CINXE.COM
Search results for: Helmholtz equation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Helmholtz equation</title> <meta name="description" content="Search results for: Helmholtz equation"> <meta name="keywords" content="Helmholtz equation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Helmholtz equation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Helmholtz equation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2004</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Helmholtz equation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2004</span> Divergence Regularization Method for Solving Ill-Posed Cauchy Problem for the Helmholtz Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benedict%20Barnes">Benedict Barnes</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Y.%20Aidoo"> Anthony Y. Aidoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Divergence Regularization Method (DRM) is used to regularize the ill-posed Helmholtz equation where the boundary deflection is inhomogeneous in a Hilbert space H. The DRM incorporates a positive integer scaler which homogenizes the inhomogeneous boundary deflection in Cauchy problem of the Helmholtz equation. This ensures the existence, as well as, uniqueness of solution for the equation. The DRM restores all the three conditions of well-posedness in the sense of Hadamard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=divergence%20regularization%20method" title="divergence regularization method">divergence regularization method</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title=" Helmholtz equation"> Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=ill-posed%20inhomogeneous%20Cauchy%20boundary%20conditions" title=" ill-posed inhomogeneous Cauchy boundary conditions"> ill-posed inhomogeneous Cauchy boundary conditions</a> </p> <a href="https://publications.waset.org/abstracts/137727/divergence-regularization-method-for-solving-ill-posed-cauchy-problem-for-the-helmholtz-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2003</span> New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norhashidah%20Hj%20Mohd%20Ali">Norhashidah Hj Mohd Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng%20Wai%20Ping"> Teng Wai Ping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explicit%20group%20method" title="explicit group method">explicit group method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference" title=" finite difference"> finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title=" Helmholtz equation"> Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=five-point%20formula" title=" five-point formula"> five-point formula</a>, <a href="https://publications.waset.org/abstracts/search?q=nine-point%20formula" title=" nine-point formula"> nine-point formula</a> </p> <a href="https://publications.waset.org/abstracts/17278/new-fourth-order-explicit-group-method-in-the-solution-of-the-helmholtz-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2002</span> Local Radial Basis Functions for Helmholtz Equation in Seismic Inversion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hebert%20Montegranario">Hebert Montegranario</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauricio%20Londo%C3%B1o"> Mauricio Londoño </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solutions of Helmholtz equation are essential in seismic imaging methods like full wave inversion, which needs to solve many times the wave equation. Traditional methods like Finite Element Method (FEM) or Finite Differences (FD) have sparse matrices but may suffer the so called pollution effect in the numerical solutions of Helmholtz equation for large values of the wave number. On the other side, global radial basis functions have a better accuracy but produce full matrices that become unstable. In this research we combine the virtues of both approaches to find numerical solutions of Helmholtz equation, by applying a meshless method that produce sparse matrices by local radial basis functions. We solve the equation with absorbing boundary conditions of the kind Clayton-Enquist and PML (Perfect Matched Layers) and compared with results in standard literature, showing a promising performance by tackling both the pollution effect and matrix instability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title="Helmholtz equation">Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=meshless%20methods" title=" meshless methods"> meshless methods</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20imaging" title=" seismic imaging"> seismic imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=wavefield%20inversion" title=" wavefield inversion"> wavefield inversion</a> </p> <a href="https://publications.waset.org/abstracts/33679/local-radial-basis-functions-for-helmholtz-equation-in-seismic-inversion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">547</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2001</span> A Comparative Study of High Order Rotated Group Iterative Schemes on Helmholtz Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norhashidah%20Hj.%20Mohd%20Ali">Norhashidah Hj. Mohd Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Teng%20Wai%20Ping"> Teng Wai Ping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a high order group explicit method in solving the two dimensional Helmholtz equation<em>.</em> The presented method is derived from a nine-point fourth order finite difference approximation formula obtained from a 45-degree rotation of the standard grid which makes it possible for the construction of iterative procedure with reduced complexity. The developed method will be compared with the existing group iterative schemes available in literature in terms of computational time, iteration counts, and computational complexity. The comparative performances of the methods will be discussed and reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explicit%20group%20method" title="explicit group method">explicit group method</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20difference" title=" finite difference"> finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=helmholtz%20equation" title=" helmholtz equation"> helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=rotated%20grid" title=" rotated grid"> rotated grid</a>, <a href="https://publications.waset.org/abstracts/search?q=standard%20grid" title=" standard grid"> standard grid</a> </p> <a href="https://publications.waset.org/abstracts/51535/a-comparative-study-of-high-order-rotated-group-iterative-schemes-on-helmholtz-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2000</span> Localized Meshfree Methods for Solving 3D-Helmholtz Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Mollapourasl">Reza