CINXE.COM
Search results for: spectrophotometrically
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: spectrophotometrically</title> <meta name="description" content="Search results for: spectrophotometrically"> <meta name="keywords" content="spectrophotometrically"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="spectrophotometrically" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="spectrophotometrically"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 38</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: spectrophotometrically</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Kinetics and Mechanism of Oxidation of Co (II) Ternary Complexes Involving N-(2-Acetamido) Iminodiacete and Some Amino Acids Acid by Periodate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Abdel-Khalek">Ahmed A. Abdel-Khalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Reham%20A.%20Mohamed"> Reham A. Mohamed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of oxidation of the cobalt (II) complexes, [CoII(ADA)(Gly)(H2O)2]-, (ADA = N-(2-acetamido) iminodi-acetic acid and (Gly = Glycine) by periodate in aqueous acetate medium to cobalt (III) have been studied spectrophotometrically at 530 nm over the 30–50°C and a variety pH 4.57-5.25 range and I = 0.50 mol dm-3 under pseudo first order condition by taking large excess of oxidant [IO4-] and it obeys the following rate law: Rate=[CoII(ADA)(Gly)(H2O)2]-[H5IO6]{k4K6+(k5K7K5/[H+])}. Also, the kinetics of oxidation of the cobalt(II) complexes, [CoII(ADA)(Val)(H2O)2]- (ADA = N-(2-acetamido) iminodi-acetic acid and (Val = valine) by periodate in aqueous medium to cobalt (III) have been studied spectrophotometrically at 580 nm over the 30–50°C and a variety pH 4.3-5.12 range and I = 0.50 mol dm-3 under pseudo first order condition by taking large excess of oxidant [IO4-] and it obeys the following rate law: Rate=[CoII(ADA)(Val)(H2O)2]-[H5IO6]{k4K6+(k5K7K5/[H+])} <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=periodate" title="periodate">periodate</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%20%28II%29" title=" cobalt (II)"> cobalt (II)</a>, <a href="https://publications.waset.org/abstracts/search?q=glycine" title=" glycine"> glycine</a>, <a href="https://publications.waset.org/abstracts/search?q=valine%20acid" title=" valine acid"> valine acid</a>, <a href="https://publications.waset.org/abstracts/search?q=n-%282-acetamido%20imino-diacetato%29" title=" n-(2-acetamido imino-diacetato)"> n-(2-acetamido imino-diacetato)</a> </p> <a href="https://publications.waset.org/abstracts/10841/kinetics-and-mechanism-of-oxidation-of-co-ii-ternary-complexes-involving-n-2-acetamido-iminodiacete-and-some-amino-acids-acid-by-periodate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Qualitative and Quantitative Screening of Biochemical Compositions for Six Selected Marine Macroalgae from Mediterranean Coast of Egypt </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madelyn%20N.%20Moawad">Madelyn N. Moawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hermine%20R.%20Z.%20Tadros"> Hermine R. Z. Tadros</a>, <a href="https://publications.waset.org/abstracts/search?q=Mary%20G.%20Ghobrial"> Mary G. Ghobrial</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20R.%20Bassiouny"> Ahmad R. Bassiouny</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamal%20M.%20Kandeel"> Kamal M. Kandeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Athar%20Ata"> Athar Ata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seaweeds are potential renewable resources in marine environment. They provide an excellent source of bioactive substances such as dietary fibers and various functional polysaccharides that could potentially be used as ingredients for both human and animal health applications. The observations suggested that these bioactive compounds have strong antioxidant properties, which have beneficial effects on human health. The present research aimed at finding new chemical products from local marine macroalgae for natural medicinal uses and consumption for their nutritional values. Macroalgae samples were collected manually mainly from the Mediterranean Sea at shallow subtidal zone of Abu Qir Bay, Alexandria, Egypt. The chemical compositions of lyophilized materials of six selected macroalgal species; Colpomenia sinuosa, Sargassum linifolium, Padina pavonia, Pterocladiella capillacea, Laurencia pinnatifidia, and Caulerpa racemosa, were investigated for proteins using bovine serum albumin, and carbohydrates were assayed by phenol-sulfuric acid reaction. The macroalgae lipid was extracted with chloroform, methanol and phosphate buffer. Vitamins were extracted using trichloroacetic acid. Chlorophylls and total carotenoids were determined spectrophotometrically and total phenols were extracted with methanol. In addition, lipid-soluble, and water-soluble antioxidant, and anti α-glucosidase activities were measured spectrophotometrically. The antioxidant activity of hexane extracts was investigated using phosphomolybdenum reagent. The anti-α-glucosidase effect measurement was initiated by mixing α-glucosidase solution with p-nitrophenyl α-D-glucopyranoside. The results showed that the ash contents varied from 11.2 to 35.4 % on dry weight basis for P. capillacea and Laurencia pinnatifidia, respectively. The protein contents ranged from 5.63 % in brown macroalgae C. sinuosa to 8.73 % in P. pavonia. A relative wide range in carbohydrate contents was observed (20.06–46.75 %) for the test algal species. The highest lipid percentage was found in green alga C. racemosa (5.91%) followed by brown algae P. pavonia (3.57%) and C. sinuosa (2.64%). The phenolic contents varied from 1.32 mg GAE/g for C. sinuosa to 4.00 mg GAE/g in P. pavonia. The lipid-soluble compounds exhibited higher antioxidant capacity (73.18-145.95 µM/g) than that of the water-soluble ones ranging from 24.83 µM/g in C. racemosa to 74.07 µM/g in S. linifolium. The most potent anti-α-glucosidase activity was observed for P. pavonia with IC50 of 17.12 μg/ml followed by S. linifolium (IC50 = 71.75 μg/ml), C. racemosa (IC50 = 84.73 μg/ml), P. capillacea (IC50 = 92.16 μg/ml), C. sinuosa (IC50 = 112.44 μg/ml), and L. pinnatifida (IC50 = 115.11 μg/ml). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-glucosidase" title="α-glucosidase">α-glucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=lyophilized" title=" lyophilized"> lyophilized</a>, <a href="https://publications.waset.org/abstracts/search?q=macroalgae" title=" macroalgae"> macroalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometrically" title=" spectrophotometrically"> spectrophotometrically</a> </p> <a href="https://publications.waset.org/abstracts/76229/qualitative-and-quantitative-screening-of-biochemical-compositions-for-six-selected-marine-macroalgae-from-mediterranean-coast-of-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Kinetics and Mechanism of Oxidation of Dimethylglyoxime Chromium (III) Complex by Periodate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Abdel-Khalek">Ahmed A. Abdel-Khalek</a>, <a href="https://publications.waset.org/abstracts/search?q=Reham%20A.%20Mohamed"> Reham A. Mohamed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of oxidation of binary complex [CrIII(DMG)2(H2O)4 ]+ to Cr(VI) by periodate has been investigated spectrophotometrically where, [DMG= Dimethylglyoxime] at 370nm under pseudo first order reaction conditions in aqueous medium over 20- 40ºC range, PH 2-3, and I=0.07 mol dm-3. The reaction is first order with respect to both [IO4-] and Cr(III), and the reaction increased with PH increased. Thermodymanic activation parameters have been calculated. It is suggested that electron transfer proceeds through an inner sphere mechanism via coordination of IO4- to Cr (III). The reaction obeys the following rate law Rate= {k1 K5+ k2 K6 K2 } [Cr III (DMG)2(H2O)4 ]+ [H5IO6]. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium" title="chromium">chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=dimethylglyoxime" title=" dimethylglyoxime"> dimethylglyoxime</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodate" title=" periodate"> periodate</a> </p> <a href="https://publications.waset.org/abstracts/30916/kinetics-and-mechanism-of-oxidation-of-dimethylglyoxime-chromium-iii-complex-by-periodate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Impact on the Yield of Flavonoid and Total Phenolic Content from Pomegranate Fruit by Different Extraction Methods </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Udeshika%20Yapa%20Bandara">Udeshika Yapa Bandara</a>, <a href="https://publications.waset.org/abstracts/search?q=Chamindri%20Witharana"> Chamindri Witharana</a>, <a href="https://publications.waset.org/abstracts/search?q=Preethi%20Soysa"> Preethi Soysa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pomegranate fruits are used in cancer treatment in Ayurveda, Sri Lanka. Due to prevailing therapeutic effects of phytochemicals, this study was focus on anti-cancer properties of the constituents in the parts of Pomegranate fruit. Furthermore, the method of extraction, plays a crucial step of the phytochemical analysis. Therefore, this study was focus on different extraction methods. Five techniques were involved for the peel and the pericarp to evaluate the most effective extraction method; Boiling with electric burner (BL), Sonication (SN), Microwaving (MC), Heating in a 50°C water bath (WB) and Sonication followed by Microwaving (SN-MC). The presence of polyphenolic and flavonoid contents were evaluated to recognize the best extraction method for polyphenols. The total phenolic content was measured spectrophotometrically by Folin-Ciocalteu method and expressed as Gallic Acid Equivalents (w/w% GAE). Total flavonoid content was also determined spectrophotometrically with Aluminium chloride colourimetric assay and expressed as Quercetin Equivalents (w/w % QE). Pomegranate juice was taken as fermented juice (with Saccharomyces bayanus) and fresh juice. Powdered seeds were refluxed, filtered and freeze-dried. 