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibraheem%20Alzahrani">Ibraheem Alzahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Saudi Arabia ministry of higher education has established 24 universities across various cities in the kingdom. The universities have the mandate of sustaining technological progress in both teaching and learning. The present study explores the statues of teaching in Saudi universities, focusing on biology, a critical curriculum. The paper explores biology teachers’ points of view is several Saudi higher education institutions through questionnaires disseminated via emails. According to the findings, the current teaching methods are traditional and the teachers believe that it is critical to change it. This study also, reviews how biology has been taught in the kingdom over the past, as well as how it is undertaken presently. In addition, some aspects of biology teaching are considered, including the biology curriculum and learning objectives in higher education biology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=higher%20education" title="higher education">higher education</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20style" title=" teaching style"> teaching style</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20learning" title=" traditional learning"> traditional learning</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%20learning" title=" electronic learning"> electronic learning</a>, <a href="https://publications.waset.org/abstracts/search?q=web%202.0%20applications" title=" web 2.0 applications"> web 2.0 applications</a>, <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title=" blended learning"> blended learning</a> </p> <a href="https://publications.waset.org/abstracts/30333/exploring-and-evaluating-the-current-style-of-teaching-biology-in-saudi-universities-from-teachers-points-of-view" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3964</span> Hybrid Polymer Microfluidic Platform for Studying Endothelial Cell Response to Micro Mechanical Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitesh%20Rathod">Mitesh Rathod</a>, <a href="https://publications.waset.org/abstracts/search?q=Jungho%20Ahn"> Jungho Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Noo%20Li%20Jeon"> Noo Li Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Junghoon%20Lee"> Junghoon Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endothelial cells respond to cues from both biochemical as well as micro mechanical environment. Significant effort has been directed to understand the effects of biochemical signaling, however, relatively little is known about regulation of endothelial cell biology by the micro mechanical environment. Numerous studies have been performed to understand how physical forces regulate endothelial cell behavior. In this regard, past studies have majorly focused on exploring how fluid shear stress governs endothelial cell behavior. Parallel plate flow chambers and rectangular microchannels are routinely employed for applying fluid shear force on endothelial cells. However, these studies fall short in mimicking the in vivo like micro environment from topological aspects. Few studies have only used circular microchannels to replicate in vivo like condition. Seldom efforts have been directed to elucidate the combined effect of topology, substrate rigidity and fluid shear stress on endothelial cell response. In this regard, we demonstrate a facile fabrication process to develop a hybrid polydimethylsiloxane microfluidic platform to study endothelial cell biology. On a single chip microchannels with different cross sections i.e., circular, rectangular and square have been fabricated. In addition, our fabrication approach allows variation in the substrate rigidity along the channel length. Two different variants of polydimethylsiloxane, namely Sylgard 184 and Sylgard 527, were utilized to achieve the variation in rigidity. Moreover, our approach also enables in creating Y bifurcation circular microchannels. Our microfluidic platform thus facilitates for conducting studies pertaining to endothelial cell morphology with respect to change in topology, substrate rigidity and fluid flow on a single chip. The hybrid platform was tested by culturing Human Umbilical Vein Endothelial Cells in circular microchannels with varying substrate rigidity, and exposed to fluid shear stress of 12 dynes/cm² and static conditions. Results indicate the cell area response to flow induced shear stress was governed by the underlying substrate mechanics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid" title="hybrid">hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic%20platform" title=" microfluidic platform"> microfluidic platform</a>, <a href="https://publications.waset.org/abstracts/search?q=PDMS" title=" PDMS"> PDMS</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20flow" title=" shear flow"> shear flow</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate%20rigidity" title=" substrate rigidity"> substrate rigidity</a> </p> <a href="https://publications.waset.org/abstracts/80807/hybrid-polymer-microfluidic-platform-for-studying-endothelial-cell-response-to-micro-mechanical-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3963</span> Gender Differences in Biology Academic Performances among Foundation Students of PERMATApintar® National Gifted Center</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Nor%20Azman">N. Nor Azman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Kamarudin"> M. F. Kamarudin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Ong"> S. I. Ong</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Maaulot"> N. Maaulot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PERMATApintar<sup>&reg;</sup> National Gifted Center is, to the author&rsquo;s best of knowledge, the first center in Malaysia that provides a platform for Malaysian talented students with high ability in thinking. This