CINXE.COM

Search results for: Sudhakar Ganti

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Sudhakar Ganti</title> <meta name="description" content="Search results for: Sudhakar Ganti"> <meta name="keywords" content="Sudhakar Ganti"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Sudhakar Ganti" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Sudhakar Ganti"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Sudhakar Ganti</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20I.%20Alutabi">Ahmed I. Alutabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Naghmeh%20Dezhabad"> Naghmeh Dezhabad</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Ganti"> Sudhakar Ganti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20center" title=" data center"> data center</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20allocation" title=" resource allocation"> resource allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20computing" title=" green computing"> green computing</a> </p> <a href="https://publications.waset.org/abstracts/147282/predicting-data-center-resource-usage-using-quantile-regression-to-conserve-energy-while-fulfilling-the-service-level-agreement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> An Energy-Efficient Model of Integrating Telehealth IoT Devices with Fog and Cloud Computing-Based Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunyong%20Guo">Yunyong Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Ganti"> Sudhakar Ganti</a>, <a href="https://publications.waset.org/abstracts/search?q=Bryan%20Guo"> Bryan Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid growth of telehealth Internet of Things (IoT) devices has raised concerns about energy consumption and efficient data processing. This paper introduces an energy-efficient model that integrates telehealth IoT devices with a fog and cloud computing-based platform, offering a sustainable and robust solution to overcome these challenges. Our model employs fog computing as a localized data processing layer while leveraging cloud computing for resource-intensive tasks, significantly reducing energy consumption. We incorporate adaptive energy-saving strategies. Simulation analysis validates our approach's effectiveness in enhancing energy efficiency for telehealth IoT systems integrated with localized fog nodes and both private and public cloud infrastructures. Future research will focus on further optimization of the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability in other healthcare and industry sectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-efficient" title="energy-efficient">energy-efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=fog%20computing" title=" fog computing"> fog computing</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=telehealth" title=" telehealth"> telehealth</a> </p> <a href="https://publications.waset.org/abstracts/171307/an-energy-efficient-model-of-integrating-telehealth-iot-devices-with-fog-and-cloud-computing-based-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yunyong%20Guo">Yunyong Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Ganti"> Sudhakar Ganti</a>, <a href="https://publications.waset.org/abstracts/search?q=Bryan%20Guo"> Bryan Guo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy-efficient" title="energy-efficient">energy-efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=fog%20computing" title=" fog computing"> fog computing</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=telehealth" title=" telehealth"> telehealth</a> </p> <a href="https://publications.waset.org/abstracts/177613/optimizing-telehealth-internet-of-things-integration-a-sustainable-approach-through-fog-and-cloud-computing-platforms-for-energy-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Measuring Delay Using Software Defined Networks: Limitations, Challenges, and Suggestions for Openflow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alutaibi">Ahmed Alutaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganti%20Sudhakar"> Ganti Sudhakar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Providing better Quality-of-Service (QoS) to end users has been a challenging problem for researchers and service providers. Building applications relying on best effort network protocols hindered the adoption of guaranteed service parameters and, ultimately, Quality of Service. The introduction of Software Defined Networking (SDN) opened the door for a new paradigm shift towards a more controlled programmable configurable behavior. Openflow has been and still is the main implementation of the SDN vision. To facilitate better QoS for applications, the network must calculate and measure certain parameters. One of those parameters is the delay between the two ends of the connection. Using the power of SDN and the knowledge of application and network behavior, SDN networks can adjust to different conditions and specifications. In this paper, we use the capabilities of SDN to implement multiple algorithms to measure delay end-to-end not only inside the SDN network. The results of applying the algorithms on an emulated environment show that we can get measurements close to the emulated delay. The results also show that depending