CINXE.COM

Search results for: neuromuscular block

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: neuromuscular block</title> <meta name="description" content="Search results for: neuromuscular block"> <meta name="keywords" content="neuromuscular block"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="neuromuscular block" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="neuromuscular block"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1099</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: neuromuscular block</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1099</span> Anesthesia for Spinal Stabilization Using Neuromuscular Blocking Agents in Dog: Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agata%20Migdalska">Agata Migdalska</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanna%20Berczynska"> Joanna Berczynska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Bieniek"> Ewa Bieniek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacek%20Sterna"> Jacek Sterna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Muscle relaxation is considered important during general anesthesia for spine stabilization. In a presented case peripherally acting muscle relaxant was applied during general anesthesia for spine stabilization surgery. The patient was a dog, 11-years old, 26 kg, male, mix breed. Spine fracture was situated between Th13-L1-L2, probably due to the car accident. Preanesthetic physical examination revealed no sign underlying health issues. The dog was premedicated with midazolam 0.2 mg IM and butorphanol 2.4 mg IM. General anesthesia was induced with propofol IV. After the induction, the dog was intubated with an endotracheal tube and connected to an open-ended rebreathing system and maintained with the use of inhalation anesthesia with isoflurane in oxygen. 0,5 mg/ kg of rocuronium was given IV. Use of muscle relaxant was accompanied by an assessment of the degree of neuromuscular blockade by peripheral nerve stimulator. Electrodes were attached to the skin overlying at the peroneal nerve at the lateral cranial tibia. Four electrical pulses were applied to the nerve over a 2 second period. When satisfying nerve block was detected dog was prepared for the surgery. No further monitoring of the effectiveness of blockade was performed during surgery. Mechanical ventilation was kept during anesthesia. During surgery dog maintain stable, and no anesthesiological complication occur. Intraoperatively surgeon claimed that neuromuscular blockade results in a better approach to the spine and easier muscle manipulation which was helpful in order to see the fracture and replace bone fragments. Finally, euthanasia was performed intraoperatively as a result of vast myelomalacia process of the spinal cord. This prevented examination of the recovering process. Neuromuscular blocking agents act at the neuromuscular junction to provide profound muscle relaxation throughout the body. Muscle blocking agents are neither anesthetic nor analgesic; therefore inappropriately used may cause paralysis in fully conscious and feeling pain patient. They cause paralysis of all skeletal muscles, also diaphragm and intercostal muscles when given in higher doses. Intraoperative management includes maintaining stable physiological conditions, which involves adjusting hemodynamic parameters, ensuring proper ventilation, avoiding variations in temperature, maintain normal blood flow to promote proper oxygen exchange. Neuromuscular blocking agent can cause many side effects like residual paralysis, anaphylactic or anaphylactoid reactions, delayed recovery from anesthesia, histamine release, recurarization. Therefore reverse drug like neostigmine (with glikopyrolat) or edrofonium (with atropine) should be used in case of a life-threatening situation. Another useful drug is sugammadex, although the cost of this drug strongly limits its use. Muscle relaxant improves surgical conditions during spinal surgery, especially in heavily muscled individuals. They are also used to facilitate the replacement of dislocated joints as they improve conditions during fracture reduction. It is important to emphasize that in a patient with muscle weakness neuromuscular blocking agents may result in intraoperative and early postoperative cardiovascular and respiratory complications, as well as prolonged recovery from anesthesia. This should not appear in patients with recent spine fracture or luxation. Therefore it is believed that neuromuscular blockers could be useful during spine stabilization procedures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anesthesia" title="anesthesia">anesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=dog" title=" dog"> dog</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block" title=" neuromuscular block"> neuromuscular block</a>, <a href="https://publications.waset.org/abstracts/search?q=spine%20surgery" title=" spine surgery"> spine surgery</a> </p> <a href="https://publications.waset.org/abstracts/106785/anesthesia-for-spinal-stabilization-using-neuromuscular-blocking-agents-in-dog-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1098</span> Neuromuscular Control and Performance during Sudden Acceleration in Subjects with and without Unilateral Acute Ankle Sprains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Qorbani">M. Qorbani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuromuscular control of posture as understood through studies of responses to mechanical sudden acceleration automatically has been previously demonstrated in individuals with chronic ankle instability (CAI), but the presence of acute condition has not been previously explored specially in a sudden acceleration. The aim of this study was to determine neuromuscular control pattern in those with and without unilateral acute ankle sprains. Design: Case - control. Setting: University research laboratory. The sinker&ndash;card protocol with surface translation was be used as a sudden acceleration protocol with study of EMG upon 4 posture stabilizer muscles in two sides of the body in response to sudden acceleration in forward and backward directions. 20 young adult women in two groups (10 LAS; 23.9 &plusmn; 2.03 yrs and 10 normal; 26.4 &plusmn; 3.2 yrs). The data of EMG were assessed by using multivariate test and one-way repeated measures 2&times;2&times;4 ANOVA (P&lt; 0.05). The results showed a significant muscle by direction interaction. Higher TA activity of left and right side in LAS group than normal group in forward direction significantly be showed. Higher MGR activity in normal group than LAS group in backward direction significantly showed. These findings suggest that compared two sides of the body in two directions for 4 muscles EMG activities between and within group for neuromuscular control of posture in avoiding fall. EMG activations of two sides of the body in lateral ankle sprain (LAS) patients were symmetric significantly. Acute ankle instability following once ankle sprains caused to coordinated temporal spatial patterns and strategy selection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuromuscular%20response" title="neuromuscular response">neuromuscular response</a>, <a href="https://publications.waset.org/abstracts/search?q=sEMG" title=" sEMG"> sEMG</a>, <a href="https://publications.waset.org/abstracts/search?q=lateral%20ankle%20sprain" title=" lateral ankle sprain"> lateral ankle sprain</a>, <a href="https://publications.waset.org/abstracts/search?q=posture." title=" posture."> posture.</a> </p> <a href="https://publications.waset.org/abstracts/12454/neuromuscular-control-and-performance-during-sudden-acceleration-in-subjects-with-and-without-unilateral-acute-ankle-sprains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1097</span> Proprioceptive Neuromuscular Facilitation Exercises of Upper Extremities Assessment Using Microsoft Kinect Sensor and Color Marker in a Virtual Reality Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Owlia">M. Owlia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Azarsa"> M. H. Azarsa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Khabbazan"> M. Khabbazan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mirbagheri"> A. Mirbagheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proprioceptive neuromuscular facilitation exercises are a series of stretching techniques that are commonly used in rehabilitation and exercise therapy. Assessment of these exercises for true maneuvering requires extensive experience in this field and could not be down with patients themselves. In this paper, we developed software that uses Microsoft Kinect sensor, a spherical color marker, and real-time image processing methods to evaluate patient&rsquo;s performance in generating true patterns of movements. The software also provides the patient with a visual feedback by showing his/her avatar in a Virtual Reality environment along with the correct path of moving hand, wrist and marker. Primary results during PNF exercise therapy of a patient in a room environment shows the ability of the system to identify any deviation of maneuvering path and direction of the hand from the one that has been performed by an expert physician. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title="image processing">image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=Microsoft%20Kinect" title=" Microsoft Kinect"> Microsoft Kinect</a>, <a href="https://publications.waset.org/abstracts/search?q=proprioceptive%20neuromuscular%20facilitation" title=" proprioceptive neuromuscular facilitation"> proprioceptive neuromuscular facilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20extremities%20assessment" title=" upper extremities assessment"> upper extremities assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a> </p> <a href="https://publications.waset.org/abstracts/53955/proprioceptive-neuromuscular-facilitation-exercises-of-upper-extremities-assessment-using-microsoft-kinect-sensor-and-color-marker-in-a-virtual-reality-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1096</span> Reduction of Dynamic Influences in Composite Rubber-Concrete Block Designed to Walls Construction </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Major">Maciej Major</a>, <a href="https://publications.waset.org/abstracts/search?q=Izabela%20Major"> Izabela Major</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is a numerical analysis of three-layered block design to walls construction subjected to the dynamic load. The block consists of the layers: concrete with rubber pads in shape of crosses, space filled with air and concrete with I-shape rubber pads. The main purpose of rubber inserts embedded during the production process is additional protection against the transversal dynamic load. For the analysis, as rubber, the Zahorski hyperelastic incompressible material model was assumed. A concentrated force as dynamic load applied to the external block surface was investigated. The results for the considered block observed as the stress distribution plot were compared to the results obtained for the solid concrete block. In order to estimate the percentage damping of proposed composite, rubber-concrete block in relation to the solid block the numerical analysis with the use of finite element method based on ADINA software was performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamics" title="dynamics">dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber" title=" rubber"> rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahorski" title=" Zahorski"> Zahorski</a> </p> <a href="https://publications.waset.org/abstracts/81851/reduction-of-dynamic-influences-in-composite-rubber-concrete-block-designed-to-walls-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1095</span> Generation of Photo-Mosaic Images through Block Matching and Color Adjustment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hae-Yeoun%20Lee">Hae-Yeoun Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photomosaic" title="photomosaic">photomosaic</a>, <a href="https://publications.waset.org/abstracts/search?q=Euclidean%20distance" title=" Euclidean distance"> Euclidean distance</a>, <a href="https://publications.waset.org/abstracts/search?q=block%20matching" title=" block matching"> block matching</a>, <a href="https://publications.waset.org/abstracts/search?q=intensity%20adjustment" title=" intensity adjustment"> intensity adjustment</a> </p> <a href="https://publications.waset.org/abstracts/7022/generation-of-photo-mosaic-images-through-block-matching-and-color-adjustment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1094</span> The Study on Blast Effect of Polymer Gel by Trazul Lead Block Test and Concrete Block Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Hun%20Ko">Young-Hun Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Jun%20Kim"> Seung-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaqan%20Baluch"> Khaqan Baluch</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyung-%20Sik%20Yang"> Hyung- Sik Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the polymer gel was used as coupling material in a blasting hole and its comparison was made with other coupling materials like sand, water, and air. Trazul lead block test and AUTODYN numerical analysis were conducted to analyze the effects of the coupling materials on the intensity of the explosion, as well as the verification tests were conducted by using concrete block test. The emulsion explosives were used in decoupling conditions, sand, water, and polymer gel were used as the coupling materials. The lead block test and the numerical analysis showed that the expansion of the blast hole in the lead block was similar to that of the water and gelatin and followed by sand and air conditions. The validation of concrete block test result showed the similar result as Trazul lead block test and the explosion strength was measured at 0.8 for polymer gel, 0.7 for sand, and 0.6 for no coupling material, in comparison to the full charge (1.0) case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trazul%20lead%20block%20test" title="Trazul lead block test">Trazul lead block test</a>, <a href="https://publications.waset.org/abstracts/search?q=AUTODYN%20numerical%20analysis" title=" AUTODYN numerical analysis"> AUTODYN numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=coupling%20material" title=" coupling material"> coupling material</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20gel" title=" polymer gel"> polymer gel</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20covering%20concrete%20block%20explosion%20test" title=" soil covering concrete block explosion test "> soil covering concrete block explosion test </a> </p> <a href="https://publications.waset.org/abstracts/89043/the-study-on-blast-effect-of-polymer-gel-by-trazul-lead-block-test-and-concrete-block-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1093</span> The Development of a New Block Method for Solving Stiff ODEs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khairil%20I.%20Othman">Khairil I. Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahfuzah%20Mahayaddin"> Mahfuzah Mahayaddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarina%20Bibi%20Ibrahim"> Zarina Bibi Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We develop and demonstrate a computationally efficient numerical technique to solve first order stiff differential equations. This technique is based on block method whereby three approximate points are calculated. The Cholistani of varied step sizes are presented in divided difference form. Stability regions of the formulae are briefly discussed in this paper. Numerical results show that this block method perform very well compared to existing methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20method" title="block method">block method</a>, <a href="https://publications.waset.org/abstracts/search?q=divided%20difference" title=" divided difference"> divided difference</a>, <a href="https://publications.waset.org/abstracts/search?q=stiff" title=" stiff"> stiff</a>, <a href="https://publications.waset.org/abstracts/search?q=computational" title=" computational"> computational</a> </p> <a href="https://publications.waset.org/abstracts/4999/the-development-of-a-new-block-method-for-solving-stiff-odes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1092</span> Development of Electromyography (EMG) Signal Acquisition System by Simple Electronic Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Divya%20Pradip%20Roy">Divya Pradip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Zahirul%20Alam%20%20Chowdhury"> Md. Zahirul Alam Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromyography (EMG) sensors are generally used to record the electrical activity produced by skeletal muscles. The conventional EMG sensors available in the market are expensive. This research suggests a low cost EMG sensor design which can be built with simple devices within our reach. In this research, one instrumentation amplifier, two high pass filters, two low pass filters and an inverting amplifier is connected sequentially. The output from the circuit exhibits electrical potential generated by the muscle cells when they are neurologically activated. This electromyography signal is used to control prosthetic devices, identifying neuromuscular diseases and for various other purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pass%20filter" title=" high pass filter"> high pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=instrumentation%20amplifier" title=" instrumentation amplifier"> instrumentation amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=inverting%20amplifier" title=" inverting amplifier"> inverting amplifier</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20pass%20filter" title=" low pass filter"> low pass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=neuromuscular" title=" neuromuscular"> neuromuscular</a> </p> <a href="https://publications.waset.org/abstracts/123161/development-of-electromyography-emg-signal-acquisition-system-by-simple-electronic-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1091</span> Modification of Newton Method in Two Points Block Differentiation Formula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khairil%20Iskandar%20Othman">Khairil Iskandar Othman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadhirah%20Kamal"> Nadhirah Kamal</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarina%20Bibi%20Ibrahim"> Zarina Bibi Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Block methods for solving stiff systems of ordinary differential equations (ODEs) are based on backward differential formulas (BDF) with PE(CE)2 and Newton method. In this paper, we introduce Modified Newton as a new strategy to get more efficient result. The derivation of BBDF using modified block Newton method is presented. This new block method with predictor-corrector gives more accurate result when compared to the existing BBDF. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modified%20Newton" title="modified Newton">modified Newton</a>, <a href="https://publications.waset.org/abstracts/search?q=stiff" title=" stiff"> stiff</a>, <a href="https://publications.waset.org/abstracts/search?q=BBDF" title=" BBDF"> BBDF</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobian%20matrix" title=" Jacobian matrix"> Jacobian matrix</a> </p> <a href="https://publications.waset.org/abstracts/54758/modification-of-newton-method-in-two-points-block-differentiation-formula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1090</span> On a Continuous Formulation of Block Method for Solving First Order Ordinary Differential Equations (ODEs)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Sagir">A. M. Sagir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to investigate the performance of the developed linear multistep block method for solving first order initial value problem of Ordinary Differential Equations (ODEs). The method calculates the numerical solution at three points simultaneously and produces three new equally spaced solution values within a block. The continuous formulations enable us to differentiate and evaluate at some selected points to obtain three discrete schemes, which were used in block form for parallel or sequential solutions of the problems. A stability analysis and efficiency of the block method are tested on ordinary differential equations involving practical applications, and the results obtained compared favorably with the exact solution. Furthermore, comparison of error analysis has been developed with the help of computer software. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20method" title="block method">block method</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order%20ordinary%20differential%20equations" title=" first order ordinary differential equations"> first order ordinary differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20multistep" title=" linear multistep"> linear multistep</a>, <a href="https://publications.waset.org/abstracts/search?q=self-starting" title=" self-starting"> self-starting</a> </p> <a href="https://publications.waset.org/abstracts/3622/on-a-continuous-formulation-of-block-method-for-solving-first-order-ordinary-differential-equations-odes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1089</span> On Block Vandermonde Matrix Constructed from Matrix Polynomial Solvents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malika%20Yaici">Malika Yaici</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamel%20Hariche"> Kamel Hariche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In control engineering, systems described by matrix fractions are studied through properties of block roots, also called solvents. These solvents are usually dealt with in a block Vandermonde matrix form. Inverses and determinants of Vandermonde matrices and block Vandermonde matrices are used in solving problems of numerical analysis in many domains but require costly computations. Even though Vandermonde matrices are well known and method to compute inverse and determinants are many and, generally, based on interpolation techniques, methods to compute the inverse and determinant of a block Vandermonde matrix have not been well studied. In this paper, some properties of these matrices and iterative algorithms to compute the determinant and the inverse of a block Vandermonde matrix are given. These methods are deducted from the partitioned matrix inversion and determinant computing methods. Due to their great size, parallelization may be a solution to reduce the computations cost, so a parallelization of these algorithms is proposed and validated by a comparison using algorithmic complexity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20vandermonde%20matrix" title="block vandermonde matrix">block vandermonde matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=solvents" title=" solvents"> solvents</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20polynomial" title=" matrix polynomial"> matrix polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20inverse" title=" matrix inverse"> matrix inverse</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20determinant" title=" matrix determinant"> matrix determinant</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelization" title=" parallelization"> parallelization</a> </p> <a href="https://publications.waset.org/abstracts/89115/on-block-vandermonde-matrix-constructed-from-matrix-polynomial-solvents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1088</span> EMG Based Orthosis for Upper Limb Rehabilitation in Hemiparesis Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nancy%20N.