Mollapourasl</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Haghi"> Majid Haghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20functions" title="radial basis functions">radial basis functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermite%20finite%20difference" title=" Hermite finite difference"> Hermite finite difference</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation" title=" Helmholtz equation"> Helmholtz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/168736/localized-meshfree-methods-for-solving-3d-helmholtz-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1999</span> Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Motamed-Jahromi">Leila Motamed-Jahromi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Hatami"> Mohsen Hatami</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Keshavarz"> Alireza Keshavarz </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As<sub>2</sub>S<sub>3</sub> chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion<span dir="RTL">.</span> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title="nonlinear optics">nonlinear optics</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmonic%20waveguide" title=" plasmonic waveguide"> plasmonic waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=chalcogenide" title=" chalcogenide"> chalcogenide</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20equation" title=" propagation equation"> propagation equation</a> </p> <a href="https://publications.waset.org/abstracts/52758/equations-of-pulse-propagation-in-three-layer-structure-of-as2s3-chalcogenide-plasmonic-nano-waveguides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1998</span> Observations of Magnetospheric Ulf Waves in Connection to the Kelvin-Helmholtz Instability at Mercury</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elisabet%20Liljeblad">Elisabet Liljeblad</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Karlsson"> Tomas Karlsson</a>, <a href="https://publications.waset.org/abstracts/search?q=Torbjorn%20Sundberg"> Torbjorn Sundberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Anita%20Kullen"> Anita Kullen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The magnetospheric magnetic field data from the MESSENGER spacecraft is investigated to establish the presence of ultra-low frequency (ULF) waves in connection to 131 previously observed nonlinear Kelvin-Helmholtz waves (KHWs) at Mercury. Distinct ULF signatures are detected in 44 out of the 131 magnetospheric traversals prior to or after observing a KHW. In particular, 39 of these 44 ULF events are highly coherent at the frequency of maximum power spectral density. The waves observed at the dayside, which appears mainly at the duskside and naturally following the KHW occurrence asymmetry, are significantly different to the events behind the dawn-dusk terminator and have the following distinct wave characteristics: they oscillate clearly in the perpendicular (azimuthal) direction to the mean magnetic field with a wave normal angle more in the parallel than the perpendicular direction, increase in absolute ellipticity with distance from noon, are almost exclusively right-hand polarized, and are observed mainly for frequencies in the range 0.02-0.04 Hz. These results indicate that the dayside ULF waves are likely to shear Alfvén waves driven by KHWs at the magnetopause, which in turn manifests the importance of the Kelvin-Helmholtz instability in terms of mass transport throughout the Mercury magnetosphere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultra-low%20frequency%20waves" title="ultra-low frequency waves">ultra-low frequency waves</a>, <a href="https://publications.waset.org/abstracts/search?q=kelvin-Helmholtz%20instability" title=" kelvin-Helmholtz instability"> kelvin-Helmholtz instability</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetospheric%20processes" title=" magnetospheric processes"> magnetospheric processes</a>, <a href="https://publications.waset.org/abstracts/search?q=mercury" title=" mercury"> mercury</a>, <a href="https://publications.waset.org/abstracts/search?q=messenger" title=" messenger"> messenger</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20and%20momentum%20transfer%20in%20planetary%20environments" title=" energy and momentum transfer in planetary environments"> energy and momentum transfer in planetary environments</a> </p> <a href="https://publications.waset.org/abstracts/51968/observations-of-magnetospheric-ulf-waves-in-connection-to-the-kelvin-helmholtz-instability-at-mercury" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1997</span> A Four Free Element Radiofrequency Coil with High B₁ Homogeneity for Magnetic Resonance Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Al-Snaie">Khalid Al-Snaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the design and the testing of a symmetrical radiofrequency prototype coil with high B₁ magnetic field homogeneity are presented. The developed coil comprises four tuned coaxial circular loops that can produce a relatively homogeneous radiofrequency field. In comparison with a standard Helmholtz pair that provides 2nd-order homogeneity, it aims to provide fourth-order homogeneity of the B₁ field while preserving the simplicity of implementation. Electrical modeling of the probe, including all couplings, is used to ensure these requirements. Results of comparison tests, in free space and in a spectro-imager, between a standard Helmholtz pair and the presented prototype coil are introduced. In terms of field homogeneity, an improvement of 30% is observed. Moreover, the proposed prototype coil possesses a better quality factor (+25% on average) and a noticeable improvement in sensitivity (+20%). Overall, this work, which includes both theoretical and experimental aspects, aims to contribute to the study and understanding of four-element radio frequency (RF) systems derived from Helmholtz coils for Magnetic Resonance Imaging <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%E2%82%81%20homogeneity" title="B₁ homogeneity">B₁ homogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=NMR" title=" NMR"> NMR</a>, <a href="https://publications.waset.org/abstracts/search?q=radiofrequency" title=" radiofrequency"> radiofrequency</a>, <a href="https://publications.waset.org/abstracts/search?q=RF%20coil" title=" RF coil"> RF coil</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20element%20systems" title=" free element systems"> free element systems</a> </p> <a href="https://publications.waset.org/abstracts/166325/a-four-free-element-radiofrequency-coil-with-high-b1-homogeneity-for-magnetic-resonance-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1996</span> 3D Modeling for Frequency and Time-Domain Airborne EM Systems with Topography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Yin">C. Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Zhang"> B. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Liu"> Y. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Cai"> J. Cai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Airborne EM (AEM) is an effective geophysical exploration tool, especially suitable for ridged mountain areas. In these areas, topography will have serious effects on AEM system responses. However, until now little study has been reported on topographic effect on airborne EM systems. In this paper, an edge-based unstructured finite-element (FE) method is developed for 3D topographic modeling for both frequency and time-domain airborne EM systems. Starting from the frequency-domain Maxwell equations, a vector Helmholtz equation is derived to obtain a stable and accurate solution. Considering that the AEM transmitter and receiver are both located in the air, the scattered field method is used in our modeling. The Galerkin method is applied to discretize the Helmholtz equation for the final FE equations. Solving the FE equations, the frequency-domain AEM responses are obtained. To accelerate the calculation speed, the response of source in free-space is used as the primary field and the PARDISO direct solver is used to deal with the problem with multiple transmitting sources. After calculating the frequency-domain AEM responses, a Hankel’s transform is applied to obtain the time-domain AEM responses. To check the accuracy of present algorithm and to analyze the characteristic of topographic effect on airborne EM systems, both the frequency- and time-domain AEM responses for 3 model groups are simulated: 1) a flat half-space model that has a semi-analytical solution of EM response; 2) a valley or hill earth model; 3) a valley or hill earth with an abnormal body embedded. Numerical experiments show that close to the node points of the topography, AEM responses demonstrate sharp changes. Special attentions need to be paid to the topographic effects when interpreting AEM survey data over rugged topographic areas. Besides, the profile of the AEM responses presents a mirror relation with the topographic earth surface. In comparison to the topographic effect that mainly occurs at the high-frequency end and early time channels, the EM responses of underground conductors mainly occur at low frequencies and later time channels. For the signal of the same time channel, the dB/dt field reflects the change of conductivity better than the B-field. The research of this paper will serve airborne EM in the identification and correction of the topographic effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D" title="3D">3D</a>, <a href="https://publications.waset.org/abstracts/search?q=Airborne%20EM" title=" Airborne EM"> Airborne EM</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20modeling" title=" forward modeling"> forward modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=topographic%20effect" title=" topographic effect"> topographic effect</a> </p> <a href="https://publications.waset.org/abstracts/46216/3d-modeling-for-frequency-and-time-domain-airborne-em-systems-with-topography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1995</span> Flow Field Analysis of a Liquid Ejector Pump Using Embedded Large Eddy Simulation Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qasim%20Zaheer">Qasim Zaheer</a>, <a href="https://publications.waset.org/abstracts/search?q=Jehanzeb%20Masud"> Jehanzeb Masud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of entrainment and mixing phenomenon in the ejector pump is of pivotal importance for designing and performance estimation. In this paper, the existence of turbulent vortical structures due to Kelvin-Helmholtz instability at the free surface between the motive and the entrained fluids streams are simulated using Embedded LES methodology. The efficacy of Embedded LES for simulation of complex flow field of ejector pump is evaluated using ANSYS Fluent®. The enhanced mixing and entrainment process due to breaking down of larger eddies into smaller ones as a consequence of Vortex Stretching phenomenon is captured in this study. Moreover, the flow field characteristics of ejector pump like pressure velocity fields and mass flow rates are analyzed and validated against the experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20Helmholtz%20instability" title="Kelvin Helmholtz instability">Kelvin Helmholtz instability</a>, <a href="https://publications.waset.org/abstracts/search?q=embedded%20LES" title=" embedded LES"> embedded LES</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20flow%20field" title=" complex flow field"> complex flow field</a>, <a href="https://publications.waset.org/abstracts/search?q=ejector%20pump" title=" ejector pump"> ejector pump</a> </p> <a href="https://publications.waset.org/abstracts/65909/flow-field-analysis-of-a-liquid-ejector-pump-using-embedded-large-eddy-simulation-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1994</span> A CMOS-Integrated Hall Plate with High Sensitivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sup%20Kim">Jin Sup Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Seo"> Min Seo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An improved cross-shaped hall plate with high sensitivity is described in this paper. Among different geometries that have been simulated and measured using Helmholtz coil. The paper describes the physical hall plate design and implementation in a 0.18-µm CMOS technology. In this paper, the biasing is a constant voltage mode. In the voltage mode, magnetic field is converted into an output voltage. The output voltage is typically in the order of micro- to millivolt and therefore, it must be amplified before being transmitted to the outside world. The study, design and performance optimization of hall plate has been carried out with the COMSOL Multiphysics. It is used to estimate the voltage distribution in the hall plate with and without magnetic field and to optimize the geometry. The simulation uses the nominal bias current of 1mA. The applied magnetic field is in the range from 0 mT to 20 mT. Measured results of the one structure over the 10 available samples show for the best sensitivity of 2.5 %/T at 20mT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-shaped%20hall%20plate" title="cross-shaped hall plate">cross-shaped hall plate</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=CMOS%20technology" title=" CMOS technology"> CMOS technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Helmholtz%20coil" title=" Helmholtz