CINXE.COM

Search results for: string analysis

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: string analysis</title> <meta name="description" content="Search results for: string analysis"> <meta name="keywords" content="string analysis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="string analysis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="string analysis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 27919</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: string analysis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27919</span> Automata-Based String Analysis for Detecting Malware in Android Programs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assad%20Maalouf">Assad Maalouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Lunjin%20Lu"> Lunjin Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Lynott"> James Lynott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We design and implement a precise model of string operations using finite state machine transformers and state transformers to approximate the values string variables can take throughout the execution of the program.We use our model to analyze Android program string variables. Our experimental results show that our string analysis is very efficient at detecting the contextual effect of string operations on the string variables. Our model proved to be very useful when it came to verifying statements about the string variables of the program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abstract%20interpretation" title="abstract interpretation">abstract interpretation</a>, <a href="https://publications.waset.org/abstracts/search?q=android" title=" android"> android</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title=" static analysis"> static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20analysis" title=" string analysis"> string analysis</a> </p> <a href="https://publications.waset.org/abstracts/130342/automata-based-string-analysis-for-detecting-malware-in-android-programs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27918</span> Improving Taint Analysis of Android Applications Using Finite State Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assad%20Maalouf">Assad Maalouf</a>, <a href="https://publications.waset.org/abstracts/search?q=Lunjin%20Lu"> Lunjin Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Lynott"> James Lynott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present a taint analysis that can automatically detect when string operations result in a string that is free of taints, where all the tainted patterns have been removed. This is an improvement on the conservative behavior of previous taint analyzers, where a string operation on a tainted string always leads to a tainted string unless the operation is manually marked as a sanitizer. The taint analysis is built on top of a string analysis that uses finite state automata to approximate the sets of values that string variables can take during the execution of a program. The proposed approach has been implemented as an extension of FlowDroid and experimental results show that the resulting taint analyzer is much more precise than the original FlowDroid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=android" title="android">android</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20analysis" title=" static analysis"> static analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20analysis" title=" string analysis"> string analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=taint%20analysis" title=" taint analysis"> taint analysis</a> </p> <a href="https://publications.waset.org/abstracts/130148/improving-taint-analysis-of-android-applications-using-finite-state-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27917</span> Data Quality Enhancement with String Length Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qi%20Xiu">Qi Xiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiromu%20Hota"> Hiromu Hota</a>, <a href="https://publications.waset.org/abstracts/search?q=Yohsuke%20Ishii"> Yohsuke Ishii</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuya%20Oda"> Takuya Oda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=string%20classification" title="string classification">string classification</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20quality" title=" data quality"> data quality</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=probability%20distribution" title=" probability distribution"> probability distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20length" title=" string length"> string length</a> </p> <a href="https://publications.waset.org/abstracts/57244/data-quality-enhancement-with-string-length-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27916</span> Kemmer Oscillator in Cosmic String Background</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Messai">N. Messai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boumali"> A. Boumali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we aim to solve the two dimensional Kemmer equation including Dirac oscillator interaction term, in the background space-time generated by a cosmic string which is submitted to an uniform magnetic field. Eigenfunctions and eigenvalues of our problem have been found and the influence of the cosmic string space-time on the energy spectrum has been analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kemmer%20oscillator" title="Kemmer oscillator">Kemmer oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=cosmic%20string" title=" cosmic string"> cosmic string</a>, <a href="https://publications.waset.org/abstracts/search?q=Dirac%20oscillator" title=" Dirac oscillator"> Dirac oscillator</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenfunctions" title=" eigenfunctions"> eigenfunctions</a> </p> <a href="https://publications.waset.org/abstracts/22318/kemmer-oscillator-in-cosmic-string-background" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">584</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27915</span> Comparative Analysis of Photovoltaic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irtaza%20M.%20Syed">Irtaza M. Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaameran%20Raahemifar"> Kaameran Raahemifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents comparative analysis of photovoltaic systems (PVS) and proposes practical techniques to improve operational efficiency of the PVS. The best engineering and construction practices for PVS are identified and field oriented recommendation are made. Comparative analysis of central and string inverter based, as well as 600 and 1000 VDC PVS are performed. In addition, direct current (DC) and alternating current (AC) photovoltaic (PV) module based systems are compared. Comparison shows that 1000 V DC String Inverters based PVS is the best choice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20module" title="photovoltaic module">photovoltaic module</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20systems" title=" photovoltaic systems"> photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=operational%20efficiency%20improvement" title=" operational efficiency improvement"> operational efficiency improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20analysis" title=" comparative analysis"> comparative analysis</a> </p> <a href="https://publications.waset.org/abstracts/40123/comparative-analysis-of-photovoltaic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27914</span> Gravity and Geometric String Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joe%20Price%20LeClair">Joe Price LeClair</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding the geometry of the universe using hydrogen as a representation of a balance point between energy and matter in motion while using the neutron to explain the stability in threes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gravity" title="gravity">gravity</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20string%20mechanics" title=" geometric string mechanics"> geometric string mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=physics" title=" physics"> physics</a>, <a href="https://publications.waset.org/abstracts/search?q=theoretical%20physics" title=" theoretical physics"> theoretical physics</a> </p> <a href="https://publications.waset.org/abstracts/194933/gravity-and-geometric-string-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27913</span> Preparation of Bead-On-String Alginate/Soy Protein Isolated Nanofibers via Water-Based Electrospinning and Its Application for Drug Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patcharakamon%20Nooeaid">Patcharakamon Nooeaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyachat%20Chuysrinuan"> Piyachat Chuysrinuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrospun natural polymers-based nanofibers are one of the most interesting materials used in tissue engineering and drug delivery applications. Bead-on-string nanofibers have gained considerable interest for sustained drug release. Vancomycin was used as the model drug and sodium alginate (SA)/soy protein isolated (SPI) as