%20Sharmila">Nancy N. Sharmila</a>, <a href="https://publications.waset.org/abstracts/search?q=Aparna%20Mishra"> Aparna Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hemiparesis affects almost 80% of stroke patients each year. It is marked by paralysis or weakness on one half of the body. Our model provides both assistance and physical therapy for hemiparesis patients for swift recovery. In order to accomplish our goal a force is provided that pulls the forearm up (as in flexing the arm), and pushes the forearm down (as in extending the arm), which will also assist the user during ADL (Activities of Daily Living). The model consists of a mechanical component which is placed around the patient’s bicep and an EMG control circuit to assist patients in daily activities, which makes it affordable and easy to use. In order to enhance the neuromuscular system’s effectiveness in synchronize the movement, proprioceptive neuromuscular facilitation (PNF) concept is used. The EMG signals are acquired from the unaffected arm as an input to drive the orthosis. This way the patient is invigorated to use the orthosis for regular exercise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EMG" title="EMG">EMG</a>, <a href="https://publications.waset.org/abstracts/search?q=hemiparesis" title=" hemiparesis"> hemiparesis</a>, <a href="https://publications.waset.org/abstracts/search?q=orthosis" title=" orthosis"> orthosis</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/31105/emg-based-orthosis-for-upper-limb-rehabilitation-in-hemiparesis-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1087</span> Implementation of Complete Management Practices in Managing the Cocoa Pod Borer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Saripah">B. Saripah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Alias"> A. Alias </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cocoa Theobroma cacao (Linnaeus) (Malvales: Sterculiaceae) is subjected to be infested by various numbers of insect pests, and Conopomorpha cramerella Snellen (Lepidoptera: Gracillariidae) is the most serious pest of cocoa in Malaysia. The pest was indigenous to the South East Asia. Several control measures have been implemented and the chemicals have been a major approach if not unilateral, in the management of CPB. Despite extensive use of insecticides, CPB continues to cause an unacceptable level of damage; thus, the combination of several control approaches should be sought. The study was commenced for 12 months at three blocks; Block 18C with complete management practices which include insecticide application, pruning, fertilization and frequent harvesting, Block 17C was treated with frequent harvesting at intervals of 7-8 days, and Block 19C was served as control block. The results showed that the mean numbers of CPB eggs were recorded higher in Block 17C compared with Block 18C in all sampling occasions. Block 18C shows the lowest mean number of CPB eggs in both sampling plots, outside and core plots and it was found significantly different (p ≤ 0. 05) compared to the other blocks. The mean number of CPB eggs was fluctuated throughout sampling occasions, the lowest mean number of eggs was recorded in January (17C) and November (18C), while the highest was recorded in April (17C) and December 2012 (18C). Frequent spraying with insecticides at the adjacent block (18C) helps in reducing CPB eggs in the control block (Block 19C), although there was no spraying was implemented Block 19C. In summary, the combination of complete management practices at Block 18C seems to have some effect on the CPB population at Blocks 17 and 19C because all blocks are adjacent to each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoa" title="cocoa">cocoa</a>, <a href="https://publications.waset.org/abstracts/search?q=theobroma%20cacao" title=" theobroma cacao"> theobroma cacao</a>, <a href="https://publications.waset.org/abstracts/search?q=cocoa%20pod%20borer" title=" cocoa pod borer"> cocoa pod borer</a>, <a href="https://publications.waset.org/abstracts/search?q=conopomorpha%20cramerella" title=" conopomorpha cramerella"> conopomorpha cramerella</a> </p> <a href="https://publications.waset.org/abstracts/29722/implementation-of-complete-management-practices-in-managing-the-cocoa-pod-borer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1086</span> Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Sagir">A. M. Sagir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Discrete linear multistep block method of uniform order for the solution of first order Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20method" title="block method">block method</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20order%20ordinary%20differential%20equations" title=" first order ordinary differential equations"> first order ordinary differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=self-starting" title=" self-starting "> self-starting </a> </p> <a href="https://publications.waset.org/abstracts/3426/numerical-treatment-of-block-method-for-the-solution-of-ordinary-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1085</span> Research on Residential Block Fabric: A Case Study of Hangzhou West Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wang%20Ye">Wang Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Wei"> Wei Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Residential block construction of big cities in China began in the 1950s, and four models had far-reaching influence on modern residential block in its development process, including unit compound and residential district in 1950s to 1980s, and gated community and open community in 1990s to now. Based on analysis of the four models’ fabric, the article takes residential blocks in Hangzhou west area as an example and carries on the studies from urban structure level and block special level, mainly including urban road network, land use, community function, road organization, public space and building fabric. At last, the article puts forward semi-open sub-community strategy to improve the current fabric. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hangzhou%20west%20area" title="Hangzhou west area">Hangzhou west area</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20block%20model" title=" residential block model"> residential block model</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20block%20fabric" title=" residential block fabric"> residential block fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-open%20sub-community%20strategy" title=" semi-open sub-community strategy"> semi-open sub-community strategy</a> </p> <a href="https://publications.waset.org/abstracts/3762/research-on-residential-block-fabric-a-case-study-of-hangzhou-west-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1084</span> Heat Transfer from Block Heat Sources Mounted on the Wall of a 3-D Cabinet to Ambient Natural Convective Air Stream</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Cheng">J. C. Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Tsay"> Y. L. Tsay</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20D.%20Chan"> Z. D. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20H.%20Yang"> C. H. Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the physical system under consideration is a three-dimensional (3-D) cabinet with arrays of block heat sources mounted on one of the walls of the cabinet. The block heat sources dissipate heat to the cabinet surrounding through the conjugate conduction and natural convection. The results illustrate that the difference in hot spot temperatures of the system (θH) for the situations with and without consideration of thermal interaction is higher for smaller Rayleigh number (Ra), and can be up to 94.73% as Ra=10^5. In addition, the heat transfer characteristics depends strongly on the dimensionless heat conductivity of cabinet wall (Kwf), heat conductivity of block (Kpf) and length of cabinet (Ax). The maximum reduction in θH is 70.01% when Kwf varies from 10 to 1000, and it is 30.07% for Ax from 0.5 to 1. While the hot spot temperature of system is not sensitive to the cabinet angle (Φ). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20heat%20sources" title="block heat sources">block heat sources</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20cabinet" title=" 3-D cabinet"> 3-D cabinet</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20interaction" title=" thermal interaction"> thermal interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/16075/heat-transfer-from-block-heat-sources-mounted-on-the-wall-of-a-3-d-cabinet-to-ambient-natural-convective-air-stream" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1083</span> The Effect of Circuit Training on Aerobic Fitness and Body Fat Percentage </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Presto%20Tri%20Sambodo">Presto Tri Sambodo</a>, <a href="https://publications.waset.org/abstracts/search?q=Suharjana"> Suharjana</a>, <a href="https://publications.waset.org/abstracts/search?q=Galih%20Yoga%20Santiko"> Galih Yoga Santiko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Having an ideal body shape healthy body are the desire of everyone, both young and old. The purpose of this study was to determine: (1) the effect of block circuit training on aerobic fitness and body fat percentage, (2) the effect of non-block circuit training on aerobic fitness and body fat percentage, and (3) differences in the effect of exercise on block and non-circuit training block against aerobic fitness and body fat percentage. This research is an experimental research with the prestest posttest design Two groups design. The population in this study were 57 members of fat loss at GOR UNY Fitness Center. The retrieval technique uses purposive random sampling with a sample of 20 people. The instruments with rockport test (1.6 KM) and body fat percentage with a scale of bioelectrical impedance analysis omron (BIA). So it can be concluded the circuit training between block and non-block has a significant effect on aerobic fitness and body fat percentage. And for differences in the effect of circuit training between blocks and non-blocks, it is more influential on aerobic fitness than the percentage of body fat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circuit%20training" title="circuit training">circuit training</a>, <a href="https://publications.waset.org/abstracts/search?q=aerobic%20fitness" title=" aerobic fitness"> aerobic fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20fat%20percentage" title=" body fat percentage"> body fat percentage</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20body" title=" healthy body"> healthy body</a> </p> <a href="https://publications.waset.org/abstracts/104981/the-effect-of-circuit-training-on-aerobic-fitness-and-body-fat-percentage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1082</span> Effect of Residential Block Scale Envelope in Buildings Energy Consumption: A Vernacular Case Study in an Iranian Urban Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Panahian">M. Panahian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A global challenge which is of paramount significance today is the issue of devising innovative solutions to tackle the environmental issues, as well as more intelligent and foresightful consumption of and management of natural resources. Changes in global climate resulting from the burning of fossil fuel and the rise in the level of energy consumption are a few examples of environmental issues detrimental to any form of life on earth, which are aggravated year by year. Overall, energy-efficient designs and construction strategies can be studied at three scales: building, block, and city. Nevertheless, as the available literature suggests, the greatest emphasis has been on building and city scales, and little has been done as to the energy-efficient designs at block scale. Therefore, the aim of the current research is to investigate the influences of residential block scale envelope on the energy consumption in buildings. To this end, a case study of residential block scale has been selected in the city of Isfahan, in Iran, situated in a hot and dry climate with cold winters. Eventually, the most effective variables in energy consumption, concerning the block scale envelope, will be concluded. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainability" title="sustainability">sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20energy%20saving%20solutions" title=" passive energy saving solutions"> passive energy saving solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20block%20scale" title=" residential block scale"> residential block scale</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a> </p> <a href="https://publications.waset.org/abstracts/76749/effect-of-residential-block-scale-envelope-in-buildings-energy-consumption-a-vernacular-case-study-in-an-iranian-urban-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1081</span> Analysis of Strategies to Reduce Patients’ Disposition Holding Time from Emergency Department to Ward</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamonwat%20Suksumek">Kamonwat Suksumek</a>, <a href="https://publications.waset.org/abstracts/search?q=Seeronk%20Prichanont"> Seeronk Prichanont</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access block refers to the situation where Emergency Department (ED) patients requiring hospital admission spend an unreasonable holding time in an ED because their access to a ward is blocked by the full utilization of the ward’s beds. Not only it delays the proper treatments required by the patients, but access block is also the cause of ED’s overcrowding. Clearly, access block is an inter-departmental problem that needs to be brought to management’s attention. This paper focuses on the analysis of strategies to address the access block problem, both in the operational and intermediate levels. These strategies were analyzed through a simulation model with a real data set from a university hospital in Thailand. The paper suggests suitable variable levels for each strategy so that the management will make the final decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=access%20block" title="access block">access block</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20department" title=" emergency department"> emergency department</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20system%20analysis" title=" health system analysis"> health system analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/8655/analysis-of-strategies-to-reduce-patients-disposition-holding-time-from-emergency-department-to-ward" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1080</span> A Randomized Controlled Trial Study on the Effect of Adding Dexmedetomidine to Bupivacaine in Supraclavicular Block Using Ultrasound Guidance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazia%20Nazir">Nazia Nazir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The benefits of regional anesthetic techniques are well established. Use of additives to local anesthetics can prolong these benefits. The aim of this study was to observe the effect of adding dexmedetomidine to bupivacaine for the supraclavicular block. Methods (Design): In this randomized, double-blind study, seventy ASA I & II patients of either sex undergoing elective surgeries on the upper limb were given supraclavicular block under ultrasound guidance. Group C (n=35), received 38 mL 0.25% bupivacaine + 2mL normal saline and group D received 38 mL 0.25% bupivacaine + 1 µg/kg dexmedetomidine (2mL). Patients were observed for onset, duration of motor and sensory block, duration of analgesia, sedation score, hemodynamic changes and any adverse events. Results: In group D the onset was faster (P < 0.001), duration of sensory and motor block, as well as duration of analgesia, was prolonged as compared to group C (P < 0.0001). There was significant drop in heart rate (HR) from the baseline in group D (P < 0.05) at 30, 60, 90 and 120 min, however, none of the patients dropped HR below 50/min. Mean arterial Pressure (MAP) remained unaffected. The patients in group D were effectively sedated than those in group C (P < 0.05). No adverse event was reported in either group. Conclusion: Dexmedetomidine as adjuvant to bupivacaine in supraclavicular block resulted in faster action, prolonged motor and sensory block, prolonged analgesia with hemodynamic stability