coil"> Helmholtz coil</a> </p> <a href="https://publications.waset.org/abstracts/79041/a-cmos-integrated-hall-plate-with-high-sensitivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">197</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1993</span> Fokas-Lenells Equation Conserved Quantities and Landau-Lifshitz System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riki%20Dutta">Riki Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sagardeep%20Talukdar"> Sagardeep Talukdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gautam%20Kumar%20Saharia"> Gautam Kumar Saharia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudipta%20Nandy"> Sudipta Nandy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fokas-Lenells equation (FLE) is one of the integrable nonlinear equations use to describe the propagation of ultrashort optical pulses in an optical medium. A 2x2 Lax pair has been introduced for the FLE and from that solving the Riccati equation yields infinitely many conserved quantities. Thereafter for a new field function (S) of the Landau-Lifshitz (LL) system, a gauge equivalence of the FLE with the generalised LL equation has been derived. We hope our findings are useful for the application purpose of FLE in optics and other branches of physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conserved%20quantities" title="conserved quantities">conserved quantities</a>, <a href="https://publications.waset.org/abstracts/search?q=fokas-lenells%20equation" title=" fokas-lenells equation"> fokas-lenells equation</a>, <a href="https://publications.waset.org/abstracts/search?q=landau-lifshitz%20equation" title=" landau-lifshitz equation"> landau-lifshitz equation</a>, <a href="https://publications.waset.org/abstracts/search?q=lax%20pair" title=" lax pair"> lax pair</a> </p> <a href="https://publications.waset.org/abstracts/165239/fokas-lenells-equation-conserved-quantities-and-landau-lifshitz-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1992</span> Asymptotic Expansion of the Korteweg-de Vries-Burgers Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian-Jun%20Shu">Jian-Jun Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is common knowledge that many physical problems (such as non-linear shallow-water waves and wave motion in plasmas) can be described by the Korteweg-de Vries (KdV) equation, which possesses certain special solutions, known as solitary waves or solitons. As a marriage of the KdV equation and the classical Burgers (KdVB) equation, the Korteweg-de Vries-Burgers (KdVB) equation is a mathematical model of waves on shallow water surfaces in the presence of viscous dissipation. Asymptotic analysis is a method of describing limiting behavior and is a key tool for exploring the differential equations which arise in the mathematical modeling of real-world phenomena. By using variable transformations, the asymptotic expansion of the KdVB equation is presented in this paper. The asymptotic expansion may provide a good gauge on the validation of the corresponding numerical scheme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotic%20expansion" title="asymptotic expansion">asymptotic expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20equation" title=" differential equation"> differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Korteweg-de%20Vries-Burgers%20%28KdVB%29%20equation" title=" Korteweg-de Vries-Burgers (KdVB) equation"> Korteweg-de Vries-Burgers (KdVB) equation</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton" title=" soliton"> soliton</a> </p> <a href="https://publications.waset.org/abstracts/78883/asymptotic-expansion-of-the-korteweg-de-vries-burgers-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1991</span> Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virendra%20J.%20Majarikar">Virendra J. Majarikar</a>, <a href="https://publications.waset.org/abstracts/search?q=Harikrishnan%20N.%20Unni"> Harikrishnan N. Unni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m<sup>3</sup> and 0 mol/m<sup>3</sup>, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COMSOL%20Multiphysics%C2%AE" title="COMSOL Multiphysics®">COMSOL Multiphysics®</a>, <a href="https://publications.waset.org/abstracts/search?q=electrokinetic" title=" electrokinetic"> electrokinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=electroosmotic" title=" electroosmotic"> electroosmotic</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidics" title=" microfluidics"> microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=zeta%20potential" title=" zeta potential"> zeta potential</a> </p> <a href="https://publications.waset.org/abstracts/65595/modeling-of-electrokinetic-mixing-in-lab-on-chip-microfluidic-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1990</span> An Analytical Method for Solving General Riccati Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Pala">Y. Pala</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20O.%20Ertas"> M. O. Ertas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riccati%20equation" title="Riccati equation">Riccati equation</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=proper%20solution" title=" proper solution"> proper solution</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a> </p> <a href="https://publications.waset.org/abstracts/64988/an-analytical-method-for-solving-general-riccati-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1989</span> Three-Dimensional Numerical Investigation for Reinforced Concrete Slabs with Opening </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Elsehsah">Abdelrahman Elsehsah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hany%20Madkour"> Hany Madkour</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Farah"> Khalid Farah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents a 3-D modified non-linear elastic model in the strain space. The Helmholtz free energy function is introduced with the existence of a dissipation potential surface in the space of thermodynamic conjugate forces. The constitutive equation and the damage evolution were derived as well. The modified damage has been examined to model the nonlinear behavior of reinforced concrete (RC) slabs with an opening. A parametric study with RC was carried out to investigate the impact of different factors on the behavior of RC slabs. These factors are the opening area, the opening shape, the place of opening, and the thickness of the slabs. And the numerical results have been compared with the experimental data from literature. Finally, the model showed its ability to be applied to the structural analysis of RC slabs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20mechanics" title="damage mechanics">damage mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20numerical%20analysis" title=" 3-D numerical analysis"> 3-D numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC" title=" RC"> RC</a>, <a href="https://publications.waset.org/abstracts/search?q=slab%20with%20opening" title=" slab with opening"> slab with opening</a> </p> <a href="https://publications.waset.org/abstracts/97463/three-dimensional-numerical-investigation-for-reinforced-concrete-slabs-with-opening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97463.