the polymer blend to fabricate the bead-on-string nanofibers by aqueous-based electrospinning. The bead-on-string SA/SPI nanofibers were successfully fabricated by the addition of poly(ethylene oxide) (PEO) as a co-blending polymer. SA-PEO with mass ratio of 70/30 showed the best spinnability with continuous nanofibers without the occurrence of beads. Bead structure formed with the addition of SPI and bead number increased with increasing SPI content. The electrospinning of 80/20 SA-PEO/SPI was obtained as a great promising bead-on-string nanofibers for drug loading, while the solution of 50/50 was not able to obtain continuous fibers. In vitro release tests showed that a more sustainable release profile up to 14 days with less initial burst release on day 1 could be obtained from the bead-on-string fibers than from smooth fibers with uniform diameter. In addition, vancomycin-loaded beaded fibers inhibited the growth of Staphylococcus aureus (S. aureus) bacteria. Therefore, the SA-PEO/SPI nanofibers showed the potential to be used as biomaterials for tissue engineering and drug delivery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bead-on-string%20fibers" title="bead-on-string fibers">bead-on-string fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering "> tissue engineering </a> </p> <a href="https://publications.waset.org/abstracts/49420/preparation-of-bead-on-string-alginatesoy-protein-isolated-nanofibers-via-water-based-electrospinning-and-its-application-for-drug-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27912</span> Global Modeling of Drill String Dragging and Buckling in 3D Curvilinear Bore-Holes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valery%20Gulyayev">Valery Gulyayev</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Glazunov"> Sergey Glazunov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Andrusenko"> Elena Andrusenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Nataliya%20Shlyun"> Nataliya Shlyun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enhancement of technology and techniques for drilling deep directed oil and gas bore-wells are of essential industrial significance because these wells make it possible to increase their productivity and output. Generally, they are used for drilling in hard and shale formations, that is why their drivage processes are followed by the emergency and failure effects. As is corroborated by practice, the principal drilling drawback occurring in drivage of long curvilinear bore-wells is conditioned by the need to obviate essential force hindrances caused by simultaneous action of the gravity, contact and friction forces. Primarily, these forces depend on the type of the technological regime, drill string stiffness, bore-hole tortuosity and its length. They can lead to the Eulerian buckling of the drill string and its sticking. To predict and exclude these states, special mathematic models and methods of computer simulation should play a dominant role. At the same time, one might note that these mechanical phenomena are very complex and only simplified approaches (‘soft string drag and torque models’) are used for their analysis. Taking into consideration that now the cost of directed wells increases essentially with complication of their geometry and enlargement of their lengths, it can be concluded that the price of mistakes of the drill string behavior simulation through the use of simplified approaches can be very high and so the problem of correct software elaboration is very urgent. This paper deals with the problem of simulating the regimes of drilling deep curvilinear bore-wells with prescribed imperfect geometrical trajectories of their axial lines. On the basis of the theory of curvilinear flexible elastic rods, methods of differential geometry, and numerical analysis methods, the 3D ‘stiff-string drag and torque model’ of the drill string bending and the appropriate software are elaborated for the simulation of the tripping in and out regimes and drilling operations. It is shown by the computer calculations that the contact and friction forces can be calculated and regulated, providing predesigned trouble-free modes of operation. The elaborated mathematic models and software can be used for the emergency situations prognostication and their exclusion at the stages of the drilling process design and realization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curvilinear%20drilling" title="curvilinear drilling">curvilinear drilling</a>, <a href="https://publications.waset.org/abstracts/search?q=drill%20string%20tripping%20in%20and%20out" title=" drill string tripping in and out"> drill string tripping in and out</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20forces" title=" contact forces"> contact forces</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20forces" title=" resistance forces"> resistance forces</a> </p> <a href="https://publications.waset.org/abstracts/96213/global-modeling-of-drill-string-dragging-and-buckling-in-3d-curvilinear-bore-holes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27911</span> Using ε Value in Describe Regular Languages by Using Finite Automata, Operation on Languages and the Changing Algorithm Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmajid%20Mukhtar%20Afat">Abdulmajid Mukhtar Afat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims at introducing nondeterministic finite automata with &epsilon; value which is used to perform some operations on languages. a program is created to implement the algorithm that converts nondeterministic finite automata with &epsilon; value (&epsilon;-NFA) to deterministic finite automata (DFA).The program is written in c++ programming language. The program inputs are FA 5-tuples from text file and then classifies it into either DFA/NFA or &epsilon; -NFA. For DFA, the program will get the string <em>w</em> and decide whether it is accepted or rejected. The tracking path for an accepted string is saved by the program. In case of NFA or &epsilon;-NFA automation, the program changes the automation to DFA to enable tracking and to decide if the string <em>w</em> exists in the regular language or not. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFA" title="DFA">DFA</a>, <a href="https://publications.waset.org/abstracts/search?q=NFA" title=" NFA"> NFA</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B5-NFA" title=" ε-NFA"> ε-NFA</a>, <a href="https://publications.waset.org/abstracts/search?q=eclose" title=" eclose"> eclose</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20automata" title=" finite automata"> finite automata</a>, <a href="https://publications.waset.org/abstracts/search?q=operations%20on%20languages" title=" operations on languages"> operations on languages</a> </p> <a href="https://publications.waset.org/abstracts/21029/using-e-value-in-describe-regular-languages-by-using-finite-automata-operation-on-languages-and-the-changing-algorithm-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27910</span> Finding a Set of Long Common Substrings with Repeats from m Input Strings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiantian%20Li">Tiantian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lusheng%20Wang"> Lusheng Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhaohui%20Zhan"> Zhaohui Zhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Daming%20Zhu"> Daming Zhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose two string problems, and study algorithms and complexity of various versions for those problems. Let S = {s₁, s₂, . . . , sₘ} be a set of m strings. A common substring of S is a substring appearing in every string in S. Given a set of m strings S = {s₁, s₂, . . . , sₘ} and a positive integer k, we want to find a set C of k common substrings of S such that the k common substrings in C appear in the same order and have no overlap among the m input strings in S, and the total length of the k common substring in C is maximized. This problem is referred to as the longest total length of k common substrings from m input strings (LCSS(k, m) for short). The other problem we study here is called the longest total length of a set of common substrings with length more than l from m input string (LSCSS(l, m) for short). Given a set of m strings S = {s₁, s₂, . . . , sₘ} and a positive integer l, for LSCSS(l, m), we want to find a set of common substrings of S, each is of length more than l, such that the total length of all the common substrings is maximized. We show that both problems are NP-hard when k and m are variables. We propose dynamic programming algorithms with time complexity O(k n₁n₂) and O(n₁n₂) to solve LCSS(k, 2) and LSCSS(l, 2), respectively, where n1 and n₂ are the lengths of the two input strings. We then design an algorithm for LSCSS(l, m) when every length > l common substring appears once in each of the m − 1 input strings. The running time is O(n₁²m), where n1 is the length of the input string with no restriction on length > l common substrings. Finally, we propose a fixed parameter algorithm for LSCSS(l, m), where each length > l common substring appears m − 1 + c times among the m − 1 input strings (other than