and adequate sedation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Analgesia" title="Analgesia">Analgesia</a>, <a href="https://publications.waset.org/abstracts/search?q=bupivacaine" title=" bupivacaine"> bupivacaine</a>, <a href="https://publications.waset.org/abstracts/search?q=dexmedetomidine" title=" dexmedetomidine"> dexmedetomidine</a>, <a href="https://publications.waset.org/abstracts/search?q=supraclavicular%20block" title=" supraclavicular block"> supraclavicular block</a> </p> <a href="https://publications.waset.org/abstracts/90335/a-randomized-controlled-trial-study-on-the-effect-of-adding-dexmedetomidine-to-bupivacaine-in-supraclavicular-block-using-ultrasound-guidance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1079</span> Functional Electrical Stimulator and Neuromuscular Electro Stimulator System Analysis for Foot Drop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%20Fatma%20T%C3%BCrker">Gül Fatma Türker</a>, <a href="https://publications.waset.org/abstracts/search?q=Hatice%20Akman"> Hatice Akman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Portable muscle stimulators for real-time applications has first introduced by Liberson in 1961. Now these systems has been advanced. In this study, FES (Functional Electrical Stimulator) and NMES (Neuromuscular Electrostimulator) systems are analyzed through their hardware and their quality of life improvements for foot drop patients. FES and NMES systems are used for people whose leg muscles and leg neural connections are healty but not able to walk properly because of their injured central nervous system like spinal cord injuries. These systems are used to stimulate neurons or muscles by getting information from other movements and programming these stimulations to get natural walk and it is accepted as a rehabilitation method for the correction of drop foot. This systems support person to approach natural form of walking. Foot drop is characterized by steppage gait. It is a gait abnormality. This systems helps to person for plantar and dorse reflection movements which are hard to done for foot drop patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FES" title="FES">FES</a>, <a href="https://publications.waset.org/abstracts/search?q=foot%20drop" title=" foot drop"> foot drop</a>, <a href="https://publications.waset.org/abstracts/search?q=NMES" title=" NMES"> NMES</a>, <a href="https://publications.waset.org/abstracts/search?q=stimulator" title=" stimulator"> stimulator</a> </p> <a href="https://publications.waset.org/abstracts/48613/functional-electrical-stimulator-and-neuromuscular-electro-stimulator-system-analysis-for-foot-drop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1078</span> Analgesic Efficacy of IPACK Block in Primary Total Knee Arthroplasty (90 CASES)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fedili%20Benamar">Fedili Benamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Beloulou%20Mohamed%20Lamine"> Beloulou Mohamed Lamine</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouahes%20Hassane"> Ouahes Hassane</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghattas%20Samir"> Ghattas Samir</a> </p> <p class="card-text"><strong>Abstract:</strong></p>  Background and aims: Peripheral regional anesthesia has been integrated into most analgesia protocols for total knee arthroplasty which considered among the most painful surgeries with a huge potential for chronicization. The adductor canal block (ACB) has gained popularity. Similarly, the IPACK block has been described to provide analgesia of the posterior knee capsule. This study aimed to evaluate the analgesic efficacy of this block in patients undergoing primary PTG. Methods: 90 patients were randomized to receive either an IPACK, an anterior sciatic block, or a sham block (30 patients in each group + multimodal analgesia and a catheter in the KCA adductor canal). GROUP 1 KCA GROUP 2 KCA+BSA GROUP 3 KCA+IPACK The analgesic blocks were done under echo-guidance preoperatively respecting the safety rules, the dose administered was 20 cc of ropivacaine 0.25% was used. We were to assess posterior knee pain 6 hours after surgery. Other endpoints included quality of recovery after surgery, pain scores, opioid requirements (PCA morphine)(EPI info 7.2 analysis). Results: -groups were matched -A predominance of women (4F/1H). -average age: 68 +/-7 years -the average BMI =31.75 kg/m2 +/- 4. -70% of patients ASA2 ,20% ASA3. -The average duration of the intervention: 89 +/- 19 minutes. -Morphine consumption (PCA) significantly higher in group 1 (16mg) & group 2 (8mg) group 3 (4mg) - The groups were matched . -There was a correlation between the use of the ipack block and postoperative pain Conclusions :In a multimodal analgesic protocol, the addition of IPACK block decreased pain scores and morphine consumption , <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regional%20anesthesia" title="regional anesthesia">regional anesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=analgesia" title=" analgesia"> analgesia</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20knee%20arthroplasty" title=" total knee arthroplasty"> total knee arthroplasty</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20adductor%20canal%20block%20%28acb%29" title=" the adductor canal block (acb)"> the adductor canal block (acb)</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20ipack%20block" title=" the ipack block"> the ipack block</a>, <a href="https://publications.waset.org/abstracts/search?q=pain" title=" pain"> pain</a> </p> <a href="https://publications.waset.org/abstracts/174505/analgesic-efficacy-of-ipack-block-in-primary-total-knee-arthroplasty-90-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1077</span> Practical Guide To Design Dynamic Block-Type Shallow Foundation Supporting Vibrating Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dodi%20Ikhsanshaleh">Dodi Ikhsanshaleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When subjected to dynamic load, foundation oscillates in the way that depends on the soil behaviour, the geometry and inertia of the foundation and the dynamic exctation. The practical guideline to analysis block-type foundation excitated by dynamic load from vibrating machine is presented. The analysis use Lumped Mass Parameter Method to express dynamic properties such as stiffness and damping of soil. The numerical examples are performed on design block-type foundation supporting gas turbine compressor which is important equipment package in gas processing plant <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20foundation" title="block foundation">block foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20load" title=" dynamic load"> dynamic load</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20mass%20parameter" title=" lumped mass parameter"> lumped mass parameter</a> </p> <a href="https://publications.waset.org/abstracts/16239/practical-guide-to-design-dynamic-block-type-shallow-foundation-supporting-vibrating-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1076</span> Comparative Study Between Two Different Techniques for Postoperative Analgesia in Cesarean Section Delivery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nermeen%20Elbeltagy">Nermeen Elbeltagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Hassan"> Sara Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamer%20Hosny"> Tamer Hosny</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Abdelaziz"> Mostafa Abdelaziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Adequate postoperative analgesia after caesarean section (CS) is crucial as it impacts the distinct surgical recovery needs of the parturient. Over recent years, there has been increased interest in regional nerve block techniques with promising results on efficacy. These techniques reduce the need for additional analgesia, thereby lowering the incidence of drug-related side effects. As postoperative pain after cesarean is mainly due to abdominal incision, the transverses abdomenis plane ( TAP ) block is a