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1988</span> Operator Splitting Scheme for the Inverse Nagumo Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharon-Yasotha%20Veerayah-Mcgregor">Sharon-Yasotha Veerayah-Mcgregor</a>, <a href="https://publications.waset.org/abstracts/search?q=Valipuram%20Manoranjan"> Valipuram Manoranjan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A backward or inverse problem is known to be an ill-posed problem due to its instability that easily emerges with any slight change within the conditions of the problem. Therefore, only a limited number of numerical approaches are available to solve a backward problem. This paper considers the Nagumo equation, an equation that describes impulse propagation in nerve axons, which also models population growth with the Allee effect. A creative operator splitting numerical scheme is constructed to solve the inverse Nagumo equation. Computational simulations are used to verify that this scheme is stable, accurate, and efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%2Fbackward%20equation" title="inverse/backward equation">inverse/backward equation</a>, <a href="https://publications.waset.org/abstracts/search?q=operator-splitting" title=" operator-splitting"> operator-splitting</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagumo%20equation" title=" Nagumo equation"> Nagumo equation</a>, <a href="https://publications.waset.org/abstracts/search?q=ill-posed" title=" ill-posed"> ill-posed</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-difference" title=" finite-difference"> finite-difference</a> </p> <a href="https://publications.waset.org/abstracts/182287/operator-splitting-scheme-for-the-inverse-nagumo-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1987</span> Closed Form Exact Solution for Second Order Linear Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Otarod">Saeed Otarod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a different simple and straight forward analysis a closed-form integral solution is found for nonhomogeneous second order linear ordinary differential equations, in terms of a particular solution of their corresponding homogeneous part. To find the particular solution of the homogeneous part, the equation is transformed into a simple Riccati equation from which the general solution of non-homogeneouecond order differential equation, in the form of a closed integral equation is inferred. The method works well in manyimportant cases, such as Schrödinger equation for hydrogen-like atoms. A non-homogenous second order linear differential equation has been solved as an extra example <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=explicit" title="explicit">explicit</a>, <a href="https://publications.waset.org/abstracts/search?q=linear" title=" linear"> linear</a>, <a href="https://publications.waset.org/abstracts/search?q=differential" title=" differential"> differential</a>, <a href="https://publications.waset.org/abstracts/search?q=closed%20form" title=" closed form"> closed form</a> </p> <a href="https://publications.waset.org/abstracts/185365/closed-form-exact-solution-for-second-order-linear-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1986</span> Image Transform Based on Integral Equation-Wavelet Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan%20Yan%20Tang">Yuan Yan Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lina%20Yang"> Lina Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Li"> Hong Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Harmonic model is a very important approximation for the image transform. The harmanic model converts an image into arbitrary shape; however, this mode cannot be described by any fixed functions in mathematics. In fact, it is represented by partial differential equation (PDE) with boundary conditions. Therefore, to develop an efficient method to solve such a PDE is extremely significant in the image transform. In this paper, a novel Integral Equation-Wavelet based method is presented, which consists of three steps: (1) The partial differential equation is converted into boundary integral equation and representation by an indirect method. (2) The boundary integral equation and representation are changed to plane integral equation and representation by boundary measure formula. (3) The plane integral equation and representation are then solved by a method we call wavelet collocation. Our approach has two main advantages, the shape of an image is arbitrary and the program code is independent of the boundary. The performance of our method is evaluated by numerical experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=harmonic%20model" title="harmonic model">harmonic model</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20differential%20equation%20%28PDE%29" title=" partial differential equation (PDE)"> partial differential equation (PDE)</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20equation" title=" integral equation"> integral equation</a>, <a href="https://publications.waset.org/abstracts/search?q=integral%20representation" title=" integral representation"> integral representation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20measure%20formula" title=" boundary measure formula"> boundary measure formula</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20collocation" title=" wavelet collocation"> wavelet collocation</a> </p> <a href="https://publications.waset.org/abstracts/3920/image-transform-based-on-integral-equation-wavelet-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">558</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1985</span> Second Order Solitary Solutions to the Hodgkin-Huxley Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadas%20Telksnys">Tadas Telksnys</a>, <a href="https://publications.waset.org/abstracts/search?q=Zenonas%20Navickas"> Zenonas Navickas</a>, <a href="https://publications.waset.org/abstracts/search?q=Minvydas%20Ragulskis"> Minvydas Ragulskis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Necessary and sufficient conditions for the existence of second order solitary solutions to the Hodgkin-Huxley equation are derived in this paper. The generalized multiplicative operator of differentiation