s1). In other words, each length > l common substring may repeatedly appear at most c times among the m − 1 input strings {s₂, s₃, . . . , sₘ}. The running time of the proposed algorithm is O((n12ᶜ)²m), where n₁ is the input string with no restriction on repeats. The LSCSS(l, m) is proposed to handle whole chromosome sequence alignment for different strains of the same species, where more than 98% of letters in core regions are identical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20programming" title="dynamic programming">dynamic programming</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20substrings" title=" common substrings"> common substrings</a>, <a href="https://publications.waset.org/abstracts/search?q=string" title=" string"> string</a> </p> <a href="https://publications.waset.org/abstracts/193213/finding-a-set-of-long-common-substrings-with-repeats-from-m-input-strings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27909</span> Ureteral Stents with Extraction Strings: Patient-Reported Outcomes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rammah%20Abdlbagi">Rammah Abdlbagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Similoluwa%20Biyi"> Similoluwa Biyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Pai"> Aakash Pai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Short-term ureteric stents are commonly placed after ureteroscopy procedures. The removal usually entails having a flexible cystoscopy, which entails a further invasive procedure. There are often delays in removing the stent as departments have limited cystoscopy availability. However, if stents with extraction strings are used, the patient or a clinician can remove them. The aim of the study is to assess the safety and effectiveness of the use of a stent with a string. Method: A retrospective, single-institution study was conducted over a three-month period. Twenty consecutive patients had ureteric stents with string insertion. Ten of the patients had a stent removal procedure previously with flexible cystoscopy. A validated questionnaire was used to assess outcomes. Primary outcomes included: dysuria, hematuria, urinary frequency, and disturbance of the patient’s daily activities. Secondary outcomes included pain experience during the stent removal. Result: Fifteen patients (75%) experienced hematuria and frequency. Two patients experienced pain and discomfort during the stent removal (10%). Two patients had experienced a disturbance in their daily activity (10%). All patients who had stent removal before using flexible cystoscopy preferred the removal of the stent using a string. None of the patients had stent displacement. The median stent dwell time was five days. Conclusion: Patient reported outcomes measures for the indwelling period of a stent with extraction string are equivalent to the published data on stents. Extraction strings mean that the stent dwell time can be reduced. The removal of the stent on extraction strings is more tolerable than the conventional stent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ureteric%20stent" title="ureteric stent">ureteric stent</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20flexible%20cystoscopy" title=" string flexible cystoscopy"> string flexible cystoscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=stent%20symptoms" title=" stent symptoms"> stent symptoms</a>, <a href="https://publications.waset.org/abstracts/search?q=validated%20questionnaire" title=" validated questionnaire"> validated questionnaire</a> </p> <a href="https://publications.waset.org/abstracts/157309/ureteral-stents-with-extraction-strings-patient-reported-outcomes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27908</span> Portuguese Guitar Strings Characterization and Comparison</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Serr%C3%A3o">P. Serrão</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Costa"> E. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ribeiro"> A. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Infante"> V. Infante</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The characteristic sonority of the Portuguese guitar is in great part what makes Fado so distinguishable from other traditional song styles. The Portuguese guitar is a pear-shaped plucked chordophone with six courses of double strings. This study compares the two types of plain strings available for Portuguese guitar and used by the musicians. One is stainless steel spring wire, the other is high carbon spring steel (music wire). Some musicians mention noticeable differences in sound quality between these two string materials, such as a little more brightness and sustain in the steel strings. Experimental tests were performed to characterize string tension at pitch; mechanical strength and tuning stability using the universal testing machine; dimensional control and chemical composition analysis using the scanning electron microscope. The string dynamical behaviour characterization experiments, including frequency response, inharmonicity, transient response, damping phenomena and were made in a monochord test set-up designed and built in-house. Damping factor was determined for the fundamental frequency. As musicians are able to detect very small damping differences, an accurate a characterization of the damping phenomena for all harmonics was necessary. With that purpose, another improved monochord was set and a new system identification methodology applied. Due to the complexity of this task several adjustments were necessary until obtaining good experimental data. In a few cases, dynamical tests were repeated to detect any evolution in damping parameters after break-in period when according to players experience a new string sounds gradually less dull until reaching the typically brilliant timbre. Finally, each set of strings was played on one guitar by a distinguished player and recorded. The recordings which include individual notes, scales, chords and a study piece, will be analysed to potentially characterize timbre variations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20factor" title="damping factor">damping factor</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20wire" title=" music wire"> music wire</a>, <a href="https://publications.waset.org/abstracts/search?q=portuguese%20guitar" title=" portuguese guitar"> portuguese guitar</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20dynamics" title=" string dynamics"> string dynamics</a> </p> <a href="https://publications.waset.org/abstracts/35885/portuguese-guitar-strings-characterization-and-comparison" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27907</span> Language Activation Theory: Unlocking Bilingual Language Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leorisyl%20D.%20Siarot">Leorisyl D. Siarot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is conventional to see and hear Filipinos, in general, speak two or more languages. This phenomenon brings us to a closer look on how our minds process the input and produce an output with a specific chosen language. This study aimed to generate a theoretical model which explained the interaction of the first and the second languages in the human mind. After a careful analysis of the gathered data, a theoretical prototype called Language Activation Model was generated. For every string, there are three specialized banks: lexico-semantics, morphono-syntax, and pragmatics. These banks are interrelated to other banks of other language strings. As the bilingual learns more languages, a new string is replicated and is filled up with the information of the new language learned. The principles of the first and second languages' interaction are drawn; these are expressed in laws, namely: law of dominance, law of availability, law of usuality and law of preference. Furthermore, difficulties encountered in the learning of second languages were also determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilingualism" title="bilingualism">bilingualism</a>, <a href="https://publications.waset.org/abstracts/search?q=psycholinguistics" title=" psycholinguistics"> psycholinguistics</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20language%20learning" title=" second language learning"> second language learning</a>, <a href="https://publications.waset.org/abstracts/search?q=languages" title=" languages"> languages</a> </p> <a href="https://publications.waset.org/abstracts/7232/language-activation-theory-unlocking-bilingual-language-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7232.