relatively new abdominal nerve block with excellent efficacy after different abdominal surgeries, including cesarean section. Objective: The main objective is to compare ultrasound-guided TAP block provided by the anesthesiologist with TAP provided by the surgeon through a caesarean incision regarding the duration of postoperative analgesia, intensity of analgesia, timing of mobilization, and easiness of the procedure. Method: Ninety pregnant females at term who were scheduled for delivery by elective cesarean section were randomly distributed into two groups. The first group (45) received spinal anesthesia and postoperative ultrasound guided TAP block using 20ml on each side of 0.25% bupivacaine which was provided by the anesthesiologist. The second group (45) received spinal anesthesia plus a TAP block using 20ml on each side of 0.25% bupivacaine, which was provided by the surgeon through the cesarean incision. Visual Analogue Scale (VAS) was used for the comparison between the two groups. Results: VAS score after four hours was higher among the TAP block group provided by the surgeon through the surgical incision than the postoperative analgesic profile using ultrasound-guided TAP block provided by the anesthesiologist (P=0.011). On the contrary, there was no statistical difference in the patient’s dose of analgesia after four hours of the TAP block (P=0.228). Conclusion: TAP block provided through the surgical incision is safe and enhances early patient’s mobilization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TAP%20block" title="TAP block">TAP block</a>, <a href="https://publications.waset.org/abstracts/search?q=CS" title=" CS"> CS</a>, <a href="https://publications.waset.org/abstracts/search?q=VAS" title=" VAS"> VAS</a>, <a href="https://publications.waset.org/abstracts/search?q=analgesia" title=" analgesia"> analgesia</a> </p> <a href="https://publications.waset.org/abstracts/184456/comparative-study-between-two-different-techniques-for-postoperative-analgesia-in-cesarean-section-delivery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1075</span> Bundle Block Detection Using Spectral Coherence and Levenberg Marquardt Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Padmavathi">K. Padmavathi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sri%20Ramakrishna"> K. Sri Ramakrishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study describes a procedure for the detection of Left and Right Bundle Branch Block (LBBB and RBBB) ECG patterns using spectral Coherence(SC) technique and LM Neural Network. The Coherence function finds common frequencies between two signals and evaluate the similarity of the two signals. The QT variations of Bundle Blocks are observed in lead V1 of ECG. Spectral Coherence technique uses Welch method for calculating PSD. For the detection of normal and Bundle block beats, SC output values are given as the input features for the LMNN classifier. Overall accuracy of LMNN classifier is 99.5 percent. The data was collected from MIT-BIH Arrhythmia database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bundle%20block" title="bundle block">bundle block</a>, <a href="https://publications.waset.org/abstracts/search?q=SC" title=" SC"> SC</a>, <a href="https://publications.waset.org/abstracts/search?q=LMNN%20classifier" title=" LMNN classifier"> LMNN classifier</a>, <a href="https://publications.waset.org/abstracts/search?q=welch%20method" title=" welch method"> welch method</a>, <a href="https://publications.waset.org/abstracts/search?q=PSD" title=" PSD"> PSD</a>, <a href="https://publications.waset.org/abstracts/search?q=MIT-BIH" title=" MIT-BIH"> MIT-BIH</a>, <a href="https://publications.waset.org/abstracts/search?q=arrhythmia%20database" title=" arrhythmia database"> arrhythmia database</a> </p> <a href="https://publications.waset.org/abstracts/17530/bundle-block-detection-using-spectral-coherence-and-levenberg-marquardt-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1074</span> A Mini Radar System for Low Altitude Targets Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kangkang%20Wu">Kangkang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaizhi%20Wang"> Kaizhi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijun%20Yuan"> Zhijun Yuan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with a mini radar system aimed at detecting small targets at the low latitude. The radar operates at Ku-band in the frequency modulated continuous wave (FMCW) mode with two receiving channels. The radar system has the characteristics of compactness, mobility, and low power consumption. This paper focuses on the implementation of the radar system, and the Block least mean square (Block LMS) algorithm is applied to minimize the fortuitous distortion. It is validated from a series of experiments that the track of the unmanned aerial vehicle (UAV) can be easily distinguished with the radar system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmanned%20aerial%20vehicle%20%28UAV%29" title="unmanned aerial vehicle (UAV)">unmanned aerial vehicle (UAV)</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=Block%20Least%20Mean%20Square%20%28Block%20LMS%29%20Algorithm" title=" Block Least Mean Square (Block LMS) Algorithm"> Block Least Mean Square (Block LMS) Algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=Frequency%20Modulated%20Continuous%20Wave%20%28FMCW%29" title=" Frequency Modulated Continuous Wave (FMCW)"> Frequency Modulated Continuous Wave (FMCW)</a> </p> <a href="https://publications.waset.org/abstracts/71341/a-mini-radar-system-for-low-altitude-targets-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1073</span> A Comparative Study of Morphine and Clonidine as an Adjunct to Ropivacaine in Paravertebral Block for Modified Radical Mastectomy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20K.">Mukesh K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Siddiqui%20A.%20K."> Siddiqui A. K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Abbas%20H."> Abbas H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gupta%20R."> Gupta R.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: General Anesthesia is a standard for breast onco-surgery. The issue of postoperative pain and the occurrence of nausea and vomiting has prompted the quest for a superior methodology with fewer complications. Over the recent couple of years, paravertebral block (PVB) has acquired huge fame either in combination with GA or alone for anesthetic management. In this study, we aim to evaluate the efficacy of morphine and clonidine as an adjunct to ropivacaine in a paravertebral block in breast cancer patients undergoing modified radical mastectomy. Methods: In this study, total 90 patients were divided into three groups (30 each) on the basis of computer-generated randomization. Group C (Control): Paravertebral block with 0.25% ropivacaine (19ml) and 1 ml saline; Group M- Paravertebral block with 0.25% ropivacaine(19ml) + 20 microgram/kg body weight morphine; Group N: Paravertebral block with 0.25% ropivacaine(19ml) +1.0 microgram/kg body weight clonidine. The postoperative pain intensity was recorded using the visual analog scale (VAS) and Sedation was observed by the Ramsay Sedation score (RSS). Results: The VAS was similar at 0hr, 2hr and 4 hr in the postoperative period among all the groups. There was a significant (p=0.003) difference in VAS from 6 hr to 20 hr in the postoperative period among the groups. A significant (p<0.05) difference was observed among the groups at 8 hr to 20 hr). The first requirement of analgesia was significantly (p=0.001) higher in Group N (7.70±1.74) than in Group C (4.43±1.43) and Group M (7.33±2.21). Conclusion: The morphine in the paravertebral block provides better postoperative analgesia. The consumption of rescue analgesia was significantly reduced in the morphine group as compared to the clonidine group. The procedure also proved to be safe as no complication was encountered in the paravertebral block in our study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ropivacaine" title="ropivacaine">ropivacaine</a>, <a