center has built a teaching and learning biology curriculum that suits the ability of these gifted students. The level of PERMATApintar<sup>&reg;</sup> biology curriculum is basically higher than the national biology curriculum. Here, the foundation students are exposed to the PERMATApintar<sup>&reg;</sup> biology curriculum at the age of as early as 11 years old. This center practices a 4-time-a-year examination system to monitor the academic performances of the students. Generally, most of the time, male students show no or low interest towards biology subject compared to female students. This study is to investigate the association of students&rsquo; gender and their academic performances in biology examination. A total of 39 students&rsquo; scores in twelve sets of biology examinations in 3 years have been collected and analyzed by using the statistical analysis. Based on the analysis, there are no significant differences between male and female students against the biology academic performances with a significant level of p = 0.05. This indicates that gender is not associated with the scores of biology examinations among the students. Another result showed that the average score for male studenta was higher than the female students. Future research can be done by comparing the biology academic achievement in Malaysian National Examination (Sijil Pelajaran Malaysia, SPM) between the Foundation 3 students (Grade 9) and Level 2 students (Grade 11) with similar PERMATApintar<sup>&reg;</sup> biology curriculum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20performances" title="academic performances">academic performances</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20differences" title=" gender differences"> gender differences</a>, <a href="https://publications.waset.org/abstracts/search?q=gifted%20students" title=" gifted students"> gifted students</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=""></a> </p> <a href="https://publications.waset.org/abstracts/89501/gender-differences-in-biology-academic-performances-among-foundation-students-of-permatapintar-national-gifted-center" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3962</span> Global Analysis of HIV Virus Models with Cell-to-Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Pourbashash">Hossein Pourbashash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent experimental studies have shown that HIV can be transmitted directly from cell to cell when structures called virological synapses form during interactions between T cells. In this article, we describe a new within-host model of HIV infection that incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. We conduct the local and global stability analysis of the model. We show that if the basic reproduction number R0 1, the virus is cleared and the disease dies out; if R0 > 1, the virus persists in the host. We also prove that the unique positive equilibrium attracts all positive solutions under additional assumptions on the parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HIV%20virus%20model" title="HIV virus model">HIV virus model</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-to-cell%20transmission" title=" cell-to-cell transmission"> cell-to-cell transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20stability" title=" global stability"> global stability</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20function" title=" Lyapunov function"> Lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20compound%20matrices" title=" second compound matrices"> second compound matrices</a> </p> <a href="https://publications.waset.org/abstracts/23412/global-analysis-of-hiv-virus-models-with-cell-to-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3961</span> Functional Profiling of a Circular RNA from the Huntingtin (HTT) Gene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Gantley">Laura Gantley</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20M.%20Conn"> Vanessa M. Conn</a>, <a href="https://publications.waset.org/abstracts/search?q=Stuart%20Webb"> Stuart Webb</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirsty%20Kirk"> Kirsty Kirk</a>, <a href="https://publications.waset.org/abstracts/search?q=Marta%20Gabryelska"> Marta Gabryelska</a>, <a href="https://publications.waset.org/abstracts/search?q=Duncan%20Holds"> Duncan Holds</a>, <a href="https://publications.waset.org/abstracts/search?q=Brett%20W.%20Stringer"> Brett W. Stringer</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20J.%20Conn"> Simon J. Conn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trinucleotide repeat disorders comprise ~20 severe, inherited human neuromuscular and neurodegenerative disorders, which are a result of an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington’s disease, results from the expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Non-coding RNAs have been implicated in the initiation and progression of many diseases; thus, we focus on one circular RNA (circRNA) molecule arising from non-canonical splicing (back splicing) of HTT pre-mRNA. This circRNA and its mouse orthologue were transgenically overexpressed in human cells (SHSY-5Y and HEK293T) and mouse cells (Mb1), respectively. High-content imaging and flow cytometry demonstrated the overexpression of this circRNA reduces cell proliferation, reduces nuclear size independent of cellular size, and alters cell cycle progression. Analysis of protein by western blot and immunofluorescence demonstrated no change to HTT protein levels but altered nuclear-cytoplasmic distribution without impacting the expansion of the HTT repeat region. As these phenotypic and genotypic changes are found in Huntington’s disease patients, these results may suggest that this circRNA may play a functional role in the progression of Huntington’s disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20biology" title="cell biology">cell