CINXE.COM

ローレンツ方程式 - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="ja" dir="ltr"> <head> <meta charset="UTF-8"> <title>ローレンツ方程式 - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )jawikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"ja", "wgMonthNames":["","1月","2月","3月","4月","5月","6月","7月","8月","9月","10月","11月","12月"],"wgRequestId":"6dbf260a-c75e-48b3-ac4a-5d5cc4491944","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"ローレンツ方程式","wgTitle":"ローレンツ方程式","wgCurRevisionId":100500249,"wgRevisionId":100500249,"wgArticleId":424817,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["出典を必要とする記述のある記事/2017年6月","FAST識別子が指定されている記事","BNF識別子が指定されている記事","BNFdata識別子が指定されている記事","GND識別子が指定されている記事","J9U識別子が指定されている記事","LCCN識別子が指定されている記事","SUDOC識別子が指定されている記事","複雑系","数学に関する記事","微分方程式","数学のエポニム","カオス力学系"], "wgPageViewLanguage":"ja","wgPageContentLanguage":"ja","wgPageContentModel":"wikitext","wgRelevantPageName":"ローレンツ方程式","wgRelevantArticleId":424817,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ja","pageLanguageDir":"ltr","pageVariantFallbacks":"ja"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q899844","wgCheckUserClientHintsHeadersJsApi":[ "brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.PDFLinkIcon":"ready","ext.gadget.RedirectColor":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.pygments":"ready","mediawiki.page.gallery.styles":"ready","ext.tmh.player.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=[ "ext.cite.ux-enhancements","ext.pygments.view","ext.tmh.player","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.NormalizeCharWidth","ext.gadget.suppressEnterAtSummaryBox","ext.gadget.checkSignature","ext.gadget.charinsert","ext.gadget.WikiMiniAtlas","ext.gadget.switcher","ext.gadget.protectionIndicator","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ja&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.pygments%2CwikimediaBadges%7Cext.tmh.player.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cmediawiki.page.gallery.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=ja&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ja&amp;modules=ext.gadget.PDFLinkIcon%2CRedirectColor&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=ja&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/1/13/A_Trajectory_Through_Phase_Space_in_a_Lorenz_Attractor.gif"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/1/13/A_Trajectory_Through_Phase_Space_in_a_Lorenz_Attractor.gif"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="ローレンツ方程式 - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ja.m.wikipedia.org/wiki/%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"> <link rel="alternate" type="application/x-wiki" title="編集" href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (ja)"> <link rel="EditURI" type="application/rsd+xml" href="//ja.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ja.wikipedia.org/wiki/%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ja"> <link rel="alternate" type="application/atom+xml" title="WikipediaのAtomフィード" href="/w/index.php?title=%E7%89%B9%E5%88%A5:%E6%9C%80%E8%BF%91%E3%81%AE%E6%9B%B4%E6%96%B0&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-ローレンツ方程式 rootpage-ローレンツ方程式 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">コンテンツにスキップ</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="サイト"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="メインメニュー" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">メインメニュー</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">メインメニュー</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">サイドバーに移動</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">非表示</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 案内 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%E3%83%A1%E3%82%A4%E3%83%B3%E3%83%9A%E3%83%BC%E3%82%B8" title="メインページに移動する [z]" accesskey="z"><span>メインページ</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:%E3%82%B3%E3%83%9F%E3%83%A5%E3%83%8B%E3%83%86%E3%82%A3%E3%83%BB%E3%83%9D%E3%83%BC%E3%82%BF%E3%83%AB" title="このプロジェクトについて、できること、情報を入手する場所"><span>コミュニティ・ポータル</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:%E6%9C%80%E8%BF%91%E3%81%AE%E5%87%BA%E6%9D%A5%E4%BA%8B" title="最近の出来事の背景を知る"><span>最近の出来事</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/%E7%89%B9%E5%88%A5:%E6%96%B0%E3%81%97%E3%81%84%E3%83%9A%E3%83%BC%E3%82%B8" title="最近新規に作成されたページの一覧"><span>新しいページ</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%E7%89%B9%E5%88%A5:%E6%9C%80%E8%BF%91%E3%81%AE%E6%9B%B4%E6%96%B0" title="このウィキにおける最近の更新の一覧 [r]" accesskey="r"><span>最近の更新</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%E7%89%B9%E5%88%A5:%E3%81%8A%E3%81%BE%E3%81%8B%E3%81%9B%E8%A1%A8%E7%A4%BA" title="無作為に選択されたページを読み込む [x]" accesskey="x"><span>おまかせ表示</span></a></li><li id="n-sandbox" class="mw-list-item"><a href="/wiki/Wikipedia:%E3%82%B5%E3%83%B3%E3%83%89%E3%83%9C%E3%83%83%E3%82%AF%E3%82%B9" title="練習用のページ"><span>練習用ページ</span></a></li><li id="n-commonsupload" class="mw-list-item"><a href="//commons.wikimedia.org/wiki/Special:UploadWizard?uselang=ja" title="画像やメディアファイルをウィキメディア・コモンズにアップロード"><span>アップロード (ウィキメディア・コモンズ)</span></a></li> </ul> </div> </div> <div id="p-help" class="vector-menu mw-portlet mw-portlet-help" > <div class="vector-menu-heading"> ヘルプ </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:%E7%9B%AE%E6%AC%A1" title="情報を得る場所"><span>ヘルプ</span></a></li><li id="n-villagepump" class="mw-list-item"><a href="/wiki/Wikipedia:%E4%BA%95%E6%88%B8%E7%AB%AF" title="プロジェクトについての意見交換"><span>井戸端</span></a></li><li id="n-notice" class="mw-list-item"><a href="/wiki/Wikipedia:%E3%81%8A%E7%9F%A5%E3%82%89%E3%81%9B" title="プロジェクトについてのお知らせ"><span>お知らせ</span></a></li><li id="n-bugreportspage" class="mw-list-item"><a href="/wiki/Wikipedia:%E3%83%90%E3%82%B0%E3%81%AE%E5%A0%B1%E5%91%8A" title="ウィキペディア・ソフトウェアのバグ報告"><span>バグの報告</span></a></li><li id="n-contact" class="mw-list-item"><a href="/wiki/Wikipedia:%E9%80%A3%E7%B5%A1%E5%85%88" title="ウィキペディアやウィキメディア財団に関する連絡先"><span>ウィキペディアに関するお問い合わせ</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%E3%83%A1%E3%82%A4%E3%83%B3%E3%83%9A%E3%83%BC%E3%82%B8" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-ja.svg" style="width: 7.5em; height: 1.25em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-ja.svg" width="100" height="14" style="width: 6.25em; height: 0.875em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%E7%89%B9%E5%88%A5:%E6%A4%9C%E7%B4%A2" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Wikipedia内を検索 [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>検索</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Wikipedia内を検索" aria-label="Wikipedia内を検索" autocapitalize="sentences" title="Wikipedia内を検索 [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="特別:検索"> </div> <button class="cdx-button cdx-search-input__end-button">検索</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="個人用ツール"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="表示"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="ページのフォントサイズ、幅、色の外観を変更する" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="表示" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">表示</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ja.wikipedia.org&amp;uselang=ja" class=""><span>寄付</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%E7%89%B9%E5%88%A5:%E3%82%A2%E3%82%AB%E3%82%A6%E3%83%B3%E3%83%88%E4%BD%9C%E6%88%90&amp;returnto=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F" title="アカウントを作成してログインすることをお勧めしますが、必須ではありません" class=""><span>アカウント作成</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%E7%89%B9%E5%88%A5:%E3%83%AD%E3%82%B0%E3%82%A4%E3%83%B3&amp;returnto=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F" title="ログインすることを推奨します。ただし、必須ではありません。 [o]" accesskey="o" class=""><span>ログイン</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="その他の操作" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="個人用ツール" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">個人用ツール</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="利用者メニュー" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ja.wikipedia.org&amp;uselang=ja"><span>寄付</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%E7%89%B9%E5%88%A5:%E3%82%A2%E3%82%AB%E3%82%A6%E3%83%B3%E3%83%88%E4%BD%9C%E6%88%90&amp;returnto=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F" title="アカウントを作成してログインすることをお勧めしますが、必須ではありません"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>アカウント作成</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%E7%89%B9%E5%88%A5:%E3%83%AD%E3%82%B0%E3%82%A4%E3%83%B3&amp;returnto=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F" title="ログインすることを推奨します。ただし、必須ではありません。 [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>ログイン</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> ログアウトした編集者のページ <a href="/wiki/Wikipedia:%E3%82%A6%E3%82%A3%E3%82%AD%E3%83%9A%E3%83%87%E3%82%A3%E3%82%A2%E3%81%B8%E3%82%88%E3%81%86%E3%81%93%E3%81%9D" aria-label="編集の詳細"><span>もっと詳しく</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%E7%89%B9%E5%88%A5:%E8%87%AA%E5%88%86%E3%81%AE%E6%8A%95%E7%A8%BF%E8%A8%98%E9%8C%B2" title="このIPアドレスからなされた編集の一覧 [y]" accesskey="y"><span>投稿記録</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%E7%89%B9%E5%88%A5:%E3%83%88%E3%83%BC%E3%82%AF%E3%83%9A%E3%83%BC%E3%82%B8" title="このIPアドレスからなされた編集についての議論 [n]" accesskey="n"><span>トーク</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="サイト"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="目次" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">目次</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">サイドバーに移動</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">非表示</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">ページ先頭</div> </a> </li> <li id="toc-概要" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#概要"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>概要</span> </div> </a> <ul id="toc-概要-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-解析" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#解析"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>解析</span> </div> </a> <ul id="toc-解析-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-テント写像との関連" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#テント写像との関連"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>テント写像との関連</span> </div> </a> <ul id="toc-テント写像との関連-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-一般化されたローレンツ方程式" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#一般化されたローレンツ方程式"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>一般化されたローレンツ方程式</span> </div> </a> <ul id="toc-一般化されたローレンツ方程式-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-シミュレーション" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#シミュレーション"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>シミュレーション</span> </div> </a> <button aria-controls="toc-シミュレーション-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>シミュレーションサブセクションを切り替えます</span> </button> <ul id="toc-シミュレーション-sublist" class="vector-toc-list"> <li id="toc-MATLAB" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#MATLAB"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>MATLAB</span> </div> </a> <ul id="toc-MATLAB-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Mathematica" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Mathematica"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Mathematica</span> </div> </a> <ul id="toc-Mathematica-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-応用" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#応用"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>応用</span> </div> </a> <button aria-controls="toc-応用-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>応用サブセクションを切り替えます</span> </button> <ul id="toc-応用-sublist" class="vector-toc-list"> <li id="toc-大気の対流モデル" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#大気の対流モデル"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>大気の対流モデル</span> </div> </a> <ul id="toc-大気の対流モデル-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-大気中のカオスと秩序の性質を示すモデル" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#大気中のカオスと秩序の性質を示すモデル"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>大気中のカオスと秩序の性質を示すモデル</span> </div> </a> <ul id="toc-大気中のカオスと秩序の性質を示すモデル-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-スメイルの14番目の問題" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#スメイルの14番目の問題"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>スメイルの14番目の問題</span> </div> </a> <ul id="toc-スメイルの14番目の問題-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-ギャラリー" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#ギャラリー"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>ギャラリー</span> </div> </a> <ul id="toc-ギャラリー-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-関連項目" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#関連項目"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>関連項目</span> </div> </a> <ul id="toc-関連項目-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-脚注" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#脚注"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>脚注</span> </div> </a> <ul id="toc-脚注-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-参考文献" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#参考文献"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>参考文献</span> </div> </a> <ul id="toc-参考文献-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-詳細" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#詳細"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>詳細</span> </div> </a> <ul id="toc-詳細-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-外部リンク" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#外部リンク"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>外部リンク</span> </div> </a> <ul id="toc-外部リンク-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="目次" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="目次の表示・非表示を切り替え" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">目次の表示・非表示を切り替え</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">ローレンツ方程式</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="特定の記事の別の言語版に移動します。 利用可能な言語30件" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-30" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">30の言語版</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%86%D8%B8%D8%A7%D9%85_%D9%84%D9%88%D8%B1%D9%8A%D9%86%D8%AA%D8%B2" title="アラビア語: نظام لورينتز" lang="ar" hreflang="ar" data-title="نظام لورينتز" data-language-autonym="العربية" data-language-local-name="アラビア語" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%90%D1%82%D1%80%D0%B0%D0%BA%D1%82%D0%B0%D1%80_%D0%9B%D0%BE%D1%80%D1%8D%D0%BD%D1%86%D0%B0" title="Belarusian (Taraškievica orthography): Атрактар Лорэнца" lang="be-tarask" hreflang="be-tarask" data-title="Атрактар Лорэнца" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Atractor_de_Lorenz" title="カタロニア語: Atractor de Lorenz" lang="ca" hreflang="ca" data-title="Atractor de Lorenz" data-language-autonym="Català" data-language-local-name="カタロニア語" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Lorenz%C5%AFv_atraktor" title="チェコ語: Lorenzův atraktor" lang="cs" hreflang="cs" data-title="Lorenzův atraktor" data-language-autonym="Čeština" data-language-local-name="チェコ語" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Lorenz-Attraktor" title="ドイツ語: Lorenz-Attraktor" lang="de" hreflang="de" data-title="Lorenz-Attraktor" data-language-autonym="Deutsch" data-language-local-name="ドイツ語" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%A3%CF%8D%CF%83%CF%84%CE%B7%CE%BC%CE%B1_%CE%9B%CF%8C%CF%81%CE%B5%CE%BD%CF%84%CE%B6" title="ギリシャ語: Σύστημα Λόρεντζ" lang="el" hreflang="el" data-title="Σύστημα Λόρεντζ" data-language-autonym="Ελληνικά" data-language-local-name="ギリシャ語" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Lorenz_system" title="英語: Lorenz system" lang="en" hreflang="en" data-title="Lorenz system" data-language-autonym="English" data-language-local-name="英語" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Atractor_de_Lorenz" title="スペイン語: Atractor de Lorenz" lang="es" hreflang="es" data-title="Atractor de Lorenz" data-language-autonym="Español" data-language-local-name="スペイン語" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B3%D8%A7%D9%85%D8%A7%D9%86%D9%87_%D9%84%D9%88%D8%B1%D9%86%D8%AA%D8%B3" title="ペルシア語: سامانه لورنتس" lang="fa" hreflang="fa" data-title="سامانه لورنتس" data-language-autonym="فارسی" data-language-local-name="ペルシア語" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Lorenzin_yht%C3%A4l%C3%B6t" title="フィンランド語: Lorenzin yhtälöt" lang="fi" hreflang="fi" data-title="Lorenzin yhtälöt" data-language-autonym="Suomi" data-language-local-name="フィンランド語" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Attracteur_de_Lorenz" title="フランス語: Attracteur de Lorenz" lang="fr" hreflang="fr" data-title="Attracteur de Lorenz" data-language-autonym="Français" data-language-local-name="フランス語" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Atractor_de_Lorenz" title="ガリシア語: Atractor de Lorenz" lang="gl" hreflang="gl" data-title="Atractor de Lorenz" data-language-autonym="Galego" data-language-local-name="ガリシア語" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A2%D7%A8%D7%9B%D7%AA_%D7%9C%D7%95%D7%A8%D7%A0%D7%A5" title="ヘブライ語: מערכת לורנץ" lang="he" hreflang="he" data-title="מערכת לורנץ" data-language-autonym="עברית" data-language-local-name="ヘブライ語" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Lorenzov_atraktor" title="クロアチア語: Lorenzov atraktor" lang="hr" hreflang="hr" data-title="Lorenzov atraktor" data-language-autonym="Hrvatski" data-language-local-name="クロアチア語" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Attrattore_di_Lorenz" title="イタリア語: Attrattore di Lorenz" lang="it" hreflang="it" data-title="Attrattore di Lorenz" data-language-autonym="Italiano" data-language-local-name="イタリア語" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%A1%9C%EB%A0%8C%EC%A6%88_%EB%B0%A9%EC%A0%95%EC%8B%9D" title="韓国語: 로렌즈 방정식" lang="ko" hreflang="ko" data-title="로렌즈 방정식" data-language-autonym="한국어" data-language-local-name="韓国語" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%9C%E1%80%B1%E1%80%AC%E1%80%A1%E1%80%94%E1%80%B7%E1%80%BA%E1%80%85%E1%80%BA%E1%80%85%E1%80%94%E1%80%85%E1%80%BA" title="ミャンマー語: လောအန့်စ်စနစ်" lang="my" hreflang="my" data-title="လောအန့်စ်စနစ်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="ミャンマー語" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Lorenz-aantrekker" title="オランダ語: Lorenz-aantrekker" lang="nl" hreflang="nl" data-title="Lorenz-aantrekker" data-language-autonym="Nederlands" data-language-local-name="オランダ語" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Uk%C5%82ad_Lorenza" title="ポーランド語: Układ Lorenza" lang="pl" hreflang="pl" data-title="Układ Lorenza" data-language-autonym="Polski" data-language-local-name="ポーランド語" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Atractor_de_Lorenz" title="ポルトガル語: Atractor de Lorenz" lang="pt" hreflang="pt" data-title="Atractor de Lorenz" data-language-autonym="Português" data-language-local-name="ポルトガル語" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%90%D1%82%D1%82%D1%80%D0%B0%D0%BA%D1%82%D0%BE%D1%80_%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86%D0%B0" title="ロシア語: Аттрактор Лоренца" lang="ru" hreflang="ru" data-title="Аттрактор Лоренца" data-language-autonym="Русский" data-language-local-name="ロシア語" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Lorenzov_atraktor" title="セルボ・クロアチア語: Lorenzov atraktor" lang="sh" hreflang="sh" data-title="Lorenzov atraktor" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="セルボ・クロアチア語" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Lorenz_attractor" title="シンプル英語: Lorenz attractor" lang="en-simple" hreflang="en-simple" data-title="Lorenz attractor" data-language-autonym="Simple English" data-language-local-name="シンプル英語" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Lorenzov_atraktor" title="スロバキア語: Lorenzov atraktor" lang="sk" hreflang="sk" data-title="Lorenzov atraktor" data-language-autonym="Slovenčina" data-language-local-name="スロバキア語" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Lorenz-attraktorn" title="スウェーデン語: Lorenz-attraktorn" lang="sv" hreflang="sv" data-title="Lorenz-attraktorn" data-language-autonym="Svenska" data-language-local-name="スウェーデン語" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%95%E0%B8%B1%E0%B8%A7%E0%B8%94%E0%B8%B6%E0%B8%87%E0%B8%94%E0%B8%B9%E0%B8%94%E0%B8%A5%E0%B8%AD%E0%B9%80%E0%B8%A3%E0%B8%99%E0%B8%8B%E0%B9%8C" title="タイ語: ตัวดึงดูดลอเรนซ์" lang="th" hreflang="th" data-title="ตัวดึงดูดลอเรนซ์" data-language-autonym="ไทย" data-language-local-name="タイ語" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B8%D0%B2%D0%BD%D0%B8%D0%B9_%D0%B0%D1%82%D1%80%D0%B0%D0%BA%D1%82%D0%BE%D1%80_%D0%9B%D0%BE%D1%80%D0%B5%D0%BD%D1%86%D0%B0" title="ウクライナ語: Дивний атрактор Лоренца" lang="uk" hreflang="uk" data-title="Дивний атрактор Лоренца" data-language-autonym="Українська" data-language-local-name="ウクライナ語" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Lorenz_tizimi" title="ウズベク語: Lorenz tizimi" lang="uz" hreflang="uz" data-title="Lorenz tizimi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="ウズベク語" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%B4%9B%E4%BC%A6%E8%8C%A8%E5%90%B8%E5%BC%95%E5%AD%90" title="中国語: 洛伦茨吸引子" lang="zh" hreflang="zh" data-title="洛伦茨吸引子" data-language-autonym="中文" data-language-local-name="中国語" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%B4%9B%E5%80%AB%E8%8C%B2%E7%B3%BB%E7%B5%B1" title="広東語: 洛倫茲系統" lang="yue" hreflang="yue" data-title="洛倫茲系統" data-language-autonym="粵語" data-language-local-name="広東語" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q899844#sitelinks-wikipedia" title="言語間リンクを編集" class="wbc-editpage">リンクを編集</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="名前空間"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F" title="本文を閲覧 [c]" accesskey="c"><span>ページ</span></a></li><li id="ca-talk" class="new vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E3%83%8E%E3%83%BC%E3%83%88:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;redlink=1" rel="discussion" class="new" title="「本文ページについての議論」 (存在しないページ) [t]" accesskey="t"><span>ノート</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="別の言語に切り替える" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">日本語</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="表示"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span>閲覧</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit" title="このページのソースコードを編集する [e]" accesskey="e"><span>編集</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=history" title="このページの過去の版 [h]" accesskey="h"><span>履歴表示</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="ページツール"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="ツール" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">ツール</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">ツール</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">サイドバーに移動</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">非表示</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="その他の操作" > <div class="vector-menu-heading"> 操作 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span>閲覧</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit" title="このページのソースコードを編集する [e]" accesskey="e"><span>編集</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=history"><span>履歴表示</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 全般 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%E7%89%B9%E5%88%A5:%E3%83%AA%E3%83%B3%E3%82%AF%E5%85%83/%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F" title="ここにリンクしている全ウィキページの一覧 [j]" accesskey="j"><span>リンク元</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%E7%89%B9%E5%88%A5:%E9%96%A2%E9%80%A3%E3%83%9A%E3%83%BC%E3%82%B8%E3%81%AE%E6%9B%B4%E6%96%B0%E7%8A%B6%E6%B3%81/%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F" rel="nofollow" title="このページからリンクしているページの最近の更新 [k]" accesskey="k"><span>関連ページの更新状況</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB%E3%81%AE%E3%82%A2%E3%83%83%E3%83%97%E3%83%AD%E3%83%BC%E3%83%89" title="ファイルをアップロードする [u]" accesskey="u"><span>ファイルをアップロード</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%E7%89%B9%E5%88%A5:%E7%89%B9%E5%88%A5%E3%83%9A%E3%83%BC%E3%82%B8%E4%B8%80%E8%A6%A7" title="特別ページの一覧 [q]" accesskey="q"><span>特別ページ</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;oldid=100500249" title="このページのこの版への固定リンク"><span>この版への固定リンク</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=info" title="このページについての詳細情報"><span>ページ情報</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%E7%89%B9%E5%88%A5:%E3%81%93%E3%81%AE%E3%83%9A%E3%83%BC%E3%82%B8%E3%82%92%E5%BC%95%E7%94%A8&amp;page=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;id=100500249&amp;wpFormIdentifier=titleform" title="このページの引用方法"><span>このページを引用</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%E7%89%B9%E5%88%A5:UrlShortener&amp;url=https%3A%2F%2Fja.wikipedia.org%2Fwiki%2F%25E3%2583%25AD%25E3%2583%25BC%25E3%2583%25AC%25E3%2583%25B3%25E3%2583%2584%25E6%2596%25B9%25E7%25A8%258B%25E5%25BC%258F"><span>短縮URLを取得する</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%E7%89%B9%E5%88%A5:QrCode&amp;url=https%3A%2F%2Fja.wikipedia.org%2Fwiki%2F%25E3%2583%25AD%25E3%2583%25BC%25E3%2583%25AC%25E3%2583%25B3%25E3%2583%2584%25E6%2596%25B9%25E7%25A8%258B%25E5%25BC%258F"><span>QRコードをダウンロード</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> 印刷/書き出し </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%E7%89%B9%E5%88%A5:%E3%83%96%E3%83%83%E3%82%AF&amp;bookcmd=book_creator&amp;referer=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span>ブックの新規作成</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%E7%89%B9%E5%88%A5:DownloadAsPdf&amp;page=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=show-download-screen"><span>PDF 形式でダウンロード</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;printable=yes" title="このページの印刷用ページ [p]" accesskey="p"><span>印刷用バージョン</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 他のプロジェクト </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Lorenz_attractors" hreflang="en"><span>コモンズ</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q899844" title="関連付けられたデータリポジトリ項目へのリンク [g]" accesskey="g"><span>ウィキデータ項目</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="ページツール"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="表示"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">表示</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">サイドバーに移動</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">非表示</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">出典: フリー百科事典『ウィキペディア(Wikipedia)』</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ja" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r101346560">.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}html.skin-theme-clientpref-night .mw-parser-output .hatnote>table{color:inherit}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .hatnote>table{color:inherit}}</style><div class="hatnote dablink noprint"><table style="width:100%; background:transparent;"> <tbody><tr><td style="width:25px;"><span typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Confusion_grey.svg" class="mw-file-description" title="曖昧さ回避"><img alt="曖昧さ回避" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Confusion_grey.svg/25px-Confusion_grey.svg.png" decoding="async" width="25" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Confusion_grey.svg/38px-Confusion_grey.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Confusion_grey.svg/50px-Confusion_grey.svg.png 2x" data-file-width="260" data-file-height="200" /></a></span></td> <td>「<a href="/wiki/%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%9B%B2%E7%B7%9A" title="ローレンツ曲線">ローレンツ曲線</a>」とは異なります。</td> </tr></tbody></table></div> <figure class="mw-halign-right" typeof="mw:File/Frame"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:A_Trajectory_Through_Phase_Space_in_a_Lorenz_Attractor.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/1/13/A_Trajectory_Through_Phase_Space_in_a_Lorenz_Attractor.gif" decoding="async" width="200" height="200" class="mw-file-element" data-file-width="200" data-file-height="200" /></a><figcaption><span lang="en" class="texhtml"><i>ρ</i>&#160;=&#160;28</span>, <span lang="en" class="texhtml"><i>σ</i>&#160;=&#160;10</span>, <span lang="en" class="texhtml"><i>β</i>&#160;=&#160;<style data-mw-deduplicate="TemplateStyles:r89142261">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span role="math" class="sfrac tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">3</span></span></span> の時のローレンツアトラクターの解 </figcaption></figure> <p><b>ローレンツ方程式</b>(ローレンツほうていしき)とは、数学者・気象学者である<a href="/wiki/%E3%82%A8%E3%83%89%E3%83%AF%E3%83%BC%E3%83%89%E3%83%BB%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84" title="エドワード・ローレンツ">エドワード・ローレンツ</a>(Edward Lorenz)が最初に研究した非線型<a href="/wiki/%E5%B8%B8%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E5%BC%8F" title="常微分方程式">常微分方程式</a>である。特定のパラメータ値と初期条件に対して<a href="/wiki/%E3%82%AB%E3%82%AA%E3%82%B9%E7%90%86%E8%AB%96" title="カオス理論">カオス</a>的な解を持つことで注目されている。特に、ローレンツ方程式のカオス解の集合は<b>ローレンツ・アトラクター</b>と呼ばれる。いわゆる<a href="/wiki/%E3%83%90%E3%82%BF%E3%83%95%E3%83%A9%E3%82%A4%E5%8A%B9%E6%9E%9C" title="バタフライ効果">バタフライ効果</a>の説明に用いられることが多く、決定論的な連立常微分方程式が初期値鋭敏性を持つことは驚きをもって迎えられ、カオス研究の端緒となった。 </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="概要"><span id=".E6.A6.82.E8.A6.81"></span>概要</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=1" title="節を編集: 概要"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>1963年、エドワード・ローレンツは、数値シミュレーションや数値計算を担当した<a href="https://en.wikipedia.org/wiki/Ellen_Fetter" class="extiw" title="w:Ellen Fetter">エレン・フェッター</a>と、ローレンツ方程式の発見に至る初期の数値計算を担当したソフトウェアエンジニア、<a href="https://en.wikipedia.org/wiki/Margaret_Hamilton" class="extiw" title="w:Margaret Hamilton">マーガレット・ハミルトン</a>の協力を得て、<a href="/wiki/%E5%A4%A7%E6%B0%97%E5%A4%89%E5%8B%95" class="mw-redirect" title="大気変動">大気変動</a>の簡易数学モデルを開発した<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-lorenz_2-0" class="reference"><a href="#cite_note-lorenz-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>。このモデルが、現在ローレンツ方程式として知られている以下の3つの常微分方程式の系である: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} x}{\mathrm {d} t}}&amp;=\sigma (y-x),\\[6pt]{\frac {\mathrm {d} y}{\mathrm {d} t}}&amp;=x(\rho -z)-y,\\[6pt]{\frac {\mathrm {d} z}{\mathrm {d} t}}&amp;=xy-\beta z.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>z</mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\mathrm {d} x}{\mathrm {d} t}}&amp;=\sigma (y-x),\\[6pt]{\frac {\mathrm {d} y}{\mathrm {d} t}}&amp;=x(\rho -z)-y,\\[6pt]{\frac {\mathrm {d} z}{\mathrm {d} t}}&amp;=xy-\beta z.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7928004d58943529a7be774575a62ca436a82a7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.171ex; width:20.22ex; height:19.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} x}{\mathrm {d} t}}&amp;=\sigma (y-x),\\[6pt]{\frac {\mathrm {d} y}{\mathrm {d} t}}&amp;=x(\rho -z)-y,\\[6pt]{\frac {\mathrm {d} z}{\mathrm {d} t}}&amp;=xy-\beta z.\end{aligned}}}"></span></dd></dl> <p>この方程式は、下から暖められ、上から冷やされる2次元の流体層の特性に関するもので、3つの量の時間に対する変化率を記述しており、 <span lang="en" class="texhtml mvar" style="font-style:italic;">x</span>は対流速度に、<span lang="en" class="texhtml mvar" style="font-style:italic;">y</span>は水平温度変化に、<span lang="en" class="texhtml mvar" style="font-style:italic;">z</span>は垂直温度変化に比例する。 <sup id="cite_ref-Sparrow_1982_3-0" class="reference"><a href="#cite_note-Sparrow_1982-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> また定数 <span lang="en" class="texhtml mvar" style="font-style:italic;">σ</span>, <span lang="en" class="texhtml mvar" style="font-style:italic;">ρ</span>, <span lang="en" class="texhtml mvar" style="font-style:italic;">β</span> はそれぞれ <a href="/wiki/%E3%83%97%E3%83%A9%E3%83%B3%E3%83%88%E3%83%AB%E6%95%B0" title="プラントル数">プラントル数</a>、<a href="/wiki/%E3%83%AC%E3%82%A4%E3%83%AA%E3%83%BC%E6%95%B0" title="レイリー数">レイリー数</a>に関する不安定度を表すパラメータ、臨界水平波数に関するパラメータである。 </p><p>ローレンツ方程式は<a href="/wiki/%E3%83%AC%E3%83%BC%E3%82%B6%E3%83%BC" title="レーザー">レーザー</a>、<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/%E7%99%BA%E9%9B%BB%E6%A9%9F" title="発電機">発電機</a>、<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><a href="https://en.wikipedia.org/wiki/thermosyphon" class="extiw" title="w:thermosyphon">サーモサイフォン</a>、 <sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> ブラシレス<a href="/wiki/%E7%9B%B4%E6%B5%81%E9%9B%BB%E5%8B%95%E6%A9%9F" title="直流電動機">DCモーター</a>、 <sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/%E9%9B%BB%E6%B0%97%E5%9B%9E%E8%B7%AF" title="電気回路">電気回路</a>、 <sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> <a href="/wiki/%E5%8C%96%E5%AD%A6%E5%8F%8D%E5%BF%9C" title="化学反応">化学反応</a><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>、<a href="/wiki/%E6%AD%A3%E6%B5%B8%E9%80%8F" title="正浸透">正浸透</a> <sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup>などの簡易モデルで生じうる。また、<a href="https://en.wikipedia.org/wiki/Malkus_waterwheel" class="extiw" title="w:Malkus waterwheel">マルクス水車</a>のフーリエ空間での支配方程式でもある <sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup>。すなわちマルクス水車はカオス運動を示し、一定速度で一方向に回転するのではなく、その回転が加速したり減速したり停止したり方向転換したり、それらの組み合わせで前後に振動したりと予測不能の動きをする。 </p> <div class="mw-heading mw-heading2"><h2 id="解析"><span id=".E8.A7.A3.E6.9E.90"></span>解析</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=2" title="節を編集: 解析"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>通常、パラメータ <span lang="en" class="texhtml mvar" style="font-style:italic;">σ</span>, <span lang="en" class="texhtml mvar" style="font-style:italic;">ρ</span>, <span lang="en" class="texhtml mvar" style="font-style:italic;">β</span> は正であると仮定する。ローレンツは<span lang="en" class="texhtml"><i>σ</i>=10</span>、<span lang="en" class="texhtml"><i>β</i>=<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r89142261"><span role="math" class="sfrac tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">3</span></span></span>、<span lang="en" class="texhtml"><i>ρ</i>=28</span>という値を使用し、これらの値(およびその近傍の値)に対して、系がカオス的な振る舞いをすることを示している<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>もし<span lang="en" class="texhtml"><i>ρ</i>&lt;1</span>なら、均衡点は1つだけであり、それは原点である。この点は対流がないことに対応する。すべての軌道は原点に収束し、広域的な<a href="/wiki/%E3%82%A2%E3%83%88%E3%83%A9%E3%82%AF%E3%82%BF%E3%83%BC" title="アトラクター">アトラクター</a>となる。<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup>. </p><p><span lang="en" class="texhtml"><i>ρ</i> = 1</span>で<a href="/wiki/%E3%83%94%E3%83%83%E3%83%81%E3%83%95%E3%82%A9%E3%83%BC%E3%82%AF%E5%88%86%E5%B2%90" title="ピッチフォーク分岐">ピッチフォーク分岐</a>が起こり、<span lang="en" class="texhtml"><i>ρ</i> &gt; 1</span> でさらに下記の2つの臨界点が現れる。 <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left({\sqrt {\beta (\rho -1)}},{\sqrt {\beta (\rho -1)}},\rho -1\right)\quad {\text{and}}\quad \left(-{\sqrt {\beta (\rho -1)}},-{\sqrt {\beta (\rho -1)}},\rho -1\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>,</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>and</mtext> </mrow> <mspace width="1em" /> <mrow> <mo>(</mo> <mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>,</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>&#x03B2;<!-- β --></mi> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>,</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left({\sqrt {\beta (\rho -1)}},{\sqrt {\beta (\rho -1)}},\rho -1\right)\quad {\text{and}}\quad \left(-{\sqrt {\beta (\rho -1)}},-{\sqrt {\beta (\rho -1)}},\rho -1\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9dc193f435127809b478b8cb6dfce2015649eff5" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:76.593ex; height:4.843ex;" alt="{\displaystyle \left({\sqrt {\beta (\rho -1)}},{\sqrt {\beta (\rho -1)}},\rho -1\right)\quad {\text{and}}\quad \left(-{\sqrt {\beta (\rho -1)}},-{\sqrt {\beta (\rho -1)}},\rho -1\right).}"></span> これらは定常対流に相当する。この二つの平衡点は <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \rho &lt;\sigma {\frac {\sigma +\beta +3}{\sigma -\beta -1}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C1;<!-- ρ --></mi> <mo>&lt;</mo> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mn>3</mn> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \rho &lt;\sigma {\frac {\sigma +\beta +3}{\sigma -\beta -1}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01ccdbc7bc857ba7aceddb06b92d9882ae7e9c0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:16.618ex; height:5.843ex;" alt="{\displaystyle \rho &lt;\sigma {\frac {\sigma +\beta +3}{\sigma -\beta -1}},}"></span> の場合にのみ安定である。これは<span lang="en" class="texhtml"><i>σ</i> &gt; <i>β</i> + 1</span>の時のみ、 <span lang="en" class="texhtml mvar" style="font-style:italic;">ρ</span>は正となりうる。また臨界値では、両平衡点は<a href="/wiki/%E3%83%9B%E3%83%83%E3%83%97%E5%88%86%E5%B2%90" title="ホップ分岐">ホップ分岐</a>を経て安定性を失う。<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p><span lang="en" class="texhtml"><i>ρ</i>=28</span>、<span lang="en" class="texhtml"><i>σ</i>=10</span>、<span lang="en" class="texhtml"><i>β</i>=<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r89142261"><span role="math" class="sfrac tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">3</span></span></span>のとき、ローレンツ方程式はカオス解を持つ(ただし全ての解がカオスであるとは言えない)。ほぼ全ての初期点は、3つの平衡に関して、不変集合&#160;&#8211;&#32;ローレンツアトラクター&#160;&#8211;&#32;、<a href="/wiki/%E3%82%A2%E3%83%88%E3%83%A9%E3%82%AF%E3%82%BF%E3%83%BC#ストレンジアトラクター" title="アトラクター">ストレンジアトラクター</a>、<a href="/wiki/%E3%83%95%E3%83%A9%E3%82%AF%E3%82%BF%E3%83%AB" title="フラクタル">フラクタル</a>、自己励起アトラクタに傾くことになる。