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27906</span> Neuronal Mechanisms of Observational Motor Learning in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Li">Yi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yinan%20Zheng"> Yinan Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya%20Ke"> Ya Ke</a>, <a href="https://publications.waset.org/abstracts/search?q=Yungwing%20Ho"> Yungwing Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motor learning is a process that frequently happens among humans and rodents, which is defined as the changes in the capability to perform a skill that is conformed to have a relatively permanent improvement through practice or experience. There are many ways to learn a behavior, among which is observational learning. Observational learning is the process of learning by watching the behaviors of others, for example, a child imitating parents, learning a new sport by watching the training videos or solving puzzles by watching the solutions. Many research explores observational learning in humans and primates. However, the neuronal mechanism of which, especially observational motor learning, was uncertain. It’s well accepted that mirror neurons are essential in the observational learning process. These neurons fire when the primate performs a goal-directed action and sees someone else demonstrating the same action, which suggests they have high firing activity both completing and watching the behavior. The mirror neurons are assumed to mediate imitation or play a critical and fundamental role in action understanding. They are distributed in many brain areas of primates, i.e., posterior parietal cortex (PPC), premotor cortex (M2), and primary motor cortex (M1) of the macaque brain. However, few researchers report the existence of mirror neurons in rodents. To verify the existence of mirror neurons and the possible role in motor learning in rodents, we performed customised string-pulling behavior combined with multiple behavior analysis methods, photometry, electrophysiology recording, c-fos staining and optogenetics in healthy mice. After five days of training, the demonstrator (demo) mice showed a significantly quicker response and shorter time to reach the string; fast, steady and accurate performance to pull down the string; and more precisely grasping the beads. During three days of observation, the mice showed more facial motions when the demo mice performed behaviors. On the first training day, the observer reduced the number of trials to find and pull the string. However, the time to find beads and pull down string were unchanged in the successful attempts on the first day and other training days, which indicated successful action understanding but failed motor learning through observation in mice. After observation, the post-hoc staining revealed that the c-fos expression was increased in the cognitive-related brain areas (medial prefrontal cortex) and motor cortices (M1, M2). In conclusion, this project indicated that the observation led to a better understanding of behaviors and activated the cognitive and motor-related brain areas, which suggested the possible existence of mirror neurons in these brain areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=observation" title="observation">observation</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20learning" title=" motor learning"> motor learning</a>, <a href="https://publications.waset.org/abstracts/search?q=string-pulling%20behavior" title=" string-pulling behavior"> string-pulling behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=prefrontal%20cortex" title=" prefrontal cortex"> prefrontal cortex</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20cortex" title=" motor cortex"> motor cortex</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive" title=" cognitive"> cognitive</a> </p> <a href="https://publications.waset.org/abstracts/153652/neuronal-mechanisms-of-observational-motor-learning-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27905</span> Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidal%20F.%20Shilbayeh">Nidal F. Shilbayeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Remah%20W.%20Al-Khatib"> Remah W. Al-Khatib</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameer%20A.%20Nooh"> Sameer A. Nooh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.&nbsp; This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=handwritten%20numerals" title="handwritten numerals">handwritten numerals</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=courtesy%20amount" title=" courtesy amount"> courtesy amount</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=numeral%20recognition" title=" numeral recognition"> numeral recognition</a> </p> <a href="https://publications.waset.org/abstracts/88377/segmentation-of-arabic-handwritten-numeral-strings-based-on-watershed-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27904</span> An Authentic Algorithm for Ciphering and Deciphering Called Latin Djokovic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diogen%20Babuc">Diogen Babuc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The question that is a motivation of writing is how many devote themselves to discovering something in the world of science where much is discerned and revealed, but at the same time, much is unknown. Methods: The insightful elements of this algorithm are the ciphering and deciphering algorithms of Playfair, Caesar, and Vigenère. Only a few of their main properties are taken and modified, with the aim of forming a specific functionality of the algorithm called Latin Djokovic. Specifically, a string is entered as input data. A key k is given, with a random value between the values a and b = a+3. The obtained value is stored in a variable with the aim of being constant during the run of the algorithm. In correlation to the given key, the string is divided into several groups of substrings, and each substring has a length of k characters. The next step involves encoding each substring from the list of existing substrings. Encoding is performed using the basis of Caesar algorithm, i.e., shifting with k characters. However, that k is incremented by 1 when moving to the next substring in that list. When the value of k becomes greater than b+1, it’ll return to its initial value. The algorithm is executed, following the same procedure, until the last substring in the list is traversed. Results: Using this polyalphabetic method, ciphering and deciphering of strings are achieved. The algorithm also works for a 100-character string. The x character isn’t used when the number of characters in a substring is incompatible with the expected length. The algorithm is simple to implement, but it’s questionable if it works better than the other methods from the point of view of execution time and storage space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ciphering" title="ciphering">ciphering</a>, <a href="https://publications.waset.org/abstracts/search?q=deciphering" title=" deciphering"> deciphering</a>, <a href="https://publications.waset.org/abstracts/search?q=authentic" title=" authentic"> authentic</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=polyalphabetic%20cipher" title=" polyalphabetic cipher"> polyalphabetic cipher</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20key" title=" random key"> random key</a>, <a href="https://publications.waset.org/abstracts/search?q=methods%20comparison" title=" methods comparison"> methods comparison</a> </p> <a href="https://publications.waset.org/abstracts/158121/an-authentic-algorithm-for-ciphering-and-deciphering-called-latin-djokovic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27903</span> The Composer’s Hand: An Analysis of Arvo Pärt’s String Orchestral Work, Psalom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20K.%20Johnson">Mark K. Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Arvo Pärt has composed over 80 text-based compositions based on nine different languages. But prior to 2015, it was not publicly known what texts the composer used in composing a number of his non-vocal works, nor the language of those texts. Because of this lack of information, few if any musical scholars have illustrated in any detail how textual structure applies to any of Pärt’s instrumental compositions. However, in early 2015, the Arvo Pärt Centre in Estonia published In Principio, a compendium of the texts Pärt has used to derive many of the parameters of his text-based compositions. This paper provides the first detailed analysis of the relationship between structural aspects of the Church Slavonic Eastern Orthodox text of Psalm 112 and the musical parameters that Pärt used when composing the string orchestral work Psalom. It demonstrates that Pärt’s text-based compositions are carefully crafted works, and that evidence of the presence of the ‘invisible’ hand of the composer can be found within every aspect of the underpinning structures, at the more elaborate middle ground level, and even within surface aspects of these works. Based on the analysis of Psalom, it is evident that the text Pärt selected for Psalom informed many of his decisions regarding the musical structures, parameters and processes that he deployed in composing this non-vocal text-based work. Many of these composerly decisions in relation to these various aspects cannot be fathomed without access to, and an understanding of, the text associated with the work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arvo%20P%C3%A4rt" title="Arvo Pärt">Arvo Pärt</a>, <a href="https://publications.waset.org/abstracts/search?q=minimalism" title=" minimalism"> minimalism</a>, <a href="https://publications.waset.org/abstracts/search?q=psalom" title=" psalom"> psalom</a>, <a href="https://publications.waset.org/abstracts/search?q=text-based%20process%20music" title=" text-based process music"> text-based process music</a> </p> <a href="https://publications.waset.org/abstracts/66937/the-composers-hand-an-analysis-of-arvo-parts-string-orchestral-work-psalom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66937.