href="https://publications.waset.org/abstracts/search?q=morphine" title=" morphine"> morphine</a>, <a href="https://publications.waset.org/abstracts/search?q=clonidine" title=" clonidine"> clonidine</a>, <a href="https://publications.waset.org/abstracts/search?q=paravertebral%20block" title=" paravertebral block"> paravertebral block</a> </p> <a href="https://publications.waset.org/abstracts/156546/a-comparative-study-of-morphine-and-clonidine-as-an-adjunct-to-ropivacaine-in-paravertebral-block-for-modified-radical-mastectomy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1072</span> Impact of Machining Parameters on the Surface Roughness of Machined PU Block</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Louis%20Denis%20Kevin%20Catherine">Louis Denis Kevin Catherine</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20Aziz%20Raja%20Ma%E2%80%99arof"> Raja Aziz Raja Ma’arof</a>, <a href="https://publications.waset.org/abstracts/search?q=Azrina%20Arshad"> Azrina Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sangeeth%20Suresh"> Sangeeth Suresh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machining parameters are very important in determining the surface quality of any material. In the past decade, some new engineering materials were developed for the manufacturing industry which created a need to conduct an investigation on the impact of the said parameters on their surface roughness. The polyurethane (PU) block is widely used in the automotive industry to manufacture parts such as checking fixtures that are used to verify the dimensional accuracy of automotive parts. In this paper, the design of experiment (DOE) was used to investigate the effect of the milling parameters on the PU block. Furthermore, an analysis of the machined surface chemical composition was done using scanning electron microscope (SEM). It was found that the surface roughness of the PU block is severely affected when PU undergoes a flood machining process instead of a dry condition. In addition, the step over and the silicon content were found to be the most significant parameters that influence the surface quality of the PU block. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20%28PU%29" title="polyurethane (PU)">polyurethane (PU)</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiment%20%28DOE%29" title=" design of experiment (DOE)"> design of experiment (DOE)</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electron%20microscope%20%28SEM%29" title=" scanning electron microscope (SEM)"> scanning electron microscope (SEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/20483/impact-of-machining-parameters-on-the-surface-roughness-of-machined-pu-block" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1071</span> The Behavior of Masonry Wall Constructed Using Biaxial Interlocking Concrete Block, Solid Concrete Block and Cement Sand Brick Subjected to the Compressive Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fauziah%20Aziz">Fauziah Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd.fadzil%20Arshad"> Mohd.fadzil Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazrina%20Mansor"> Hazrina Mansor</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20K%C3%B6m%C3%BCrc%C3%BC"> Sedat Kömürcü</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry is an isotropic and heterogeneous material due to the presence of the different components within the assembly process. Normally the mortar plays a significant role in the compressive behavior of the traditional masonry structures. Biaxial interlocking concrete block is a masonry unit that comes out with the interlocking concept. This masonry unit can improve the quality of the construction process, reduce the cost of labor, reduce high skill workmanship, and speeding the construction time. Normally, the interlocking concrete block masonry unit in the market place was designed in a way interlocking concept only either x or y-axis, shorter in length, and low compressive strength value. However, the biaxial interlocking concrete block is a dry-stack concept being introduced in this research, offered the specialty compared to the normal interlocking concrete available in the market place due to its length and the geometry of the groove and tongue. This material can be used as a non-load bearing wall, or load-bearing wall depends on the application of the masonry. But, there is a lack of technical data that was produced before. This paper presents a finding on the compressive resistance of the biaxial interlocking concrete block masonry wall compared to the other traditional masonry walls. Two series of biaxial interlocking concrete block masonry walls, namely M1 and M2, a series of solid concrete block and cement sand brick walls M3, and M4 have tested the compressive resistance. M1 is the masonry wall of a hollow biaxial interlocking concrete block meanwhile; M2 is the grouted masonry wall, M3 is a solid concrete block masonry wall, and M4 is a cement sand brick masonry wall. All the samples were tested under static compressive load. The results examine that M2 is higher in compressive resistance compared to the M1, M3, and M4. It shows that the compressive strength of the concrete masonry units plays a significant role in the capacity of the masonry wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interlocking%20concrete%20block" title="interlocking concrete block">interlocking concrete block</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20resistance" title=" compressive resistance"> compressive resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20masonry%20unit" title=" concrete masonry unit"> concrete masonry unit</a>, <a href="https://publications.waset.org/abstracts/search?q=masonry" title=" masonry "> masonry </a> </p> <a href="https://publications.waset.org/abstracts/113746/the-behavior-of-masonry-wall-constructed-using-biaxial-interlocking-concrete-block-solid-concrete-block-and-cement-sand-brick-subjected-to-the-compressive-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1070</span> Development of Variable Order Block Multistep Method for Solving Ordinary Differential Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Suleiman">Mohamed Suleiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarina%20Bibi%20Ibrahim"> Zarina Bibi Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Ain%20Azeany"> Nor Ain Azeany</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairil%20Iskandar%20Othman"> Khairil Iskandar Othman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a class of variable order fully implicit multistep Block Backward Differentiation Formulas (VOBBDF) using uniform step size for the numerical solution of stiff ordinary differential equations (ODEs) is developed. The code will combine three multistep block methods of order four, five and six. The order selection is based on approximation of the local errors with specific tolerance. These methods are constructed to produce two approximate solutions simultaneously at each iteration in order to further increase the efficiency. The proposed VOBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with single order Block Backward Differentiation Formula (BBDF). Numerical results shows the advantage of using VOBBDF for solving ODEs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=block%20backward%20differentiation%20formulas" title="block backward differentiation formulas">block backward differentiation formulas</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20step%20size" title=" uniform step size"> uniform step size</a>, <a href="https://publications.waset.org/abstracts/search?q=ordinary%20differential%20equations" title=" ordinary differential equations"> ordinary differential equations</a> </p> <a href="https://publications.waset.org/abstracts/16451/development-of-variable-order-block-multistep-method-for-solving-ordinary-differential-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=neuromuscular%20block&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10