helps not only to construct closed-form solitary solutions but also automatically generates conditions of their existence in the space of the equation's parameters and initial conditions. It is demonstrated that bright, kink-type solitons and solitary solutions with singularities can exist in the Hodgkin-Huxley equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hodgkin-Huxley%20equation" title="Hodgkin-Huxley equation">Hodgkin-Huxley equation</a>, <a href="https://publications.waset.org/abstracts/search?q=solitary%20solution" title=" solitary solution"> solitary solution</a>, <a href="https://publications.waset.org/abstracts/search?q=existence%20condition" title=" existence condition"> existence condition</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20method" title=" operator method"> operator method</a> </p> <a href="https://publications.waset.org/abstracts/37370/second-order-solitary-solutions-to-the-hodgkin-huxley-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1984</span> Study of Cahn-Hilliard Equation to Simulate Phase Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nara%20Guimar%C3%A3es">Nara Guimarães</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20Aquino%20Martorano"> Marcelo Aquino Martorano</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20Gouv%C3%AAa"> Douglas Gouvêa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An investigation into Cahn-Hilliard equation was carried out through numerical simulation to identify a possible phase separation for one and two dimensional domains. It was observed that this equation can reproduce important mass fluxes necessary for phase separation within the miscibility gap and for coalescence of particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cahn-Hilliard%20equation" title="Cahn-Hilliard equation">Cahn-Hilliard equation</a>, <a href="https://publications.waset.org/abstracts/search?q=miscibility%20gap" title=" miscibility gap"> miscibility gap</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20separation" title=" phase separation"> phase separation</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20domains" title=" dimensional domains"> dimensional domains</a> </p> <a href="https://publications.waset.org/abstracts/17579/study-of-cahn-hilliard-equation-to-simulate-phase-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1983</span> Study and Solving Partial Differential Equation of Danel Equation in the Vibration Shells </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hesamoddin%20Abdollahpour">Hesamoddin Abdollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Roghayeh%20Abdollahpour"> Roghayeh Abdollahpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Rahgozar"> Elham Rahgozar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper we deal with an analysis of the free vibrations of the governing partial differential equation that it is Danel equation in the shells. The problem considered represents the governing equation of the nonlinear, large amplitude free vibrations of the hinged shell. A new implementation of the new method is presented to obtain natural frequency and corresponding displacement on the shell. Our purpose is to enhance the ability to solve the mentioned complicated partial differential equation (PDE) with a simple and innovative approach. The results reveal that this new method to solve Danel equation is very effective and simple, and can be applied to other nonlinear partial differential equations. It is necessary to mention that there are some valuable advantages in this way of solving nonlinear differential equations and also most of the sets of partial differential equations can be answered in this manner which in the other methods they have not had acceptable solutions up to now. We can solve equation(s), and consequently, there is no need to utilize similarity solutions which make the solution procedure a time-consuming task. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20amplitude" title="large amplitude">large amplitude</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20vibrations" title=" free vibrations"> free vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=analytical%20solution" title=" analytical solution"> analytical solution</a>, <a href="https://publications.waset.org/abstracts/search?q=Danell%20Equation" title=" Danell Equation"> Danell Equation</a>, <a href="https://publications.waset.org/abstracts/search?q=diagram%20of%20phase%20plane" title=" diagram of phase plane "> diagram of phase plane </a> </p> <a href="https://publications.waset.org/abstracts/66849/study-and-solving-partial-differential-equation-of-danel-equation-in-the-vibration-shells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1982</span> Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mousavian">S. Mousavian</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mousavian"> F. Mousavian</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Nikkhah%20Rashidabad"> V. Nikkhah Rashidabad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study shows that modified equation has good agreement with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=equation%20of%20state" title="equation of state">equation of state</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/2790/modification-of-rk-equation-of-state-for-liquid-and-vapor-of-ammonia-by-genetic-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1981</span> Exact Solutions of a Nonlinear Schrodinger Equation with Kerr Law Nonlinearity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muna%20Alghabshi">Muna Alghabshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Edmana%20Krishnan"> Edmana Krishnan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A nonlinear Schrodinger equation has been considered for solving by mapping methods in terms of Jacobi elliptic functions (JEFs). The equation under consideration has a linear evolution term, linear and nonlinear dispersion terms, the Kerr law nonlinearity term and three terms representing the contribution of meta materials. This equation which has applications in optical fibers is found to have soliton solutions, shock wave solutions, and singular wave solutions when the modulus of the JEFs approach 1 which is the infinite period limit. The equation with special values of the parameters has also been solved using the tanh method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacobi%20elliptic%20function" title="Jacobi elliptic function">Jacobi elliptic function</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping%20methods" title=" mapping methods"> mapping methods</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Schrodinger%20Equation" title=" nonlinear Schrodinger Equation"> nonlinear Schrodinger Equation</a>, <a href="https://publications.waset.org/abstracts/search?q=tanh%20method" title=" tanh method"> tanh method</a> </p> <a href="https://publications.waset.org/abstracts/55053/exact-solutions-of-a-nonlinear-schrodinger-equation-with-kerr-law-nonlinearity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1980</span> Solution of the Nonrelativistic Radial Wave Equation of Hydrogen Atom Using the Green's Function Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20U.