on the algorithm, load on the network and controller can differ. In addition, the transport layer handshake algorithm performs best among the tested algorithms. Out of the results and implementation, we show the limitations of Openflow and develop suggestions to solve them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20defined%20networking" title="software defined networking">software defined networking</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20service" title=" quality of service"> quality of service</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20measurement" title=" delay measurement"> delay measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=openflow" title=" openflow"> openflow</a>, <a href="https://publications.waset.org/abstracts/search?q=mininet" title=" mininet"> mininet</a> </p> <a href="https://publications.waset.org/abstracts/126268/measuring-delay-using-software-defined-networks-limitations-challenges-and-suggestions-for-openflow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Computation of Induction Currents in a Set of Dendrites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20B.%20Mishra">R. B. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Tripathi"> Sudhakar Tripathi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the cable model of dendrites have been considered. The dendrites are cylindrical cables of various segments having variable length and reducing radius from start point at synapse and end points. For a particular event signal being received by a neuron in response only some dendrite are active at a particular instance. Initial current signals with different current flows in dendrite are assumed. Due to overlapping and coupling of active dendrite, they induce currents in the dendrite segments of each other at a particular instance. But how these currents are induced in the various segments of active dendrites due to coupling between these dendrites, It is not presented in the literature. Here the paper presents a model for induced currents in active dendrite segments due to mutual coupling at the starting instance of an activity in dendrite. The model is as discussed further. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=currents" title="currents">currents</a>, <a href="https://publications.waset.org/abstracts/search?q=dendrites" title=" dendrites"> dendrites</a>, <a href="https://publications.waset.org/abstracts/search?q=induction" title=" induction"> induction</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/31043/computation-of-induction-currents-in-a-set-of-dendrites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Synthesis Characterisation and Evaluation of Co-Processed Wax Matrix Excipient for Controlled Release Tablets Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kalyan%20Raj">M. Kalyan Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Umesh%20Rao"> Vinay Umesh Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sudhakar"> M. Sudhakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work focuses on the development of a directly compressible controlled release co-processed excipient using melt granulation technique. Erodible wax matrix systems are fabricated in which three different types of waxes are co processed separately with Maize starch in different ratios by melt granulation. The resultant free flowing powder is characterized by FTIR, NMR, Mass spectrophotometer and gel permeation chromatography. Also, controlled release tablets of Aripiprazole were formulated and dissolution profile was compared with that of the target product profile given in Zysis patent (Patent no. 20100004262) for Aripiprazole once a week formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-processing" title="co-processing">co-processing</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20melt%20extrusion" title=" hot melt extrusion"> hot melt extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20compression" title=" direct compression"> direct compression</a>, <a href="https://publications.waset.org/abstracts/search?q=maize%20starch" title=" maize starch"> maize starch</a>, <a href="https://publications.waset.org/abstracts/search?q=stearic%20acid" title=" stearic acid"> stearic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=aripiprazole" title=" aripiprazole"> aripiprazole</a> </p> <a href="https://publications.waset.org/abstracts/8897/synthesis-characterisation-and-evaluation-of-co-processed-wax-matrix-excipient-for-controlled-release-tablets-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8897.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Development of an Erodable Matrix Drug Delivery Platform for Controled Delivery of Non Steroidal Anti Inflamatory Drugs Using Melt Granulation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hilsana">A. Hilsana</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20U.%20Rao"> Vinay U. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sudhakar"> M. Sudhakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Even though a number of non-steroidal anti-inflammatory drugs (NSAIDS) are available with different chemistries, they share a common solubility characteristic that is they are relatively more soluble in alkaline environment and practically insoluble in acidic environment. This work deals with developing a wax matrix drug delivery platform for controlled delivery of three model NSAIDS, Diclofenac sodium (DNa), Mefenamic acid (MA) and Naproxen (NPX) using the melt granulation technique. The aim of developing the platform was to have a general understanding on how an erodible matrix system modulates drug delivery rate and extent and how it can be optimized to give a delivery system which shall release the drug as per a common target product profile (TPP). Commonly used waxes like Cetostearyl alcohol and stearic acid were used singly an in combination to achieve a TPP of not 15 to 35% in 1 hour and not less than 80% Q in 24 hours. Full factorial design of experiments was followed for optimization of the formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NSAIDs" title="NSAIDs">NSAIDs</a>, <a href="https://publications.waset.org/abstracts/search?q=controlled%20delivery" title=" controlled delivery"> controlled delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20product%20profile" title=" target product profile"> target product profile</a>, <a href="https://publications.waset.org/abstracts/search?q=melt%20granulation" title=" melt granulation"> melt granulation</a> </p> <a href="https://publications.waset.org/abstracts/9021/development-of-an-erodable-matrix-drug-delivery-platform-for-controled-delivery-of-non-steroidal-anti-inflamatory-drugs-using-melt-granulation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Synthesis, Characterization and Application of Undoped and Fe Doped TiO₂ (Ti₁₋ₓFeₓO₂; X=0.01, 0.02, 0.03) Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Saroj">Sudhakar Saroj</a>, <a href="https://publications.waset.org/abstracts/search?q=Satya%20Vir%20Singh"> Satya Vir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Undoped and Fe doped TiO₂, Ti₁₋ₓFeₓO₂ (x=0.00, 0.01, 0.03, 0.05, 0.07 and 0.09) have been synthesized by solution combustion method using Titanium (IV) oxide as a precursor, and also were characterized by XRD, DRS, FTIR, XPS, SEM, and EDX. The formation of anatase phase of undoped and Fe TiO₂ nanoparticles were confirmed by XRD, and the average crystallite size was determined by Debye-Scherer's equation. The DRS analysis indicates the shifting of light absorbance in visible region from UV region with increasing the doping concentration in TiO₂. The vibrational band of the Ti-O lattice was confirmed by the FT-IR spectrum. The XPS results confirm the presence of elements of titanium, oxygen and iron in the synthesized samples and determine the binding energy of elements. SEM image of the above-synthesized nanoparticles showed the spherical shape of nanoparticles. The purities of the synthesized nanoparticles were confirmed by EDX analysis. The photocatalytic activities of the synthesized nanoparticles were tested by studying the degradation of dye (Direct Blue 199) in the photocatalytic reactor. The Ti₀.₉₇Fe₀.₀₃O₂ photocatalyst shows highest photodegradation activity among all the synthesized undoped and Fe doped TiO₂ photocatalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20blue%20199" title="direct blue 199">direct blue 199</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a> </p> <a href="https://publications.waset.org/abstracts/85357/synthesis-characterization-and-application-of-undoped-and-fe-doped-tio2-ti1feo2-x001-002-003-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> A Case Study on the Long-Term Stability Monitoring of Underground Powerhouse Complex Using Geotechnical Instrumentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Kadiyala">Sudhakar Kadiyala</a>, <a href="https://publications.waset.org/abstracts/search?q=Sripad%20R.%20Naik"> Sripad R. Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large cavern in Bhutan Himalayas is being monitored since the construction period. The behavior of the cavern is being monitored for last 16 years. Instrumentation includes measurement of convergence of high walls by geodetic monitoring, load on the support systems with load cells and instrumented bolts. Analysis of the results of instrumentation showed that during the construction period of the cavern, the convergence of the cavern varied from 181 - 233 mm in the unit bay area with maximum convergence rate of 2.80mm/day. Whereas during the operational period the total convergence observed was in the range of 21 to 45 mm during a period of 11.30 years with convergence rate of 0.005 to 0.011 mm/day. During the last five years, there were no instances of high tensile stress recorded by the instrumented bolts. Load on the rock bolts have shown stabilization trend at most of the locations. This paper discusses in detail the results of long-term monitoring using the geotechnical instruments and how the data is being used in 3D numerical model to confirm the stability of the cavern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convergence" title="convergence">convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=displacements" title=" displacements"> displacements</a>, <a href="https://publications.waset.org/abstracts/search?q=geodetic%20monitoring" title=" geodetic monitoring"> geodetic monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=long-term%20stability" title=" long-term