2g of freeze-dried powder of each component was dissolved in 100ml of De-ionized water for extraction. For the comparison of antioxidant activity and total phenol content, the polyphenols were removed by the Polyvinylpolypyrrolidone (PVVP) column and fermented and fresh juice were tested for the 1, 1-diphenyl-2-picrylhydrazil (DPPH) radical scavenging activity, before and after the removal of polyphenols. For the peel samples of Pomegranate fruit, total phenol and flavonoid contents were high in Sonication (SN). In pericarp, total phenol and flavonoid contents were highly exhibited in method of Sonication (SN). A significant difference was observed (P< 0.05) in total phenol and flavonoid contents, between five extraction methods for both peel and pericarp samples. Fermented juice had a greatest polyphenolic and flavonoid contents comparative to fresh juice. After removing polyphenols of fermented juice and fresh juice using Polyvinyl polypyrrolidone (PVVP) column, low antioxidant activity was resulted for DPPH antioxidant activity assay. Seeds had a very low total phenol and flavonoid contents according to the results. Although, Pomegranate peel is the main waste component of the fruit, it has an excellent polyphenolic and flavonoid contents compared to other parts of the fruit, devoid of the method of extraction. Polyphenols play a major role for antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate" title=" pomegranate"> pomegranate</a> </p> <a href="https://publications.waset.org/abstracts/78637/impact-on-the-yield-of-flavonoid-and-total-phenolic-content-from-pomegranate-fruit-by-different-extraction-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Protein-Starch-Potassium Iodide Composite as a Sensor for Chlorine in Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Mowafi">S. Mowafi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abou%20El-Kheir"> A. Abou El-Kheir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abou%20Taleb"> M. Abou Taleb</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20El-Sayed"> H. El-Sayed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Protein-starch-potassium iodide (PSPI) composite was prepared by anchoring starch and potassium iodide mixture onto the film surface using appropriate polymeric material. The possibility of using PSPI composite for determination of the concentration of chlorine ions in domestic as well as industrial water was examined. The concentration of chlorine in water was determined spectrophotometrically by measuring the intensity of blue colour of formed between starch and the released iodine obtained by interaction of potassium iodide chlorine in the tested water sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorine" title="chlorine">chlorine</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=potassium%20iodide" title=" potassium iodide"> potassium iodide</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/54381/protein-starch-potassium-iodide-composite-as-a-sensor-for-chlorine-in-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Protein-Thiocyanate Composite as a Sensor for Iron III Cations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hosam%20El-Sayed">Hosam El-Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20%20Abou%20El-Kheir"> Amira Abou El-Kheir</a>, <a href="https://publications.waset.org/abstracts/search?q=Salwa%20Mowafi"> Salwa Mowafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwa%20Abou%20Taleb"> Marwa Abou Taleb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two proteinic biopolymers; namely keratin and sericin, were extracted from their respective natural resources by simple appropriate methods. The said proteins were dissolved in the appropriate solvents followed by regeneration in a form of film polyvinyl alcohol. Proteinium thiocyanate (PTC) composite was prepared by reaction of a regenerated film with potassium thiocyanate in acid medium. In another experiment, the said acidified proteins were reacted with potassium thiocyante before dissolution and regeneration in a form of PTC composite. The possibility of using PTC composite for determination of the concentration of iron III ions in domestic as well as industrial water was examined. The concentration of iron III cations in water was determined spectrophotometrically by measuring the intensity of blood red colour of iron III thiocyanate obtained by interaction of PTC with iron III cation in the tested water sample. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iron%20III%20cations" title="iron III cations">iron III cations</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=thiocyanate" title=" thiocyanate"> thiocyanate</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a> </p> <a href="https://publications.waset.org/abstracts/52322/protein-thiocyanate-composite-as-a-sensor-for-iron-iii-cations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Effect of Acetic Acid Fermentation on Bioactive Components and Anti-Xanthine Oxidase Activities in Vinegar Brewed from Monascus-Fermented Soybeans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyung-Soon%20Choi">Kyung-Soon Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Young%20Hwang"> Ji-Young Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Hee%20Pyo"> Young-Hee Pyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vinegars have been used as an alternative remedy for treating gout, but the scientific basis remains to be elucidated. In this study, acetic acid fermentation was applied for the first time to Monascus-fermented soybeans to examine its effect on the bioactive components together with the xanthine oxidase inhibitory (XOI) activity of the soy vinegar. The content of total phenols (0.47~0.97 mg gallic acid equivalents/mL) and flavonoids (0.18~0.39 mg quercetin equivallents/mL) were spectrophotometrically determined, and the content of organic acid (10.22~59.76 mg/mL) and isoflavones (6.79~7.46 mg/mL) were determined using HPLC-UV. The analytical method for ubiquinones (0.079~0.276 μg/mL) employed saponification before solvent extraction and quantification using LC-MS. Soy vinegar also showed significant XOI (95.3%) after 20 days of acetic acid fermentation at 30 °C. The results suggest that soy vinegar has potential as a novel medicinal food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20fermentation" title="acetic acid fermentation">acetic acid fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20component" title=" bioactive component"> bioactive component</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20vinegar" title=" soy vinegar"> soy vinegar</a>, <a href="https://publications.waset.org/abstracts/search?q=xanthine%20oxidase%20inhibitory%20activity" title=" xanthine oxidase inhibitory activity"> xanthine oxidase inhibitory activity</a> </p> <a href="https://publications.waset.org/abstracts/66060/effect-of-acetic-acid-fermentation-on-bioactive-components-and-anti-xanthine-oxidase-activities-in-vinegar-brewed-from-monascus-fermented-soybeans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Preliminary Phytochemical Screening, Analysis of Phenolic Compounds and Antioxidant Activity of Genista cephalantha Spach. (Fabaceae)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chebbah%20Kaoutar">Chebbah Kaoutar</a>, <a href="https://publications.waset.org/abstracts/search?q=Marchioni%20Eric"> Marchioni Eric</a>, <a href="https://publications.waset.org/abstracts/search?q=Menad%20Ahmed"> Menad Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekkiou%20Ratiba"> Mekkiou Ratiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarri%20Djamel"> Sarri Djamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ameddah%20Souad"> Ameddah Souad</a>, <a href="https://publications.waset.org/abstracts/search?q=Boumaza%20Ouahiba"> Boumaza Ouahiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Seghiri%20Ramdane"> Seghiri Ramdane</a>, <a href="https://publications.waset.org/abstracts/search?q=Benayache%20Samir"> Benayache Samir</a>, <a href="https://publications.waset.org/abstracts/search?q=Benayache%20Fadila"> Benayache Fadila </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was designed to estabilish a preliminary phytochemical screening, evaluate the phenolic and flavonoid content according to the Folin-Ciocalteu procedure, and aluminum chloride method respectively and to determine qualitatively, using HPLC-UV method, the most important products present in ethyl acetate (EtOAc) and n-butanol (n-BuOH) extracts of the aerial parts of Genista cephalantha Spach. from East Algeria. The antioxidant activity of these extracts was spectrophotometrically tested by measuring their ability to scavenge a stable DPPH free radical and by β-Carotene/linoleic acid bleaching assay. Evaluated extracts showed a good activity in both antioxidant system assays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title="phenolic compounds">phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC-DAD-UV" title=" HPLC-DAD-UV"> HPLC-DAD-UV</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=genista%20cephalantha" title=" genista cephalantha"> genista cephalantha</a>, <a href="https://publications.waset.org/abstracts/search?q=fabaceae" title=" fabaceae "> fabaceae </a> </p> <a href="https://publications.waset.org/abstracts/12218/preliminary-phytochemical-screening-analysis-of-phenolic-compounds-and-antioxidant-activity-of-genista-cephalantha-spach-fabaceae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Influence of Cationic Surfactant (TTAB) on the Rate of Dipeptide (Gly-DL-Asp) Ninhydrin Reaction in Absence and Presence of Organic Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd.%20Akram">Mohd. Akram</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20M.%20Saeed"> A. A. M. Saeed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surfactants are widely used in our daily life either directly in household and personal care products or indirectly in the industrial processes. The kinetics of the interaction of glycyl-DL-aspartic acid (Gly-DL-Asp) with ninhydrin has been investigated spectrophotometrically in aqueous and organic-solvent media in the absence and presence of cationic surfactant of tetradecyltrimethylammonium bromide (TTAB). The study was carried out under different experimental conditions. The first and fractional order-rate were observed for [Gly-DL-Asp] and [ninhydrin], respectively. The reaction was enhanced about four-fold by TTAB micelles. The effect of organic solvents was studied at a constant concentration of TTAB and showed an increase in the absorbance as well as the rate constant for the formation of product (Ruhemann's purple). The results obtained in micellar media are treated quantitatively in terms of pseudo-phase and Piszkiewicz cooperativity models. The Arrhenius and Eyring equations are valid for the reaction over the range of temperatures used and different activation parameters (Ea, ∆H#, ∆S#, and ∆G#) have been evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycyl-DL-aspartic%20acid" title="glycyl-DL-aspartic acid">glycyl-DL-aspartic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=ninhydrin" title=" ninhydrin"> ninhydrin</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20solvents" title=" organic solvents"> organic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=TTAB" title=" TTAB"> TTAB</a> </p> <a href="https://publications.waset.org/abstracts/18950/influence-of-cationic-surfactant-ttab-on-the-rate-of-dipeptide-gly-dl-asp-ninhydrin-reaction-in-absence-and-presence-of-organic-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Short-Term Exposing Effects of 4,4'-DDT on Mitochondrial Electron Transport Complexes in Eyes of Zebrafish</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun%20Ko">Eun Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Moonsung%20Choi"> Moonsung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sooim%20Shin"> Sooim Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 4,4’-Dichlorodiphenyltrichloroethane (4,4’-DDT) is colorless, odorless organochlorine and known as persistent toxic organic pollutant accumulated in organs. In this study, effects of 4,4’-DDT on activities of mitochondrial electron transport chain system was analyzed. 