%20Rahman">F. U. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Q.%20Zhang"> R. Q. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work aims to develop a systematic numerical technique which can be easily extended to many-body problem. The Lippmann Schwinger equation (integral form of the Schrodinger wave equation) is solved for the nonrelativistic radial wave of hydrogen atom using iterative integration scheme. As the unknown wave function appears on both sides of the Lippmann Schwinger equation, therefore an approximate wave function is used in order to solve the equation. The Green’s function is obtained by the method of Laplace transform for the radial wave equation with excluded potential term. Using the Lippmann Schwinger equation, the product of approximate wave function, the Green’s function and the potential term is integrated iteratively. Finally, the wave function is normalized and plotted against the standard radial wave for comparison. The outcome wave function converges to the standard wave function with the increasing number of iteration. Results are verified for the first fifteen states of hydrogen atom. The method is efficient and consistent and can be applied to complex systems in future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Green%E2%80%99s%20function" title="Green’s function">Green’s function</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20atom" title=" hydrogen atom"> hydrogen atom</a>, <a href="https://publications.waset.org/abstracts/search?q=Lippmann%20Schwinger%20equation" title=" Lippmann Schwinger equation"> Lippmann Schwinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20wave" title=" radial wave"> radial wave</a> </p> <a href="https://publications.waset.org/abstracts/42682/solution-of-the-nonrelativistic-radial-wave-equation-of-hydrogen-atom-using-the-greens-function-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1979</span> A Study of Non Linear Partial Differential Equation with Random Initial Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayaz%20Ahmad">Ayaz Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we present the effect of noise on the solution of a partial differential equation (PDE) in three different setting. We shall first consider random initial condition for two nonlinear dispersive PDE the non linear Schrodinger equation and the Kortteweg –de vries equation and analyse their effect on some special solution , the soliton solutions.The second case considered a linear partial differential equation , the wave equation with random initial conditions allow to substantially decrease the computational and data storage costs of an algorithm to solve the inverse problem based on the boundary measurements of the solution of this equation. Finally, the third example considered is that of the linear transport equation with a singular drift term, when we shall show that the addition of a multiplicative noise term forbids the blow up of solutions under a very weak hypothesis for which we have finite time blow up of a solution in the deterministic case. Here we consider the problem of wave propagation, which is modelled by a nonlinear dispersive equation with noisy initial condition .As observed noise can also be introduced directly in the equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drift%20term" title="drift term">drift term</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20time%20blow%20up" title=" finite time blow up"> finite time blow up</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20problem" title=" inverse problem"> inverse problem</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20solution" title=" soliton solution"> soliton solution</a> </p> <a href="https://publications.waset.org/abstracts/77445/a-study-of-non-linear-partial-differential-equation-with-random-initial-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77445.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1978</span> The Physics of Turbulence Generation in a Fluid: Numerical Investigation Using a 1D Damped-MNLS Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Kumar">Praveen Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Uma"> R. Uma</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P.%20Sharma"> R. P. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the generation of turbulence in a deep-fluid environment using a damped 1D-modified nonlinear Schrödinger equation model. The well-known damped modified nonlinear Schrödinger equation (d-MNLS) is solved using numerical methods. Artificial damping is added to the MNLS equation, and turbulence generation is investigated through a numerical simulation. The numerical simulation employs a finite difference method for temporal evolution and a pseudo-spectral approach to characterize spatial patterns. The results reveal a recurring periodic pattern in both space and time when the nonlinear Schrödinger equation is considered. Additionally, the study shows that the modified nonlinear Schrödinger equation disrupts the localization of structure and the recurrence of the Fermi-Pasta-Ulam (FPU) phenomenon. The energy spectrum exhibits a power-law behavior, closely following Kolmogorov's spectra steeper than k⁻⁵/³ in the inertial sub-range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20waves" title="water waves">water waves</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation%20instability" title=" modulation instability"> modulation instability</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title=" hydrodynamics"> hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Schr%C3%B6dinger%27s%20equation" title=" nonlinear Schrödinger's equation"> nonlinear Schrödinger's equation</a> </p> <a href="https://publications.waset.org/abstracts/179074/the-physics-of-turbulence-generation-in-a-fluid-numerical-investigation-using-a-1d-damped-mnls-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1977</span> Exact Soliton Solutions of the Integrable (2+1)-Dimensional Fokas-Lenells Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meruyert%20Zhassybayeva">Meruyert Zhassybayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuralay%20Yesmukhanova"> Kuralay Yesmukhanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratbay%20Myrzakulov"> Ratbay