stability "> long-term stability </a> </p> <a href="https://publications.waset.org/abstracts/96431/a-case-study-on-the-long-term-stability-monitoring-of-underground-powerhouse-complex-using-geotechnical-instrumentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Thermalytix: An Advanced Artificial Intelligence Based Solution for Non-Contact Breast Screening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sudhakar">S. Sudhakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Geetha%20Manjunath"> Geetha Manjunath</a>, <a href="https://publications.waset.org/abstracts/search?q=Siva%20Teja%20Kakileti"> Siva Teja Kakileti</a>, <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Madhu"> Himanshu Madhu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagnosis of breast cancer at early stages has seen better clinical and survival outcomes. Survival rates in developing countries like India are very low due to accessibility and affordability issues of screening tests such as Mammography. In addition, Mammography is not much effective in younger women with dense breasts. This leaves a gap in current screening methods. Thermalytix is a new technique for detecting breast abnormality in a non-contact, non-invasive way. It is an AI-enabled computer-aided diagnosis solution that automates interpretation of high resolution thermal images and identifies potential malignant lesions. The solution is low cost, easy to use, portable and is effective in all age groups. This paper presents the results of a retrospective comparative analysis of Thermalytix over Mammography and Clinical Breast Examination for breast cancer screening. Thermalytix was found to have better sensitivity than both the tests, with good specificity as well. In addition, Thermalytix identified all malignant patients without palpable lumps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer%20screening" title="breast cancer screening">breast cancer screening</a>, <a href="https://publications.waset.org/abstracts/search?q=radiology" title=" radiology"> radiology</a>, <a href="https://publications.waset.org/abstracts/search?q=thermalytix" title=" thermalytix"> thermalytix</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=thermography" title=" thermography"> thermography</a> </p> <a href="https://publications.waset.org/abstracts/87848/thermalytix-an-advanced-artificial-intelligence-based-solution-for-non-contact-breast-screening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Stochastic Frontier Application for Evaluating Cost Inefficiencies in Organic Saffron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Kumar%20Sharma">Pawan Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Dwivedi"> Sudhakar Dwivedi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Arora"> R. K. Arora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saffron is one of the most precious spices grown on the earth and is cultivated in a very limited area in few countries of the world. It has also been grown as a niche crop in Kishtwar district of Jammu region of Jammu and Kashmir State of India. This paper attempts to examine the presence of cost inefficiencies in saffron production and the associated socio-economic characteristics of saffron growers in the mentioned area. Although the numbers of inputs used in cultivation of saffron were limited, still cost inefficiencies were present in its production. The net present value (NPV), internal rate of return (IRR) and profitability index (PI) of investment in five years of saffron production were INR 1120803, 95.67 % and 3.52 respectively. The estimated coefficients of saffron stochastic cost function for saffron bulbs, human labour, animal labour, manure and saffron output were positive. The saffron growers having non-farm income were more cost inefficient as compared to farmers who did not have sources of income other than farming by 0.04 %. The maximum value of cost efficiency for saffron grower was 1.69 with mean value of 1.12. The majority of farmers have low cost inefficiencies, as the highest frequency of occurrence of the predicted cost efficiency was below 1.06. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=saffron" title="saffron">saffron</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20rate%20of%20return" title=" internal rate of return"> internal rate of return</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20efficiency" title=" cost efficiency"> cost efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20frontier%20model" title=" stochastic frontier model"> stochastic frontier model</a> </p> <a href="https://publications.waset.org/abstracts/98785/stochastic-frontier-application-for-evaluating-cost-inefficiencies-in-organic-saffron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Development of a Solar Energy Based Prototype, CyanoClean, for Arsenic Removal from Water with the Use of a Cyanobacterial Consortium in Field Conditions of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anurakti%20Shukla">Anurakti Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Srivastava"> Sudhakar Srivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyanobacteria are known for rapid growth rates, high biomass, and the ability to accumulate