その<a href="/wiki/%E3%83%8F%E3%82%A6%E3%82%B9%E3%83%89%E3%83%AB%E3%83%95%E6%AC%A1%E5%85%83" title="ハウスドルフ次元">ハウスドルフ次元</a>は、上から<a href="/wiki/%E3%83%AA%E3%82%A2%E3%83%97%E3%83%8E%E3%83%95%E6%8C%87%E6%95%B0" title="リアプノフ指数">リアプノフ指数</a> によって<span class="nowrap"><span data-sort-value="7000206000000000000♠"></span>2.06<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.01</span>と見積もられる<sup id="cite_ref-Kuznetsov-2020-ND_16-0" class="reference"><a href="#cite_note-Kuznetsov-2020-ND-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> 。また<a href="https://en.wikipedia.org/wiki/correlattion_dimention" class="extiw" title="w:correlattion dimention">相関次元</a>は<span class="nowrap"><span data-sort-value="7000204999999999999♠"></span>2.05<span style="margin-left:0.3em;margin-right:0.15em;">±</span>0.01</span>と推定されている<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup>。 グローバルアトラクターの正確なリアプノフ指数の公式は、パラメータの古典的な制限の下で解析的に求めることができ、次に示す<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Kuznetsov-2020-ND_16-1" class="reference"><a href="#cite_note-Kuznetsov-2020-ND-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-2020-KuznetsovR_19-0" class="reference"><a href="#cite_note-2020-KuznetsovR-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup>。 </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3-{\frac {2(\sigma +\beta +1)}{\sigma +1+{\sqrt {\left(\sigma -1\right)^{2}+4\sigma \rho }}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mrow> <mo>(</mo> <mrow> <mi>&#x03C3;<!-- σ --></mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>4</mn> <mi>&#x03C3;<!-- σ --></mi> <mi>&#x03C1;<!-- ρ --></mi> </msqrt> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3-{\frac {2(\sigma +\beta +1)}{\sigma +1+{\sqrt {\left(\sigma -1\right)^{2}+4\sigma \rho }}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e7ef58eb6ef390caa3455447d34510547931d4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; width:30.066ex; height:8.509ex;" alt="{\displaystyle 3-{\frac {2(\sigma +\beta +1)}{\sigma +1+{\sqrt {\left(\sigma -1\right)^{2}+4\sigma \rho }}}}}"></span> </p><p>ローレンツアトラクターは解析が難しいが、微分方程式のアトラクターへの作用はかなり単純な幾何学モデルで記述され<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup>、この証明は<a href="/wiki/%E3%82%B9%E3%83%A1%E3%82%A4%E3%83%AB%E3%81%AE%E5%95%8F%E9%A1%8C" title="スメイルの問題">スメイルの問題</a>の14番目の問題であったが、2002年に<a href="/wiki/%E3%82%A6%E3%82%A9%E3%83%AA%E3%83%83%E3%82%AF%E3%83%BB%E3%82%BF%E3%83%83%E3%82%AB%E3%83%BC" title="ウォリック・タッカー">ウォリック・タッカー</a>によって初めて解決された<sup id="cite_ref-Tucker_2002_21-0" class="reference"><a href="#cite_note-Tucker_2002-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup>。 </p><p><span lang="en" class="texhtml mvar" style="font-style:italic;">ρ</span>の他の値では、系は結び目のある周期的な軌道を示す。例えば、<span lang="en" class="texhtml"><i>ρ</i>=99.96</span>では<span lang="en" class="texhtml"><i>T</i>(3,2)</span>(<a href="/wiki/%E3%83%88%E3%83%BC%E3%83%A9%E3%82%B9%E7%B5%90%E3%81%B3%E7%9B%AE" title="トーラス結び目">トーラス結び目</a>)となる。 </p> <table class="wikitable" width="777px"> <tbody><tr> <th colspan="2">異なる<span lang="en" class="texhtml mvar" style="font-style:italic;">ρ</span>に対するローレンツ方程式の解の例 </th></tr> <tr> <td align="center"><span class="mw-default-size" typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_Ro14_20_41_20-200px.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/3/3c/Lorenz_Ro14_20_41_20-200px.png" decoding="async" width="200" height="194" class="mw-file-element" data-file-width="200" data-file-height="194" /></a></span> </td> <td align="center"><span class="mw-default-size" typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_Ro13-200px.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/c/cb/Lorenz_Ro13-200px.png" decoding="async" width="200" height="194" class="mw-file-element" data-file-width="200" data-file-height="194" /></a></span> </td></tr> <tr> <td align="center"><span lang="en" class="texhtml"><i>ρ</i> = 14, <i>σ</i> = 10, <i>β</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r89142261"><span role="math" class="sfrac tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">3</span></span></span> <a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_Ro14_20_41_20.png" title="ファイル:Lorenz Ro14 20 41 20.png">(拡大)</a> </td> <td align="center"><span lang="en" class="texhtml"><i>ρ</i> = 13, <i>σ</i> = 10, <i>β</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r89142261"><span role="math" class="sfrac tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">3</span></span></span> <a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_Ro13.png" title="ファイル:Lorenz Ro13.png">(拡大)</a> </td></tr> <tr> <td align="center"><span class="mw-default-size" typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_Ro15-200px.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/5/59/Lorenz_Ro15-200px.png" decoding="async" width="200" height="194" class="mw-file-element" data-file-width="200" data-file-height="194" /></a></span> </td> <td align="center"><span class="mw-default-size" typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_Ro28-200px.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/e/ef/Lorenz_Ro28-200px.png" decoding="async" width="200" height="194" class="mw-file-element" data-file-width="200" data-file-height="194" /></a></span> </td></tr> <tr> <td align="center"><span lang="en" class="texhtml"><i>ρ</i> = 15, <i>σ</i> = 10, <i>β</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r89142261"><span role="math" class="sfrac tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">3</span></span></span> <a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_Ro15.png" title="ファイル:Lorenz Ro15.png">(拡大)</a> </td> <td align="center"><span lang="en" class="texhtml"><i>ρ</i> = 28, <i>σ</i> = 10, <i>β</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r89142261"><span role="math" class="sfrac tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">3</span></span></span> <a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_Ro28.png" title="ファイル:Lorenz Ro28.png">(拡大)</a> </td></tr> <tr> <td align="center" colspan="2">小さい<span lang="en" class="texhtml mvar" style="font-style:italic;">ρ</span>では系は安定し、2つの固定点のうち、いずれかの点アトラクターに進展する。<span lang="en" class="texhtml"><i>ρ</i> &gt; 24.74</span>では, 固定点は斥力源となり、軌道はそれらに反発して非常に複雑な形となる。 </td></tr></tbody></table> <table class="wikitable" width="777px"> <tbody><tr> <th colspan="3">初期値に対する鋭敏性 </th></tr> <tr> <td align="center">Time <span lang="en" class="texhtml"><i>t</i> = 1</span> <a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_caos1.png" title="ファイル:Lorenz caos1.png">(拡大)</a> </td> <td align="center">Time <span lang="en" class="texhtml"><i>t</i> = 2</span> <a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_caos2.png" title="ファイル:Lorenz caos2.png">(拡大)</a> </td> <td align="center">Time <span lang="en" class="texhtml"><i>t</i> = 3</span> <a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_caos3.png" title="ファイル:Lorenz caos3.png">(拡大)</a> </td></tr> <tr> <td align="center"><span class="mw-default-size" typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_caos1-175.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/c/c8/Lorenz_caos1-175.png" decoding="async" width="175" height="176" class="mw-file-element" data-file-width="175" data-file-height="176" /></a></span> </td> <td align="center"><span class="mw-default-size" typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_caos2-175.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/a/a2/Lorenz_caos2-175.png" decoding="async" width="175" height="176" class="mw-file-element" data-file-width="175" data-file-height="176" /></a></span> </td> <td align="center"><span class="mw-default-size" typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_caos3-175.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/7/73/Lorenz_caos3-175.png" decoding="async" width="175" height="176" class="mw-file-element" data-file-width="175" data-file-height="176" /></a></span> </td></tr> <tr> <td align="center" colspan="3"><span lang="en" class="texhtml"><i>ρ</i> = 28</span>, <span lang="en" class="texhtml"><i>σ</i> = 10</span>, <span lang="en" class="texhtml"><i>β</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r89142261"><span role="math" class="sfrac tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">3</span></span></span>の条件で生成されたこれらの画像は二つの軌跡(青と黄色)の時間発展を示している。二つの軌跡の初期値は<span lang="en" class="texhtml mvar" style="font-style:italic;">x</span>座標のみ10<sup>−5</sup>の差がつけられている。初め、二つの軌跡は一致しているように見える(青色の上から黄色が描かれているため黄色の軌跡だけ見える)が、時間経過と共に明らかに分岐していくのがわかる。 </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="テント写像との関連"><span id=".E3.83.86.E3.83.B3.E3.83.88.E5.86.99.E5.83.8F.E3.81.A8.E3.81.AE.E9.96.A2.E9.80.A3"></span>テント写像との関連</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=3" title="節を編集: テント写像との関連"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_Map.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Lorenz_Map.png/290px-Lorenz_Map.png" decoding="async" width="290" height="169" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Lorenz_Map.png/435px-Lorenz_Map.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Lorenz_Map.png/580px-Lorenz_Map.png 2x" data-file-width="720" data-file-height="420" /></a><figcaption><a href="/wiki/Mathematica" title="Mathematica">Mathematica</a>によって作成されたローレンツの結果の再現。赤線より上の点は、ローブが切り替わることに相当する。</figcaption></figure> <p>ローレンツの論文<sup id="cite_ref-lorenz_2-1" class="reference"><a href="#cite_note-lorenz-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>の図4において、 ローレンツは、系が到達したz方向の相対最大値を、<span lang="en" class="texhtml mvar" style="font-style:italic;">z</span>方向のそれより以前の相対最大値に対してプロットした。この手順は後にローレンツマップとして知られるようになった(軌跡と所定の曲面の交点をプロットする<a href="/wiki/%E3%83%9D%E3%82%A2%E3%83%B3%E3%82%AB%E3%83%AC%E3%83%97%E3%83%AD%E3%83%83%E3%83%88" title="ポアンカレプロット">ポアンカレプロット</a>と混同しないように)。結果としてこのプロットは<a href="/wiki/%E3%83%86%E3%83%B3%E3%83%88%E5%86%99%E5%83%8F" title="テント写像">テント写像</a>に非常によく似た形をしており、ローレンツは、<span lang="en" class="texhtml mvar" style="font-style:italic;">z</span> の最大値があるカットオフ値を超えると、系が片方のローブ(軌跡上の片方の円盤)に切り替わることを発見した。これをテント写像で知られているカオスと組み合わせることで、系が2つのローブの間をカオス的に行き来することが判明した。 </p> <div class="mw-heading mw-heading2"><h2 id="一般化されたローレンツ方程式"><span id=".E4.B8.80.E8.88.AC.E5.8C.96.E3.81.95.E3.82.8C.E3.81.9F.E3.83.AD.E3.83.BC.E3.83.AC.E3.83.B3.E3.83.84.E6.96.B9.E7.A8.8B.E5.BC.8F"></span>一般化されたローレンツ方程式</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=4" title="節を編集: 一般化されたローレンツ方程式"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>ローレンツ方程式の発見後高次元のローレンツモデルに関する論文が相次ぎ、一般化されたローレンツモデルが作成された<sup id="cite_ref-:0_22-0" class="reference"><a href="#cite_note-:0-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup>。このモデルは、3つの状態変数に対する古典的なローレンツモデル、または5つの状態変数に対する以下の5次元ローレンツモデルに単純化することができる<sup id="cite_ref-:1_23-0" class="reference"><a href="#cite_note-:1-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup>。 <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} x}{\mathrm {d} t}}&amp;=\sigma (y-x),\\[6pt]{\frac {\mathrm {d} y}{\mathrm {d} t}}&amp;=x(\rho -z)-y,\\[6pt]{\frac {\mathrm {d} z}{\mathrm {d} t}}&amp;=xy-xy_{1}-\beta z,\\[6pt]{\frac {\mathrm {d} y_{1}}{\mathrm {d} t}}&amp;=xz-2xz_{1}-d_{0}y_{1},\\[6pt]{\frac {\mathrm {d} z_{1}}{\mathrm {d} t}}&amp;=2xy_{1}-4\beta z_{1}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03C3;<!-- σ --></mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">(</mo> <mi>&#x03C1;<!-- ρ --></mi> <mo>&#x2212;<!-- − --></mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>y</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>z</mi> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mi>y</mi> <mo>&#x2212;<!-- − --></mo> <mi>x</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> <mi>z</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mi>z</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>x</mi> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mi>x</mi> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mi>&#x03B2;<!-- β --></mi> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\frac {\mathrm {d} x}{\mathrm {d} t}}&amp;=\sigma (y-x),\\[6pt]{\frac {\mathrm {d} y}{\mathrm {d} t}}&amp;=x(\rho -z)-y,\\[6pt]{\frac {\mathrm {d} z}{\mathrm {d} t}}&amp;=xy-xy_{1}-\beta z,\\[6pt]{\frac {\mathrm {d} y_{1}}{\mathrm {d} t}}&amp;=xz-2xz_{1}-d_{0}y_{1},\\[6pt]{\frac {\mathrm {d} z_{1}}{\mathrm {d} t}}&amp;=2xy_{1}-4\beta z_{1}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34c363e59f18d5689d3af72f5fdbcbc5d7f2abea" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.907ex; margin-bottom: -0.265ex; width:26.002ex; height:33.509ex;" alt="{\displaystyle {\begin{aligned}{\frac {\mathrm {d} x}{\mathrm {d} t}}&amp;=\sigma (y-x),\\[6pt]{\frac {\mathrm {d} y}{\mathrm {d} t}}&amp;=x(\rho -z)-y,\\[6pt]{\frac {\mathrm {d} z}{\mathrm {d} t}}&amp;=xy-xy_{1}-\beta z,\\[6pt]{\frac {\mathrm {d} y_{1}}{\mathrm {d} t}}&amp;=xz-2xz_{1}-d_{0}y_{1},\\[6pt]{\frac {\mathrm {d} z_{1}}{\mathrm {d} t}}&amp;=2xy_{1}-4\beta z_{1}.\end{aligned}}}"></span> </p><p>他のパラメータの値によらず、<i>d</i><sub>0</sub> = 19/3である<sup id="cite_ref-:0_22-1" class="reference"><a href="#cite_note-:0-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:1_23-1" class="reference"><a href="#cite_note-:1-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading2"><h2 id="シミュレーション"><span id=".E3.82.B7.E3.83.9F.E3.83.A5.E3.83.AC.E3.83.BC.E3.82.B7.E3.83.A7.E3.83.B3"></span>シミュレーション</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=5" title="節を編集: シミュレーション"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="MATLAB">MATLAB</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=6" title="節を編集: MATLAB"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-highlight mw-highlight-lang-matlab mw-content-ltr" dir="ltr"><pre><span></span><span class="c">% Solve over time interval [0,100] with initial conditions [1,1,1]</span> <span class="c">% &#39;&#39;f&#39;&#39; is set of differential equations</span> <span class="c">% &#39;&#39;a&#39;&#39; is array containing x, y, and z variables</span> <span class="c">% &#39;&#39;t&#39;&#39; is time variable</span> <span class="n">sigma</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="mi">10</span><span class="p">;</span> <span class="nb">beta</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="mi">8</span><span class="o">/</span><span class="mi">3</span><span class="p">;</span> <span class="n">rho</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="mi">28</span><span class="p">;</span> <span class="n">f</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="p">@(</span><span class="n">t</span><span class="p">,</span><span class="n">a</span><span class="p">)</span><span class="w"> </span><span class="p">[</span><span class="o">-</span><span class="n">sigma</span><span class="o">*</span><span class="n">a</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">sigma</span><span class="o">*</span><span class="n">a</span><span class="p">(</span><span class="mi">2</span><span class="p">);</span><span class="w"> </span><span class="n">rho</span><span class="o">*</span><span class="n">a</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">a</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">a</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">*</span><span class="n">a</span><span class="p">(</span><span class="mi">3</span><span class="p">);</span><span class="w"> </span><span class="o">-</span><span class="nb">beta</span><span class="o">*</span><span class="n">a</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">a</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span><span class="o">*</span><span class="n">a</span><span class="p">(</span><span class="mi">2</span><span class="p">)];</span> <span class="p">[</span><span class="n">t</span><span class="p">,</span><span class="n">a</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">ode45</span><span class="p">(</span><span class="n">f</span><span class="p">,[</span><span class="mi">0</span><span class="w"> </span><span class="mi">100</span><span class="p">],[</span><span class="mi">1</span><span class="w"> </span><span class="mi">1</span><span class="w"> </span><span class="mi">1</span><span class="p">]);</span><span class="w"> </span><span class="c">% Runge-Kutta 4th/5th order ODE solver</span> <span class="nb">plot3</span><span class="p">(</span><span class="n">a</span><span class="p">(:,</span><span class="mi">1</span><span class="p">),</span><span class="n">a</span><span class="p">(:,</span><span class="mi">2</span><span class="p">),</span><span class="n">a</span><span class="p">(:,</span><span class="mi">3</span><span class="p">))</span> </pre></div> <div class="mw-heading mw-heading3"><h3 id="Mathematica">Mathematica</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=7" title="節を編集: Mathematica"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>標準的な記法: </p> <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre><span></span><span class="n">tend</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">50</span><span class="p">;</span> <span class="n">eq</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="n">x</span><span class="err">&#39;</span><span class="p">[</span><span class="n">t</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="err">σ</span><span class="w"> </span><span class="p">(</span><span class="n">y</span><span class="p">[</span><span class="n">t</span><span class="p">]</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">x</span><span class="p">[</span><span class="n">t</span><span class="p">]),</span><span class="w"> </span> <span class="w"> </span><span class="n">y</span><span class="err">&#39;</span><span class="p">[</span><span class="n">t</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">x</span><span class="p">[</span><span class="n">t</span><span class="p">]</span><span class="w"> </span><span class="p">(</span><span class="err">ρ</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">z</span><span class="p">[</span><span class="n">t</span><span class="p">])</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">y</span><span class="p">[</span><span class="n">t</span><span class="p">],</span><span class="w"> </span> <span class="w"> </span><span class="n">z</span><span class="err">&#39;</span><span class="p">[</span><span class="n">t</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="n">x</span><span class="p">[</span><span class="n">t</span><span class="p">]</span><span class="w"> </span><span class="n">y</span><span class="p">[</span><span class="n">t</span><span class="p">]</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="err">β</span><span class="w"> </span><span class="n">z</span><span class="p">[</span><span class="n">t</span><span class="p">]};</span> <span class="n">init</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="n">x</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">10</span><span class="p">,</span><span class="w"> </span><span class="n">y</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">10</span><span class="p">,</span><span class="w"> </span><span class="n">z</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">10</span><span class="p">};</span> <span class="n">pars</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">{</span><span class="err">σ</span><span class="o">-&gt;</span><span class="mi">10</span><span class="p">,</span><span class="w"> </span><span class="err">ρ</span><span class="o">-&gt;</span><span class="mi">28</span><span class="p">,</span><span class="w"> </span><span class="err">β</span><span class="o">-&gt;</span><span class="mi">8</span><span class="o">/</span><span class="mi">3</span><span class="p">};</span> <span class="p">{</span><span class="n">xs</span><span class="p">,</span><span class="w"> </span><span class="n">ys</span><span class="p">,</span><span class="w"> </span><span class="n">zs</span><span class="p">}</span><span class="w"> </span><span class="o">=</span><span class="w"> </span> <span class="w"> </span><span class="n">NDSolveValue</span><span class="p">[{</span><span class="n">eq</span><span class="w"> </span><span class="o">/.