4,4’-DDT is directly treated to isolated mitochondria from eyes of zebrafish and then activities of mitochondrial complex I, II, III, IV were measured spectrophotometrically. The reaction was proceeded immediately after adding 4,4’-DDT to examine the short-term exposing effects of persistent organic pollutant. As a result, high concentration of 4,4’-DDT treated mitochondria exhibited slightly enhanced activity in all complexes than non-treated one except complex III in male. Particularly, 4,4’-DDT was more effective on enzymatic activity in mitochondria isolated from eyes of male zebrafish. These results represented that 4,4’-DDT might temporarily induce to open up ion channel on isolated mitochondria resulting in increasing the functional activity of mitochondrial electron transport chain system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20transport%20chain" title="electron transport chain">electron transport chain</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20function" title=" mitochondrial function"> mitochondrial function</a>, <a href="https://publications.waset.org/abstracts/search?q=persistent%20organic%20pollutant" title=" persistent organic pollutant"> persistent organic pollutant</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometric%20assay" title=" spectrophotometric assay"> spectrophotometric assay</a>, <a href="https://publications.waset.org/abstracts/search?q=zebrafish" title=" zebrafish "> zebrafish </a> </p> <a href="https://publications.waset.org/abstracts/77446/short-term-exposing-effects-of-44-ddt-on-mitochondrial-electron-transport-complexes-in-eyes-of-zebrafish" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Oxidation of Amitriptyline by Bromamine-T in Acidic Buffer Medium: A Kinetic and Mechanistic Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandrashekar">Chandrashekar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20T.%20Radhika"> R. T. Radhika</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20M.%20Venkatesha"> B. M. Venkatesha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Ananda"> S. Ananda</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivalingegowda"> Shivalingegowda</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Shashikumar"> T. S. Shashikumar</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ramachandra"> H. Ramachandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetics of the oxidation of amitriptyline (AT) by sodium N-bromotoluene sulphonamide (C<sub>6</sub>H<sub>5</sub>SO<sub>2</sub>NBrNa) has been studied in an acidic buffer medium of pH 1.2 at 303 K. The oxidation reaction of AT was followed spectrophotometrically at maximum wavelength, 410 nm. The reaction rate shows a first order dependence each on concentration of AT and concentration of sodium N-bromotoluene sulphonamide. The reaction also shows an inverse fractional order dependence at low or high concentration of HCl. The dielectric constant of the solvent shows negative effect on the rate of reaction. The addition of halide ions and the reduction product of BAT have no significant effect on the rate. The rate is unchanged with the variation in the ionic strength (NaClO<sub>4</sub>) of the medium. Addition of reaction mixtures to be aqueous acrylamide solution did not initiate polymerization, indicating the absence of free radical species. The stoichiometry of the reaction was found to be 1:1 and oxidation product of AT is identified. The Michaelis-Menton type of kinetics has been proposed. The CH<sub>3</sub>C<sub>6</sub>H<sub>5</sub>SO<sub>2</sub>NHBr has been assumed to be the reactive oxidizing species. Thermodynamical parameters were computed by studying the reactions at different temperatures. A mechanism consistent with observed kinetics is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amitriptyline" title="amitriptyline">amitriptyline</a>, <a href="https://publications.waset.org/abstracts/search?q=bromamine-T" title=" bromamine-T"> bromamine-T</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a> </p> <a href="https://publications.waset.org/abstracts/50625/oxidation-of-amitriptyline-by-bromamine-t-in-acidic-buffer-medium-a-kinetic-and-mechanistic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> The Haemoglobin, Transferrin, Ceruloplasmin and Glutathione Polymorphism of Native Goat Breeds of Turkey, I-Angora and Hair</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Ozge%20Demir">Ayse Ozge Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihat%20Mert"> Nihat Mert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study has been carried out in order to determine the polymorphic traits of various biochemical parameters in goat breeds which are native to Turkey. For this purpose, Angora and Hair goats breeds were chosen as live materials. Two different herds for each breed were selected from Ankara and Antalya, respectively. Blood samples were taken from a total of 120 goats aged between 2 and 4 which was made up of 60 Angora goats and 60 Hair goats. All which derived equally from 4 lots of herds. Analyses were performed for the polymorphic determination of the Haemoglobin (Hb), Transferrine (Tf), Ceruloplasmin (Cp) and Glutathione (GSH). Hb types were determined by starch gel electrophoresis and Tf types were detected by SDS-PAGE electrophoresis. Furthermore, Cp and GSH analyses were performed by spectrophotometrically. Following the analysis, Hb types were found as 3 genotypes (AA, AB, BB) controlled by 2 allel genes. Tf types were found as 6 genotypes (AA, AB, AC, BB, BC, CC) controlled by 3 allele genes. Findings for Hb was in line with the Hardy-Weinberg Equilibrium (HWE) in Angora goats while the Hair goat was not found to be in line. Moreover, Tf was found in line with the HWE for 2 separate goat breeds. The levels of Cp and GSH of two breeds were significantly different from other (P<0.0001). The findings are recorded as a source of reference for prospective polymorphism studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrophoresis" title="electrophoresis">electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20resources" title=" genetic resources"> genetic resources</a>, <a href="https://publications.waset.org/abstracts/search?q=goats" title=" goats"> goats</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometer" title=" spectrophotometer"> spectrophotometer</a> </p> <a href="https://publications.waset.org/abstracts/14397/the-haemoglobin-transferrin-ceruloplasmin-and-glutathione-polymorphism-of-native-goat-breeds-of-turkey-i-angora-and-hair" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Amino Acid Coated Silver Nanoparticles: A Green Catalyst for Methylene Blue Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhishek%20Chandra">Abhishek Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Singh"> Man Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Highly stable and homogeneously dispersed amino acid coated silver nanoparticles (ANP) of ≈ 10 nm diameter, ranging from 420 to 430 nm are prepared on AgNO3 solution addition to gum of Azadirachta indica solution at 373.15 K. The amino acids were selected based on their polarity. The synthesized nanoparticles were characterized by UV-Vis, FTIR spectroscopy, HR-TEM, XRD, SEM and 1H-NMR. The coated nanoparticles were used as catalyst for the reduction of methylene blue dye in presence of Sn(II) in aqueous, anionic and cationic micellar media. The rate of reduction of dye was determined by measuring the absorbance at 660 nm, spectrophotometrically and followed the order: Kcationic > Kanionic > Kwater. After 12 min and in absence of the ANP, only 2%, 3% and 6% of the dye reduction was completed in aqueous, anionic and cationic micellar media respectively while, in presence of ANP coated by polar neutral amino acid with non-polar -R group, the reduction completed to 84%, 95% and 98% respectively. The ANP coated with polar neutral amino acid having non-polar -R group, increased the rate of reduction of the dye by 94, 3205 and 6370 folds in aqueous, anionic and cationic micellar media respectively. Also, the rate of reduction of the dye increased by three folds when the micellar media was changed from anionic to cationic when the ANP is coated by a polar neutral amino acid having a non-polar -R group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticle" title="silver nanoparticle">silver nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid" title=" amino acid"> amino acid</a> </p> <a href="https://publications.waset.org/abstracts/38205/amino-acid-coated-silver-nanoparticles-a-green-catalyst-for-methylene-blue-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Role of Fish Hepatic Aldehyde Oxidase in Oxidative In Vitro Metabolism of Phenanthridine Heterocyclic Aromatic Compound</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20S.