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27902</span> The Operating Results of the English General Music Course on the Education Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shan-Ken%20Chine">Shan-Ken Chine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims to a one-year course run of String Music Appreciation, an international online course launched on the British open education platform. It explains how to present music teaching videos with three main features. They are music lesson explanations, instrumental playing demonstrations, and live music performances. The plan of this course is with four major themes and a total of 97 steps. In addition, the paper also uses the testing data provided by the education platform to analyze the performance of learners and to understand the operation of the course. It contains three test data in the statistics dashboard. They are course-run measures, total statistics, and statistics by week. The paper ends with a review of the course's star rating in this one-year run. The result of this course run will be adjusted when it starts again in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=music%20online%20courses" title="music online courses">music online courses</a>, <a href="https://publications.waset.org/abstracts/search?q=MOOCs" title=" MOOCs"> MOOCs</a>, <a href="https://publications.waset.org/abstracts/search?q=ubiquitous%20learning" title=" ubiquitous learning"> ubiquitous learning</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20music" title=" string music"> string music</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20music%20education" title=" general music education"> general music education</a> </p> <a href="https://publications.waset.org/abstracts/186110/the-operating-results-of-the-english-general-music-course-on-the-education-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">37</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27901</span> Model-Based Global Maximum Power Point Tracking at Photovoltaic String under Partial Shading Conditions Using Multi-Input Interleaved Boost DC-DC Converter </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hossein%20Hosseini">Seyed Hossein Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Majid%20%20Hashemzadeh"> Seyed Majid Hashemzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy is one of the remarkable renewable energy sources that have particular characteristics such as unlimited, no environmental pollution, and free access. Generally, solar energy can be used in thermal and photovoltaic (PV) types. The cost of installation of the PV system is very high. Additionally, due to dependence on environmental situations such as solar radiation and ambient temperature, electrical power generation of this system is unpredictable and without power electronics devices, there is no guarantee to maximum power delivery at the output of this system. Maximum power point tracking (MPPT) should be used to achieve the maximum power of a PV string. MPPT is one of the essential parts of the PV system which without this section, it would be impossible to reach the maximum amount of the PV string power and high losses are caused in the PV system. One of the noticeable challenges in the problem of MPPT is the partial shading conditions (PSC). In PSC, the output photocurrent of the PV module under the shadow is less than the PV string current. The difference between the mentioned currents passes from the module's internal parallel resistance and creates a large negative voltage across shaded modules. This significant negative voltage damages the PV module under the shadow. This condition is called hot-spot phenomenon. An anti-paralleled diode is inserted across the PV module to prevent the happening of this phenomenon. This diode is known as the bypass diode. Due to the performance of the bypass diode under PSC, the P-V curve of the PV string has several peaks. One of the P-V curve peaks that makes the maximum available power is the global peak. Model-based Global MPPT (GMPPT) methods can estimate the optimal point with higher speed than other GMPPT approaches. Centralized, modular, and interleaved DC-DC converter topologies are the significant structures that can be used for GMPPT at a PV string. there are some problems in the centralized structure such as current mismatch losses at PV sting, loss of power of the shaded modules because of bypassing by bypass diodes under PSC, needing to series connection of many PV modules to reach the desired voltage level. In the modular structure, each PV module is connected to a DC-DC converter. In this structure, by increasing the amount of demanded power from the PV string, the number of DC-DC converters that are used at the PV system will increase. As a result, the cost of the modular structure is very high. We can implement the model-based GMPPT through the multi-input interleaved boost DC-DC converter to increase the power extraction from the PV string and reduce hot-spot and current mismatch error in a PV string under different environmental condition and variable load circumstances. The interleaved boost DC-DC converter has many privileges than other mentioned structures, such as high reliability and efficiency, better regulation of DC voltage at DC link, overcome the notable errors such as module's current mismatch and hot spot phenomenon, and power switches voltage stress reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20systems" title=" photovoltaic systems"> photovoltaic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=interleaved%20boost%20converter" title=" interleaved boost converter"> interleaved boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power%20point%20tracking" title=" maximum power point tracking"> maximum power point tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=model-based%20method" title=" model-based method"> model-based method</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20shading%20conditions" title=" partial shading conditions"> partial shading conditions</a> </p> <a href="https://publications.waset.org/abstracts/120098/model-based-global-maximum-power-point-tracking-at-photovoltaic-string-under-partial-shading-conditions-using-multi-input-interleaved-boost-dc-dc-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27900</span> Shade Effect on Photovoltaic Systems: A Comparison between String and Module-Based Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyad%20M.%20Muslih">Iyad M. Muslih</a>, <a href="https://publications.waset.org/abstracts/search?q=Yehya%20Abdellatif"> Yehya Abdellatif </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, shading will reduce the electrical power produced from PV modules and arrays in locations where shading is unavoidable or caused by dynamic moving parts. This reduction is based on the shade effect on the I-V curve of the PV module or array and how the DC/AC inverter can search and control the optimum value of power from this module or array configuration. This is a very complicated task due to different patterns of shaded PV modules and arrays. One solution presented by the inverter industry is to perform the maximum power point tracking (MPPT) at the module level rather than the series string level. This solution is supposed to reduce the shade effect on the total harvested energy. However, this isn’t necessarily the best solution to reduce the shade effect as will be shown in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title="photovoltaic">photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=shade%20effect" title=" shade effect"> shade effect</a>, <a href="https://publications.waset.org/abstracts/search?q=I-V%20curve" title=" I-V curve"> I-V curve</a>, <a href="https://publications.waset.org/abstracts/search?q=MPPT" title=" MPPT"> MPPT</a> </p> <a href="https://publications.waset.org/abstracts/37105/shade-effect-on-photovoltaic-systems-a-comparison-between-string-and-module-based-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27899</span> Dual Duality for Unifying Spacetime and Internal Symmetry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20C.