</span><span class="w"> </span><span class="n">pars</span><span class="p">,</span><span class="w"> </span><span class="n">init</span><span class="p">},</span><span class="w"> </span><span class="p">{</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">y</span><span class="p">,</span><span class="w"> </span><span class="n">z</span><span class="p">},</span><span class="w"> </span><span class="p">{</span><span class="n">t</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">tend</span><span class="p">}];</span> <span class="n">ParametricPlot3D</span><span class="p">[{</span><span class="n">xs</span><span class="p">[</span><span class="n">t</span><span class="p">],</span><span class="w"> </span><span class="n">ys</span><span class="p">[</span><span class="n">t</span><span class="p">],</span><span class="w"> </span><span class="n">zs</span><span class="p">[</span><span class="n">t</span><span class="p">]},</span><span class="w"> </span><span class="p">{</span><span class="n">t</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">tend</span><span class="p">}]</span> </pre></div> <p>冗長性を抑えたバージョン: </p> <div class="mw-highlight mw-highlight-lang-mathematica mw-content-ltr" dir="ltr"><pre><span></span><span class="n">lorenz</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">NonlinearStateSpaceModel</span><span class="p">[{{</span><span class="err">σ</span><span class="w"> </span><span class="p">(</span><span class="n">y</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">x</span><span class="p">),</span><span class="w"> </span><span class="n">x</span><span class="w"> </span><span class="p">(</span><span class="err">ρ</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">z</span><span class="p">)</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="n">y</span><span class="p">,</span><span class="w"> </span><span class="n">x</span><span class="w"> </span><span class="n">y</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="err">β</span><span class="w"> </span><span class="n">z</span><span class="p">},</span><span class="w"> </span><span class="p">{}},</span><span class="w"> </span><span class="p">{</span><span class="n">x</span><span class="p">,</span><span class="w"> </span><span class="n">y</span><span class="p">,</span><span class="w"> </span><span class="n">z</span><span class="p">},</span><span class="w"> </span><span class="p">{</span><span class="err">σ</span><span class="p">,</span><span class="w"> </span><span class="err">ρ</span><span class="p">,</span><span class="w"> </span><span class="err">β</span><span class="p">}];</span> <span class="n">soln</span><span class="p">[</span><span class="nv">t_</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">StateResponse</span><span class="p">[{</span><span class="n">lorenz</span><span class="p">,</span><span class="w"> </span><span class="p">{</span><span class="mi">10</span><span class="p">,</span><span class="w"> </span><span class="mi">10</span><span class="p">,</span><span class="w"> </span><span class="mi">10</span><span class="p">}},</span><span class="w"> </span><span class="p">{</span><span class="mi">10</span><span class="p">,</span><span class="w"> </span><span class="mi">28</span><span class="p">,</span><span class="w"> </span><span class="mi">8</span><span class="o">/</span><span class="mi">3</span><span class="p">},</span><span class="w"> </span><span class="p">{</span><span class="n">t</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">50</span><span class="p">}];</span> <span class="n">ParametricPlot3D</span><span class="p">[</span><span class="n">soln</span><span class="p">[</span><span class="n">t</span><span class="p">],</span><span class="w"> </span><span class="p">{</span><span class="n">t</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="mi">50</span><span class="p">}]</span> </pre></div> <div class="mw-heading mw-heading2"><h2 id="応用"><span id=".E5.BF.9C.E7.94.A8"></span>応用</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=8" title="節を編集: 応用"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="大気の対流モデル"><span id=".E5.A4.A7.E6.B0.97.E3.81.AE.E5.AF.BE.E6.B5.81.E3.83.A2.E3.83.87.E3.83.AB"></span>大気の対流モデル</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=9" title="節を編集: 大気の対流モデル"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>原論文で言及される通り<sup id="cite_ref-名前なし-20231105133406_24-0" class="reference"><a href="#cite_note-名前なし-20231105133406-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup>、ローレンツ系はバリー・サルツマンが以前に研究したより大きな系を縮小したものであり<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup>、ローレンツ方程式は下から一様に加熱され、上から一様に冷却される浅い流体層における流体循環を記述する方程式を<a href="/wiki/%E3%83%96%E3%82%B7%E3%83%8D%E3%82%B9%E3%82%AF%E8%BF%91%E4%BC%BC" title="ブシネスク近似">ブシネスク近似</a>から導いたものである。<sup id="cite_ref-名前なし-20231105133406_24-1" class="reference"><a href="#cite_note-名前なし-20231105133406-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> この流体循環は<a href="/wiki/%E3%83%99%E3%83%8A%E3%83%BC%E3%83%AB%E3%83%BB%E3%82%BB%E3%83%AB" title="ベナール・セル">レイリー・ベナール対流</a>と呼ばれる。流体は2次元(垂直と水平)に循環すると仮定し、矩形の周期的境界条件を設定する。<sup id="cite_ref-名前なし-20231105133406_24-2" class="reference"><a href="#cite_note-名前なし-20231105133406-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p><p>系の<a href="/wiki/%E6%B5%81%E3%82%8C%E9%96%A2%E6%95%B0" title="流れ関数">流れ関数</a>と温度をモデル化したこの偏微分方程式を,スペクトル<a href="https://en.wikipedia.org/wiki/Galerkin_method" class="extiw" title="w:Galerkin method">ガラーキン近似</a>を用いて,流体力学場をフーリエ級数で展開し,流れ関数については1次,温度については2次で切り捨てる。これにより、方程式は3つの連立した非線形常微分方程式に縮小される。詳細な導出は, <a href="#CITEREFHilborn2000">Hilborn (2000)</a>による非線形力学の教科書、Appendix C; <a href="#CITEREFBergéPomeauVidal1984">Bergé, Pomeau &amp; Vidal (1984)</a>, Appendix D、または Shen (2016)<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup>を参照。 </p> <div class="mw-heading mw-heading3"><h3 id="大気中のカオスと秩序の性質を示すモデル"><span id=".E5.A4.A7.E6.B0.97.E4.B8.AD.E3.81.AE.E3.82.AB.E3.82.AA.E3.82.B9.E3.81.A8.E7.A7.A9.E5.BA.8F.E3.81.AE.E6.80.A7.E8.B3.AA.E3.82.92.E7.A4.BA.E3.81.99.E3.83.A2.E3.83.87.E3.83.AB"></span>大気中のカオスと秩序の性質を示すモデル</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=10" title="節を編集: 大気中のカオスと秩序の性質を示すモデル"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>低次元ローレンツモデルに見られるカオス的な特徴が、地球大気の特徴(気象のカオス性)を表しうることが認められている<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:2_29-0" class="reference"><a href="#cite_note-:2-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup>。一方で、一般化されたローレンツモデルと初期のローレンツモデルにおいてカオスと予測可能な振る舞いが共存していることから<sup id="cite_ref-:0_22-2" class="reference"><a href="#cite_note-:0-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup>、Shenとその共著者<sup id="cite_ref-:2_29-1" class="reference"><a href="#cite_note-:2-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup>は「気象はカオスと、明確な予測可能性を持つ秩序の両方を持っている」という改訂見解を提案した。従来の見解を発展させたこの見解は、「理論的なローレンツモデルに見られるカオスと規則的な特徴は、地球の大気の特徴をよりよく表しうる」と示唆するために用いられている。 </p> <div class="mw-heading mw-heading3"><h3 id="スメイルの14番目の問題"><span id=".E3.82.B9.E3.83.A1.E3.82.A4.E3.83.AB.E3.81.AE14.E7.95.AA.E7.9B.AE.E3.81.AE.E5.95.8F.E9.A1.8C"></span>スメイルの14番目の問題</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=11" title="節を編集: スメイルの14番目の問題"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>スメイルの14番目の問題は「ローレンツアトラクターは<a href="/wiki/%E3%82%B9%E3%83%88%E3%83%AC%E3%83%B3%E3%82%B8%E3%82%A2%E3%83%88%E3%83%A9%E3%82%AF%E3%82%BF%E3%83%BC" class="mw-redirect" title="ストレンジアトラクター">ストレンジアトラクター</a>の性質を持つか?」というものであった。この問題は2002年にウォリック・タッカーによって肯定的に解決された<sup id="cite_ref-Tucker_2002_21-1" class="reference"><a href="#cite_note-Tucker_2002-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup>。証明には <a href="/wiki/%E5%8C%BA%E9%96%93%E6%BC%94%E7%AE%97" title="区間演算">区間演算</a>、<a href="https://en.wikipedia.org/wiki/Normal_form_(dynamical_systems)" class="extiw" title="w:Normal form (dynamical systems)">正準系</a>などの厳密な数値計算が用いられた。初めにタッカーは流れの軌跡によって横方向に切断したものである断面積<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma \subset \{x_{3}=r-1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2282;<!-- ⊂ --></mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma \subset \{x_{3}=r-1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8d4f856ef97b790c6f4cc7b301c07d7b8335609" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.635ex; height:2.843ex;" alt="{\displaystyle \Sigma \subset \{x_{3}=r-1\}}"></span>を定義した。ここから、各<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\in \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\in \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0a929ac30ea6c41ef08d5e6a6ca2309a97a695" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.848ex; height:2.176ex;" alt="{\displaystyle x\in \Sigma }"></span>に対して<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> の軌跡が初めて<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span>に交わる点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89833156eff2c51bfb8750db3306a0544ce34e14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.884ex; height:2.843ex;" alt="{\displaystyle P(x)}"></span>とするfirst-return写像 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span>を定義できる。 </p><p>続く証明は3つのポイントに分かれてなされ、ストレンジアトラクターの存在を示唆する<sup id="cite_ref-Viana_2000_33-0" class="reference"><a href="#cite_note-Viana_2000-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup>。 </p> <ul><li>the first-return写像で不変、すなわち<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(N)\subset N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo>&#x2282;<!-- ⊂ --></mo> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(N)\subset N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbebe25e657db728d3cfe706537b7f165d0407f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.78ex; height:2.843ex;" alt="{\displaystyle P(N)\subset N}"></span>なる区域<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N\subset \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>&#x2282;<!-- ⊂ --></mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N\subset \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb0ef3d25c3bfd10f69253e779e7def5089d556a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.84ex; height:2.176ex;" alt="{\displaystyle N\subset \Sigma }"></span>が存在する。</li> <li>The return写像はforward invariant cone fieldを認める</li> <li>この不変円錐場内のベクトルは、return写像の微分<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle DP}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle DP}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b747991601a5d83808f879e89ccf45115c3a8f84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.67ex; height:2.176ex;" alt="{\displaystyle DP}"></span>によって一様に拡大される。</li></ul> <p>第一段階では断面積<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span>が<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(\Sigma )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(\Sigma )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a721820809061373f127ff88e0430907e620bf8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.233ex; height:2.843ex;" alt="{\displaystyle P(\Sigma )}"></span>によって二つの弧に分割される事実を用いる<sup id="cite_ref-Viana_2000_33-1" class="reference"><a href="#cite_note-Viana_2000-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup>。タッカーはこの二つの弧を小さな長方形<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db421291be9d0103404ced7495b363437b67b6b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.564ex; height:2.509ex;" alt="{\displaystyle R_{i}}"></span>で覆い、これらの長方形の集合が<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>を与えることを考えた。このことを証明するためには、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>の全ての点が<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span>の中の<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span>に戻ってくるのをみれば良い。そのために、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span>の下方に<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b26be3e694314bc90c3215047e4a2010c6ee184a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.339ex; height:2.176ex;" alt="{\displaystyle h}"></span>という小さな距離で<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd6390f4c21bd4646a4e587d49c39adcd01d5c04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.363ex; height:2.509ex;" alt="{\displaystyle \Sigma &#039;}"></span>を想定し、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db421291be9d0103404ced7495b363437b67b6b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.564ex; height:2.509ex;" alt="{\displaystyle R_{i}}"></span>の中心<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01acb7953ba52c2aa44264b5d0f8fd223aa178a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.807ex; height:2.009ex;" alt="{\displaystyle c_{i}}"></span>とオイラーの積分法を用いて、点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01acb7953ba52c2aa44264b5d0f8fd223aa178a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.807ex; height:2.009ex;" alt="{\displaystyle c_{i}}"></span>からの流れが<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd6390f4c21bd4646a4e587d49c39adcd01d5c04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.363ex; height:2.509ex;" alt="{\displaystyle \Sigma &#039;}"></span>内に与える新たな点<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{i}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{i}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/62a9f2a411a34b170e6ce897d7e0b5320bf4c8cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:1.807ex; height:2.843ex;" alt="{\displaystyle c_{i}&#039;}"></span>を計算できる。そうしてテイラー展開によって<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span>内の点が<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma '}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> <mo>&#x2032;</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma '}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd6390f4c21bd4646a4e587d49c39adcd01d5c04" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.363ex; height:2.509ex;" alt="{\displaystyle \Sigma &#039;}"></span>内のどこに写されるかを知ることができる。これによって中心が<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01acb7953ba52c2aa44264b5d0f8fd223aa178a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.807ex; height:2.009ex;" alt="{\displaystyle c_{i}}"></span>で与えられる新たな長方形<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{i}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{i}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/875659c78c85a3e6252649f4ebaa9a63b0605bdf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.564ex; height:2.843ex;" alt="{\displaystyle R_{i}&#039;}"></span>が得られる。したがって<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db421291be9d0103404ced7495b363437b67b6b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.564ex; height:2.509ex;" alt="{\displaystyle R_{i}}"></span>内のすべての点は<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{i}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{i}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/875659c78c85a3e6252649f4ebaa9a63b0605bdf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.564ex; height:2.843ex;" alt="{\displaystyle R_{i}&#039;}"></span>の中に写される。あとは軌跡の流れが<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span>内に戻ってくるまでこの方法を再帰的に実行し、<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(R_{i})\subset Rf_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x2282;<!-- ⊂ --></mo> <mi>R</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(R_{i})\subset Rf_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dadf84b0f22f548dc26fcc91403bfec3437ccd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.92ex; height:2.843ex;" alt="{\displaystyle P(R_{i})\subset Rf_{i}}"></span>となる<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A3;<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span>に入る長方形<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Rf_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Rf_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a70861cad2b8dee97197ce41f59caae4e42a551" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.703ex; height:2.509ex;" alt="{\displaystyle Rf_{i}}"></span>を得れば良いのであるが、問題はこの工程を何度か繰り返すうちに推定が不正確になることである。そこでタッカーは<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{i}'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mo>&#x2032;</mo> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{i}'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/875659c78c85a3e6252649f4ebaa9a63b0605bdf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.564ex; height:2.843ex;" alt="{\displaystyle R_{i}&#039;}"></span>をより小さい長方形<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{i,j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{i,j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bb6f9df8716f0eb2d1e8bc277932500b81eb62b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.699ex; height:2.843ex;" alt="{\displaystyle R_{i,j}}"></span>に分割し、処理を再帰的に適応した。もう一つの問題は、このアルゴリズムを適用しているうちに、流れがより「水平」になってしまい<sup id="cite_ref-Viana_2000_33-2" class="reference"><a href="#cite_note-Viana_2000-33"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup>、不正確さが飛躍的に増大することで、これを防ぐためにはアルゴリズムでは断面の向きを変え、水平または垂直になるようにする必要があった。 </p> <div class="mw-heading mw-heading2"><h2 id="ギャラリー"><span id=".E3.82.AE.E3.83.A3.E3.83.A9.E3.83.AA.E3.83.BC"></span>ギャラリー</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=12" title="節を編集: ギャラリー"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul class="gallery mw-gallery-traditional"> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_system_r28_s10_b2-6666.png" class="mw-file-description" title="A solution in the xz平面で描写された高解像度のローレンツアトラクター"><img alt="A solution in the xz平面で描写された高解像度のローレンツアトラクター" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Lorenz_system_r28_s10_b2-6666.png/120px-Lorenz_system_r28_s10_b2-6666.png" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/71/Lorenz_system_r28_s10_b2-6666.png/180px-Lorenz_system_r28_s10_b2-6666.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/71/Lorenz_system_r28_s10_b2-6666.png/240px-Lorenz_system_r28_s10_b2-6666.png 2x" data-file-width="2048" data-file-height="2048" /></a></span></div> <div class="gallerytext">A solution in the <span lang="en" class="texhtml mvar" style="font-style:italic;">xz</span>平面で描写された高解像度のローレンツアトラクター</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_attractor.svg" class="mw-file-description" title="SVGでレンダリングされたローレンツアトラクター"><img alt="SVGでレンダリングされたローレンツアトラクター" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Lorenz_attractor.svg/120px-Lorenz_attractor.svg.png" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Lorenz_attractor.svg/180px-Lorenz_attractor.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f4/Lorenz_attractor.svg/240px-Lorenz_attractor.svg.png 2x" data-file-width="750" data-file-height="750" /></a></span></div> <div class="gallerytext"><a href="/wiki/Scalable_Vector_Graphics" title="Scalable Vector Graphics">SVG</a>でレンダリングされたローレンツアトラクター</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><span><video id="mwe_player_0" poster="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/A_Lorenz_system.ogv/120px--A_Lorenz_system.ogv.jpg" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="120" height="120" data-durationhint="54" data-mwtitle="A_Lorenz_system.ogv" data-mwprovider="wikimediacommons"><source src="//upload.wikimedia.org/wikipedia/commons/e/ea/A_Lorenz_system.ogv" type="video/ogg; codecs=&quot;theora&quot;" data-width="400" data-height="400" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/e/ea/A_Lorenz_system.ogv/A_Lorenz_system.ogv.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="144" data-height="144" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/e/ea/A_Lorenz_system.ogv/A_Lorenz_system.ogv.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="240p.vp9.webm" data-width="240" data-height="240" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/e/ea/A_Lorenz_system.ogv/A_Lorenz_system.ogv.360p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="360p.vp9.webm" data-width="360" data-height="360" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/e/ea/A_Lorenz_system.ogv/A_Lorenz_system.ogv.360p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-transcodekey="360p.webm" data-width="360" data-height="360" /></video></span></span></div> <div class="gallerytext">ローレンツ方程式での複数の軌跡のアニメーション</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenzstill-rubel.png" class="mw-file-description" title="金属製ワイヤーで製作されたローレンツアトラクターの3Dモデル"><img alt="金属製ワイヤーで製作されたローレンツアトラクターの3Dモデル" src="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Lorenzstill-rubel.png/120px-Lorenzstill-rubel.png" decoding="async" width="120" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Lorenzstill-rubel.png/180px-Lorenzstill-rubel.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/a/a0/Lorenzstill-rubel.png/240px-Lorenzstill-rubel.png 2x" data-file-width="1920" data-file-height="1440" /></a></span></div> <div class="gallerytext">金属製ワイヤーで製作されたローレンツアトラクターの3Dモデル</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><span><video id="mwe_player_1" poster="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Lorenz.ogv/120px--Lorenz.ogv.jpg" controls="" preload="none" data-mw-tmh="" class="mw-file-element" width="120" height="96" data-durationhint="48" data-mwtitle="Lorenz.ogv" data-mwprovider="wikimediacommons"><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9c/Lorenz.ogv/Lorenz.ogv.480p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="480p.vp9.webm" data-width="600" data-height="480" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9c/Lorenz.ogv/Lorenz.ogv.720p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="720p.vp9.webm" data-width="900" data-height="720" /><source src="//upload.wikimedia.org/wikipedia/commons/9/9c/Lorenz.ogv" type="video/ogg; codecs=&quot;theora&quot;" data-width="1000" data-height="800" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9c/Lorenz.ogv/Lorenz.ogv.144p.mjpeg.mov" type="video/quicktime" data-transcodekey="144p.mjpeg.mov" data-width="180" data-height="144" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9c/Lorenz.ogv/Lorenz.ogv.240p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="240p.vp9.webm" data-width="300" data-height="240" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9c/Lorenz.ogv/Lorenz.ogv.360p.webm" type="video/webm; codecs=&quot;vp8, vorbis&quot;" data-transcodekey="360p.webm" data-width="450" data-height="360" /><source src="//upload.wikimedia.org/wikipedia/commons/transcoded/9/9c/Lorenz.ogv/Lorenz.ogv.360p.vp9.webm" type="video/webm; codecs=&quot;vp9, opus&quot;" data-transcodekey="360p.vp9.webm" data-width="450" data-height="360" /></video></span></span></div> <div class="gallerytext">ローレンツ系の近傍解の発散を示すアニメーション</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Intermittent_Lorenz_Attractor_-_Chaoscope.jpg" class="mw-file-description" title="断続的なサイクルにあるローレンツアトラクターを可視化したもの"><img alt="断続的なサイクルにあるローレンツアトラクターを可視化したもの" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/20/Intermittent_Lorenz_Attractor_-_Chaoscope.jpg/120px-Intermittent_Lorenz_Attractor_-_Chaoscope.jpg" decoding="async" width="120" height="120" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/20/Intermittent_Lorenz_Attractor_-_Chaoscope.jpg/180px-Intermittent_Lorenz_Attractor_-_Chaoscope.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/20/Intermittent_Lorenz_Attractor_-_Chaoscope.jpg/240px-Intermittent_Lorenz_Attractor_-_Chaoscope.jpg 2x" data-file-width="500" data-file-height="500" /></a></span></div> <div class="gallerytext">断続的なサイクルにあるローレンツアトラクターを可視化したもの</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_apparition_small.gif" class="mw-file-description" title="ローレンツ系における2つの流線(ρ = 0 から ρ = 28, σ = 10, β = 8/3)"><img alt="ローレンツ系における2つの流線(ρ = 0 から ρ = 28, σ = 10, β = 8/3)" src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Lorenz_apparition_small.gif/120px-Lorenz_apparition_small.gif" decoding="async" width="120" height="67" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Lorenz_apparition_small.gif/180px-Lorenz_apparition_small.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Lorenz_apparition_small.gif/240px-Lorenz_apparition_small.gif 2x" data-file-width="625" data-file-height="351" /></a></span></div> <div class="gallerytext">ローレンツ系における2つの流線(<span lang="en" class="texhtml"><i>ρ</i> = 0</span> から <span lang="en" class="texhtml"><i>ρ</i> = 28</span>, <span lang="en" class="texhtml"><i>σ</i> = 10</span>, <span lang="en" class="texhtml"><i>β</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r89142261"><span role="math" class="sfrac tion"><span class="num">8</span><span class="sr-only">/</span><span class="den">3</span></span></span>)</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz(rho).gif" class="mw-file-description" title="ローレンツ系のρ依存性のアニメーション"><img alt="ローレンツ系のρ依存性のアニメーション" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Lorenz%28rho%29.gif/120px-Lorenz%28rho%29.gif" decoding="async" width="120" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Lorenz%28rho%29.gif/180px-Lorenz%28rho%29.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/92/Lorenz%28rho%29.gif/240px-Lorenz%28rho%29.gif 2x" data-file-width="640" data-file-height="480" /></a></span></div> <div class="gallerytext">ローレンツ系の<span lang="en" class="texhtml"><i>ρ</i></span>依存性のアニメーション</div> </li> <li class="gallerybox" style="width: 155px"> <div class="thumb" style="width: 150px; height: 150px;"><span typeof="mw:File"><a href="/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Lorenz_Attractor_Brain_Dynamics_Toolbox.gif" class="mw-file-description" title="Brain Dynamics Toolboxのローレンツアトラクターのアニメーション[34]"><img alt="Brain Dynamics Toolboxのローレンツアトラクターのアニメーション[34]" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Lorenz_Attractor_Brain_Dynamics_Toolbox.gif/120px-Lorenz_Attractor_Brain_Dynamics_Toolbox.gif" decoding="async" width="120" height="90" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Lorenz_Attractor_Brain_Dynamics_Toolbox.gif/180px-Lorenz_Attractor_Brain_Dynamics_Toolbox.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f8/Lorenz_Attractor_Brain_Dynamics_Toolbox.gif/240px-Lorenz_Attractor_Brain_Dynamics_Toolbox.gif 2x" data-file-width="533" data-file-height="400" /></a></span></div> <div class="gallerytext">Brain Dynamics Toolboxのローレンツアトラクターのアニメーション<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup></div> </li> </ul> <div class="mw-heading mw-heading2"><h2 id="関連項目"><span id=".E9.96.A2.E9.80.A3.E9.A0.85.E7.9B.AE"></span>関連項目</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=13" title="節を編集: 関連項目"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%E3%83%90%E3%82%BF%E3%83%95%E3%83%A9%E3%82%A4%E5%8A%B9%E6%9E%9C" title="バタフライ効果">バタフライ効果</a></li> <li><a href="/wiki/%E3%82%AB%E3%82%AA%E3%82%B9%E7%90%86%E8%AB%96" title="カオス理論">カオス理論</a></li> <li><a href="/wiki/%E3%83%AD%E3%82%B8%E3%82%B9%E3%83%86%E3%82%A3%E3%83%83%E3%82%AF%E6%96%B9%E7%A8%8B%E5%BC%8F" title="ロジスティック方程式">ロジスティック方程式</a></li> <li><a href="/wiki/%E3%83%AC%E3%82%B9%E3%83%A9%E3%83%BC%E6%96%B9%E7%A8%8B%E5%BC%8F" title="レスラー方程式">レスラー方程式</a></li> <li><a href="/wiki/%E5%B8%B8%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E5%BC%8F" title="常微分方程式">常微分方程式</a></li> <li><a href="https://en.wikipedia.org/wiki/Eden%27s_conjecture" class="extiw" title="w:Eden&#39;s conjecture">Eden's conjecture</a> on the Lyapunov dimension</li> <li><a href="https://en.wikipedia.org/wiki/Lorenz_96_model" class="extiw" title="w:Lorenz 96 model">Lorenz 96 model</a></li> <li><a href="https://en.wikipedia.org/wiki/List_of_chaotic_maps" class="extiw" title="w:List of chaotic maps">List of chaotic maps</a></li> <li><a href="https://en.wikipedia.org/wiki/Takens%27_theorem" class="extiw" title="w:Takens&#39; theorem">Takens' theorem</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="脚注"><span id=".E8.84.9A.E6.B3.A8"></span>脚注</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=14" title="節を編集: 脚注"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist" style="-moz-column-count:auto; -webkit-column-count:auto; column-count:auto; -moz-column-width: 30em; -webkit-column-width: 30em; column-width: 30em; list-style-type: decimal;"> <ol class="references"> <li id="cite_note-1"><b><a href="#cite_ref-1">^</a></b> <span class="reference-text"><a href="#CITEREFLorenz1960">Lorenz (1960)</a></span> </li> <li id="cite_note-lorenz-2">^ <a href="#cite_ref-lorenz_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-lorenz_2-1"><sup><i><b>b</b></i></sup></a> <span class="reference-text"><a href="#CITEREFLorenz1963">Lorenz (1963)</a></span> </li> <li id="cite_note-Sparrow_1982-3"><b><a href="#cite_ref-Sparrow_1982_3-0">^</a></b> <span class="reference-text"><a href="#CITEREFSparrow1982">Sparrow (1982)</a></span> </li> <li id="cite_note-4"><b><a href="#cite_ref-4">^</a></b> <span class="reference-text"><a href="#CITEREFHaken1975">Haken (1975)</a></span> </li> <li id="cite_note-5"><b><a href="#cite_ref-5">^</a></b> <span class="reference-text"><a href="#CITEREFKnobloch1981">Knobloch (1981)</a></span> </li> <li id="cite_note-6"><b><a href="#cite_ref-6">^</a></b> <span class="reference-text"><a href="#CITEREFGormanWidmannRobbins1986">Gorman, Widmann &amp; Robbins (1986)</a></span> </li> <li id="cite_note-7"><b><a href="#cite_ref-7">^</a></b> <span class="reference-text"><a href="#CITEREFHemati1994">Hemati (1994)</a></span> </li> <li id="cite_note-8"><b><a href="#cite_ref-8">^</a></b> <span class="reference-text"><a href="#CITEREFCuomoOppenheim1993">Cuomo &amp; Oppenheim (1993)</a></span> </li> <li id="cite_note-9"><b><a href="#cite_ref-9">^</a></b> <span class="reference-text"><a href="#CITEREFPoland1993">Poland (1993)</a></span> </li> <li id="cite_note-10"><b><a href="#cite_ref-10">^</a></b> <span class="reference-text"><a href="#CITEREFTzenov2014">Tzenov (2014)</a><sup class="noprint Template-Fact">&#91;<i><a href="/wiki/Wikipedia:%E3%80%8C%E8%A6%81%E5%87%BA%E5%85%B8%E3%80%8D%E3%82%92%E3%82%AF%E3%83%AA%E3%83%83%E3%82%AF%E3%81%95%E3%82%8C%E3%81%9F%E6%96%B9%E3%81%B8" title="Wikipedia:「要出典」をクリックされた方へ"><span title="この記述には信頼できる情報源の提示が求められています。(June 2017)">要出典</span></a></i>&#93;</sup></span> </li> <li id="cite_note-11"><b><a href="#cite_ref-11">^</a></b> <span class="reference-text"><a href="#CITEREFKolářGumbs1992">Kolář &amp; Gumbs (1992)</a></span> </li> <li id="cite_note-12"><b><a href="#cite_ref-12">^</a></b> <span class="reference-text"><a href="#CITEREFMishraSanghi2006">Mishra &amp; Sanghi (2006)</a></span> </li> <li id="cite_note-13"><b><a href="#cite_ref-13">^</a></b> <span class="reference-text"><a href="#CITEREFHirschSmaleDevaney2003">Hirsch, Smale &amp; Devaney (2003)</a>, pp.303-305</span> </li> <li id="cite_note-14"><b><a href="#cite_ref-14">^</a></b> <span class="reference-text"><a href="#CITEREFHirschSmaleDevaney2003">Hirsch, Smale &amp; Devaney (2003)</a>, pp.306+307</span> </li> <li id="cite_note-15"><b><a href="#cite_ref-15">^</a></b> <span class="reference-text"><a href="#CITEREFHirschSmaleDevaney2003">Hirsch, Smale &amp; Devaney (2003)</a>, pp. 307–308</span> </li> <li id="cite_note-Kuznetsov-2020-ND-16">^ <a href="#cite_ref-Kuznetsov-2020-ND_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kuznetsov-2020-ND_16-1"><sup><i><b>b</b></i></sup></a> <span class="reference-text"><cite style="font-style:normal" class="citation journal">Kuznetsov,&#32;N.V.&#59;&#32;Mokaev,&#32;T.N.&#59;&#32;Kuznetsova,&#32;O.A.&#59;&#32;Kudryashova,&#32;E.V.&#32;(2020).&#32;“The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension”.&#32;<i>Nonlinear Dynamics</i>&#32;<b>102</b>&#32;(2): 713–732.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11071-020-05856-4">10.1007/s11071-020-05856-4</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+Lorenz+system%3A+hidden+boundary+of+practical+stability+and+the+Lyapunov+dimension&amp;rft.jtitle=Nonlinear+Dynamics&amp;rft.aulast=Kuznetsov&amp;rft.aufirst=N.V.&amp;rft.au=Kuznetsov%2C%26%2332%3BN.V.&amp;rft.au=Mokaev%2C%26%2332%3BT.N.&amp;rft.au=Kuznetsova%2C%26%2332%3BO.A.&amp;rft.au=Kudryashova%2C%26%2332%3BE.V.&amp;rft.date=2020&amp;rft.volume=102&amp;rft.issue=2&amp;rft.pages=713%E2%80%93732&amp;rft_id=info:doi/10.1007%2Fs11071-020-05856-4&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-17"><b><a href="#cite_ref-17">^</a></b> <span class="reference-text"><a href="#CITEREFGrassbergerProcaccia1983">Grassberger &amp; Procaccia (1983)</a></span> </li> <li id="cite_note-18"><b><a href="#cite_ref-18">^</a></b> <span class="reference-text"><a href="#CITEREFLeonovKuznetsovKorzhemanovaKusakin2016">Leonov et al. (2016)</a></span> </li> <li id="cite_note-2020-KuznetsovR-19"><b><a href="#cite_ref-2020-KuznetsovR_19-0">^</a></b> <span class="reference-text"><cite style="font-style:normal" class="citation book">Kuznetsov,&#32;Nikolay&#59;&#32;Reitmann,&#32;Volker&#32;(2021).&#32;<a rel="nofollow" class="external text" href="https://www.springer.com/gp/book/9783030509866"><i>Attractor Dimension Estimates for Dynamical Systems: Theory and Computation</i></a>.&#32;Cham:&#32;Springer<span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="https://www.springer.com/gp/book/9783030509866">https://www.springer.com/gp/book/9783030509866</a></span></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Attractor+Dimension+Estimates+for+Dynamical+Systems%3A+Theory+and+Computation&amp;rft.aulast=Kuznetsov&amp;rft.aufirst=Nikolay&amp;rft.au=Kuznetsov%2C%26%2332%3BNikolay&amp;rft.au=Reitmann%2C%26%2332%3BVolker&amp;rft.date=2021&amp;rft.place=Cham&amp;rft.pub=Springer&amp;rft_id=https%3A%2F%2Fwww.springer.com%2Fgp%2Fbook%2F9783030509866&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-20"><b><a href="#cite_ref-20">^</a></b> <span class="reference-text"><cite style="font-style:normal" class="citation journal">Guckenheimer,&#32;John&#59;&#32;Williams,&#32;R. F.&#32;(1979-12-01).&#32;<a rel="nofollow" class="external text" href="http://www.numdam.org/item/PMIHES_1979__50__59_0/">“Structural stability of Lorenz attractors”</a>.&#32;<i>Publications Mathématiques de l'Institut des Hautes Études Scientifiques</i>&#32;<b>50</b>&#32;(1): 59–72.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02684769">10.1007/BF02684769</a>.&#32;<style data-mw-deduplicate="TemplateStyles:r101121245">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation.cs-ja1 q,.mw-parser-output .citation.cs-ja2 q{quotes:"「""」""『""』"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:var(--color-success,#3a3);margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><a href="/wiki/ISSN" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/ja/search?fq=x0:jrnl&amp;q=n2:0073-8301">0073-8301</a><span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="http://www.numdam.org/item/PMIHES_1979__50__59_0/">http://www.numdam.org/item/PMIHES_1979__50__59_0/</a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Structural+stability+of+Lorenz+attractors&amp;rft.jtitle=Publications+Math%C3%A9matiques+de+l%27Institut+des+Hautes+%C3%89tudes+Scientifiques&amp;rft.aulast=Guckenheimer&amp;rft.aufirst=John&amp;rft.au=Guckenheimer%2C%26%2332%3BJohn&amp;rft.au=Williams%2C%26%2332%3BR.+F.&amp;rft.date=1979-12-01&amp;rft.volume=50&amp;rft.issue=1&amp;rft.pages=59%E2%80%9372&amp;rft_id=info:doi/10.1007%2FBF02684769&amp;rft.issn=0073-8301&amp;rft_id=http%3A%2F%2Fwww.numdam.org%2Fitem%2FPMIHES_1979&#95;_50&#95;_59_0%2F&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-Tucker_2002-21">^ <a href="#cite_ref-Tucker_2002_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Tucker_2002_21-1"><sup><i><b>b</b></i></sup></a> <span class="reference-text"><a href="#CITEREFTucker2002">Tucker (2002)</a></span> </li> <li id="cite_note-:0-22">^ <a href="#cite_ref-:0_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_22-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_22-2"><sup><i><b>c</b></i></sup></a> <span class="reference-text"><cite style="font-style:normal" class="citation journal">Shen,&#32;Bo-Wen&#32;(2019-03-01).