%20Al%20Salhen">Khaled S. Al Salhen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aldehyde oxidase is molybdo-flavoenzyme involved in the oxidation of hundreds of endogenous and exogenous and N-heterocyclic compounds and environmental pollutants. Uncharged N-heterocyclic aromatic compounds such phenanthridine are commonly distributed pollutants in soil, air, sediments, surface water and groundwater, and in animal and plant tissues. Phenanthridine as uncharged N-heterocyclic aromatic compound was incubated with partially purified aldehyde oxidase from rainbow trout fish liver. Reversed-phase HLPC method was used to separate the oxidation products from phenanthridine and the metabolite was identified. The 6(5H)-phenanthridinone was identified the major metabolite by partially purified aldehyde oxidase from fish liver. Kinetic constant for the oxidation reactions were determined spectrophotometrically and showed that this substrate has a good affinity (Km = 78 ± 7.6 µM) for hepatic aldehyde oxidase, coupled with a relatively high oxidation rate (0.77± 0.03 nmol/min/mg protein). In addition, the kinetic parameters of hepatic fish aldehyde oxidase towards the phenanthridine substrate indicate that in vitro biotransformation by hepatic fish aldehyde oxidase will be a significant pathway. This study confirms that partially purified aldehyde oxidase from fish liver is indeed the enzyme responsible for the in vitro production 6(5H)-phenanthridinone metabolite as it is a major metabolite by mammalian aldehyde oxidase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aldehyde%20oxidase" title="aldehyde oxidase">aldehyde oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=fish" title=" fish"> fish</a>, <a href="https://publications.waset.org/abstracts/search?q=phenanthridine" title=" phenanthridine"> phenanthridine</a>, <a href="https://publications.waset.org/abstracts/search?q=specificity" title=" specificity"> specificity</a> </p> <a href="https://publications.waset.org/abstracts/3951/role-of-fish-hepatic-aldehyde-oxidase-in-oxidative-in-vitro-metabolism-of-phenanthridine-heterocyclic-aromatic-compound" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Antioxidant Properties, Ascorbic Acid and Total Carotenoids Values of Sweet and Hot Red Pepper Paste: A Traditional Food in Turkish Diet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kubra%20Sayin">Kubra Sayin</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20Arslan"> Derya Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red pepper (Capsicum annum L.) has long been recognized as a good source of antioxidants, being rich in ascorbic acid and other phytochemicals. In Turkish cuisine red pepper is sometimes consumed raw in salads and baked as a garnish, but its most wide consumption type is red pepper paste. The processing of red pepper into pepper paste includes various thermal treatment steps such as heating and pasteurizing. There are reports demonstrating an enhancement or reduction in antioxidant activity of vegetables after thermal treatment. So this study was conducted to investigate the total phenolics, ascorbic acid and total carotenoids as well as free radical scavenging activity of raw red pepper and various red pepper pastes obtainable on the market. The samples were analyzed for radical-scavenging activity (RSA) and total polyphenol (TP) content using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and Folin-Ciocalteu methods, respectively. They were also evaluated for ascorbic acid content (AsA) by HPLC. Total carotenoids content was determined spectrophotometrically. Results suggest that there is no significant (P > 0.05) difference in RSA, TP, AsA and total carotenoids content between various red pepper paste products. However, red pepper paste showed marked differences (P < 0.05) in the RSA, TP and AsA contents compared with raw red pepper. It is concluded that the red pepper paste, that has a wide range of consumption in Turkish cuisine, presents a good dose of phenolic compounds and antioxidant capacity and it should be regarded as a functional food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20pepper%20paste" title="red pepper paste">red pepper paste</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20properties" title=" antioxidant properties"> antioxidant properties</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20carotenoids" title=" total carotenoids"> total carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolics" title=" total phenolics "> total phenolics </a> </p> <a href="https://publications.waset.org/abstracts/23623/antioxidant-properties-ascorbic-acid-and-total-carotenoids-values-of-sweet-and-hot-red-pepper-paste-a-traditional-food-in-turkish-diet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Characterization of Caneberry Juices Enriched by Natural Antioxidants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Vuli%C4%87">Jelena Vulić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasna%20%C4%8Canadanovi%C4%87-Brunet"> Jasna Čanadanović-Brunet</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordana%20%C4%86etkovi%C4%87"> Gordana Ćetković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonja%20Djilas"> Sonja Djilas</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Tumbas%20%C5%A0aponjac"> Vesna Tumbas Šaponjac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Caneberries (raspberries and blackberries) are among the most popular berries in the world, which are consumed as fresh and processed to juice, jams, confitures and other products or as ingredients for different foods. These fruits are known as a rich source of phenolic compounds such as phenolic acids and anthocyanins. Antioxidant activity (AA) of caneberry juices was improved by addition of phenolic compounds which were extracted from two raspberry cultivars (Rubus idaeus, cv. 'Willamette' (RW) and 'Meeker' (RM)) and two blackberry cultivars (Rubus fruticosus, cv. 'Čačanka' (BC) and 'Thornfree' (BT)) pomace, a by-product in juice processing. The total phenolic contents in raspberry and blackberry pomace extracts were determined spectrophotometrically using the Folin-Ciocalteu reagens. The phenolic concentrations in caneberries (RW, RM, BC and BT) pomace extracts were 43.67 ± 2.13 mg GAE/g, 26.25 ± 1.18 mg GAE/g, 46.01 ± 3.26 mg GAE/g and 61.59 ± 1.14 mg GAE/g, respectively. In order to obtain enriched juices, phenolic compounds were applied at concentration of 0.05 mg GAE/ 100 ml. Antioxidant activities of caneberry juices and caneberry enriched juices were measured using stable 1.1-diphenyl-2-picrylhydrazyl (DPPH) radicals. AADPPH of RW, RM, BC and BT juices and enriched juices with addition of 0.01 µg GAE/ml, changed from 37.12% to 93.01%, 23.26% to 91.57%, 53.61% to 95.65% and 52.06% to 93.13%, respectively, while IC50 values of RW, RM, BC and BT juices and enriched juices were diminished 6.33, 19.00, 6.33 and 4.75 times, respectively. Based on the obtained results it can be concluded that phenolic enriched juices were significantly more effective on DPPH radicals. Caneberry juices enriched with waste material are a good source of natural pigments and antioxidants and could be used as functional foods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=caneberry" title="caneberry">caneberry</a>, <a href="https://publications.waset.org/abstracts/search?q=enriched%20juice" title=" enriched juice"> enriched juice</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20antioxidant" title=" phenolic antioxidant"> phenolic antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPH%20radical" title=" DPPH radical"> DPPH radical</a> </p> <a href="https://publications.waset.org/abstracts/4894/characterization-of-caneberry-juices-enriched-by-natural-antioxidants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Arginase Activity and Nitric Oxide Levels in Patients Undergoing Open Heart Surgery with Cardiopulmonary Bypass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Ali%20Kisa%C3%A7am">Mehmet Ali Kisaçam</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sema%20Temizer%20Ozan"> P. Sema Temizer Ozan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20Do%C4%9Fan"> Ayşe Doğan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonca%20Ozan"> Gonca Ozan</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Sarper%20T%C3%BCrker"> F. Sarper Türker</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cardiovascular disease which is one of the most common health problems worldwide has crucial importance because of its’ morbidity and mortality rates. Nitric oxide synthase and arginase use L-arginine as a substrate and produce nitric oxide (NO), citrulline and urea, ornithine respectively. Endothelial dysfunction is characterized by reduced bioavailability of vasodilator and anti-inflammatory molecule NO. The purpose of the study to assess endothelial function via arginase activity and NO levels in patients undergoing coronary artery bypass grafting (CABG) surgery. The study was conducted on 26 patients (14 male, 12 female) undergoing CABG surgery. Blood samples were collected from the subjects before surgery, after the termination and after 24 hours of the surgery. Arginase activity and NO levels measured in collected samples spectrophotometrically. Arginase activity decreased significantly in subjects after the termination of the surgery compared to before surgery data. 24 hours after the surgery there wasn’t any significance in arginase activity as it compared to before surgery and after the termination of the surgery. On the other hand, NO levels increased significantly in the subject after the termination of the surgery. However there was no significant increase in NO levels after 24 hours of the surgery, but there was an insignificant increase compared to before surgery data. The results indicate that after the termination of the surgery vascular and endothelial function improved and after 24 hours of the surgery arginase activity and NO levels returned to normal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arginase" title="arginase">arginase</a>, <a href="https://publications.waset.org/abstracts/search?q=bypass" title=" bypass"> bypass</a>, <a href="https://publications.waset.org/abstracts/search?q=cordiopulmonary" title=" cordiopulmonary"> cordiopulmonary</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide" title=" nitric oxide"> nitric oxide</a> </p> <a href="https://publications.waset.org/abstracts/74877/arginase-activity-and-nitric-oxide-levels-in-patients-undergoing-open-heart-surgery-with-cardiopulmonary-bypass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74877.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Improving the Growth, Biochemical Parameters and Content and Composition of Essential Oil of Mentha piperita L. through Soil-Applied N, P, and K </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Bhat">Bilal Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Masroor%20A.