potentially toxic elements and contaminants. The present work was planned to develop a low-cost, feasible prototype, CyanoClean, for the growth of a cyanobacterial consortium for the removal of arsenic (As) from water. The cyanobacterial consortium consisting of Oscillatoria, Phormidiumand Gloeotrichiawas used, and the conditions for optimal growth of the consortium were standardized. A pH of 7.6, initial cyanobacterial biomass of 10 g/L, and arsenite [As(III)] and arsenate [As(V)] concentration of 400 μΜand 600 μM, respectively, were found to be suitable. The CyanoClean prototype was designed with acrylic sheet and had arrangements for optimal cyanobacterial growth in natural sunlight and also in artificial light. The As removal experiments in concentration- and duration-dependent manner demonstrated removal of up to 39-69% and 9-33% As respectively from As(III) and As(V)-contaminated water. In field testing of CyanoClean, natural As-contaminated groundwater was used, and As reduction was monitored when a flow rate of 3 L/h was maintained. In a field experiment, As concentration in groundwater was found to reduce from 102.43 μg L⁻¹ to <10 μg L⁻¹ after 6 h in natural sunlight. However, in shaded conditions under artificial light, the same result was achieved after 9 h. The CyanoClean prototype is of simple design and can be easily up-scaled for application at a small- to medium-size land and shall be affordable even for a low- to middle-income group farmer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyanoclean" title="cyanoclean">cyanoclean</a>, <a href="https://publications.waset.org/abstracts/search?q=gloeotrichia" title=" gloeotrichia"> gloeotrichia</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillatoria" title=" oscillatoria"> oscillatoria</a>, <a href="https://publications.waset.org/abstracts/search?q=phormidium" title=" phormidium"> phormidium</a>, <a href="https://publications.waset.org/abstracts/search?q=phycoremediation" title=" phycoremediation"> phycoremediation</a> </p> <a href="https://publications.waset.org/abstracts/150216/development-of-a-solar-energy-based-prototype-cyanoclean-for-arsenic-removal-from-water-with-the-use-of-a-cyanobacterial-consortium-in-field-conditions-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150216.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Design of a Real Time Closed Loop Simulation Test Bed on a General Purpose Operating System: Practical Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratibha%20Srivastava">Pratibha Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Chithra%20V.%20J."> Chithra V. J.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20S."> Sudhakar S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitin%20K.%20D."> Nitin K. D.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A closed-loop system comprises of a controller, a response system, and an actuating system. The controller, which is the system under test for us, excites the actuators based on feedback from the sensors in a periodic manner. The sensors should provide the feedback to the System Under Test (SUT) within a deterministic time post excitation of the actuators. Any delay or miss in the generation of response or acquisition of excitation pulses may lead to control loop controller computation errors, which can be catastrophic in certain cases. Such systems categorised as hard real-time systems that need special strategies. The real-time operating systems available in the market may be the best solutions for such kind of simulations, but they pose limitations like the availability of the X Windows system, graphical interfaces, other user tools. In this paper, we present strategies that can be used on a general purpose operating system (Bare Linux Kernel) to achieve a deterministic deadline and hence have the added advantages of a GPOS with real-time features. Techniques shall be discussed how to make the time-critical application run with the highest priority in an uninterrupted manner, reduced network latency for distributed architecture, real-time data acquisition, data storage, and retrieval, user interactions, etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=real%20time%20data%20acquisition" title="real time data acquisition">real time data acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20kernel%20preemption" title=" real time kernel preemption"> real time kernel preemption</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20latency" title=" network latency"> network latency</a> </p> <a href="https://publications.waset.org/abstracts/117763/design-of-a-real-time-closed-loop-simulation-test-bed-on-a-general-purpose-operating-system-practical-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum Analysis Using FFT Analyzer, a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adinarayana%20S.">Adinarayana S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20I."> Sudhakar I. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy conversion is one of the inevitable parts of any industries. It involves either conversion of mechanical energy in to electrical or vice versa. The later conversion of energy i.e. electrical to mechanical emphasizes the need of motor. Statistics reveals, about 8 % of industries’ annual turnover met on maintenance. Thus substantial numbers of efforts are required to minimize in incurring expenditure met towards break down maintenance. Condition monitoring is one of such techniques based on vibration widely used to recognize premature failures and paves a way to minimize cumbersome involved during breakdown of machinery. The present investigation involves a case study of squirrel cage induction motor (frequently in the electro machines) has been chosen for the conditional monitoring to predict its soundness on the basis of results of FFT analyser. Accelerometer which measures the acceleration converts in to impulses by FFT analyser generates vibration spectrum and time spectrum has been located at various positions on motor under different conditions. Results obtained from the FFT analyser are compared to that of ISO standard vibration severity charts are taken to predict the preventative condition of considered machinery. Initial inspection of motor revealed that stator faults, broken end rings in rotor, eccentricity faults and misalignment between bearings are trouble shootings areas for present investigation. From the results of the shaft frequencies, it can be perceived that there is a misalignment between the bearings at both the ends. The higher order harmonics of FTF shows the presence of cracks on the race of the bearings at both the ends which are in the incipient stage. Replacement of the bearings at both the drive end (6306) and non drive end (6206) and the alignment check between the bearings in the shaft are suggested as the constructive measures towards preventive maintenance of considered squirrel cage induction motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FFT%20analyser" title="FFT analyser">FFT analyser</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title=" condition monitoring"> condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20spectrum" title=" vibration spectrum"> vibration spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20wave%20form" title=" time wave form"> time wave form</a> </p> <a href="https://publications.waset.org/abstracts/24480/condition-monitoring-of-a-3-o-induction-motor-by-vibration-spectrum-analysis-using-fft-analyzer-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum Analysis Using FFT Analyzer- a Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adi%20Narayana%20S%20Sudhakar.%20I">Adi Narayana S Sudhakar. I</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy conversion is one of the inevitable parts of any industries. It involves either conversion of mechanical energy in to electrical or vice versa. The later conversion of energy i.e. electrical to mechanical emphasizes the need of motor .Statistics reveals, about 8 % of industries’ annual turnover met on maintenance. Thus substantial numbers of efforts are required to minimize in incurring expenditure met towards break down maintenance. Condition monitoring is one of such techniques based on vibration widely used to recognize premature failures and paves a way to minimize cumbersome involved during breakdown of machinery. The present investigation involves a case study of squirrel cage induction motor (frequently in the electro machines) has been chosen for the conditional monitoring to predict its soundness on the basis of results of FFT analyser. Accelerometer which measures the acceleration converts in to impulses by FFT analyser generates vibration spectrum and time spectrum has been located at various positions on motor under different conditions. Results obtained from the FFT analyzer are compared to that of ISO standard vibration severity charts are taken to predict the preventative condition of considered machinery. Initial inspection of motor revealed that stator faults, broken end rings in rotor, eccentricity faults and misalignment between bearings are trouble shootings areas for present investigation. From the results of the shaft frequencies, it can be perceived that there is a misalignment between the bearings at both the ends. The higher order harmonics of FTF shows the presence of cracks on the race of the bearings at both the ends which are in the incipient stage. Replacement of the bearings at both the drive end (6306) and non-drive end (6206) and the alignment check between the bearings in the shaft are suggested as the constructive measures towards preventive maintenance of considered squirrel cage induction motor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FFT%20analyser" title="FFT analyser">FFT analyser</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20monitoring" title=" condition monitoring"> condition monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20spectrum" title=" vibration spectrum"> vibration spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20spectrum%20accelerometer" title=" time spectrum accelerometer"> time spectrum accelerometer</a> </p> <a href="https://publications.waset.org/abstracts/19331/condition-monitoring-of-a-3-o-induction-motor-by-vibration-spectrum-analysis-using-fft-analyzer-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Identifying and Optimizing the Critical Excipients in Moisture Activated Dry Granulation Process for Two Anti TB Drugs of Different Aqueous Solubilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Srujana">K. Srujana</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20U.