%20Ni">David C. Ni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current efforts for Grand Unification Theory (GUT) can be classified into General Relativity, Quantum Mechanics, String Theory and the related formalisms. In the geometric approaches for extending General Relativity, the efforts are establishing global and local invariance embedded into metric formalisms, thereby additional dimensions are constructed for unifying canonical formulations, such as Hamiltonian and Lagrangian formulations. The approaches of extending Quantum Mechanics adopt symmetry principle to formulate algebra-group theories, which evolved from Maxwell formulation to Yang-Mills non-abelian gauge formulation, and thereafter manifested the Standard model. This thread of efforts has been constructing super-symmetry for mapping fermion and boson as well as gluon and graviton. The efforts of String theory currently have been evolving to so-called gauge/gravity correspondence, particularly the equivalence between type IIB string theory compactified on AdS5 × S5 and N = 4 supersymmetric Yang-Mills theory. Other efforts are also adopting cross-breeding approaches of above three formalisms as well as competing formalisms, nevertheless, the related symmetries, dualities, and correspondences are outlined as principles and techniques even these terminologies are defined diversely and often generally coined as duality. In this paper, we firstly classify these dualities from the perspective of physics. Then examine the hierarchical structure of classes from mathematical perspective referring to Coleman-Mandula theorem, Hidden Local Symmetry, Groupoid-Categorization and others. Based on Fundamental Theorems of Algebra, we argue that rather imposing effective constraints on different algebras and the related extensions, which are mainly constructed by self-breeding or self-mapping methodologies for sustaining invariance, we propose a new addition, momentum-angular momentum duality at the level of electromagnetic duality, for rationalizing the duality algebras, and then characterize this duality numerically with attempt for addressing some unsolved problems in physics and astrophysics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20theory" title=" string theory"> string theory</a>, <a href="https://publications.waset.org/abstracts/search?q=duality" title=" duality"> duality</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetry" title=" symmetry"> symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=correspondence" title=" correspondence"> correspondence</a>, <a href="https://publications.waset.org/abstracts/search?q=algebra" title=" algebra"> algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum-angular-momentum" title=" momentum-angular-momentum"> momentum-angular-momentum</a> </p> <a href="https://publications.waset.org/abstracts/45918/dual-duality-for-unifying-spacetime-and-internal-symmetry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27898</span> China&#039;s New &quot;Pivots&quot; in the Indian Ocean: Towards &quot;String of Pearls&quot; Strategy 2.0</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mike%20Chia-Yu%20Huang">Mike Chia-Yu Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China’s port facility construction projects in the Indian Ocean (IO) region, Gwadar Port and Djibouti Port projects in particular, have led to a heated debate among both Chinese and Western strategists over whether the country has literally been carrying out its “string of pearls” strategy, an alleged Chinese plan to challenge America’s military predominance in South Asia. Even though the Chinese government repeatedly denied the existence of such a strategy and highlighted the civilian/commercial nature of its port projects, it has significantly enhanced its strategic cooperation with littoral countries in the IO region since the “One Belt One Road” initiative was introduced by Chinese President Xi Jinping in 2013. Whether China does have a plan to expand its sphere of military influence westward concerns the balance of power in the IO region. If the answer is positive, the security environment there will be changed drastically. This paper argues that rather than simply copying the U.S. model of developing overseas military bases along the IO periphery, Beijing has been deliberating a more sophisticated plan for its physical presence there: creating a new set of “overseas strategic pivots.” These “pivots,” semi-military and semi-commercial in nature, are designed to help Beijing sustain its anti-piracy operations in the Gulf of Aden and serve as forward stations for the transportation of China’s imported energy and merchandise. They can support the Chinese Navy’s operations overseas but are not supposed to undertake face-to-face combat missions. This upgraded Chinese scheme can be identified as “string of pearls” strategy 2.0. Moreover, it is expected to help China deepen its roots in the IO region, implying that Beijing has to a large extent scratched its old diplomatic philosophy which highlighted the merits of non-interference and nonalignment. While a full-scale maritime confrontation between China and the U.S.-India security alliance is unlikely to be witnessed in the near future, an ambitious Chinese plan to step into the global maritime domain has been evidently shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20navy" title="Chinese navy">Chinese navy</a>, <a href="https://publications.waset.org/abstracts/search?q=Djibouti" title=" Djibouti"> Djibouti</a>, <a href="https://publications.waset.org/abstracts/search?q=Gwadar" title=" Gwadar"> Gwadar</a>, <a href="https://publications.waset.org/abstracts/search?q=Indian%20Ocean" title=" Indian Ocean"> Indian Ocean</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20of%20pearls%20strategy" title=" string of pearls strategy"> string of pearls strategy</a> </p> <a href="https://publications.waset.org/abstracts/63909/chinas-new-pivots-in-the-indian-ocean-towards-string-of-pearls-strategy-20" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27897</span> Modeling and Control Design of a Centralized Adaptive Cruise Control System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Markus%20Mazzola">Markus Mazzola</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunther%20Schaaf"> Gunther Schaaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper, we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20cruise%20control" title="adaptive cruise control">adaptive cruise control</a>, <a href="https://publications.waset.org/abstracts/search?q=centralized%20server" title=" centralized server"> centralized server</a>, <a href="https://publications.waset.org/abstracts/search?q=networked%0D%0Amodel%20predictive%20control" title=" networked model predictive control"> networked model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=string%20stability" title=" string stability"> string stability</a> </p> <a href="https://publications.waset.org/abstracts/6450/modeling-and-control-design-of-a-centralized-adaptive-cruise-control-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27896</span> Analysis on Solar Panel Performance and PV-Inverter Configuration for Tropical Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eko%20Adhi%20Setiawan">Eko Adhi Setiawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Duli%20Asih%20Siregar"> Duli Asih Siregar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiman%20Setiawan"> Aiman Setiawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy is abundant in nature, particularly in the tropics which have peak sun hour that can reach 8 hours per day. In the fabrication process, Photovoltaic’s (PV) performance are tested in standard test conditions (STC). It specifies a module temperature of 25°C, an irradiance of 1000 W/ m² with an air mass 1.5 (AM1.5) spectrum and zero wind speed. Thus, the results of the performance testing of PV at STC conditions cannot fully represent the performance of PV in the tropics. For example Indonesia, which has a temperature of 20-40°C. In this paper, the effect of temperature on the choice of the 5 kW AC inverter topology on the PV system such as the Central Inverter, String Inverter and AC-Module specifically for the tropics will be discussed. The proper inverter topology can be determined by analysis of the effect of temperature and irradiation on the PV panel. The effect of temperature and irradiation will be represented in the characteristics of I-V and P-V curves. PV’s characteristics on high temperature would be analyzed using Solar panel modeling through MATLAB Simulink based on mathematical equations that form Solar panel’s characteristic curve. Based on PV simulation, it is known then that temperature coefficients of short circuit current (ISC), open circuit voltage (VOC), and maximum output power (PMAX) consecutively as high as 0.56%/oC, -0.31%/oC and -0.4%/oC. Those coefficients can be used to calculate PV’s electrical parameters such as ISC, VOC, and PMAX in certain earth’s surface’s certain point. Then, from the parameters, the utility of the 5 kW AC inverter system can be determined. As the result, for tropical area, string inverter topology has the highest utility rates with 98, 80 %. On the other hand, central inverter and AC-Module Topology has utility rates of 92.69 % and 87.7 % eventually. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Photovoltaic" title="Photovoltaic">Photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=PV-Inverter%20Configuration" title=" PV-Inverter Configuration"> PV-Inverter Configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=PV%20Modeling" title=" PV Modeling"> PV Modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Solar%20Panel%20Characteristics." title=" Solar Panel Characteristics."> Solar Panel Characteristics.