&#32;<a rel="nofollow" class="external text" href="https://www.worldscientific.com/doi/abs/10.1142/S0218127419500378">“Aggregated Negative Feedback in a Generalized Lorenz Model”</a>.&#32;<i>International Journal of Bifurcation and Chaos</i>&#32;<b>29</b>&#32;(3): 1950037–1950091.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019IJBC...2950037S/abstract">2019IJBC...2950037S</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2FS0218127419500378">10.1142/S0218127419500378</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISSN" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/ja/search?fq=x0:jrnl&amp;q=n2:0218-1274">0218-1274</a><span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="https://www.worldscientific.com/doi/abs/10.1142/S0218127419500378">https://www.worldscientific.com/doi/abs/10.1142/S0218127419500378</a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Aggregated+Negative+Feedback+in+a+Generalized+Lorenz+Model&amp;rft.jtitle=International+Journal+of+Bifurcation+and+Chaos&amp;rft.aulast=Shen&amp;rft.aufirst=Bo-Wen&amp;rft.au=Shen%2C%26%2332%3BBo-Wen&amp;rft.date=2019-03-01&amp;rft.volume=29&amp;rft.issue=3&amp;rft.pages=1950037%E2%80%931950091&amp;rft_id=info:bibcode/2019IJBC...2950037S&amp;rft_id=info:doi/10.1142%2FS0218127419500378&amp;rft.issn=0218-1274&amp;rft_id=https%3A%2F%2Fwww.worldscientific.com%2Fdoi%2Fabs%2F10.1142%2FS0218127419500378&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-:1-23">^ <a href="#cite_ref-:1_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_23-1"><sup><i><b>b</b></i></sup></a> <span class="reference-text"><cite style="font-style:normal" class="citation journal">Shen,&#32;Bo-Wen&#32;(2014-04-28).&#32;<a rel="nofollow" class="external text" href="https://doi.org/10.1175/jas-d-13-0223.1">“Nonlinear Feedback in a Five-Dimensional Lorenz Model”</a>.&#32;<i>Journal of the Atmospheric Sciences</i>&#32;<b>71</b>&#32;(5): 1701–1723.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014JAtS...71.1701S/abstract">2014JAtS...71.1701S</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1175%2Fjas-d-13-0223.1">10.1175/jas-d-13-0223.1</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISSN" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/ja/search?fq=x0:jrnl&amp;q=n2:0022-4928">0022-4928</a><span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="https://doi.org/10.1175/jas-d-13-0223.1">https://doi.org/10.1175/jas-d-13-0223.1</a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Nonlinear+Feedback+in+a+Five-Dimensional+Lorenz+Model&amp;rft.jtitle=Journal+of+the+Atmospheric+Sciences&amp;rft.aulast=Shen&amp;rft.aufirst=Bo-Wen&amp;rft.au=Shen%2C%26%2332%3BBo-Wen&amp;rft.date=2014-04-28&amp;rft.volume=71&amp;rft.issue=5&amp;rft.pages=1701%E2%80%931723&amp;rft_id=info:bibcode/2014JAtS...71.1701S&amp;rft_id=info:doi/10.1175%2Fjas-d-13-0223.1&amp;rft.issn=0022-4928&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1175%2Fjas-d-13-0223.1&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-名前なし-20231105133406-24">^ <a href="#cite_ref-名前なし-20231105133406_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-名前なし-20231105133406_24-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-名前なし-20231105133406_24-2"><sup><i><b>c</b></i></sup></a> <span class="reference-text"><a href="#CITEREFLorenz1963">Lorenz (1963)</a></span> </li> <li id="cite_note-25"><b><a href="#cite_ref-25">^</a></b> <span class="reference-text"><a href="#CITEREFSaltzman1962">Saltzman (1962)</a></span> </li> <li id="cite_note-26"><b><a href="#cite_ref-26">^</a></b> <span class="reference-text"><cite style="font-style:normal" class="citation journal">Shen,&#32;B.-W.&#32;(2015-12-21).&#32;<a rel="nofollow" class="external text" href="https://npg.copernicus.org/articles/22/749/2015/">“Nonlinear feedback in a six-dimensional Lorenz model: impact of an additional heating term”</a>&#32;(英語).&#32;<i>Nonlinear Processes in Geophysics</i>&#32;<b>22</b>&#32;(6): 749–764.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NPGeo..22..749S/abstract">2015NPGeo..22..749S</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5194%2Fnpg-22-749-2015">10.5194/npg-22-749-2015</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISSN" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/ja/search?fq=x0:jrnl&amp;q=n2:1607-7946">1607-7946</a><span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="https://npg.copernicus.org/articles/22/749/2015/">https://npg.copernicus.org/articles/22/749/2015/</a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Nonlinear+feedback+in+a+six-dimensional+Lorenz+model%3A+impact+of+an+additional+heating+term&amp;rft.jtitle=Nonlinear+Processes+in+Geophysics&amp;rft.aulast=Shen&amp;rft.aufirst=B.-W.&amp;rft.au=Shen%2C%26%2332%3BB.-W.&amp;rft.date=2015-12-21&amp;rft.volume=22&amp;rft.issue=6&amp;rft.pages=749%E2%80%93764&amp;rft_id=info:bibcode/2015NPGeo..22..749S&amp;rft_id=info:doi/10.5194%2Fnpg-22-749-2015&amp;rft.issn=1607-7946&amp;rft_id=https%3A%2F%2Fnpg.copernicus.org%2Farticles%2F22%2F749%2F2015%2F&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-27"><b><a href="#cite_ref-27">^</a></b> <span class="reference-text"><cite style="font-style:normal" class="citation journal">Ghil,&#32;Michael&#59;&#32;Read,&#32;Peter&#59;&#32;Smith,&#32;Leonard&#32;(2010-07-23).&#32;<a rel="nofollow" class="external text" href="https://doi.org/10.1111/j.1468-4004.2010.51428.x">“Geophysical flows as dynamical systems: the influence of Hide's experiments”</a>.&#32;<i>Astronomy &amp; Geophysics</i>&#32;<b>51</b>&#32;(4): 4.28–4.35.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2010A&amp;G....51d..28G/abstract">2010A&amp;G....51d..28G</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1111%2Fj.1468-4004.2010.51428.x">10.1111/j.1468-4004.2010.51428.x</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISSN" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/ja/search?fq=x0:jrnl&amp;q=n2:1366-8781">1366-8781</a><span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="https://doi.org/10.1111/j.1468-4004.2010.51428.x">https://doi.org/10.1111/j.1468-4004.2010.51428.x</a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Geophysical+flows+as+dynamical+systems%3A+the+influence+of+Hide%27s+experiments&amp;rft.jtitle=Astronomy+%26+Geophysics&amp;rft.aulast=Ghil&amp;rft.aufirst=Michael&amp;rft.au=Ghil%2C%26%2332%3BMichael&amp;rft.au=Read%2C%26%2332%3BPeter&amp;rft.au=Smith%2C%26%2332%3BLeonard&amp;rft.date=2010-07-23&amp;rft.volume=51&amp;rft.issue=4&amp;rft.pages=4.28%E2%80%934.35&amp;rft_id=info:bibcode/2010A%26G....51d..28G&amp;rft_id=info:doi/10.1111%2Fj.1468-4004.2010.51428.x&amp;rft.issn=1366-8781&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1111%2Fj.1468-4004.2010.51428.x&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-28"><b><a href="#cite_ref-28">^</a></b> <span class="reference-text"><cite style="font-style:normal" class="citation book">Read,&#32;P.&#32;(1993).&#32;<i>Application of Chaos to Meteorology and Climate. In The Nature of Chaos; Mullin, T., Ed</i>.&#32;Oxford, UK:&#32;Oxford Science Publications.&#32;pp.&#160;220–260.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/%E7%89%B9%E5%88%A5:%E6%96%87%E7%8C%AE%E8%B3%87%E6%96%99/0198539541" title="特別:文献資料/0198539541">0198539541</a></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Application+of+Chaos+to+Meteorology+and+Climate.+In+The+Nature+of+Chaos%3B+Mullin%2C+T.%2C+Ed&amp;rft.aulast=Read&amp;rft.aufirst=P.&amp;rft.au=Read%2C%26%2332%3BP.&amp;rft.date=1993&amp;rft.pages=pp.%26nbsp%3B220%E2%80%93260&amp;rft.place=Oxford%2C+UK&amp;rft.pub=Oxford+Science+Publications&amp;rft.isbn=0198539541&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-:2-29">^ <a href="#cite_ref-:2_29-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:2_29-1"><sup><i><b>b</b></i></sup></a> <span class="reference-text"><cite style="font-style:normal" class="citation journal">Shen,&#32;Bo-Wen&#59;&#32;Pielke,&#32;Roger&#59;&#32;Zeng,&#32;Xubin&#59;&#32;Cui,&#32;Jialin&#59;&#32;Faghih-Naini,&#32;Sara&#59;&#32;Paxson,&#32;Wei&#59;&#32;Kesarkar,&#32;Amit&#59;&#32;Zeng,&#32;Xiping&#32;et al.&#32;(2022-11-12).&#32;“The Dual Nature of Chaos and Order in the Atmosphere”&#32;(英語).&#32;<i>Atmosphere</i>&#32;<b>13</b>&#32;(11): 1892.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022Atmos..13.1892S/abstract">2022Atmos..13.1892S</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fatmos13111892">10.3390/atmos13111892</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISSN" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/ja/search?fq=x0:jrnl&amp;q=n2:2073-4433">2073-4433</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+Dual+Nature+of+Chaos+and+Order+in+the+Atmosphere&amp;rft.jtitle=Atmosphere&amp;rft.aulast=Shen&amp;rft.aufirst=Bo-Wen&amp;rft.au=Shen%2C%26%2332%3BBo-Wen&amp;rft.au=Pielke%2C%26%2332%3BRoger&amp;rft.au=Zeng%2C%26%2332%3BXubin&amp;rft.au=Cui%2C%26%2332%3BJialin&amp;rft.au=Faghih-Naini%2C%26%2332%3BSara&amp;rft.au=Paxson%2C%26%2332%3BWei&amp;rft.au=Kesarkar%2C%26%2332%3BAmit&amp;rft.au=Zeng%2C%26%2332%3BXiping&amp;rft.au=Atlas%2C%26%2332%3BRobert&amp;rft.date=2022-11-12&amp;rft.volume=13&amp;rft.issue=11&amp;rft.pages=1892&amp;rft_id=info:bibcode/2022Atmos..13.1892S&amp;rft_id=info:doi/10.3390%2Fatmos13111892&amp;rft.issn=2073-4433&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-30"><b><a href="#cite_ref-30">^</a></b> <span class="reference-text"><cite style="font-style:normal" class="citation journal">Yorke,&#32;James A.&#59;&#32;Yorke,&#32;Ellen D.&#32;(1979-09-01).&#32;<a rel="nofollow" class="external text" href="https://doi.org/10.1007/BF01011469">“Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model”</a>&#32;(英語).&#32;<i>Journal of Statistical Physics</i>&#32;<b>21</b>&#32;(3): 263–277.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1979JSP....21..263Y/abstract">1979JSP....21..263Y</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01011469">10.1007/BF01011469</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISSN" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/ja/search?fq=x0:jrnl&amp;q=n2:1572-9613">1572-9613</a><span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="https://doi.org/10.1007/BF01011469">https://doi.org/10.1007/BF01011469</a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Metastable+chaos%3A+The+transition+to+sustained+chaotic+behavior+in+the+Lorenz+model&amp;rft.jtitle=Journal+of+Statistical+Physics&amp;rft.aulast=Yorke&amp;rft.aufirst=James+A.&amp;rft.au=Yorke%2C%26%2332%3BJames+A.&amp;rft.au=Yorke%2C%26%2332%3BEllen+D.&amp;rft.date=1979-09-01&amp;rft.volume=21&amp;rft.issue=3&amp;rft.pages=263%E2%80%93277&amp;rft_id=info:bibcode/1979JSP....21..263Y&amp;rft_id=info:doi/10.1007%2FBF01011469&amp;rft.issn=1572-9613&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2FBF01011469&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-31"><b><a href="#cite_ref-31">^</a></b> <span class="reference-text"><cite style="font-style:normal" class="citation" id="CITEREFShenPielkeZengBaik2021">Shen,&#32;Bo-Wen&#59;&#32;Pielke,&#32;R. A.&#59;&#32;Zeng,&#32;X.&#59;&#32;Baik,&#32;J.-J.&#59;&#32;Faghih-Naini,&#32;S.&#59;&#32;Cui,&#32;J.&#59;&#32;Atlas,&#32;R.&#59;&#32;Reyes,&#32;T. A. L.&#32;(2021),&#32;Skiadas, Christos H.&#59;&#32;Dimotikalis, Yiannis,&#32;eds.,&#32;<a rel="nofollow" class="external text" href="https://link.springer.com/10.1007/978-3-030-70795-8_57">“Is Weather Chaotic? Coexisting Chaotic and Non-chaotic Attractors Within Lorenz Models”</a>&#32;(英語),&#32;<i>13th Chaotic Modeling and Simulation International Conference</i>&#32;(Cham: Springer International Publishing): pp.&#160;805–825,&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-030-70795-8_57">10.1007/978-3-030-70795-8_57</a>,&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/%E7%89%B9%E5%88%A5:%E6%96%87%E7%8C%AE%E8%B3%87%E6%96%99/978-3-030-70794-1" title="特別:文献資料/978-3-030-70794-1">978-3-030-70794-1</a><span style="display:none;">,&#32;<a rel="nofollow" class="external free" href="https://link.springer.com/10.1007/978-3-030-70795-8_57">https://link.springer.com/10.1007/978-3-030-70795-8_57</a></span>&#32;<span class="reference-accessdate"><span title="">2022年12月22日</span>閲覧。</span></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Is+Weather+Chaotic%3F+Coexisting+Chaotic+and+Non-chaotic+Attractors+Within+Lorenz+Models&amp;rft.jtitle=13th+Chaotic+Modeling+and+Simulation+International+Conference&amp;rft.aulast=Shen&amp;rft.aufirst=Bo-Wen&amp;rft.au=Shen%2C%26%2332%3BBo-Wen&amp;rft.au=Pielke%2C%26%2332%3BR.+A.&amp;rft.au=Zeng%2C%26%2332%3BX.&amp;rft.au=Baik%2C%26%2332%3BJ.-J.&amp;rft.au=Faghih-Naini%2C%26%2332%3BS.&amp;rft.au=Cui%2C%26%2332%3BJ.&amp;rft.au=Atlas%2C%26%2332%3BR.&amp;rft.au=Reyes%2C%26%2332%3BT.+A.+L.&amp;rft.date=2021&amp;rft.pages=pp.%26nbsp%3B805%E2%80%93825&amp;rft.place=Cham&amp;rft.pub=Springer+International+Publishing&amp;rft_id=info:doi/10.1007%2F978-3-030-70795-8_57&amp;rft.isbn=978-3-030-70794-1&amp;rft_id=https%3A%2F%2Flink.springer.com%2F10.1007%2F978-3-030-70795-8_57&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-32"><b><a href="#cite_ref-32">^</a></b> <span class="reference-text"><cite style="font-style:normal" class="citation journal">Shen,&#32;Bo-Wen&#59;&#32;Pielke,&#32;Roger A.&#59;&#32;Zeng,&#32;Xubin&#59;&#32;Baik,&#32;Jong-Jin&#59;&#32;Faghih-Naini,&#32;Sara&#59;&#32;Cui,&#32;Jialin&#59;&#32;Atlas,&#32;Robert&#32;(2021-01-01).&#32;<a rel="nofollow" class="external text" href="https://journals.ametsoc.org/view/journals/bams/102/1/BAMS-D-19-0165.1.xml">“Is Weather Chaotic?: Coexistence of Chaos and Order within a Generalized Lorenz Model”</a>&#32;(英語).&#32;<i>Bulletin of the American Meteorological Society</i>&#32;<b>102</b>&#32;(1): E148–E158.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2021BAMS..102E.148S/abstract">2021BAMS..102E.148S</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1175%2FBAMS-D-19-0165.1">10.1175/BAMS-D-19-0165.1</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISSN" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/ja/search?fq=x0:jrnl&amp;q=n2:0003-0007">0003-0007</a><span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="https://journals.ametsoc.org/view/journals/bams/102/1/BAMS-D-19-0165.1.xml">https://journals.ametsoc.org/view/journals/bams/102/1/BAMS-D-19-0165.1.xml</a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Is+Weather+Chaotic%3F%3A+Coexistence+of+Chaos+and+Order+within+a+Generalized+Lorenz+Model&amp;rft.jtitle=Bulletin+of+the+American+Meteorological+Society&amp;rft.aulast=Shen&amp;rft.aufirst=Bo-Wen&amp;rft.au=Shen%2C%26%2332%3BBo-Wen&amp;rft.au=Pielke%2C%26%2332%3BRoger+A.&amp;rft.au=Zeng%2C%26%2332%3BXubin&amp;rft.au=Baik%2C%26%2332%3BJong-Jin&amp;rft.au=Faghih-Naini%2C%26%2332%3BSara&amp;rft.au=Cui%2C%26%2332%3BJialin&amp;rft.au=Atlas%2C%26%2332%3BRobert&amp;rft.date=2021-01-01&amp;rft.volume=102&amp;rft.issue=1&amp;rft.pages=E148%E2%80%93E158&amp;rft_id=info:bibcode/2021BAMS..102E.148S&amp;rft_id=info:doi/10.1175%2FBAMS-D-19-0165.1&amp;rft.issn=0003-0007&amp;rft_id=https%3A%2F%2Fjournals.ametsoc.org%2Fview%2Fjournals%2Fbams%2F102%2F1%2FBAMS-D-19-0165.1.xml&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></span> </li> <li id="cite_note-Viana_2000-33">^ <a href="#cite_ref-Viana_2000_33-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Viana_2000_33-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Viana_2000_33-2"><sup><i><b>c</b></i></sup></a> <span class="reference-text"><a href="#CITEREFViana2000">Viana (2000)</a></span> </li> <li id="cite_note-34"><b><a href="#cite_ref-34">^</a></b> <span class="reference-text">Heitmann, S., Breakspear, M (2017-2022) Brain Dynamics Toolbox. <a rel="nofollow" class="external text" href="https://bdtoolbox.org">bdtoolbox.org</a> <a rel="nofollow" class="external text" href="https://doi.org/10.5281/zenodo.5625923">doi.org/10.5281/zenodo.5625923</a></span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="参考文献"><span id=".E5.8F.82.E8.80.83.E6.96.87.E7.8C.AE"></span>参考文献</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=15" title="節を編集: 参考文献"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite style="font-style:normal" class="citation book">Bergé,&#32;Pierre&#59;&#32;Pomeau,&#32;Yves&#59;&#32;Vidal,&#32;Christian&#32;(1984).&#32;<i>Order within Chaos: Towards a Deterministic Approach to Turbulence</i>.&#32;New York:&#32;<a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/%E7%89%B9%E5%88%A5:%E6%96%87%E7%8C%AE%E8%B3%87%E6%96%99/978-0-471-84967-4" title="特別:文献資料/978-0-471-84967-4">978-0-471-84967-4</a></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Order+within+Chaos%3A+Towards+a+Deterministic+Approach+to+Turbulence&amp;rft.aulast=Berg%C3%A9&amp;rft.aufirst=Pierre&amp;rft.au=Berg%C3%A9%2C%26%2332%3BPierre&amp;rft.au=Pomeau%2C%26%2332%3BYves&amp;rft.au=Vidal%2C%26%2332%3BChristian&amp;rft.date=1984&amp;rft.place=New+York&amp;rft.pub=%5B%5BJohn+Wiley+%26+Sons%5D%5D&amp;rft.isbn=978-0-471-84967-4&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Cuomo,&#32;Kevin M.&#59;&#32;<a href="/w/index.php?title=Alan_V._Oppenheim&amp;action=edit&amp;redlink=1" class="new" title="「Alan V. Oppenheim」 (存在しないページ)">Oppenheim,&#32;Alan V.</a>&#32;(1993).&#32;“Circuit implementation of synchronized chaos with applications to communications”.&#32;<i><a href="/wiki/Physical_Review_Letters" class="mw-redirect" title="Physical Review Letters">Physical Review Letters</a></i>&#32;<b>71</b>&#32;(1): 65–68.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1993PhRvL..71...65C/abstract">1993PhRvL..71...65C</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.71.65">10.1103/PhysRevLett.71.65</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISSN" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/ja/search?fq=x0:jrnl&amp;q=n2:0031-9007">0031-9007</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/PMID_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="PMID (識別子)">PMID</a>&#160;<a rel="nofollow" class="external text" href="//pubmed.ncbi.nlm.nih.gov/10054374/">10054374</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Circuit+implementation+of+synchronized+chaos+with+applications+to+communications&amp;rft.jtitle=%5B%5BPhysical+Review+Letters%5D%5D&amp;rft.aulast=Cuomo&amp;rft.aufirst=Kevin+M.&amp;rft.au=Cuomo%2C%26%2332%3BKevin+M.&amp;rft.au=Oppenheim%2C%26%2332%3BAlan+V.&amp;rft.date=1993&amp;rft.volume=71&amp;rft.issue=1&amp;rft.pages=65%E2%80%9368&amp;rft_id=info:bibcode/1993PhRvL..71...65C&amp;rft_id=info:doi/10.1103%2FPhysRevLett.71.65&amp;rft.issn=0031-9007&amp;rft_id=info:pmid/10054374&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Gorman,&#32;M.&#59;&#32;Widmann,&#32;P.J.