%20Rao"> Vinay U. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sudhakar"> M. Sudhakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Isoniazide (INH) a freely water soluble and pyrazinamide (Z) a practically water insoluble first line anti tubercular (TB) drugs were identified as candidates for optimizing the Moisture Activated Dry Granulation (MADG) process. The work focuses on identifying the effect of binder type and concentration as well as the effect of magnesium stearate level on critical quality attributes of Disintegration time (DT) and in vitro dissolution test when the tablets are processed by the MADG process. Also, the level of the drug concentration, binder concentration and fluid addition during the agglomeration stage of the MADG process was evaluated and optimized. For INH, it was identified that for tablets with HPMC as binder at both 2% w/w and 5% w/w level and Magnesium stearate upto 1%w/w as lubrication the DT is within 1 minute and the dissolution rate is the fastest (> 80% in 15 minutes) as compared to when PVP or pregelatinized starch is used as binder. Regarding the process, fast disintegrating and rapidly dissolving tablets are obtained when the level of drug, binder and fluid uptake in agglomeration stage is 25% w/w 0% w/w binder and 0.033%. w/w. At the other 2 levels of these three ingredients, the DT is significantly impacted and dissolution is also slower. For pyrazinamide,it was identified that for the tablets with 2% w/w level of each of PVP as binder and Cross Caramellose Sodium disintegrant the DT is within 2 minutes and the dissolution rate is the fastest(>80 in 15 minutes)as compared to when HPMC or pregelatinized starch is used as binder. This may be attributed to the fact that PVP may be acting as a solubilizer for the practically insoluble Pyrazinamide. Regarding the process,fast dispersing and rapidly disintegrating tablets are obtained when the level of drug, binder and fluid uptake in agglomeration stage is 10% w/w,25% w/w binder and 1% w/w.At the other 2 levels of these three ingredients, the DT is significantly impacted and dissolution is comparatively slower and less complete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomeration%20stage" title="agglomeration stage">agglomeration stage</a>, <a href="https://publications.waset.org/abstracts/search?q=isoniazide" title=" isoniazide"> isoniazide</a>, <a href="https://publications.waset.org/abstracts/search?q=MADG" title=" MADG"> MADG</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20distribution%20stage" title=" moisture distribution stage"> moisture distribution stage</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrazinamide" title=" pyrazinamide "> pyrazinamide </a> </p> <a href="https://publications.waset.org/abstracts/8977/identifying-and-optimizing-the-critical-excipients-in-moisture-activated-dry-granulation-process-for-two-anti-tb-drugs-of-different-aqueous-solubilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Concordance between Biparametric MRI and Radical Prostatectomy Specimen in the Detection of Clinically Significant Prostate Cancer and Staging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rammah%20Abdlbagi">Rammah Abdlbagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Egmen%20Tazcan"> Egmen Tazcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiriti%20Tripathi"> Kiriti Tripathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayagam%20Sudhakar"> Vinayagam Sudhakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Swallow"> Thomas Swallow</a>, <a href="https://publications.waset.org/abstracts/search?q=Aakash%20Pai"> Aakash Pai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and Objectives: MRI has an increasing role in the diagnosis and staging of prostate cancer. Multiparametric MRI includes multiple sequences, including T2 weighting, diffusion weighting, and dynamic contrast enhancement (DCE). Administration of DCE is expensive, time-consuming, and requires medical supervision due to the risk of anaphylaxis. Biparametric MRI (bpMRI), without DCE, overcomes many of these issues; however, there is conflicting data on its accuracy. Furthermore, data on the concordance between bpMRI lesion and pathology specimen, as well as the rates of cancer stage upgrading after surgery, is limited within the available literature. This study aims to examine the diagnostic test accuracy of bpMRI in the diagnosis of prostate cancer and radiological assessment of prostate cancer staging. Specifically, we aimed to evaluate the ability of bpMRI to accurately localise malignant lesions to better understand its accuracy and application in MRI-targeted biopsies. Materials and Methods: One hundred and forty patients who underwent bpMRI prior to radical prostatectomy (RP) were retrospectively reviewed from a single institution. Histological grade from the prostate biopsy was compared with surgical specimens from RP. Clinically significant prostate cancer (csPCa) was defined as Gleason grade group ≥2. bpMRI staging was compared with RP histology. Results: Overall sensitivity of bpMRI in diagnosing csPCa independent of location and staging was 98.87%. Of the 140 patients, 29 (20.71%) had their prostate biopsy histology upgraded at RP. 61 (43.57%) patients had csPca noted on RP specimens in areas that were not identified on the bpMRI. 