</a> </p> <a href="https://publications.waset.org/abstracts/39210/analysis-on-solar-panel-performance-and-pv-inverter-configuration-for-tropical-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27895</span> STML: Service Type-Checking Markup Language for Services of Web Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saqib%20Rasool">Saqib Rasool</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20N.%20Mian"> Adnan N. Mian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Web components are introduced as the latest standard of HTML5 for writing modular web interfaces for ensuring maintainability through the isolated scope of web components. Reusability can also be achieved by sharing plug-and-play web components that can be used as off-the-shelf components by other developers. A web component encapsulates all the required HTML, CSS and JavaScript code as a standalone package which must be imported for integrating a web component within an existing web interface. It is then followed by the integration of web component with the web services for dynamically populating its content. Since web components are reusable as off-the-shelf components, these must be equipped with some mechanism for ensuring their proper integration with web services. The consistency of a service behavior can be verified through type-checking. This is one of the popular solutions for improving the quality of code in many programming languages. However, HTML does not provide type checking as it is a markup language and not a programming language. The contribution of this work is to introduce a new extension of HTML called Service Type-checking Markup Language (STML) for adding support of type checking in HTML for JSON based REST services. STML can be used for defining the expected data types of response from JSON based REST services which will be used for populating the content within HTML elements of a web component. Although JSON has five data types viz. string, number, boolean, object and array but STML is made to supports only string, number and object. This is because of the fact that both object and array are considered as string, when populated in HTML elements. In order to define the data type of any HTML element, developer just needs to add the custom STML attributes of st-string, st-number and st-boolean for string, number and boolean respectively. These all annotations of STML are used by the developer who is writing a web component and it enables the other developers to use automated type-checking for ensuring the proper integration of their REST services with the same web component. Two utilities have been written for developers who are using STML based web components. One of these utilities is used for automated type-checking during the development phase. It uses the browser console for showing the error description if integrated web service is not returning the response with expected data type. The other utility is a Gulp based command line utility for removing the STML attributes before going in production. This ensures the delivery of STML free web pages in the production environment. Both of these utilities have been tested to perform type checking of REST services through STML based web components and results have confirmed the feasibility of evaluating service behavior only through HTML. Currently, STML is designed for automated type-checking of integrated REST services but it can be extended to introduce a complete service testing suite based on HTML only, and it will transform STML from Service Type-checking Markup Language to Service Testing Markup Language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=REST" title="REST">REST</a>, <a href="https://publications.waset.org/abstracts/search?q=STML" title=" STML"> STML</a>, <a href="https://publications.waset.org/abstracts/search?q=type%20checking" title=" type checking"> type checking</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20component" title=" web component"> web component</a> </p> <a href="https://publications.waset.org/abstracts/69287/stml-service-type-checking-markup-language-for-services-of-web-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27894</span> A Generalized Space-Efficient Algorithm for Quantum Bit String Comparators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khuram%20Shahzad">Khuram Shahzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Usman%20Khan"> Omar Usman Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum bit string comparators (QBSC) operate on two sequences of n-qubits, enabling the determination of their relationships, such as equality, greater than, or less than. This is analogous to the way conditional statements are used in programming languages. Consequently, QBSCs play a crucial role in various algorithms that can be executed or adapted for quantum computers. The development of efficient and generalized comparators for any n-qubit length has long posed a challenge, as they have a high-cost footprint and lead to quantum delays. Comparators that are efficient are associated with inputs of fixed length. As a result, comparators without a generalized circuit cannot be employed at a higher level, though they are well-suited for problems with limited size requirements. In this paper, we introduce a generalized design for the comparison of two n-qubit logic states using just two ancillary bits. The design is examined on the basis of qubit requirements, ancillary bit usage, quantum cost, quantum delay, gate operations, and circuit complexity and is tested comprehensively on various input lengths. The work allows for sufficient flexibility in the design of quantum algorithms, which can accelerate quantum algorithm development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20comparator" title="quantum comparator">quantum comparator</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20algorithm" title=" quantum algorithm"> quantum algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=space-efficient%20comparator" title=" space-efficient comparator"> space-efficient comparator</a>, <a href="https://publications.waset.org/abstracts/search?q=comparator" title=" comparator"> comparator</a> </p> <a href="https://publications.waset.org/abstracts/193195/a-generalized-space-efficient-algorithm-for-quantum-bit-string-comparators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27893</span> Modeling and Analysis of Drilling Operation in Shale Reservoirs with Introduction of an Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Kazemi">Sina Kazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farshid%20Torabi"> Farshid Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20Peterson"> Todd Peterson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drilling in shale formations is frequently time-consuming, challenging, and fraught with mechanical failures such as stuck pipes or hole packing off when the cutting removal rate is not sufficient to clean the bottom hole. Crossing the heavy oil shale and sand reservoirs with active shale and microfractures is generally associated with severe fluid losses causing a reduction in the rate of the cuttings removal. These circumstances compromise a well’s integrity and result in a lower rate of penetration (ROP). This study presents collective results of field studies and theoretical analysis conducted on data from South Pars and North Dome in an Iran-Qatar offshore field. Solutions to complications related to drilling in shale formations are proposed through systemically analyzing and applying modeling techniques to select field mud logging data. Field data measurements during actual drilling operations indicate that in a shale formation where the return flow of polymer mud was almost lost in the upper dolomite layer, the performance of hole cleaning and ROP progressively change when higher string rotations are initiated. Likewise, it was observed that this effect minimized the force of rotational torque and improved well integrity in the subsequent casing running. Given similar geologic conditions and drilling operations in reservoirs targeting shale as the producing zone like the Bakken formation within the Williston Basin and Lloydminster, Saskatchewan, a drill bench dynamic modeling simulation was used to simulate borehole cleaning efficiency and mud optimization. The results obtained by altering RPM (string revolution per minute) at the same pump rate and optimized mud properties exhibit a positive correlation with field measurements. The field investigation and developed model in this report show that increasing the speed of string revolution as far as geomechanics and drilling bit conditions permit can minimize the risk of mechanically stuck pipes while reaching a higher than expected ROP in shale formations. Data obtained from modeling and field data analysis, optimized drilling parameters, and hole cleaning procedures are suggested for minimizing the risk of a hole packing off and enhancing well integrity in shale reservoirs. Whereas optimization of ROP at a lower pump rate maintains the wellbore stability, it saves time for the operator while reducing carbon emissions and fatigue of mud motors and power supply engines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ROP" title="ROP">ROP</a>, <a href="https://publications.waset.org/abstracts/search?q=circulating%20density" title=" circulating density"> circulating density</a>, <a href="https://publications.waset.org/abstracts/search?q=drilling%20parameters" title=" drilling parameters"> drilling parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20flow" title=" return flow"> return flow</a>, <a href="https://publications.waset.org/abstracts/search?q=shale%20reservoir" title=" shale reservoir"> shale reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20integrity" title=" well integrity"> well integrity</a> </p> <a href="https://publications.waset.org/abstracts/154878/modeling-and-analysis-of-drilling-operation-in-shale-reservoirs-with-introduction-of-an-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27892</span> Flashover Detection Algorithm Based on Mother Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20A.