%20Khan"> M. Masroor A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Moin%20Uddin"> Moin Uddin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naeem"> M. Naeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aromatic herb, peppermint (Mentha piperita L.), is a natural hybrid (M. aquatica × M. spicata) with immense therapeutic uses, apart from other potential uses. Peppermint oil is one of the most popular and widely used essential oil (EO), because of its main components menthol and menthone. In view of enhancing growth, yield and quality of this medicinally important herb, a pot experiment was conducted in the net-house of the department. The experiment was aimed at studying the effect of graded levels of N, P, and K on growth, biochemical characteristics, and content and composition of EO in Mentha piperita L. Six NPK treatments (viz. N0P0K0, N20P20K20, N40P40K40, N20+20 P20+20 K20+20, N60P60K60, and N30+30 P30+30 K30+30) were tested. The plants were harvested 150 days after transplanting. The crop performance was assessed in terms of growth attributes, physiological activities, herbage yield and content as well as yield of active constituents of Mentha piperita L. Biochemical parameters were analyzed spectrophotometrically. The EO was extracted using Clevenger’s apparatus and the active constituents of the oil were determined using Gas Chromatography. Split-dose application of N, P and K (N30+30 P30+30 K30+30) ameliorated most of the parameters significantly including, fresh and dry weight of plant, NPK content, chlorophyll and carotenoids content, and the activities of carbonic anhydrase and nitrate reductase in the leaves. It also enhanced the EO content (44.0%), EO yield (91.0%), menthol content (14.1%), menthone content (34.0%), menthyl acetate content (16.9%) and 1, 8-cineole content (43.7%) but decreased the pulegone content (36.8%). Conclusively, the fertilization proved useful in enhancing the EO content, yield and other EO components of the plant. Thus, the yield and quality of EO of peppermint may be improved by this agricultural strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mentha%20piperita" title="mentha piperita">mentha piperita</a>, <a href="https://publications.waset.org/abstracts/search?q=menthol" title=" menthol"> menthol</a>, <a href="https://publications.waset.org/abstracts/search?q=menthone" title=" menthone"> menthone</a>, <a href="https://publications.waset.org/abstracts/search?q=EO" title=" EO"> EO</a> </p> <a href="https://publications.waset.org/abstracts/11602/improving-the-growth-biochemical-parameters-and-content-and-composition-of-essential-oil-of-mentha-piperita-l-through-soil-applied-n-p-and-k" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">498</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Kinetic Study on Extracting Lignin from Black Liquor Using Deep Eutectic Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatemeh%20Saadat%20Ghareh%20Bagh">Fatemeh Saadat Ghareh Bagh</a>, <a href="https://publications.waset.org/abstracts/search?q=Srimanta%20Ray"> Srimanta Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerald%20Lalman"> Jerald Lalman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignin, the largest inventory of organic carbon with a high caloric energy value is a major component in woody and non-woody biomass. In pulping mills, a large amount of the lignin is burned for energy. At the same time, the phenolic structure of lignin enables it to be converted to value-added compounds.This study has focused on extracting lignin from black liquor using deep eutectic solvents (DESs). Therefore, three choline chloride (ChCl)-DESs paired with lactic acid (LA) (1:11), oxalic acid.2H₂O (OX) (1:4), and malic acid (MA) (1:3) were synthesized at 90oC and atmospheric pressure. The kinetics of lignin recovery from black liquor using DES was investigated at three moderate temperatures (338, 353, and 368 K) at time intervals from 30 to 210 min. The extracted lignin (acid soluble lignin plus Klason lignin) was characterized by Fourier transform infrared spectroscopy (FTIR). The FTIR studies included comparing the extracted lignin with a model Kraft lignin. The extracted lignin was characterized spectrophotometrically to determine the acid soluble lignin (ASL) [TAPPI UM 250] fraction and Klason lignin was determined gravimetrically using TAPPI T 222 om02. The lignin extraction reaction using DESs was modeled by first-order reaction kinetics and the activation energy of the process was determined. The ChCl:LA-DES recovered lignin was 79.7±2.1% at 368K and a DES:BL ratio of 4:1 (v/v). The quantity of lignin extracted for the control solvent, [emim][OAc], was 77.5+2.2%. The activation energy measured for the LA-DES system was 22.7 KJ mol⁻¹, while the activation energy for the OX-DES and MA-DES systems were 7.16 KJ·mol⁻¹ and 8.66 KJ·mol⁻¹ when the total lignin recovery was 75.4 ±0.9% and 62.4 ±1.4, % respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20liquor" title="black liquor">black liquor</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20eutectic%20solvents" title=" deep eutectic solvents"> deep eutectic solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a> </p> <a href="https://publications.waset.org/abstracts/98576/kinetic-study-on-extracting-lignin-from-black-liquor-using-deep-eutectic-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Dual Drug Piperine-Paclitaxel Nanoparticles Inhibit Migration and Invasion in Human Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Verma">Monika Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Renuka%20Sharma"> Renuka Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20R.%20Gulati"> B. R. Gulati</a>, <a href="https://publications.waset.org/abstracts/search?q=Namita%20Singh"> Namita Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In combination therapy, two chemotherapeutic agents work together in a collaborative action. It has appeared as one of the promising approaches to improve anti-cancer treatment efficacy. In the present investigation, piperine (P-NPS), paclitaxel (PTX NPS), and a combination of both, piperine-paclitaxel nanoparticle (Pip-PTX NPS), were made by the nanoprecipitation method and later characterized by PSA, DSC, SEM, TEM, and FTIR. All nanoparticles exhibited a monodispersed size distribution with a size of below 200 nm, zeta potential ranges from (-30-40mV) and a narrow polydispersity index (>0.3) of the drugs. The average encapsulation efficiency was found to be between 80 and 90%. In vitro release of drugs for nanoparticles was done spectrophotometrically. FTIR and DSC results confirmed the presence of the drug. The Pip-PTX NPS significantly inhibit cell proliferation as compared to the native drugs nanoparticles in the breast cancer cell line MCF-7. In addition, Pip-PTX NPS suppresses cells in colony formation and soft gel agar assay. Scratch migration and Transwell chamber invasion assays revealed that combined nanoparticles reduce the migration and invasion of breast cancer cells. Morphological studies showed that Pip-PTX NPS penetrates the cells and induces apoptosis, which was further confirmed by DNA fragmentation, SEM, and western blot analysis. Taken together, Pip-PTX NPS inhibits cell proliferation, anchorage dependent and anchorage independent cell growth, reduces migration and invasion, and induces apoptosis in cells. These findings support that combination therapy using Pip-PTX NPS represents a potential approach and could be helpful in the future for breast cancer therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piperine" title="piperine">piperine</a>, <a href="https://publications.waset.org/abstracts/search?q=paclitaxel" title=" paclitaxel"> paclitaxel</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a> </p> <a href="https://publications.waset.org/abstracts/154025/dual-drug-piperine-paclitaxel-nanoparticles-inhibit-migration-and-invasion-in-human-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Spectroscopic Studies on Solubilization of Polycyclic Aromatic Hydrocarbons in Structurally Different Gemini Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Toshikee%20Yadav">Toshikee Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Tikariha"> Deepti Tikariha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyotsna%20Lakra"> Jyotsna Lakra</a>, <a href="https://publications.waset.org/abstracts/search?q=Kallol%20K.%20Ghosh"> Kallol K. Ghosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycyclic aromatic hydrocarbons (PAHs) are potent atmospheric pollutants that consist of two or more benzene rings. PAHs have low solubility in water. Their slow dissolution can contaminate large amounts of ground water for long period. They are hydrophobic, non-polar and neutral in nature and are known to have potential mutagenic or carcinogenic activity. In current scenario their removal from the environment, water and soil is still a great challenge and scientists worldwide are engaged to invent and design novel separation technology and decontaminating systems. Various physical, chemical, biological and their combined technologies have been applied to remediate organic-contaminated soils and groundwater. Surfactants play a vital role in the solubilization of these hydrophobic organic compounds. In the present investigation Solubilization capabilities of structurally different gemini surfactants i.e. butanediyl-1,4-bis(dimethyldodecylammonium bromide) (C12-4-C12,2Br−), 2-butanol-1,4-bis (dimethyldodecylammonium bromide) (C12-4(OH)-C12,2Br−), 2,3-butanediol-1,4-bis (dimethyldodecylammonium bromide) (C12-4(OH)2-C12,2Br−) for three polycyclic aromatic hydrocarbons (PAHs); phenanthrene (Phe),fluorene (Fluo) and acenaphthene (Ace) have been studied spectrophotometrically at 300 K. The result showed that the solubility of PAHs increases linearly with increasing surfactant concentration, as an implication of association between the PAHs and micelles. Molar solubilization ratio (MSR), micelle–water partition coefficient (Km) and Gibb's free energy of solubilization (ΔG°s) for PAHs have been determined in aqueous medium. (C12-4(OH)2-C12,2Br−) shows the higher solubilization for all PAHs. Findings of the present investigation may be useful to understand the role of appropriate surfactant system for the solubilization of toxic hydrophobic organic compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gemini%20surfactant" title="gemini surfactant">gemini surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=molar%20solubilization%20ratio" title=" molar solubilization ratio"> molar solubilization ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=polycyclic%20aromatic%20hydrocarbon" title=" polycyclic aromatic hydrocarbon"> polycyclic aromatic hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization" title=" solubilization "> solubilization </a> </p> <a href="https://publications.waset.org/abstracts/35048/spectroscopic-studies-on-solubilization-of-polycyclic-aromatic-hydrocarbons-in-structurally-different-gemini-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Occupational Exposure to Polycyclic Aromatic Hydrocarbons (Pha) among Asphalt and Road Paving Workers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boularas%20El%20Alia">Boularas El Alia</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Rezk-Allah"> H. Rezk-Allah</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Chaoui"> S. Chaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chama"> A. Chama</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Rezk-Allah"> B. Rezk-Allah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: To assess the current exposure to the PHA among various workers in the sector of asphalt and road paving. Methods: The assessment of the exposure to PHA has been performed on workers (n=14) belonging to two companies, allocated into several activities such as road paving, manufacturing of coated bituminous warm, manufacturing of asphalt cut-back, manufacturing of emulsion of asphalt. A group of control subjects (n=18) was associated. The internal exposure to PHA was investigated by measurement of the urinary excretion of 2-naphtol, urine metabolite of naphtalene, one of the biomarkers of total PHA exposure. Urine samples were collected from the exposed workers, at the beginning of the week, at the beginning of the work shift (BWBS) and at the end of the work shift, at the end of the week (ESEW). In the control subjects, single samples of urine were collected after the end of the work shift.Every subject was invited to answer a questionnaire for the collection of technical and medical data as well as smoking habits and food intake. The concentration of 2-naphtol in the hydrolysate of urine was determined spectrophotometrically, after its reaction with the Fast Blue BB salt (diazotized 4-benzoylamino-2,5-diethoxyaniline). Results: For all the workers included in the study, the 2-urinary naphtol concentrations were higher than those in the control subjects (Median=9,55 µg/g creatinine) whether it is at (BWBS) (Md=16,2 µg/g creatinine) or at (ESEW) (n=18,Median=32,22 µg/g creatinine). Considerable differences are observed according to the category of job. The concentrations are also higher among smokers. Conclusion:The results show a significant exposure, mainly during manual laying, reveals an important risk particularly for the respiratory system.Considering the current criteria, carcinogenic risk due to the PHA seems not insignificant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PHA" title="PHA">PHA</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt" title=" asphalt"> asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment" title=" assessment"> assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational" title=" occupational"> occupational</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure" title=" exposure"> exposure</a> </p> <a href="https://publications.waset.org/abstracts/16168/occupational-exposure-to-polycyclic-aromatic-hydrocarbons-pha-among-asphalt-and-road-paving-workers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> The Effect of Ultrasound as Pre-Treatment for Drying of Red Delicious and Golden Delicious Apples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulcin%20Yildiz">Gulcin Yildiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Drying (dehydration) is the process of removing water from food in order to preserve the food and an alternative to reduce post-harvest loss of fruits. Different pre-treatment methods have been developed for fruit drying, such as ultrasound. If no pre-treatment is done, the fruits will continue to darken after they are dried. However, the effects of ultrasound as pre-treatment on drying of apples has not been well documented. This study was undertaken to investigate the effect of ultrasound as pre-treatment before oven drying of red delicious and golden delicious apples. Red delicious and golden delicious apples were dried in different temperatures. Before performing drying experiments in an oven at 50, 75 and 100 °C, ultrasound as pretreatment was applied in 5, 10, and 15 minutes. Colors of the dried apples were measured with a Minolta Chroma Meter CR-300 (Minolta Camera Co. Ltd., Osaka, Japan) by directly holding the device vertically to the surface of the samples. Content of total phenols was determined spectrophotometrically with the FolinCiocalteau assay, and the antioxidant capacity was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The samples (both red delicious and golden delicious apples) with longer ultrasound treatment produced higher weight loss due to the changes in tissue structure. However less phenolic content and antioxidant capacity were observed for the samples with longer ultrasound pre-treatment. The highest total phenolic content (TPC) was determined in dried apples at 75 °C with 5 minutes pre-treatment ultrasound and the lowest TPC was determined in dried apples at 50 °C with 15 minutes pre-treatment ultrasound which was subjected to the longest ultrasound pre-treatment and drying. The combination of 5 min of ultrasound pre-treatment and 75 °C of oven-drying showed to be the best combination for an energy efficient process. This combination exhibited good antioxidant properties as well. The present study clearly demonstrated that applying ultrasound as pre-treatment for drying of apples is an effective process in terms of quality of dried products, time, and energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=golden%20delicious%20apples" title="golden delicious apples">golden delicious apples</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20delicious%20apples" title=" red delicious apples"> red delicious apples</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a>, <a href="https://publications.waset.org/abstracts/search?q=Ultrasound" title=" Ultrasound"> Ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/88399/the-effect-of-ultrasound-as-pre-treatment-for-drying-of-red-delicious-and-golden-delicious-apples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Oxidative Antioxidative Status and DNA Damage Profile Induced by Chemotherapy in Algerian Children with Lymphoma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Assia%20Galleze">Assia Galleze</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahim%20Kocyigit"> Abdurrahim Kocyigit</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacira%20%20Cherif"> Nacira Cherif</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidel%20Benhalilou"> Nidel Benhalilou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabila%20Attal"> Nabila Attal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chafia%20Touil%20Boukkoffa"> Chafia Touil Boukkoffa</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachida%20Raache"> Rachida Raache</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and aims: Chemotherapeutic agents used to inhibit cell division and reduce tumor growth, increase reactive oxygen species levels, which contributes to their genotoxicity [1]. The comet assay is an inexpensive and rapid method to detect the damage at cellular levels and has been used in various cancer populations undergoing chemotherapy [2,3]. The present study aim to assess the oxidative stress and the genotoxicity induced by chemotherapy by the determination of plasma malondialdehyde (MDA) level, protein carbonyl (PC) content, superoxide dismutase (SOD) activity and lymphocyte DNA damage in Algerian children with lymphoma. Materials and Methods: For our study, we selected thirty children with lymphoma treated in university hospital of Beni Messous, Algeria, and fifty unrelated subjects as controls, after obtaining the informed consent in accordance with the Declaration of Helsinki (1964). Plasma levels of MDA, PC and SOD activity were spectrophotometrically measured, while DNA damage was assessed by alkaline comet assay in peripheral blood leukocytes. Results and Discussion: Plasma MDA, PC levels and lymphocyte DNA damage, were found to be significantly higher in lymphoma patients than in controls (p < 0.001). Whereas, SOD activity in lymphoma patients was significantly lower than in healthy controls (p < 0.001). There were significant positive correlations between DNA damage, MDA and PC in patients (r = 0.96, p < 0.001, r = 0.97, p < 0.001, respectively), and negative correlation with SOD (r = 0.87, p < 0.01). Conclusion and Perspective: Our results indicated that, leukocytes DNA damage and oxidative stress were significantly higher in lymphoma patients, suggesting that the direct effect of chemotherapy and the alteration of the redox balance may influence oxidative/antioxidative status. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemotherapy" title="chemotherapy">chemotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=comet%20assay" title=" comet assay"> comet assay</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20damage" title=" DNA damage"> DNA damage</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphoma" title=" lymphoma"> lymphoma</a> </p> <a href="https://publications.waset.org/abstracts/124329/oxidative-antioxidative-status-and-dna-damage-profile-induced-by-chemotherapy-in-algerian-children-with-lymphoma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Extraction and Encapsulation of Carotenoids from Carrot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gordana%20%C4%86etkovi%C4%87">Gordana Ćetković</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Podunavac-Kuzmanovi%C4%87"> Sanja Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasna%20%C4%8Canadanovi%C4%87-Brunet"> Jasna Čanadanović-Brunet</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Tumbas%20%C5%A0aponjac"> Vesna Tumbas Šaponjac</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanja%20%C5%A0eregelj"> Vanja Šeregelj</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Vuli%C4%87"> Jelena Vulić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sla%C4%91ana%20Staj%C4%8Di%C4%87"> Slađana Stajčić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The color of food is one of the decisive factors for consumers. Potential toxicity of artificial food colorants has led to the consumers' preference for natural products over products with artificial colors. Natural pigments have many bioactive functions, such as