biology</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20RNAs" title=" circular RNAs"> circular RNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=Huntington%E2%80%99s%20disease" title=" Huntington’s disease"> Huntington’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodegenerative%20disorders" title=" neurodegenerative disorders"> neurodegenerative disorders</a> </p> <a href="https://publications.waset.org/abstracts/156572/functional-profiling-of-a-circular-rna-from-the-huntingtin-htt-gene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3960</span> Evaluation of Promoter Hypermethylation in Tissue and Blood of Non-Small Cell Lung Cancer Patients and Association with Survival</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Ali">Ashraf Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Kriti%20Upadhyay"> Kriti Upadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Puja%20Sohal"> Puja Sohal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anant%20Mohan"> Anant Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Randeep%20Guleria"> Randeep Guleria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Gene silencing by aberrant promoter hypermethylation is common in lung cancer and is an initiating event in its development. Aim: To evaluate the gene promoter hypermethylation frequency in serum and tissue of lung cancer patients. Method: 95 newly diagnosed untreated advance stage lung cancer patients and 50 cancer free matched controls were studied. Bisulfite modification of tissue and serum DNA was done; modified DNA was used as a template for methylation-specific PCR analysis. Survival was assessed for one year. Results: Of 95 patients, 82% were non-small cell lung cancer (34% squamous cell carcinoma, 34% non-small cell lung cancer and 14% adenocarcinoma) and 18% were small cell lung cancer. Biopsy revealed that tissue of 89% and 75% of lung cancer patients and 85% and 52% of controls had promoter hypermethylated for MGMT (p=0.35) and p16(p<0.001) gene, respectively. In serum, 33% and 49% of lung cancer patients and 28% and 43% controls were positive for MGMT and p16 gene. No significant correlation was found between survival and clinico-pathological parameters. Conclusion: High gene promoter methylation frequency of p16 gene in tissue biopsy may be linked with early stages of carcinogenesis. Appropriate follow-up is required for confirmation of this finding. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title="lung cancer">lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=MS-%20PCR" title=" MS- PCR"> MS- PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=methylation" title=" methylation"> methylation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a> </p> <a href="https://publications.waset.org/abstracts/96415/evaluation-of-promoter-hypermethylation-in-tissue-and-blood-of-non-small-cell-lung-cancer-patients-and-association-with-survival" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3959</span> PPRA Regulates DNA Replication Initiation and Cell Morphology in Escherichia coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20K.%20Maurya">Ganesh K. Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Reema%20Chaudhary"> Reema Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Pandey"> Neha Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20S.%20Misra"> Hari S. Misra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provides better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20replication" title="DNA replication">DNA replication</a>, <a href="https://publications.waset.org/abstracts/search?q=radioresistance" title=" radioresistance"> radioresistance</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interaction" title=" protein-protein interaction"> protein-protein interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20morphology" title=" cell morphology"> cell morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=ATPase%20activity" title=" ATPase activity"> ATPase activity</a> </p> <a href="https://publications.waset.org/abstracts/171547/ppra-regulates-dna-replication-initiation-and-cell-morphology-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3958</span> PPRA Controls DNA Replication and Cell Growth in Escherichia Coli</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20K.%20Maurya">Ganesh K. Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Reema%20Chaudhary"> Reema Chaudhary</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Pandey"> Neha Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20S.%20Misra"> Hari S. Misra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> PprA, a pleiotropic protein participating in radioresistance, has been reported for its roles in DNA replication initiation, genome segregation, cell division and DNA repair in polyextremophile Deinococcus radiodurans. Interestingly, expression of deinococcal PprA in E. coli suppresses its growth by reducing the number of colony forming units and provide better resistance against γ-radiation than control. We employed different biochemical and cell biology studies using PprA and its DNA binding/polymerization mutants (K133E & W183R) in E. coli. Cells expressing wild type PprA or its K133E mutant showed reduction in the amount of genomic DNA as well as chromosome copy number in comparison to W183R mutant of PprA and control cells, which suggests the role of PprA protein in regulation of DNA replication initiation in E. coli. Further, E. coli cells expressing PprA or its mutants exhibited different impact on cell morphology than control. Expression of PprA or K133E mutant displayed a significant increase in cell length upto 5 folds while W183R mutant showed cell length similar to uninduced control cells. We checked the interaction of deinococcal PprA and its mutants with E. coli DnaA using Bacterial two-hybrid system and co-immunoprecipitation. We observed a functional interaction of EcDnaA with PprA and K133E mutant but not with W183R mutant of PprA. Further, PprA or K133E mutant has suppressed the ATPase activity of EcDnaA but W183R mutant of PprA failed to do so. These observations suggested that PprA protein regulates DNA replication initiation and cell morphology of surrogate E. coli. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20replication" title="DNA replication">DNA replication</a>, <a href="https://publications.waset.org/abstracts/search?q=radioresistance" title=" radioresistance"> radioresistance</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interaction" title=" protein-protein interaction"> protein-protein interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20morphology" title=" cell morphology"> cell morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=ATPase%20activity" title=" ATPase activity"> ATPase activity</a> </p> <a href="https://publications.waset.org/abstracts/171922/ppra-controls-dna-replication-and-cell-growth-in-escherichia-coli" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3957</span> Viscoelastic Cell Concentration in a High Aspect Ratio Microchannel Using a Non-Powered Air Compressor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeonghun%20Nam">Jeonghun Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Seonggil%20Kim"> Seonggil Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunjoo%20Choi"> Hyunjoo Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chae%20Seung%20Lim"> Chae Seung Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantification and analysis of rare cells are challenging in clinical applications and cell biology due to its extremely small number in blood. In this work, we propose a viscoelastic microfluidic device for continuous cell concentration without sheath flows. Due to the viscoelastic effect on suspending cells, cells with the blockage ratio higher than 0.1 could be tightly focused at the center of the microchannel. The blockage ratio was defined as the particle diameter divided by the channel width. Finally, cells were concentrated through the center outlet and the additional suspending medium was removed to the side outlets. Since viscoelastic focusing is insensitive to the flow rate higher than 10 μl/min, the non-powered hand pump sprayer could be used with no accurate control of the flow rate, which is suitable for clinical settings in resource-limited developing countries. Using multiple concentration processes, high-throughput concentration of white blood cells in lysed blood sample was achieved by ~ 300-fold. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20concentration" title="cell concentration">cell concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=high-throughput" title=" high-throughput"> high-throughput</a>, <a href="https://publications.waset.org/abstracts/search?q=non-powered" title=" non-powered"> non-powered</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20fluid" title=" viscoelastic fluid"> viscoelastic fluid</a> </p> <a href="https://publications.waset.org/abstracts/90893/viscoelastic-cell-concentration-in-a-high-aspect-ratio-microchannel-using-a-non-powered-air-compressor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3956</span> Single-Cell Visualization with Minimum Volume Embedding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhenqiu%20Liu">Zhenqiu Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-cell%20RNA-seq" title="single-cell RNA-seq">single-cell RNA-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20volume%20embedding" title=" minimum volume embedding"> minimum volume embedding</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20proximal%20gradient%20method" title=" accelerated proximal gradient method"> accelerated proximal gradient method</a> </p> <a href="https://publications.waset.org/abstracts/75071/single-cell-visualization-with-minimum-volume-embedding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3955</span> Endothelin Cells and Its Molecular Biology and Microbiology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chro%20Kawyan">Chro Kawyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Endothelin-1 (ET-1), the principal individual from the newfound mammalian endothelin group of organically dynamic peptides, was initially distinguished as a 21 buildup powerful vasoconstrictor peptide in vascular endothelial cells. However, it has since been demonstrated to have a wide range of pharmacological activities in tissues both inside and outside the cardiovascular system. Additionally, peptides that have a striking resemblance to ET-1 have been identified as the primary toxic component of snake venom. In addition, late examinations have proposed that warm blooded creatures, including people, produce three unmistakable individuals from this peptide family, ET-1, ET-2 and ET-J, which might have various profiles of organic action and may follow up on particular subtypes of endothelin receptor. Masashi Yanagisawa and Tomoh Masaki survey the ongoing status of the organic chemistry and sub-atomic science of endothelin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thelin" title="thelin">thelin</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiology" title=" microbiology"> microbiology</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20biology" title=" molecular biology"> molecular biology</a>, <a href="https://publications.waset.org/abstracts/search?q=cell" title=" cell"> cell</a> </p> <a href="https://publications.waset.org/abstracts/172519/endothelin-cells-and-its-molecular-biology-and-microbiology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3954</span> Environmental Variables as Determinants of Students Achievement in Biology Secondary Schools in South West Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayeni%20Margaret%20Foluso">Ayeni Margaret Foluso</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Omotayo"> K. A. Omotayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the impact of selected environmental variables as determinants of students’ achievements in