%20Morales">John A. Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Guidi"> Guillermo Guidi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Keune"> B. M. Keune</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric Power supply is a crucial topic for economic and social development. Power outages statistics show that discharges atmospherics are imperative phenomena to produce those outages. In this context, it is necessary to correctly detect when overhead line insulators are faulted. In this paper, an algorithm to detect if a lightning stroke generates or not permanent fault on insulator strings is proposed. On top of that, lightning stroke simulations developed by using the Alternative Transients Program, are used. Based on these insights, a novel approach is designed that depends on mother functions analysis corresponding to the given variance-covariance matrix. Signals registered at the insulator string are projected on corresponding axes by the means of Principal Component Analysis. By exploiting these new axes, it is possible to determine a flashover characteristic zone useful to a good insulation design. The proposed methodology for flashover detection extends the existing approaches for the analysis and study of lightning performance on transmission lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mother%20function" title="mother function">mother function</a>, <a href="https://publications.waset.org/abstracts/search?q=outages" title=" outages"> outages</a>, <a href="https://publications.waset.org/abstracts/search?q=lightning" title=" lightning"> lightning</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/26070/flashover-detection-algorithm-based-on-mother-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27891</span> Well-Being Inequality Using Superimposing Satisfaction Waves: Heisenberg Uncertainty in Behavioral Economics and Econometrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okay%20Gunes">Okay Gunes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, for the first time in the literature for this subject we propose a new method for the measuring of well-being inequality through a model composed of superimposing satisfaction waves. The displacement of households’ satisfactory state (i.e. satisfaction) is defined in a satisfaction string. The duration of the satisfactory state for a given period of time is measured in order to determine the relationship between utility and total satisfactory time, itself dependent on the density and tension of each satisfaction string. Thus, individual cardinal total satisfaction values are computed by way of a one-dimensional form for scalar sinusoidal (harmonic) moving wave function, using satisfaction waves with varying amplitudes and frequencies which allow us to measure well-being inequality. One advantage to using satisfaction waves is the ability to show that individual utility and consumption amounts would probably not commute; hence it is impossible to measure or to know simultaneously the values of these observables from the dataset. Thus, we crystallize the problem by using a Heisenberg-type uncertainty resolution for self-adjoint economic operators. We propose to eliminate any estimation bias by correlating the standard deviations of selected economic operators; this is achieved by replacing the aforementioned observed uncertainties with households’ perceived uncertainties (i.e. corrected standard deviations) obtained through the logarithmic psychophysical law proposed by Weber and Fechner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Heisenberg%20uncertainty%20principle" title="Heisenberg uncertainty principle">Heisenberg uncertainty principle</a>, <a href="https://publications.waset.org/abstracts/search?q=superimposing%20satisfaction%20waves" title=" superimposing satisfaction waves"> superimposing satisfaction waves</a>, <a href="https://publications.waset.org/abstracts/search?q=Weber%E2%80%93Fechner%20law" title=" Weber–Fechner law"> Weber–Fechner law</a>, <a href="https://publications.waset.org/abstracts/search?q=well-being%20inequality" title=" well-being inequality"> well-being inequality</a> </p> <a href="https://publications.waset.org/abstracts/24542/well-being-inequality-using-superimposing-satisfaction-waves-heisenberg-uncertainty-in-behavioral-economics-and-econometrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27890</span> Vicarious Cues in Portraying Emotion: Musicians&#039; Self-Appraisal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20Linthicum-Blackhorse">W. Linthicum-Blackhorse</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Martens"> P. Martens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This present study seeks to discover attitudinal commonalities and differences within a musician population relative to the communication of emotion via music. We hypothesized that instrument type, as well as age and gender, would bear significantly on musicians’ opinions. A survey was administered to 178 participants; 152 were current music majors (mean age 20.3 years, 62 female) and 26 were adult participants in a community choir (mean age 54.0 years, 12 female). The adult participants were all vocalists, while student participants represented the full range of orchestral instruments. The students were grouped by degree program, (performance, music education, or other) and instrument type (voice, brass, woodwinds, strings, percussion). The survey asked 'How important are each of the following areas to you for portraying emotion in music?' Participants were asked to rate each of 15 items on a scale of 1 (not at all important) to 10 (very important). Participants were also instructed to leave blank any item that they did not understand. The 15 items were: dynamic contrast, overall volume, phrasing, facial expression, staging (placement), pitch accuracy, tempo changes, bodily movement, your mood, your attitude, vibrato, rubato, stage/room lighting, clothing type, and clothing color. Contrary to our hypothesis, there was no overall effect of gender or age, and neither did any single response item show a significant difference due to these subject parameters. Among the student participants, however, one-way ANOVA revealed a significant effect of degree program on the rated importance of four items: dynamic contrast, tempo changes, vibrato, and rubato. Significant effects of instrument type were found in the responses to eight items: facial expression, staging, body movement, vibrato, rubato, lighting, clothing type, and clothing color. Post hoc comparisons (Tukey) show that some variation follows from obvious differences between instrument types (e.g. string players are more concerned with vibrato than everyone but woodwind players; vocalists are significantly more concerned with facial expression than everyone but string players), but other differences could point to communal mindsets toward vicarious cues within instrument type. These mindsets could be global (e.g. brass players deeming body movement significantly less important than string players, being less often featured as soloists and appearing less often at the front of the stage) or local (e.g. string players being significantly more concerned than all other groups about both clothing color and type, perhaps due to the strongly-expressed opinions of specific teachers). Future work will attempt to identify the source of these self-appraisals, whether enculturated via explicit pedagogy, or whether absorbed from individuals' observations and performance experience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance" title="performance">performance</a>, <a href="https://publications.waset.org/abstracts/search?q=vicarious%20cues" title=" vicarious cues"> vicarious cues</a>, <a href="https://publications.waset.org/abstracts/search?q=communication" title=" communication"> communication</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion" title=" emotion"> emotion</a> </p> <a href="https://publications.waset.org/abstracts/84528/vicarious-cues-in-portraying-emotion-musicians-self-appraisal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=930">930</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=931">931</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=string%20analysis&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10