antioxidant, provitamin and many other. Having this in mind, the acceptability of natural colorants by the consumers is much higher. Being present in all photosynthetic plant tissues carotenoids are probably most widespread pigments in nature. Carrot (Daucus carota) is a good source of functional food components. Carrot is especially rich in carotenoids, mainly α- and β-carotene and lutein. For this study, carrot was extracted using classical extraction with hexane and ethyl acetate, as well as supercritical CO₂ extraction. The extraction efficiency was evaluated by estimation of carotenoid yield determined spectrophotometrically. Classical extraction using hexane (18.27 mg β-carotene/100 g DM) was the most efficient method for isolation of carotenoids, compared to ethyl acetate classical extraction (15.73 mg β-carotene/100 g DM) and supercritical CO₂ extraction (0.19 mg β-carotene/100 g DM). Three carrot extracts were tested in terms of antioxidant activity using DPPH and reducing power assay as well. Surprisingly, ethyl acetate extract had the best antioxidant activity on DPPH radicals (AADPPH=120.07 μmol TE/100 g) while hexane extract showed the best reducing power (RP=1494.97 μmol TE/100 g). Hexane extract was chosen as the most potent source of carotenoids and was encapsulated in whey protein by freeze-drying. Carotenoid encapsulation efficiency was found to be high (89.33%). Based on our results it can be concluded that carotenoids from carrot can be efficiently extracted using hexane and classical extraction method. This extract has the potential to be applied in encapsulated form due to high encapsulation efficiency and coloring capacity. Therefore it can be used for dietary supplements development and food fortification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carotenoids" title="carotenoids">carotenoids</a>, <a href="https://publications.waset.org/abstracts/search?q=carrot" title=" carrot"> carrot</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=encapsulation" title=" encapsulation"> encapsulation</a> </p> <a href="https://publications.waset.org/abstracts/76718/extraction-and-encapsulation-of-carotenoids-from-carrot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Phytochemical Content and Bioactive Properties of Wheat Sprouts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasna%20%C4%8Canadanovi%C4%87-Brunet">Jasna Čanadanović-Brunet</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20Jevri%C4%87"> Lidija Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Gordana%20%C4%86etkovi%C4%87"> Gordana Ćetković</a>, <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Tumbas%20%C5%A0aponjac"> Vesna Tumbas Šaponjac</a>, <a href="https://publications.waset.org/abstracts/search?q=Jelena%20Vuli%C4%87"> Jelena Vulić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sla%C4%91ana%20Staj%C4%8Di%C4%87"> Slađana Stajčić </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wheat contains high amount of nutrients such as dietary fiber, resistant starch, vitamins, minerals and microconstituents, which are building blocks of body tissues, but also help in the prevention of diseases such as cardiovascular disease, cancer and diabetes. Sprouting enhances the nutritional value of whole wheat through biosynthesis of tocopherols, polyphenols and other valuable phytochemicals. Since the nutritional and sensory benefits of germination have been extensively documented, using of sprouted grains in food formulations is becoming a trend in healthy foods. The present work addressed the possibility of using freeze-dried sprouted wheat powder, obtained from spelt-wheat cv. ‘Nirvana’ (Triticum spelta L.) and winter wheat cv. ‘Simonida’ (Triticum aestivum L. ssp. vulgare var. lutescens), as a source of phytochemicals, to improve the functional status of the consumer. The phytochemicals' content (total polyphenols, flavonoids, chlorophylls and carotenoids) and biological activities (antioxidant activity on DPPH radicals and antiinflammatory activity) of sprouted wheat powders were assessed spectrophotometrically. The content of flavonoids (216.52 mg RE/100 g), carotenoids (22.84 mg β-carotene/100 g) and chlorophylls (131.23 mg/100 g), as well as antiinflammatory activity (EC50=3.70 mg/ml) was found to be higher in sprouted spelt-wheat powder, while total polyphenols (607.21 mg GAE/100 g) and antioxidant activity on DDPPH radicals (EC50=0.27 mmol TE/100 g) was found to be higher in sprouted winter wheat powders. Simulation of gastro-intestinal digestion of sprouted wheat powders clearly shows that intestinal digestion caused a higher release of polyphenols than gastric digestion for both samples, which indicates their higher bioavailability in the colon. The results of the current study have shown that wheat sprouts can provide a high content of phytochemicals and considerable bioactivities. Moreover, data reported show that they contain a unique pattern of bioactive molecules, which make these cereal sprouts attractive functional foods for a health-promoting diet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wheat" title="wheat">wheat</a>, <a href="https://publications.waset.org/abstracts/search?q=sprouts" title=" sprouts"> sprouts</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemicals" title=" phytochemicals"> phytochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a> </p> <a href="https://publications.waset.org/abstracts/76719/phytochemical-content-and-bioactive-properties-of-wheat-sprouts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Cr (VI) Adsorption on Ce0.25Zr0.75O2.nH2O-Kinetics and Thermodynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Alberto%20Rivera-corredor">Carlos Alberto Rivera-corredor</a>, <a href="https://publications.waset.org/abstracts/search?q=Angie%20Dayana%20Vargas-Ceballos"> Angie Dayana Vargas-Ceballos</a>, <a href="https://publications.waset.org/abstracts/search?q=Edison%20Gilpavas"> Edison Gilpavas</a>, <a href="https://publications.waset.org/abstracts/search?q=Izabela%20Dobrosz-G%C3%B3mez"> Izabela Dobrosz-Gómez</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20%C3%81ngel%20G%C3%B3mez-Garc%C3%ADa"> Miguel Ángel Gómez-García</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hexavalent chromium, Cr (VI) is present in the effluents from different industries such as electroplating, mining, leather tanning, etc. This compound is of great academic and industrial concern because of its toxic and carcinogenic behavior. Its dumping to both environmental and public health for animals and humans causes serious problems in water sources. The amount of Cr (VI) in industrial wastewaters ranges from 0.5 to 270,000 mgL-1. According to the Colombian standard for water quality (NTC-813-2010), the maximum allowed concentration for the Cr (VI) in drinking water is 0.05 mg L-1. To comply with this limit, it is essential that industries treat their effluent to reduce the Cr (VI) to acceptable levels. Numerous methods have been reported for the treatment removing metal ions from aqueous solutions such as: reduction, ion exchange, electrodialysis, etc. Adsorption has become a promising method for the purification of metal ions in water, since its application corresponds with an economic and efficient technology. The absorbent selection and the kinetic and thermodynamic study of the adsorption conditions are key to the development of a suitable adsorption technology. The Ce0.25Zr0.75O2.nH2O presents higher adsorption capacity between a series of hydrated mixed oxides Ce1-xZrxO2 (x = 0, 0.25, 0.5, 0.75, 1). This work presents the kinetic and thermodynamic study of Cr (VI) adsorption on Ce0.25Zr0.75O2.nH2O. Experiments were performed under the following experimental conditions: initial Cr (VI) concentration = 25, 50 and 100 mgL-1, pH = 2, adsorbent charge = 4 gL-1, stirring time = 60 min, temperature=20, 28 and 40 °C. The Cr (VI) concentration was spectrophotometrically estimated by the method of difenilcarbazide with monitoring the absorbance at 540 nm. The Cr (VI) adsorption over hydrated Ce0.25Zr0.75O2.nH2O models was analyzed using pseudo-first and pseudo-second order kinetics. The Langmuir and Freundlich models were used to model the experimental data. The convergence between the experimental values and those predicted by the model, is expressed as a linear regression correlation coefficient (R2) and was employed as the model selection criterion. The adsorption process followed the pseudo-second order kinetic model and obeyed the Langmuir isotherm model. The thermodynamic parameters were calculated as: ΔH°=9.04 kJmol-1,ΔS°=0.03 kJmol-1 K-1, ΔG°=-0.35 kJmol-1 and indicated the endothermic and spontaneous nature of the adsorption process, governed by physisorption interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=hexavalent%20chromium" title=" hexavalent chromium"> hexavalent chromium</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamics" title=" thermodynamics"> thermodynamics</a> </p> <a href="https://publications.waset.org/abstracts/41080/cr-vi-adsorption-on-ce025zr075o2nh2o-kinetics-and-thermodynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Study of Oxidative Processes in Blood Serum in Patients with Arterial Hypertension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20M.%20Hovsepyan">Laura M. Hovsepyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayane%20S.%20Ghazaryan"> Gayane S. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasmik%20V.