biology in secondary schools. The selected environmental variables are class size and laboratory adequacy. The purpose was to find out whether these environmental variables can bring about improvement in the learning of biology by Senior Secondary School Students. The study design used was descriptive research of the survey type. Two instruments were used that is, Biology Achievement Test and School Environment Questionnaire .The population of the study consisted of all Biology students in both public and private Senior Secondary Schools class III (SSIII) in all the three selected states in South West Nigeria. A sample of 900 Biology students and 45 Biology Teachers from both public and private Senior Secondary Schools Class III were used. Two research hypotheses were generated for the study. The data collected were subjected to both descriptive statistics of mean and standard deviation; and the inferential statistics of regression Analyses was employed to test the hypotheses formulated. From the results, it was revealed that the selected environmental variables had influence on the students’ achievement in biology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20variables" title="environmental variables">environmental variables</a>, <a href="https://publications.waset.org/abstracts/search?q=determinants" title=" determinants"> determinants</a>, <a href="https://publications.waset.org/abstracts/search?q=students%E2%80%99%20achievement" title=" students’ achievement"> students’ achievement</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20science" title=" school science"> school science</a> </p> <a href="https://publications.waset.org/abstracts/41204/environmental-variables-as-determinants-of-students-achievement-in-biology-secondary-schools-in-south-west-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3953</span> Efficient Delivery of Biomaterials into Living Organism by Using Noble Metal Nanowire Injector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kkochorong%20Park">Kkochorong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Keun%20Cheon%20Kim"> Keun Cheon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyoban%20Lee"> Hyoban Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ju%20Lee"> Eun Ju Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Bongsoo%20Kim"> Bongsoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction of biomaterials such as DNA, RNA, proteins is important for many research areas. There are many methods to introduce biomaterials into living organisms like tissue and cells. To introduce biomaterials, several indirect methods including virus‐mediated delivery, chemical reagent (i.e., lipofectamine), electrophoresis have been used. Such methods are passive delivery using an endocytosis process of cell, reducing an efficiency of delivery. Unlike the indirect delivery method, it has been reported that a direct delivery of exogenous biomolecules into nucleus have been more efficient to expression or integration of biomolecules. Nano-sized material is beneficial for detect signal from cell or deliver stimuli/materials into the cell at cellular and molecular levels, due to its similar physical scale. Especially, because 1 dimensional (1D) nanomaterials such as nanotube, nanorod and nanowire with high‐aspect ratio have nanoscale geometry and excellent mechanical, electrical, and chemical properties, they could play an important role in molecular and cellular biology. In this study, by using single crystalline 1D noble metal nanowire, we fabricated nano-sized 1D injector which can successfully interface with living cells and directly deliver biomolecules into several types of cell line (i.e., stem cell, mammalian embryo) without inducing detrimental damages on living cell. This nano-bio technology could be a promising and robust tool for introducing exogenous biomaterials into living organism. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA" title="DNA">DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20delivery" title=" gene delivery"> gene delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoinjector" title=" nanoinjector"> nanoinjector</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a> </p> <a href="https://publications.waset.org/abstracts/62718/efficient-delivery-of-biomaterials-into-living-organism-by-using-noble-metal-nanowire-injector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3952</span> Up-Regulation of SCUBE2 Expression in Co-Cultures of Human Mesenchymal Stem Cell and Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hirowati%20Ali">Hirowati Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisyah%20Ellyanti"> Aisyah Ellyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dewi%20Rusnita"> Dewi Rusnita</a>, <a href="https://publications.waset.org/abstracts/search?q=Septelia%20Inawati%20Wanandi"> Septelia Inawati Wanandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stem cell has been known for its potency to be differentiated in many cells. Recently stem cell has been used for many treatment of degenerative medicine. It is still controversy whether stem cell can be used for therapy or these cells can activate cancer stem cell. SCUBE2 is a novel secreted and membrane-anchored protein which has been reported to its role in better prognosis and inhibition of cancer cell proliferation. Our study aims to observe whether stem cell can up-regulate SCUBE2 gene in MCF7 breast cancer cell line. We used in vitro study using MCF-7 cell treated with stem cell derived from placenta Wharton's jelly which has been known for its stemness and widely used. Our results showed that MCF-7 cell line grows up rapidly in 6-well culture dish. Stem cell was cultured in 6-well dish. After 50%-60% MCF-7 confluence, we co-cultured these cells with stem cells for 24 hours and 48 hours. We hypothesize SCUBE2 gene which is previously known for its higher expression in better prognosis of breast cancer, is up-regulated after stem cells addition