55 (39.29%) had upstaging after RP from the original staging with bpMRI. Conclusions: Whilst the overall sensitivity of bpMRI in predicting any clinically significant cancer was good, there was notably poor concordance in the location of the tumour between bpMRI and eventual RP specimen. The results suggest that caution should be exercised when using bpMRI for targeted prostate biopsies and validates the continued role of systemic biopsies. Furthermore, a significant number of patients were upstaged at RP from their original staging with bpMRI. Based on these findings, bpMRI results should be interpreted with caution and can underestimate TNM stage, requiring careful consideration of treatment strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biparametric%20MRI" title="biparametric MRI">biparametric MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=Ca%20prostate" title=" Ca prostate"> Ca prostate</a>, <a href="https://publications.waset.org/abstracts/search?q=staging" title=" staging"> staging</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20prostatectomy%20histology" title=" post prostatectomy histology"> post prostatectomy histology</a> </p> <a href="https://publications.waset.org/abstracts/157550/concordance-between-biparametric-mri-and-radical-prostatectomy-specimen-in-the-detection-of-clinically-significant-prostate-cancer-and-staging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> An Analytical Systematic Design Approach to Evaluate Ballistic Performance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lahari%20Ramya%20Pa">Lahari Ramya Pa</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhakar%20Ib"> Sudhakar Ib</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Vc"> Madhu Vc</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhusudhan%20Reddy%20Gd"> Madhusudhan Reddy Gd</a>, <a href="https://publications.waset.org/abstracts/search?q=Srinivasa%20Rao%20E."> Srinivasa Rao E.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Selection of suitable armor materials for defense applications is very crucial with respect to increasing mobility of the systems as well as maintaining safety. Therefore, determining the material with the lowest possible areal density that resists the predefined threat successfully is required in armor design studies. A number of light metal and alloys are come in to forefront especially to substitute the armour grade steels. AA5083 aluminium alloy which fit in to the military standards imposed by USA army is foremost nonferrous alloy to consider for possible replacement of steel to increase the mobility of armour vehicles and enhance fuel economy. Growing need of AA5083 aluminium alloy paves a way to develop supplement aluminium alloys maintaining the military standards. It has been witnessed that AA 2xxx aluminium alloy, AA6xxx aluminium alloy and AA7xxx aluminium alloy are the potential material to supplement AA5083 aluminium alloy. Among those cited aluminium series alloys AA7xxx aluminium alloy (heat treatable) possesses high strength and can compete with armour grade steels. Earlier investigations revealed that layering of AA7xxx aluminium alloy can prevent spalling of rear portion of armour during ballistic impacts. Hence, present investigation deals with fabrication of hard layer (made of boron carbide) i.e. layer on AA 7075 aluminium alloy using friction stir processing with an intention of blunting the projectile in the initial impact and backing tough portion(AA7xxx aluminium alloy) to dissipate residual kinetic energy. An analytical approach has been adopted to unfold the ballistic performance of projectile. Penetration of projectile inside the armour has been resolved by considering by strain energy model analysis. Perforation shearing areas i.e. interface of projectile and armour is taken in to account for evaluation of penetration inside the armour. Fabricated surface composites (targets) were tested as per the military standard (JIS.0108.01) in a ballistic testing tunnel at Defence Metallurgical Research Laboratory (DMRL), Hyderabad in standardized testing conditions. Analytical results were well validated with experimental obtained one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA7075%20aluminium%20alloy" title="AA7075 aluminium alloy">AA7075 aluminium alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20processing" title=" friction stir processing"> friction stir processing</a>, <a href="https://publications.waset.org/abstracts/search?q=boron%20carbide" title=" boron carbide"> boron carbide</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20performance" title=" ballistic performance"> ballistic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=target" title=" target"> target</a> </p> <a href="https://publications.waset.org/abstracts/21635/an-analytical-systematic-design-approach-to-evaluate-ballistic-performance-of-armour-grade-aa7075-aluminium-alloy-using-friction-stir-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21635.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10