&#59;&#32;Robbins,&#32;K.A.&#32;(1986).&#32;“Nonlinear dynamics of a convection loop: A quantitative comparison of experiment with theory”.&#32;<i>Physica D</i>&#32;<b>19</b>&#32;(2): 255–267.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1986PhyD...19..255G/abstract">1986PhyD...19..255G</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0167-2789%2886%2990022-9">10.1016/0167-2789(86)90022-9</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Nonlinear+dynamics+of+a+convection+loop%3A+A+quantitative+comparison+of+experiment+with+theory&amp;rft.jtitle=Physica+D&amp;rft.aulast=Gorman&amp;rft.aufirst=M.&amp;rft.au=Gorman%2C%26%2332%3BM.&amp;rft.au=Widmann%2C%26%2332%3BP.J.&amp;rft.au=Robbins%2C%26%2332%3BK.A.&amp;rft.date=1986&amp;rft.volume=19&amp;rft.issue=2&amp;rft.pages=255%E2%80%93267&amp;rft_id=info:bibcode/1986PhyD...19..255G&amp;rft_id=info:doi/10.1016%2F0167-2789%2886%2990022-9&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Grassberger,&#32;P.&#59;&#32;Procaccia,&#32;I.&#32;(1983).&#32;“Measuring the strangeness of strange attractors”.&#32;<i>Physica D</i>&#32;<b>9</b>&#32;(1–2): 189–208.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1983PhyD....9..189G/abstract">1983PhyD....9..189G</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0167-2789%2883%2990298-1">10.1016/0167-2789(83)90298-1</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Measuring+the+strangeness+of+strange+attractors&amp;rft.jtitle=Physica+D&amp;rft.aulast=Grassberger&amp;rft.aufirst=P.&amp;rft.au=Grassberger%2C%26%2332%3BP.&amp;rft.au=Procaccia%2C%26%2332%3BI.&amp;rft.date=1983&amp;rft.volume=9&amp;rft.issue=1%E2%80%932&amp;rft.pages=189%E2%80%93208&amp;rft_id=info:bibcode/1983PhyD....9..189G&amp;rft_id=info:doi/10.1016%2F0167-2789%2883%2990298-1&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Haken,&#32;H.&#32;(1975).&#32;“Analogy between higher instabilities in fluids and lasers”.&#32;<i><a href="/wiki/Physics_Letters_A" class="mw-redirect" title="Physics Letters A">Physics Letters A</a></i>&#32;<b>53</b>&#32;(1): 77–78.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1975PhLA...53...77H/abstract">1975PhLA...53...77H</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0375-9601%2875%2990353-9">10.1016/0375-9601(75)90353-9</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Analogy+between+higher+instabilities+in+fluids+and+lasers&amp;rft.jtitle=%5B%5BPhysics+Letters+A%5D%5D&amp;rft.aulast=Haken&amp;rft.aufirst=H.&amp;rft.au=Haken%2C%26%2332%3BH.&amp;rft.date=1975&amp;rft.volume=53&amp;rft.issue=1&amp;rft.pages=77%E2%80%9378&amp;rft_id=info:bibcode/1975PhLA...53...77H&amp;rft_id=info:doi/10.1016%2F0375-9601%2875%2990353-9&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Hemati,&#32;N.&#32;(1994).&#32;“Strange attractors in brushless DC motors”.&#32;<i><a href="/w/index.php?title=IEEE_Transactions_on_Circuits_and_Systems_I:_Fundamental_Theory_and_Applications&amp;action=edit&amp;redlink=1" class="new" title="「IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications」 (存在しないページ)">IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications</a></i>&#32;<b>41</b>&#32;(1): 40–45.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1109%2F81.260218">10.1109/81.260218</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISSN" title="ISSN">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/ja/search?fq=x0:jrnl&amp;q=n2:1057-7122">1057-7122</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Strange+attractors+in+brushless+DC+motors&amp;rft.jtitle=%5B%5BIEEE+Transactions+on+Circuits+and+Systems+I%3A+Fundamental+Theory+and+Applications%5D%5D&amp;rft.aulast=Hemati&amp;rft.aufirst=N.&amp;rft.au=Hemati%2C%26%2332%3BN.&amp;rft.date=1994&amp;rft.volume=41&amp;rft.issue=1&amp;rft.pages=40%E2%80%9345&amp;rft_id=info:doi/10.1109%2F81.260218&amp;rft.issn=1057-7122&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation book">Hilborn,&#32;Robert C.&#32;(2000).&#32;<i>Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers</i>&#32;(second ed.).&#32;<a href="/wiki/Oxford_University_Press" class="mw-redirect" title="Oxford University Press">Oxford University Press</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/%E7%89%B9%E5%88%A5:%E6%96%87%E7%8C%AE%E8%B3%87%E6%96%99/978-0-19-850723-9" title="特別:文献資料/978-0-19-850723-9">978-0-19-850723-9</a></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Chaos+and+Nonlinear+Dynamics%3A+An+Introduction+for+Scientists+and+Engineers&amp;rft.aulast=Hilborn&amp;rft.aufirst=Robert+C.&amp;rft.au=Hilborn%2C%26%2332%3BRobert+C.&amp;rft.date=2000&amp;rft.edition=second&amp;rft.pub=%5B%5BOxford+University+Press%5D%5D&amp;rft.isbn=978-0-19-850723-9&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation book"><a href="/w/index.php?title=Morris_Hirsch&amp;action=edit&amp;redlink=1" class="new" title="「Morris Hirsch」 (存在しないページ)">Hirsch,&#32;Morris W.</a>&#59;&#32;<a href="/w/index.php?title=Stephen_Smale&amp;action=edit&amp;redlink=1" class="new" title="「Stephen Smale」 (存在しないページ)">Smale,&#32;Stephen</a>&#59;&#32;<a href="/w/index.php?title=Robert_L._Devaney&amp;action=edit&amp;redlink=1" class="new" title="「Robert L. Devaney」 (存在しないページ)">Devaney,&#32;Robert</a>&#32;(2003).&#32;<i>Differential Equations, Dynamical Systems, &amp; An Introduction to Chaos</i>&#32;(Second ed.).&#32;Boston, MA:&#32;<a href="/w/index.php?title=Academic_Press&amp;action=edit&amp;redlink=1" class="new" title="「Academic Press」 (存在しないページ)">Academic Press</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/%E7%89%B9%E5%88%A5:%E6%96%87%E7%8C%AE%E8%B3%87%E6%96%99/978-0-12-349703-1" title="特別:文献資料/978-0-12-349703-1">978-0-12-349703-1</a></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Differential+Equations%2C+Dynamical+Systems%2C+%26+An+Introduction+to+Chaos&amp;rft.aulast=Hirsch&amp;rft.aufirst=Morris+W.&amp;rft.au=Hirsch%2C%26%2332%3BMorris+W.&amp;rft.au=Smale%2C%26%2332%3BStephen&amp;rft.au=Devaney%2C%26%2332%3BRobert&amp;rft.date=2003&amp;rft.edition=Second&amp;rft.place=Boston%2C+MA&amp;rft.pub=%5B%5BAcademic+Press%5D%5D&amp;rft.isbn=978-0-12-349703-1&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Knobloch,&#32;Edgar&#32;(1981).&#32;“Chaos in the segmented disc dynamo”.&#32;<i>Physics Letters A</i>&#32;<b>82</b>&#32;(9): 439–440.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1981PhLA...82..439K/abstract">1981PhLA...82..439K</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0375-9601%2881%2990274-7">10.1016/0375-9601(81)90274-7</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Chaos+in+the+segmented+disc+dynamo&amp;rft.jtitle=Physics+Letters+A&amp;rft.aulast=Knobloch&amp;rft.aufirst=Edgar&amp;rft.au=Knobloch%2C%26%2332%3BEdgar&amp;rft.date=1981&amp;rft.volume=82&amp;rft.issue=9&amp;rft.pages=439%E2%80%93440&amp;rft_id=info:bibcode/1981PhLA...82..439K&amp;rft_id=info:doi/10.1016%2F0375-9601%2881%2990274-7&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Kolář,&#32;Miroslav&#59;&#32;Gumbs,&#32;Godfrey&#32;(1992).&#32;“Theory for the experimental observation of chaos in a rotating waterwheel”.&#32;<i>Physical Review A</i>&#32;<b>45</b>&#32;(2): 626–637.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1992PhRvA..45..626K/abstract">1992PhRvA..45..626K</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.45.626">10.1103/PhysRevA.45.626</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/PMID_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="PMID (識別子)">PMID</a>&#160;<a rel="nofollow" class="external text" href="//pubmed.ncbi.nlm.nih.gov/9907027/">9907027</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Theory+for+the+experimental+observation+of+chaos+in+a+rotating+waterwheel&amp;rft.jtitle=Physical+Review+A&amp;rft.aulast=Kol%C3%A1%C5%99&amp;rft.aufirst=Miroslav&amp;rft.au=Kol%C3%A1%C5%99%2C%26%2332%3BMiroslav&amp;rft.au=Gumbs%2C%26%2332%3BGodfrey&amp;rft.date=1992&amp;rft.volume=45&amp;rft.issue=2&amp;rft.pages=626%E2%80%93637&amp;rft_id=info:bibcode/1992PhRvA..45..626K&amp;rft_id=info:doi/10.1103%2FPhysRevA.45.626&amp;rft_id=info:pmid/9907027&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Leonov,&#32;G.A.&#59;&#32;Kuznetsov,&#32;N.V.&#59;&#32;Korzhemanova,&#32;N.A.&#59;&#32;Kusakin,&#32;D.V.&#32;(2016).&#32;“Lyapunov dimension formula for the global attractor of the Lorenz system”.&#32;<i>Communications in Nonlinear Science and Numerical Simulation</i>&#32;<b>41</b>: 84–103.&#32;<a href="/wiki/ArXiv_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="ArXiv (識別子)">arXiv</a>:<a href="https://arxiv.org/abs/1508.07498" class="extiw" title="arxiv:1508.07498">1508.07498</a>.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016CNSNS..41...84L/abstract">2016CNSNS..41...84L</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.cnsns.2016.04.032">10.1016/j.cnsns.2016.04.032</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Lyapunov+dimension+formula+for+the+global+attractor+of+the+Lorenz+system&amp;rft.jtitle=Communications+in+Nonlinear+Science+and+Numerical+Simulation&amp;rft.aulast=Leonov&amp;rft.aufirst=G.A.&amp;rft.au=Leonov%2C%26%2332%3BG.A.&amp;rft.au=Kuznetsov%2C%26%2332%3BN.V.&amp;rft.au=Korzhemanova%2C%26%2332%3BN.A.&amp;rft.au=Kusakin%2C%26%2332%3BD.V.&amp;rft.date=2016&amp;rft.volume=41&amp;rft.pages=84%E2%80%93103&amp;rft_id=info:arxiv/1508.07498&amp;rft_id=info:bibcode/2016CNSNS..41...84L&amp;rft_id=info:doi/10.1016%2Fj.cnsns.2016.04.032&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal"><a href="/w/index.php?title=Edward_Norton_Lorenz&amp;action=edit&amp;redlink=1" class="new" title="「Edward Norton Lorenz」 (存在しないページ)">Lorenz,&#32;Edward Norton</a>&#32;(1963).&#32;“Deterministic nonperiodic flow”.&#32;<i>Journal of the Atmospheric Sciences</i>&#32;<b>20</b>&#32;(2): 130–141.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1963JAtS...20..130L/abstract">1963JAtS...20..130L</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1175%2F1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2">10.1175/1520-0469(1963)020&lt;0130:DNF&gt;2.0.CO;2</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Deterministic+nonperiodic+flow&amp;rft.jtitle=Journal+of+the+Atmospheric+Sciences&amp;rft.aulast=Lorenz&amp;rft.aufirst=Edward+Norton&amp;rft.au=Lorenz%2C%26%2332%3BEdward+Norton&amp;rft.date=1963&amp;rft.volume=20&amp;rft.issue=2&amp;rft.pages=130%E2%80%93141&amp;rft_id=info:bibcode/1963JAtS...20..130L&amp;rft_id=info:doi/10.1175%2F1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Mishra,&#32;Aashwin&#59;&#32;Sanghi,&#32;Sanjeev&#32;(2006).&#32;“A study of the asymmetric Malkus waterwheel: The biased Lorenz equations”.&#32;<i>Chaos: An Interdisciplinary Journal of Nonlinear Science</i>&#32;<b>16</b>&#32;(1): 013114.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2006Chaos..16a3114M/abstract">2006Chaos..16a3114M</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1063%2F1.2154792">10.1063/1.2154792</a>.&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/PMID_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="PMID (識別子)">PMID</a>&#160;<a rel="nofollow" class="external text" href="//pubmed.ncbi.nlm.nih.gov/16599745/">16599745</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=A+study+of+the+asymmetric+Malkus+waterwheel%3A+The+biased+Lorenz+equations&amp;rft.jtitle=Chaos%3A+An+Interdisciplinary+Journal+of+Nonlinear+Science&amp;rft.aulast=Mishra&amp;rft.aufirst=Aashwin&amp;rft.au=Mishra%2C%26%2332%3BAashwin&amp;rft.au=Sanghi%2C%26%2332%3BSanjeev&amp;rft.date=2006&amp;rft.volume=16&amp;rft.issue=1&amp;rft.pages=013114&amp;rft_id=info:bibcode/2006Chaos..16a3114M&amp;rft_id=info:doi/10.1063%2F1.2154792&amp;rft_id=info:pmid/16599745&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Pchelintsev,&#32;A.N.&#32;(2014).&#32;“Numerical and Physical Modeling of the Dynamics of the Lorenz System”.&#32;<i>Numerical Analysis and Applications</i>&#32;<b>7</b>&#32;(2): 159–167.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1134%2FS1995423914020098">10.1134/S1995423914020098</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Numerical+and+Physical+Modeling+of+the+Dynamics+of+the+Lorenz+System&amp;rft.jtitle=Numerical+Analysis+and+Applications&amp;rft.aulast=Pchelintsev&amp;rft.aufirst=A.N.&amp;rft.au=Pchelintsev%2C%26%2332%3BA.N.&amp;rft.date=2014&amp;rft.volume=7&amp;rft.issue=2&amp;rft.pages=159%E2%80%93167&amp;rft_id=info:doi/10.1134%2FS1995423914020098&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Poland,&#32;Douglas&#32;(1993).&#32;“Cooperative catalysis and chemical chaos: a chemical model for the Lorenz equations”.&#32;<i>Physica D</i>&#32;<b>65</b>&#32;(1): 86–99.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1993PhyD...65...86P/abstract">1993PhyD...65...86P</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2F0167-2789%2893%2990006-M">10.1016/0167-2789(93)90006-M</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Cooperative+catalysis+and+chemical+chaos%3A+a+chemical+model+for+the+Lorenz+equations&amp;rft.jtitle=Physica+D&amp;rft.aulast=Poland&amp;rft.aufirst=Douglas&amp;rft.au=Poland%2C%26%2332%3BDouglas&amp;rft.date=1993&amp;rft.volume=65&amp;rft.issue=1&amp;rft.pages=86%E2%80%9399&amp;rft_id=info:bibcode/1993PhyD...65...86P&amp;rft_id=info:doi/10.1016%2F0167-2789%2893%2990006-M&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Saltzman,&#32;Barry&#32;(1962).&#32;“Finite Amplitude Free Convection as an Initial Value Problem—I”.&#32;<i>Journal of the Atmospheric Sciences</i>&#32;<b>19</b>&#32;(4): 329–341.&#32;<a href="/wiki/Bibcode_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Bibcode (識別子)">Bibcode</a>:&#160;<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1962JAtS...19..329S/abstract">1962JAtS...19..329S</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1175%2F1520-0469%281962%29019%3C0329%3AFAFCAA%3E2.0.CO%3B2">10.1175/1520-0469(1962)019&lt;0329:FAFCAA&gt;2.0.CO;2</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=Finite+Amplitude+Free+Convection+as+an+Initial+Value+Problem%E2%80%94I&amp;rft.jtitle=Journal+of+the+Atmospheric+Sciences&amp;rft.aulast=Saltzman&amp;rft.aufirst=Barry&amp;rft.au=Saltzman%2C%26%2332%3BBarry&amp;rft.date=1962&amp;rft.volume=19&amp;rft.issue=4&amp;rft.pages=329%E2%80%93341&amp;rft_id=info:bibcode/1962JAtS...19..329S&amp;rft_id=info:doi/10.1175%2F1520-0469%281962%29019%3C0329%3AFAFCAA%3E2.0.CO%3B2&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li>Shen, B.-W. (2015-12-21). "Nonlinear feedback in a six-dimensional Lorenz model: impact of an additional heating term". <i>Nonlinear Processes in Geophysics</i>. <b>22</b> (6): 749–764. <a href="/w/index.php?title=Doi_(identifier)&amp;action=edit&amp;redlink=1" class="new" title="「Doi (identifier)」 (存在しないページ)">doi</a>:10.5194/npg-22-749-2015. <a href="/w/index.php?title=ISSN_(identifier)&amp;action=edit&amp;redlink=1" class="new" title="「ISSN (identifier)」 (存在しないページ)">ISSN</a> 1607-7946.</li> <li><cite style="font-style:normal" class="citation book">Sparrow,&#32;Colin&#32;(1982).&#32;<i>The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors</i>.&#32;Springer</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Lorenz+Equations%3A+Bifurcations%2C+Chaos%2C+and+Strange+Attractors&amp;rft.aulast=Sparrow&amp;rft.aufirst=Colin&amp;rft.au=Sparrow%2C%26%2332%3BColin&amp;rft.date=1982&amp;rft.pub=Springer&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Tucker,&#32;Warwick&#32;(2002).&#32;<a rel="nofollow" class="external text" href="https://link.springer.com/content/pdf/10.1007/s002080010018.pdf">“A Rigorous ODE Solver and Smale's 14th Problem”</a>.&#32;<i>Foundations of Computational Mathematics</i>&#32;<b>2</b>&#32;(1): 53–117.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs002080010018">10.1007/s002080010018</a><span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="https://link.springer.com/content/pdf/10.1007/s002080010018.pdf">https://link.springer.com/content/pdf/10.1007/s002080010018.pdf</a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=A+Rigorous+ODE+Solver+and+Smale%27s+14th+Problem&amp;rft.jtitle=Foundations+of+Computational+Mathematics&amp;rft.aulast=Tucker&amp;rft.aufirst=Warwick&amp;rft.au=Tucker%2C%26%2332%3BWarwick&amp;rft.date=2002&amp;rft.volume=2&amp;rft.issue=1&amp;rft.pages=53%E2%80%93117&amp;rft_id=info:doi/10.1007%2Fs002080010018&amp;rft_id=https%3A%2F%2Flink.springer.com%2Fcontent%2Fpdf%2F10.1007%2Fs002080010018.pdf&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><cite id="CITEREFTzenov2014" class="citation arxiv cs1">Tzenov, Stephan (2014). "Strange Attractors Characterizing the Osmotic Instability". <a href="/wiki/ArXiv_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="ArXiv (識別子)">arXiv</a>:<span class="cs1-lock-free" title="無料閲覧可"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1406.0979v1">1406.0979v1</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/physics.flu-dyn">physics.flu-dyn</a>]。</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Strange+Attractors+Characterizing+the+Osmotic+Instability&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1406.0979v1&amp;rft.aulast=Tzenov&amp;rft.aufirst=Stephan&amp;rfr_id=info%3Asid%2Fja.wikipedia.org%3A%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F" class="Z3988"></span></li> <li><cite style="font-style:normal" class="citation journal">Viana,&#32;Marcelo&#32;(2000).&#32;“What's new on Lorenz strange attractors?”.&#32;<i>The Mathematical Intelligencer</i>&#32;<b>22</b>&#32;(3): 6–19.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF03025276">10.1007/BF03025276</a>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=What%27s+new+on+Lorenz+strange+attractors%3F&amp;rft.jtitle=The+Mathematical+Intelligencer&amp;rft.aulast=Viana&amp;rft.aufirst=Marcelo&amp;rft.au=Viana%2C%26%2332%3BMarcelo&amp;rft.date=2000&amp;rft.volume=22&amp;rft.issue=3&amp;rft.pages=6%E2%80%9319&amp;rft_id=info:doi/10.1007%2FBF03025276&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal"><a href="/w/index.php?title=Edward_N._Lorenz&amp;action=edit&amp;redlink=1" class="new" title="「Edward N. Lorenz」 (存在しないページ)">Lorenz,&#32;Edward N.</a>&#32;(1960).&#32;<a rel="nofollow" class="external text" href="http://eaps4.mit.edu/research/Lorenz/The_Statistical_Prediction_of_Solutions_1962.pdf">“The statistical prediction of solutions of dynamic equations.”</a>.&#32;<i>Symposium on Numerical Weather Prediction in Tokyo</i><span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="http://eaps4.mit.edu/research/Lorenz/The_Statistical_Prediction_of_Solutions_1962.pdf">http://eaps4.mit.edu/research/Lorenz/The_Statistical_Prediction_of_Solutions_1962.pdf</a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=The+statistical+prediction+of+solutions+of+dynamic+equations.