%20Zanginyan"> Hasmik V. Zanginyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hypertension (HD) is the most common cardiovascular pathology that causes disability and mortality in the working population. Most often, heart failure (HF), which is based on myocardial remodeling, leads to death in hypertension. Recently, endothelial dysfunction (EDF) or a violation of the functional state of the vascular endothelium has been assigned a significant role in the structural changes in the myocardium and the occurrence of heart failure in patients with hypertension. It has now been established that tissues affected by inflammation form increased amounts of superoxide radical and NO, which play a significant role in the development and pathogenesis of various pathologies. They mediate inflammation, modify proteins and damage nucleic acids. The aim of this work was to study the processes of oxidative modification of proteins (OMP) and the production of nitric oxide in hypertension. In the experimental work, the blood of 30 donors and 33 patients with hypertension was used. For the quantitative determination of OMP products, the based on the reaction of the interaction of oxidized amino acid residues of proteins and 2,4-dinitrophenylhydrazine (DNPH) with the formation of 2,4-dinitrophenylhydrazones, the amount of which was determined spectrophotometrically. The optical density of the formed carbonyl derivatives of dinitrophenylhydrazones was recorded at different wavelengths: 356 nm - aliphatic ketone dinitrophenylhydrazones (KDNPH) of neutral character; 370 nm - aliphatic aldehyde dinirophenylhydrazones (ADNPH) of neutral character; 430 nm - aliphatic KDNFG of the main character; 530 nm - basic aliphatic ADNPH. Nitric oxide was determined by photometry using Grace's solution. Adsorption was measured on a Thermo Scientific Evolution 201 SF at a wavelength of 546 nm. Thus, the results of the studies showed that in patients with arterial hypertension, an increased level of nitric oxide in the blood serum is observed, and there is also a tendency to an increase in the intensity of oxidative modification of proteins at a wavelength of 270 nm and 363 nm, which indicates a statistically significant increase in aliphatic aldehyde and ketone dinitrophenylhydrazones. The increase in the intensity of oxidative modification of blood plasma proteins in the studied patients, revealed by us, actually reflects the general direction of free radical processes and, in particular, the oxidation of proteins throughout the body. A decrease in the activity of the antioxidant system also leads to a violation of protein metabolism. The most important consequence of the oxidative modification of proteins is the inactivation of enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypertension%20%28HD%29" title="hypertension (HD)">hypertension (HD)</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20modification%20of%20proteins%20%28OMP%29" title=" oxidative modification of proteins (OMP)"> oxidative modification of proteins (OMP)</a>, <a href="https://publications.waset.org/abstracts/search?q=nitric%20oxide%20%28NO%29" title=" nitric oxide (NO)"> nitric oxide (NO)</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a> </p> <a href="https://publications.waset.org/abstracts/149757/study-of-oxidative-processes-in-blood-serum-in-patients-with-arterial-hypertension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Effects of Hawthorn (Crataegus monogyna) Polyphenols on Oxymyoglobin and Myofibrillar Proteins Stability in Meat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valentin%20Nicorescu">Valentin Nicorescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicoleta%20C.%20Predescu"> Nicoleta C. Predescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Camelia%20Papuc"> Camelia Papuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Iuliana%20Gajaila"> Iuliana Gajaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20D.%20Petcu"> Carmen D. Petcu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The oxidation of the fresh muscle oxymyoglobin (bright red colour) to metmyoglobin (brown colour) leads to discoloration of red meats. After slaughter, enzymatic systems involved in metmyoglobin reduction are continually depleted as time post-mortem progresses, thus the meat colour is affected. Phenolic compounds are able to scavenge reactive species involved in oxymyoglobin oxidation and to reduce metmyoglobin to oxymyoglobin. The aim of this study was to investigate the effect of polyphenols extracted from hawthorn fruits on the stability of oxymyoglobin and myofibrillar proteins in ground pork subject to refrigeration for 6 days. Hawthorn polyphenols (HP) were added in ground pork in 100, 200 and 300 ppm concentrations. Oxymyoglobin and metmyoglobin were evaluated spectrophotometrically at every 2 days and electrophoretic pattern of myofibrillar proteins was investigated at days 0 and 6 by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). For all meat samples, oxymyoglobin concentration significantly decreased during the first 4 days of refrigeration. After 6 days, the significant decrease of oxymyoglobin concentration continued only in the negative control samples. In samples treated with HP and butylated hydroxylanisole (BHA - positive control), oxymyoglobin concentration increased after 6 days of refrigeration, the highest levels complying with the following order: 100 ppm HP > 200 ppm HP > 300 ppm HP > 100 ppm BHA. The increase in metmyoglobin was coincidental with the decrease in oxymyoglobin; metmyoglobin concentration progressively increased during the first 4 days of refrigeration in all meat samples. After 6 days, in meat samples treated with HP and BHA, lower metmyoglobin concentrations were found (compared to day 4), respecting the following order: 100 ppm HP < 200 ppm HP < 300 ppm HP < 100 ppm BHA. These results showed that hawthorn polyphenols and BHA reduced metmyoglobin (MbFe3+) to oxymyoglobin (MbFe2+), and the strongest reducing character was recorded for 100 ppm HP. After 6 days of refrigeration, electrophoretic pattern of myofibrillar proteins showed minor changes compared to day 0, indicating that HP prevent protein degradation as well as synthetic antioxidant BHA. Also, HP did not induce cross-links in the myofibrillar proteins, to form protein aggregates, and no risk of reducing their ability to retain water was identified. The pattern of oxymyoglobin and metmyoglobin concentrations determined in this study showed that hawthorn polyphenols are able to reduce metmyoglobin to oxymyoglobin and to delay oxymyoglobin oxidation, especially when they are added to ground meat in concentration of 100 ppm. This work was carried out through Partnerships in priority areas Program – PN II, implemented with the support of MEN – UEFISCDI (Romania), project nr. 149/2014. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hawthorn%20polyphenols" title="Hawthorn polyphenols">Hawthorn polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=metmyoglobin" title=" metmyoglobin"> metmyoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=oxymyoglobin" title=" oxymyoglobin"> oxymyoglobin</a>, <a href="https://publications.waset.org/abstracts/search?q=proteins%20stability" title=" proteins stability"> proteins stability</a> </p> <a href="https://publications.waset.org/abstracts/48758/effects-of-hawthorn-crataegus-monogyna-polyphenols-on-oxymyoglobin-and-myofibrillar-proteins-stability-in-meat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Effect of Fermentation on the Bioavailability of Some Fruit Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kubra%20Ozkan">Kubra Ozkan</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Sagdic"> Osman Sagdic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To better understand the benefits of these fresh and fermented fruits on human health, the consequences of human metabolism and the bioavailability must be known. In this study, brine with 10% salt content, sugar, and vinegar (5% acetic acid) was added to fruits (Prunus domestica L. and Prunus amygdalus Batsch) in different formulations. Samples were stored at 20±2˚C for their fermentation for 21 days. The effects of in vitro digestion were determined on the bioactive compounds in fresh and fermented fruits ((Prunus domestica L. and Prunus amygdalus Batsch). Total phenolic compounds, total flavonoid compounds and antioxidant capacities of post gastric (PG), IN (with small intestinal absorbers) and OUT (without small intestine absorbers) samples obtained as gastric and intestinal digestion in vitro were measured. Bioactive compounds and antioxidant capacity were determined by spectrophotometrically. Antioxidant capacity was tested by the CUPRAC methods, the total phenolic content (TPC) was determined by the Folin-Ciocalteu method, the total flavonoid content (TFC) determined by Aluminium trichloride (AlCl3) method. While the antioxidant capacity of fresh Prunus domestica L. and Prunus amygdalus Batsch samples were 2.21±0.05 mg TEAC/g, 4.39±0.02mg TEAC/g; these values for fermented fruits were found 2.37±0.08mg TEAC/g, 5.38±0.07mg TEAC/g respectively. While the total phenolic contents of fresh fruits namely, Prunus domestica L. and Prunus amygdalus Batsch samples were 0.51±0.01mg GAE/g, 5.56±0.01mg GAE/g; these values for fermented fruits were found as 0.52±0.01mg GAE/g, 6.81±0.03mg GAE/g, respectively. While the total flavonoid amounts of fresh Prunus domestica L. and Prunus amygdalus Batsch samples were 0.19±0.01mg CAE/g, 2.68±0.02mg CAE/g, these values for fermented fruits were found 0.20±0.01mg CAE/g, 2.93±0.02mg CAE/g, respectively. This study showed that phenolic, flavonoid compounds and antioxidant capacities of the samples were increased during the fermantation process. As a result of digestion, the amounts of bioactive components decreased in the stomach and intestinal environment. The bioavailability values of the phenolic compounds in fresh and fermented Prunus domestica L. fruits are 40.89% and 43.28%, respectively. The bioavailability values of the phenolic compounds in fresh and fermented Prunus amygdalus Batsch fruits 4.27% and 3.82%, respectively. The bioavailability values of the flavonoid compounds in fresh and fermented Prunus domestica L. fruits are 5.32% and 19.98%, respectively. The bioavailability values of the flavonoid compounds in fresh and fermented Prunus amygdalus Batsch fruits 2.22% and 1.53%, respectively. The bioavailability values of antioxidant capacity in fresh and fermented Prunus domestica L. fruits are 33.06% and 33.51, respectively. The bioavailability values of antioxidant capacity in fresh and fermented Prunus amygdalus Batsch fruits 14.50% and 15.31%, respectively. Fermentation process; Prunus amygdalus Batsch decreased bioavailability while Prunus domestica increased bioavailability. When two fruits are compared; Prunus domestica bioavailability is more than Prunus amygdalus Batsch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title="bioactivity">bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=bioavailability" title=" bioavailability"> bioavailability</a>, <a href="https://publications.waset.org/abstracts/search?q=fermented" title=" fermented"> fermented</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit" title=" fruit"> fruit</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a> </p> <a href="https://publications.waset.org/abstracts/86993/effect-of-fermentation-on-the-bioavailability-of-some-fruit-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrophotometrically&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrophotometrically&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>