in MCF7 culture dishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20cells" title="breast cancer cells">breast cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition%20of%20cancer%20cells" title=" inhibition of cancer cells"> inhibition of cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cells" title=" mesenchymal stem cells"> mesenchymal stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=SCUBE2" title=" SCUBE2"> SCUBE2</a> </p> <a href="https://publications.waset.org/abstracts/84557/up-regulation-of-scube2-expression-in-co-cultures-of-human-mesenchymal-stem-cell-and-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3951</span> Artificial Cells Capable of Communication by Using Polymer Hydrogel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qi%20Liu">Qi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiqin%20Yao"> Jiqin Yao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaohu%20Zhou"> Xiaohu Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Zheng"> Bo Zheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The first artificial cell was produced by Thomas Chang in the 1950s when he was trying to make a mimic of red blood cells. Since then, many different types of artificial cells have been constructed from one of the two approaches: a so-called bottom-up approach, which aims to create a cell from scratch, and a top-down approach, in which genes are sequentially knocked out from organisms until only the minimal genome required for sustaining life remains. In this project, bottom-up approach was used to build a new cell-free expression system which mimics artificial cell that capable of protein expression and communicate with each other. The artificial cells constructed from the bottom-up approach are usually lipid vesicles, polymersomes, hydrogels or aqueous droplets containing the nucleic acids and transcription-translation machinery. However, lipid vesicles based artificial cells capable of communication present several issues in the cell communication research: (1) The lipid vesicles normally lose the important functions such as protein expression within a few hours. (2) The lipid membrane allows the permeation of only small molecules and limits the types of molecules that can be sensed and released to the surrounding environment for chemical communication; (3) The lipid vesicles are prone to rupture due to the imbalance of the osmotic pressure. To address these issues, the hydrogel-based artificial cells were constructed in this work. To construct the artificial cell, polyacrylamide hydrogel was functionalized with Acrylate PEG Succinimidyl Carboxymethyl Ester (ACLT-PEG2000-SCM) moiety on the polymer backbone. The proteinaceous factors can then be immobilized on the polymer backbone by the reaction between primary amines of proteins and N-hydroxysuccinimide esters (NHS esters) of ACLT-PEG2000-SCM, the plasmid template and ribosome were encapsulated inside the hydrogel particles. Because the artificial cell could continuously express protein with the supply of nutrients and energy, the artificial cell-artificial cell communication and artificial cell-natural cell communication could be achieved by combining the artificial cell vector with designed plasmids. The plasmids were designed referring to the quorum sensing (QS) system of bacteria, which largely relied on cognate acyl-homoserine lactone (AHL) / transcription pairs. In one communication pair, “sender” is the artificial cell or natural cell that can produce AHL signal molecule by synthesizing the corresponding signal synthase that catalyzed the conversion of S-adenosyl-L-methionine (SAM) into AHL, while the “receiver” is the artificial cell or natural cell that can sense the quorum sensing signaling molecule form “sender” and in turn express the gene of interest. In the experiment, GFP was first immobilized inside the hydrogel particle to prove that the functionalized hydrogel particles could be used for protein binding. After that, the successful communication between artificial cell-artificial cell and artificial cell-natural cell was demonstrated, the successful signal between artificial cell-artificial cell or artificial cell-natural cell could be observed by recording the fluorescence signal increase. The hydrogel-based artificial cell designed in this work can help to study the complex communication system in bacteria, it can also be further developed for therapeutic applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20cell" title="artificial cell">artificial cell</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-free%20system" title=" cell-free system"> cell-free system</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20circuit" title=" gene circuit"> gene circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20biology" title=" synthetic biology"> synthetic biology</a> </p> <a href="https://publications.waset.org/abstracts/120873/artificial-cells-capable-of-communication-by-using-polymer-hydrogel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3950</span> Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fan%20Gao">Fan Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Lior%20Pachter"> Lior Pachter</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single-cell" title="single-cell">single-cell</a>, <a href="https://publications.waset.org/abstracts/search?q=ATAC-seq" title=" ATAC-seq"> ATAC-seq</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20chromatin%20landscape" title=" open chromatin landscape"> open chromatin landscape</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatin%20interactome" title=" chromatin interactome"> chromatin interactome</a> </p> <a href="https://publications.waset.org/abstracts/137695/efficient-pre-processing-of-single-cell-assay-for-transposase-accessible-chromatin-with-high-throughput-sequencing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3949</span> Exploring Nanoformulations for Therapeutic Induction of Necroptosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianjiao%20Chu">Tianjiao Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Rios%20Luci"> Carla Rios Luci</a>, <a href="https://publications.waset.org/abstracts/search?q=Christy%20Maksoudian"> Christy Maksoudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ara%20Sargsian"> Ara Sargsian</a>, <a href="https://publications.waset.org/abstracts/search?q=Bella%20B.