&amp;rft.jtitle=Symposium+on+Numerical+Weather+Prediction+in+Tokyo&amp;rft.aulast=Lorenz&amp;rft.aufirst=Edward+N.&amp;rft.au=Lorenz%2C%26%2332%3BEdward+N.&amp;rft.date=1960&amp;rft_id=http%3A%2F%2Feaps4.mit.edu%2Fresearch%2FLorenz%2FThe_Statistical_Prediction_of_Solutions_1962.pdf&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="詳細"><span id=".E8.A9.B3.E7.B4.B0"></span>詳細</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=16" title="節を編集: 詳細"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><cite style="font-style:normal" class="citation journal">G.A. Leonov&#32;&amp;&#32;N.V. Kuznetsov&#32;(2015).&#32;<a rel="nofollow" class="external text" href="http://www.ee.cityu.edu.hk/~gchen/pdf/LN2015.pdf">“On differences and similarities in the analysis of Lorenz, Chen, and Lu systems”</a>.&#32;<i>Applied Mathematics and Computation</i>&#32;<b>256</b>: 334&#8211;343.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.amc.2014.12.132">10.1016/j.amc.2014.12.132</a><span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="http://www.ee.cityu.edu.hk/~gchen/pdf/LN2015.pdf">http://www.ee.cityu.edu.hk/~gchen/pdf/LN2015.pdf</a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=On+differences+and+similarities+in+the+analysis+of+Lorenz%2C+Chen%2C+and+Lu+systems&amp;rft.jtitle=Applied+Mathematics+and+Computation&amp;rft.aulast=G.A.+Leonov&amp;rft.au=G.A.+Leonov&amp;rft.au=N.V.+Kuznetsov&amp;rft.date=2015&amp;rft.volume=256&amp;rft.pages=334%26ndash%3B343&amp;rft_id=info:doi/10.1016%2Fj.amc.2014.12.132&amp;rft_id=http%3A%2F%2Fwww.ee.cityu.edu.hk%2F%7Egchen%2Fpdf%2FLN2015.pdf&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><cite style="font-style:normal" class="citation journal">Pchelintsev,&#32;A.N.&#32;(2022).&#32;<a rel="nofollow" class="external text" href="https://www.mdpi.com/2227-7390/10/8/1207/pdf">“On a high-precision method for studying attractors of dynamical systems and systems of explosive type”</a>.&#32;<i>Mathematics</i>&#32;<b>10</b>&#32;(8): 1207.&#32;<a href="/wiki/ArXiv_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="ArXiv (識別子)">arXiv</a>:<a href="https://arxiv.org/abs/2206.08195" class="extiw" title="arxiv:2206.08195">2206.08195</a>.&#32;<a href="/wiki/Doi_(%E8%AD%98%E5%88%A5%E5%AD%90)" class="mw-redirect" title="Doi (識別子)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.3390%2Fmath10081207">10.3390/math10081207</a><span style="display:none;">.&#32;<a rel="nofollow" class="external free" href="https://www.mdpi.com/2227-7390/10/8/1207/pdf">https://www.mdpi.com/2227-7390/10/8/1207/pdf</a></span>.</cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.atitle=On+a+high-precision+method+for+studying+attractors+of+dynamical+systems+and+systems+of+explosive+type&amp;rft.jtitle=Mathematics&amp;rft.aulast=Pchelintsev&amp;rft.aufirst=A.N.&amp;rft.au=Pchelintsev%2C%26%2332%3BA.N.&amp;rft.date=2022&amp;rft.volume=10&amp;rft.issue=8&amp;rft.pages=1207&amp;rft_id=info:arxiv/2206.08195&amp;rft_id=info:doi/10.3390%2Fmath10081207&amp;rft_id=https%3A%2F%2Fwww.mdpi.com%2F2227-7390%2F10%2F8%2F1207%2Fpdf&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li></ul> <div class="mw-heading mw-heading2"><h2 id="外部リンク"><span id=".E5.A4.96.E9.83.A8.E3.83.AA.E3.83.B3.E3.82.AF"></span>外部リンク</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;action=edit&amp;section=17" title="節を編集: 外部リンク"><span>編集</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r94202605">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box side-box-right plainlinks sistersitebox noprint" style="width:22em;"> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist" style="font-size:100%;">ウィキメディア・コモンズには、<b><span class="plainlinks"><a class="external text" href="https://commons.wikimedia.org/wiki/Category:Lorenz_attractors?uselang=ja">ローレンツ方程式</a></span></b>に関連するカテゴリがあります。</div></div> </div> <ul><li><cite style="font-style:normal" class="citation" id="CITEREFHazewinkel2001">Hazewinkel, Michiel, ed.&#32;(2001),&#32;<a rel="nofollow" class="external text" href="http://eom.springer.de/p/l060890.htm">“Lorenz attractor”</a>,&#32;<i><a href="https://en.wikipedia.org/wiki/Encyclopaedia_of_Mathematics" class="extiw" title="en:Encyclopaedia of Mathematics">Encyclopaedia of Mathematics</a></i>,&#32;<a href="/wiki/%E3%82%B7%E3%83%A5%E3%83%97%E3%83%AA%E3%83%B3%E3%82%AC%E3%83%BC%E3%83%BB%E3%82%B5%E3%82%A4%E3%82%A8%E3%83%B3%E3%82%B9%E3%83%BB%E3%82%A2%E3%83%B3%E3%83%89%E3%83%BB%E3%83%93%E3%82%B8%E3%83%8D%E3%82%B9%E3%83%BB%E3%83%A1%E3%83%87%E3%82%A3%E3%82%A2" title="シュプリンガー・サイエンス・アンド・ビジネス・メディア">Springer</a>,&#32;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><a href="/wiki/ISBN" title="ISBN">ISBN</a>&#160;<a href="/wiki/%E7%89%B9%E5%88%A5:%E6%96%87%E7%8C%AE%E8%B3%87%E6%96%99/978-1-55608-010-4" title="特別:文献資料/978-1-55608-010-4">978-1-55608-010-4</a><span style="display:none;">,&#32;<a rel="nofollow" class="external free" href="http://eom.springer.de/p/l060890.htm">http://eom.springer.de/p/l060890.htm</a></span></cite><span class="Z3988" title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.btitle=Lorenz+attractor&amp;rft.atitle=%5B%5B%3Aen%3AEncyclopaedia+of+Mathematics%7CEncyclopaedia+of+Mathematics%5D%5D&amp;rft.date=2001&amp;rft.pub=%5B%5B%E3%82%B7%E3%83%A5%E3%83%97%E3%83%AA%E3%83%B3%E3%82%AC%E3%83%BC%E3%83%BB%E3%82%B5%E3%82%A4%E3%82%A8%E3%83%B3%E3%82%B9%E3%83%BB%E3%82%A2%E3%83%B3%E3%83%89%E3%83%BB%E3%83%93%E3%82%B8%E3%83%8D%E3%82%B9%E3%83%BB%E3%83%A1%E3%83%87%E3%82%A3%E3%82%A2%7CSpringer%5D%5D&amp;rft.isbn=978-1-55608-010-4&amp;rft_id=&amp;rfr_id=info:sid/ja.wikipedia.org:%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F"><span style="display: none;">&#160;</span></span></li> <li><span class="citation mathworld" id="Reference-Mathworld-Lorenz_attractor"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r101121245"><cite id="CITEREFWeisstein" class="citation web cs1 cs1-prop-foreign-lang-source">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/LorenzAttractor.html">"Lorenz attractor"</a>. <i>mathworld.wolfram.com</i> (英語).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=mathworld.wolfram.com&amp;rft.atitle=Lorenz+attractor&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FLorenzAttractor.html&amp;rfr_id=info%3Asid%2Fja.wikipedia.org%3A%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F" class="Z3988"></span></span></li> <li><a rel="nofollow" class="external text" href="http://demonstrations.wolfram.com/LorenzAttractor/">Lorenz attractor</a> by Rob Morris, <a href="/wiki/Wolfram_Demonstrations_Project" class="mw-redirect" title="Wolfram Demonstrations Project">Wolfram Demonstrations Project</a>.</li> <li><a rel="nofollow" class="external text" href="https://planetmath.org/encyclopedia/LorenzEquation.html">Lorenz equation</a> on planetmath.org</li> <li><a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=J-ca_bqWp4I">Synchronized Chaos and Private Communications, with Kevin Cuomo</a>. The implementation of Lorenz attractor in an electronic circuit.</li> <li><a rel="nofollow" class="external text" href="http://toxi.co.uk/lorenz/">Lorenz attractor interactive animation</a> (you need the Adobe Shockwave plugin)</li> <li><a rel="nofollow" class="external text" href="http://amath.colorado.edu/faculty/juanga/3DAttractors.html">3D Attractors: Mac program to visualize and explore the Lorenz attractor in 3 dimensions</a></li> <li><a rel="nofollow" class="external text" href="https://archive.today/20121211081109/http://frank.harvard.edu/~paulh/misc/lorenz.htm">Lorenz Attractor implemented in analog electronic</a></li> <li><a rel="nofollow" class="external text" href="http://sourceforge.net/projects/lorenz/">Lorenz Attractor interactive animation</a> (implemented in Ada with GTK+. Sources &amp; executable)</li> <li><a rel="nofollow" class="external text" href="https://highfellow.github.com/lorenz-attractor/attractor.html">Web based Lorenz Attractor</a> (implemented in JavaScript/HTML/CSS)</li> <li><a rel="nofollow" class="external text" href="https://alpha.iodide.io/notebooks/34/?viewMode=report">Interactive web based Lorenz Attractor</a> made with Iodide</li> <li><a rel="nofollow" class="external text" href="http://www.mizuno.org/c/la/index.ja.shtml">ローレンツアトラクタを描画する、あるいはそれに類似することをするときのために</a> (<a rel="nofollow" class="external text" href="http://www.mizuno.org/c/la/index.shtml">英語版</a>)</li></ul> <div role="navigation" class="navbox authority-control" aria-labelledby="典拠管理データベース_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=ウィキデータを編集&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q899844#identifiers&amp;#124;class=noprint&amp;#124;ウィキデータを編集" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="典拠管理データベース_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=ウィキデータを編集&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q899844#identifiers&amp;#124;class=noprint&amp;#124;ウィキデータを編集" style="font-size:110%;margin:0 4em"><a href="/wiki/Help:%E5%85%B8%E6%8B%A0%E7%AE%A1%E7%90%86" title="Help:典拠管理">典拠管理データベース</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q899844#identifiers" title="ウィキデータを編集"><img alt="ウィキデータを編集" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">全般</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/1002597/">FAST</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">国立図書館</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb12373492q">フランス</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb12373492q">BnF data</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4625232-0">ドイツ</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007536145505171">イスラエル</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85078402">アメリカ</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">その他</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.idref.fr/032770197">IdRef</a></span></li></ul> </div></td></tr></tbody></table></div> <div role="navigation" class="navbox authority-control" aria-labelledby="典拠管理データベース_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=ウィキデータを編集&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q899844#identifiers&amp;#124;class=noprint&amp;#124;ウィキデータを編集" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="典拠管理データベース_frameless&amp;#124;text-top&amp;#124;10px&amp;#124;alt=ウィキデータを編集&amp;#124;link=https&amp;#58;//www.wikidata.org/wiki/Q899844#identifiers&amp;#124;class=noprint&amp;#124;ウィキデータを編集" style="font-size:110%;margin:0 4em"><a href="/wiki/Help:%E5%85%B8%E6%8B%A0%E7%AE%A1%E7%90%86" title="Help:典拠管理">典拠管理データベース</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q899844#identifiers" title="ウィキデータを編集"><img alt="ウィキデータを編集" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">全般</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/1002597/">FAST</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">国立図書館</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb12373492q">フランス</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb12373492q">BnF data</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4625232-0">ドイツ</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007536145505171">イスラエル</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85078402">アメリカ</a></span></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">その他</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://www.idref.fr/032770197">IdRef</a></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐694cf4987f‐t9nfh Cached time: 20241126015919 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.991 seconds Real time usage: 1.651 seconds Preprocessor visited node count: 36217/1000000 Post‐expand include size: 309478/2097152 bytes Template argument size: 68802/2097152 bytes Highest expansion depth: 27/100 Expensive parser function count: 11/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 108500/5000000 bytes Lua time usage: 0.200/10.000 seconds Lua memory usage: 6339223/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1265.689 1 -total 37.33% 472.428 35 Template:Citation/core 30.00% 379.723 27 Template:Cite_journal 27.57% 348.993 1 Template:Reflist 14.28% 180.761 66 Template:Citation/identifier 9.31% 117.897 1 Template:Commons_category 9.01% 114.050 1 Template:Sister 8.85% 111.976 1 Template:Side_box 7.54% 95.393 1 Template:Plainlink 7.36% 93.180 1 Template:Ifempty --> <!-- Saved in parser cache with key jawiki:pcache:idhash:424817-0!canonical and timestamp 20241126015919 and revision id 100500249. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">「<a dir="ltr" href="https://ja.wikipedia.org/w/index.php?title=ローレンツ方程式&amp;oldid=100500249">https://ja.wikipedia.org/w/index.php?title=ローレンツ方程式&amp;oldid=100500249</a>」から取得</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%E7%89%B9%E5%88%A5:%E3%82%AB%E3%83%86%E3%82%B4%E3%83%AA" title="特別:カテゴリ">カテゴリ</a>: <ul><li><a href="/wiki/Category:%E8%A4%87%E9%9B%91%E7%B3%BB" title="Category:複雑系">複雑系</a></li><li><a href="/wiki/Category:%E6%95%B0%E5%AD%A6%E3%81%AB%E9%96%A2%E3%81%99%E3%82%8B%E8%A8%98%E4%BA%8B" title="Category:数学に関する記事">数学に関する記事</a></li><li><a href="/wiki/Category:%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E5%BC%8F" title="Category:微分方程式">微分方程式</a></li><li><a href="/wiki/Category:%E6%95%B0%E5%AD%A6%E3%81%AE%E3%82%A8%E3%83%9D%E3%83%8B%E3%83%A0" title="Category:数学のエポニム">数学のエポニム</a></li><li><a href="/wiki/Category:%E3%82%AB%E3%82%AA%E3%82%B9%E5%8A%9B%E5%AD%A6%E7%B3%BB" title="Category:カオス力学系">カオス力学系</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">隠しカテゴリ: <ul><li><a href="/wiki/Category:%E5%87%BA%E5%85%B8%E3%82%92%E5%BF%85%E8%A6%81%E3%81%A8%E3%81%99%E3%82%8B%E8%A8%98%E8%BF%B0%E3%81%AE%E3%81%82%E3%82%8B%E8%A8%98%E4%BA%8B/2017%E5%B9%B46%E6%9C%88" title="Category:出典を必要とする記述のある記事/2017年6月">出典を必要とする記述のある記事/2017年6月</a></li><li><a href="/wiki/Category:FAST%E8%AD%98%E5%88%A5%E5%AD%90%E3%81%8C%E6%8C%87%E5%AE%9A%E3%81%95%E3%82%8C%E3%81%A6%E3%81%84%E3%82%8B%E8%A8%98%E4%BA%8B" title="Category:FAST識別子が指定されている記事">FAST識別子が指定されている記事</a></li><li><a href="/wiki/Category:BNF%E8%AD%98%E5%88%A5%E5%AD%90%E3%81%8C%E6%8C%87%E5%AE%9A%E3%81%95%E3%82%8C%E3%81%A6%E3%81%84%E3%82%8B%E8%A8%98%E4%BA%8B" title="Category:BNF識別子が指定されている記事">BNF識別子が指定されている記事</a></li><li><a href="/wiki/Category:BNFdata%E8%AD%98%E5%88%A5%E5%AD%90%E3%81%8C%E6%8C%87%E5%AE%9A%E3%81%95%E3%82%8C%E3%81%A6%E3%81%84%E3%82%8B%E8%A8%98%E4%BA%8B" title="Category:BNFdata識別子が指定されている記事">BNFdata識別子が指定されている記事</a></li><li><a href="/wiki/Category:GND%E8%AD%98%E5%88%A5%E5%AD%90%E3%81%8C%E6%8C%87%E5%AE%9A%E3%81%95%E3%82%8C%E3%81%A6%E3%81%84%E3%82%8B%E8%A8%98%E4%BA%8B" title="Category:GND識別子が指定されている記事">GND識別子が指定されている記事</a></li><li><a href="/wiki/Category:J9U%E8%AD%98%E5%88%A5%E5%AD%90%E3%81%8C%E6%8C%87%E5%AE%9A%E3%81%95%E3%82%8C%E3%81%A6%E3%81%84%E3%82%8B%E8%A8%98%E4%BA%8B" title="Category:J9U識別子が指定されている記事">J9U識別子が指定されている記事</a></li><li><a href="/wiki/Category:LCCN%E8%AD%98%E5%88%A5%E5%AD%90%E3%81%8C%E6%8C%87%E5%AE%9A%E3%81%95%E3%82%8C%E3%81%A6%E3%81%84%E3%82%8B%E8%A8%98%E4%BA%8B" title="Category:LCCN識別子が指定されている記事">LCCN識別子が指定されている記事</a></li><li><a href="/wiki/Category:SUDOC%E8%AD%98%E5%88%A5%E5%AD%90%E3%81%8C%E6%8C%87%E5%AE%9A%E3%81%95%E3%82%8C%E3%81%A6%E3%81%84%E3%82%8B%E8%A8%98%E4%BA%8B" title="Category:SUDOC識別子が指定されている記事">SUDOC識別子が指定されている記事</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 最終更新 2024年5月26日 (日) 05:16 (日時は<a href="/wiki/%E7%89%B9%E5%88%A5:%E5%80%8B%E4%BA%BA%E8%A8%AD%E5%AE%9A#mw-prefsection-rendering" title="特別:個人設定">個人設定</a>で未設定ならば<a href="/wiki/%E5%8D%94%E5%AE%9A%E4%B8%96%E7%95%8C%E6%99%82" title="協定世界時">UTC</a>)。</li> <li id="footer-info-copyright">テキストは<a rel="nofollow" class="external text" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ja">クリエイティブ・コモンズ 表示-継承ライセンス</a>のもとで利用できます。追加の条件が適用される場合があります。詳細については<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">利用規約</a>を参照してください。</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/ja">プライバシー・ポリシー</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%E3%82%A6%E3%82%A3%E3%82%AD%E3%83%9A%E3%83%87%E3%82%A3%E3%82%A2%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6">ウィキペディアについて</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:%E5%85%8D%E8%B2%AC%E4%BA%8B%E9%A0%85">免責事項</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">行動規範</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">開発者</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ja.wikipedia.org">統計</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookieに関する声明</a></li> <li id="footer-places-mobileview"><a href="//ja.m.wikipedia.org/w/index.php?title=%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">モバイルビュー</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-694cf4987f-p2lmk","wgBackendResponseTime":121,"wgPageParseReport":{"limitreport":{"cputime":"0.991","walltime":"1.651","ppvisitednodes":{"value":36217,"limit":1000000},"postexpandincludesize":{"value":309478,"limit":2097152},"templateargumentsize":{"value":68802,"limit":2097152},"expansiondepth":{"value":27,"limit":100},"expensivefunctioncount":{"value":11,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":108500,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1265.689 1 -total"," 37.33% 472.428 35 Template:Citation/core"," 30.00% 379.723 27 Template:Cite_journal"," 27.57% 348.993 1 Template:Reflist"," 14.28% 180.761 66 Template:Citation/identifier"," 9.31% 117.897 1 Template:Commons_category"," 9.01% 114.050 1 Template:Sister"," 8.85% 111.976 1 Template:Side_box"," 7.54% 95.393 1 Template:Plainlink"," 7.36% 93.180 1 Template:Ifempty"]},"scribunto":{"limitreport-timeusage":{"value":"0.200","limit":"10.000"},"limitreport-memusage":{"value":6339223,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-694cf4987f-t9nfh","timestamp":"20241126015919","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u30ed\u30fc\u30ec\u30f3\u30c4\u65b9\u7a0b\u5f0f","url":"https:\/\/ja.wikipedia.org\/wiki\/%E3%83%AD%E3%83%BC%E3%83%AC%E3%83%B3%E3%83%84%E6%96%B9%E7%A8%8B%E5%BC%8F","sameAs":"http:\/\/www.wikidata.org\/entity\/Q899844","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q899844","author":{"@type":"Organization","name":"\u30a6\u30a3\u30ad\u30e1\u30c7\u30a3\u30a2\u30d7\u30ed\u30b8\u30a7\u30af\u30c8\u3078\u306e\u8ca2\u732e\u8005"},"publisher":{"@type":"Organization","name":"\u30a6\u30a3\u30ad\u30e1\u30c7\u30a3\u30a2\u8ca1\u56e3","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-01-20T07:50:06Z","dateModified":"2024-05-26T05:16:50Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/1\/13\/A_Trajectory_Through_Phase_Space_in_a_Lorenz_Attractor.gif","headline":"\u30ab\u30aa\u30b9\u7684\u3075\u308b\u307e\u3044\u3092\u793a\u3059\u975e\u7dda\u578b\u5e38\u5fae\u5206\u65b9\u7a0b\u5f0f"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10