Myrzakulov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Integrable nonlinear differential equations are an important class of nonlinear wave equations that admit exact soliton solutions. All these equations have an amazing property which is that their soliton waves collide elastically. One of such equations is the (1+1)-dimensional Fokas-Lenells equation. In this paper, we have constructed an integrable (2+1)-dimensional Fokas-Lenells equation. The integrability of this equation is ensured by the existence of a Lax representation for it. We obtained its bilinear form from the Hirota method. Using the Hirota method, exact one-soliton and two-soliton solutions of the (2 +1)-dimensional Fokas-Lenells equation were found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fokas-Lenells%20equation" title="Fokas-Lenells equation">Fokas-Lenells equation</a>, <a href="https://publications.waset.org/abstracts/search?q=integrability" title=" integrability"> integrability</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton" title=" soliton"> soliton</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20Hirota%20bilinear%20method" title=" the Hirota bilinear method"> the Hirota bilinear method</a> </p> <a href="https://publications.waset.org/abstracts/99044/exact-soliton-solutions-of-the-integrable-21-dimensional-fokas-lenells-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1976</span> Chern-Simons Equation in Financial Theory and Time-Series Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ognjen%20Vukovic">Ognjen Vukovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chern-Simons equation represents the cornerstone of quantum physics. The question that is often asked is if the aforementioned equation can be successfully applied to the interaction in international financial markets. By analysing the time series in financial theory, it is proved that Chern-Simons equation can be successfully applied to financial time-series. The aforementioned statement is based on one important premise and that is that the financial time series follow the fractional Brownian motion. All variants of Chern-Simons equation and theory are applied and analysed. Financial theory time series movement is, firstly, topologically analysed. The main idea is that exchange rate represents two-dimensional projections of three-dimensional Brownian motion movement. Main principles of knot theory and topology are applied to financial time series and setting is created so the Chern-Simons equation can be applied. As Chern-Simons equation is based on small particles, it is multiplied by the magnifying factor to mimic the real world movement. Afterwards, the following equation is optimised using Solver. The equation is applied to n financial time series in order to see if it can capture the interaction between financial time series and consequently explain it. The aforementioned equation represents a novel approach to financial time series analysis and hopefully it will direct further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brownian%20motion" title="Brownian motion">Brownian motion</a>, <a href="https://publications.waset.org/abstracts/search?q=Chern-Simons%20theory" title=" Chern-Simons theory"> Chern-Simons theory</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20time%20series" title=" financial time series"> financial time series</a>, <a href="https://publications.waset.org/abstracts/search?q=econophysics" title=" econophysics"> econophysics</a> </p> <a href="https://publications.waset.org/abstracts/30127/chern-simons-equation-in-financial-theory-and-time-series-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1975</span> Fixed Point Iteration of a Damped and Unforced Duffing's Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paschal%20A.%20Ochang">Paschal A. Ochang</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20C.%20Oji"> Emmanuel C. Oji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Duffing’s Equation is a second order system that is very important because they are fundamental to the behaviour of higher order systems and they have applications in almost all fields of science and engineering. In the biological area, it is useful in plant stem dependence and natural frequency and model of the Brain Crash Analysis (BCA). In Engineering, it is useful in the study of Damping indoor construction and Traffic lights and to the meteorologist it is used in the prediction of weather conditions. However, most Problems in real life that occur are non-linear in nature and may not have analytical solutions except approximations or simulations, so trying to find an exact explicit solution may in general be complicated and sometimes impossible. Therefore we aim to find out if it is possible to obtain one analytical fixed point to the non-linear ordinary equation using fixed point analytical method. We started by exposing the scope of the Duffing’s equation and other related works on it. With a major focus on the fixed point and fixed point iterative scheme, we tried different iterative schemes on the Duffing’s Equation. We were able to identify that one can only see the fixed points to a Damped Duffing’s Equation and not to the Undamped Duffing’s Equation. This is because the cubic nonlinearity term is the determining factor to the Duffing’s Equation. We finally came to the results where we identified the stability of an equation that is damped, forced and second order in nature. Generally, in this research, we approximate the solution of Duffing’s Equation by converting it to a system of First and Second Order Ordinary Differential Equation and using Fixed Point Iterative approach. This approach shows that for different versions of Duffing’s Equations (damped), we find fixed points, therefore the order of computations and running time of applied software in all fields using the Duffing’s equation will be reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping" title="damping">damping</a>, <a href="https://publications.waset.org/abstracts/search?q=Duffing%27s%20equation" title=" Duffing's equation"> Duffing's equation</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20point%20analysis" title=" fixed point analysis"> fixed point analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20order%20differential" title=" second order differential"> second order differential</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/72553/fixed-point-iteration-of-a-damped-and-unforced-duffings-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=66">66</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=67">67</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Helmholtz%20equation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>