%20Manshian"> Bella B. Manshian</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefaan%20J.%20Soenen"> Stefaan J. Soenen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have gained high interest in their use as potent anticancer agents. Apart from delivering chemotherapeutic agents in order to reduce off-target effects, molecular agents have also been widely explored. The advances in our understanding of cell biology and cell death mechanisms1 has generated a broad library of potential therapeutic targets by siRNA, mRNA, or pDNA complexes. In the present study, we explore the ability of pDNA-polyplexes to induce tumor-specific necroptosis. This results in a cascade of effects, where immunogenic cell death potentiates anti-tumor immune responses and results in an influx of dendritic cells and cytotoxic T cells, rendering the tumor more amenable to immune checkpoint inhibition. This study aims to explore whether the induction of necroptosis in a subpopulation of tumor cells can be used to potentiate immune checkpoint inhibition studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=MLKL" title=" MLKL"> MLKL</a>, <a href="https://publications.waset.org/abstracts/search?q=necroptosis" title=" necroptosis"> necroptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotherapy" title=" immunotherapy"> immunotherapy</a> </p> <a href="https://publications.waset.org/abstracts/152549/exploring-nanoformulations-for-therapeutic-induction-of-necroptosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3948</span> Preparation of Gramine Nanosuspension and Protective Effect of Gramine on Human Oral Cell Lines by Induction of Apoptosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Suresh">K. Suresh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Arunkumar"> R. Arunkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to investigate the preparation of gramine nano suspension and protective effect of Gramine on the apoptosis of laryngeal cancer cells cell line (HEp-2 and KB). The growth inhibition rate of Hep-2 and KB cells in vitro were measured by MTT assay and apoptosis by, levels of reactive oxygen species, mitochondrial membrane potential, morphological changes and flowcytometry. Based on the results, we determined the effective doses of gramine as 127.23µm/ml for 24 hr and 119.81 µm/ml for 48hr in hep-2 cell line and 147.58 µm ml for 24 hr and 123.74µm µm/ml for 48hr in KB cell line. cytotoxicity effects of gramine were confirmed by treatment of HEp-2 cell and KB cell with IC50 concentration of gramine resulted in sequences of events marked by the enhance the apoptosis accompanied by loss of cell viability, modulation of reactive oxygen species and cell cycle arrest through the induction of G0/G1 phase arrest on HEp-2 cells. Our study suggests that the nanosuspension of gramine possesses the more cytotoxic effect of cancer cells and a novel candidate for cancer chemoprevention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title="apoptosis">apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=HEp-2%20cell%20line" title=" HEp-2 cell line"> HEp-2 cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=KB%20cell%20line%20mitochondria" title=" KB cell line mitochondria"> KB cell line mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=gramine" title=" gramine"> gramine</a>, <a href="https://publications.waset.org/abstracts/search?q=nanosuspension" title=" nanosuspension"> nanosuspension</a> </p> <a href="https://publications.waset.org/abstracts/21324/preparation-of-gramine-nanosuspension-and-protective-effect-of-gramine-on-human-oral-cell-lines-by-induction-of-apoptosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3947</span> Attitude towards Biology among Academic Talented Students in Term of Gender: Case Study of ASASIpintar Pre–University Programme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sy%20Ing%20Ong">Sy Ing Ong</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Norazman"> N. Norazman</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20W.%20You"> H. W. You</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zahidi"> A. Zahidi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ahmad%20Faisal"> R. Ahmad Faisal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The decline in students’ involvement in the fields of Science, Technology, Engineering and Mathematics (STEM) worldwide is alarming. In Malaysia, this scenario also draws the attention of Ministry of Education due to the high demand for professionals in STEM industries and for the sake of country development. Intensive researches have been done worldwide to identify the best solution to improve the enrolment of students in science studies. Attitude is being identified as one of the key factors that will influence students’ interest and achievement in academic. Male students are always associated with negative attitudes compared to female students towards the study of Biological science. Hence, this study investigates the attitudes of students towards Biology in the setting of an academic talented institution in Malaysia namely ASASIpintar Pre-University Programme. A total of 84 students were randomly selected from 127 students as the samples of this study. The instrument of Biology Attitude Scale (BAS) from Russell and Hollander (1975) was used to identify the attitudes of samples. Based on the analysis, there was no significant difference in the students’ mean attitude towards Biology subject in this institution between genders with a significant level of p = 0.05. This indicated that gender is not a key factor that influences students’ attitude towards Biology in this study. Future research can be done on other factors that will contribute to the attitude of students towards biology in Malaysia, especially for academically talented students. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=academic%20talented" title="academic talented">academic talented</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude" title=" attitude"> attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=biology" title=" biology"> biology</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a> </p> <a href="https://publications.waset.org/abstracts/89390/attitude-towards-biology-among-academic-talented-students-in-term-of-gender-case-study-of-asasipintar-pre-university-programme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3946</span> Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Al-Khaled">Kamel Al-Khaled</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20partial%20differential%20equations" title="fractional partial differential equations">fractional partial differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction-di%EF%AC%80usion%20equations" title=" reaction-diffusion equations"> reaction-diffusion equations</a>, <a href="https://publications.waset.org/abstracts/search?q=adomian%20decomposition" title=" adomian decomposition"> adomian decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20species" title=" biological species"> biological species</a> </p> <a href="https://publications.waset.org/abstracts/55994/solutions-of-fractional-reaction-diffusion-equations-used-to-model-the-growth-and-spreading-of-biological-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3945</span> Study of Magnetic Nanoparticles’ Endocytosis in a Single Cell Level</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jefunnie%20Matahum">Jefunnie Matahum</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Kuo"> Yu-Chi Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chao-Ming%20Su"> Chao-Ming Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzong-Rong%20Ger"> Tzong-Rong Ger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic cell labeling is of great importance in various applications in biomedical fields such as cell separation and cell sorting. Since analytical methods for quantification of cell uptake of magnetic nanoparticles (MNPs) are already well established, image analysis on single cell level still needs more characterization. This study reports an alternative non-destructive quantification methods of single-cell uptake of positively charged MNPs. Magnetophoresis experiments were performed to calculate the number of MNPs in a single cell. Mobility of magnetic cells and the area of intracellular MNP stained by Prussian blue were quantified by image processing software. ICP-MS experiments were also performed to confirm the internalization of MNPs to cells. Initial results showed that the magnetic cells incubated at 100 µg and 50 µg MNPs/mL concentration move at 18.3 and 16.7 µm/sec, respectively. There is also an increasing trend in the number and area of intracellular MNP with increasing concentration. These results could be useful in assessing the nanoparticle uptake in a single cell level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticles" title="magnetic nanoparticles">magnetic nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20cell" title=" single cell"> single cell</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetophoresis" title=" magnetophoresis"> magnetophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20analysis" title=" image analysis"> image analysis</a> </p> <a href="https://publications.waset.org/abstracts/66948/study-of-magnetic-nanoparticles-endocytosis-in-a-single-cell-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3944</span> In-Situ Quasistatic Compression and Microstructural Characterization of Aluminium Foams of Different Cell Topology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Islam">M. A. Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20J.%20Hazell"> P. J. Hazell</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Escobedo"> J. P. Escobedo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saadatfar"> M. Saadatfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quasistatic compression and micro structural characterization of closed cell aluminium foams of different pore size and cell distributions has been carried out. Metallic foams have good potential for lightweight structures for impact and blast mitigation and therefore it is important to find out the optimized foam structure (i.e. cell size, shape, relative density, and distribution) to maximize energy absorption. In this paper, we present results for two different aluminium metal foams of density 0.5 g/cc and 0.7 g/cc respectively that have been tested in quasi-static compression. The influence of cell geometry and cell topology on quasistatic compression behavior has been investigated using computed tomography (micro-CT) analysis. The compression behavior and micro structural characterization will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20foams" title="metal foams">metal foams</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-CT" title=" micro-CT"> micro-CT</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20topology" title=" cell topology"> cell topology</a>, <a href="https://publications.waset.org/abstracts/search?q=quasistatic%20compression" title=" quasistatic compression"> quasistatic compression</a> </p> <a href="https://publications.waset.org/abstracts/11025/in-situ-quasistatic-compression-and-microstructural-characterization-of-aluminium-foams-of-different-cell-topology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=132">132</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=133">133</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cell%20biology&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10