CINXE.COM
Search results for: chitinase
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: chitinase</title> <meta name="description" content="Search results for: chitinase"> <meta name="keywords" content="chitinase"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="chitinase" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="chitinase"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: chitinase</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Promissing Antifungal Chitinase from Marine Strain of Bacillus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ben%20Amar%20Cheba">Ben Amar Cheba</a>, <a href="https://publications.waset.org/abstracts/search?q=Taha%20Ibrahim%20Zaghloul"> Taha Ibrahim Zaghloul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Hisham%20El-Massry"> Mohamad Hisham El-Massry</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rafik%20El-Mahdy"> Ahmad Rafik El-Mahdy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seventy two bacterial strains with ability to degrade chitin were isolated during a screening program. One of the most potent isolates (strain R2) was identified as Bacillus sp. using conventional methods as well as 16S rRNA technique and submitted in the Gen Bank sequence database as Bacillus sp. R2 with a given accession number DQ 923161. This strain was able to produce high levels of extracellular chitinase. The chitinase of Bacillus sp. R2 hydrolyzed several chitinous substrates preferentially and showed a maximum activity toward the β chitin such as Calmar pen and squid bone chitins with the folds 1.47 and 1.23 respectively. The enzyme also exhibited a substrate binding capacity of more than 70% for squid chitin, shrimp shell colloidal chitin, chitosan and prawn shell chitin. The chitinase showed a moderate antifungal activity against many phytopathogenic fungi such as Aspergillus niger, A. flavus, Penicillium degitatum and Fusarium calmorum.This strain could be a suitable candidate for chitinase production on an industrial scale for using as promising antifungal biopestecide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title="antifungal activity">antifungal activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20sp.%20R2" title=" Bacillus sp. R2"> Bacillus sp. R2</a>, <a href="https://publications.waset.org/abstracts/search?q=chitinase" title=" chitinase"> chitinase</a>, <a href="https://publications.waset.org/abstracts/search?q=substrate%20specificity" title=" substrate specificity "> substrate specificity </a> </p> <a href="https://publications.waset.org/abstracts/26781/promissing-antifungal-chitinase-from-marine-strain-of-bacillus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">501</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Chitin Degradation in Pseudomonas fluorescens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azhar%20Alhasawi">Azhar Alhasawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasu%20D.%20Appanna"> Vasu D. Appanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitin, the second most abundant bio-polymer in nature after cellulose, composed of β (1→4) linked N-acetylglucosamine (GlcNAc), is a major structural component in the cell walls of fungi and the shells of crustaceans. Chitin and its derivatives are gaining importance of economic value due to its biological activity and its industrial and biomedical applications. There are several methods to hydrolyze chitin to NAG, but they are typically expensive and environmentally unfriendly. Chitinase which catalyzes the breakdown of chitin to NAG has received much attention owing to its various applications in biotechnology. The presented research examines the ability of the versatile soil microbe, Pseudomonas fluorescens grown in chitin medium to produce chitinase and a variety of value-added products under abiotic stress. We have found that with high pH, Pseudomonas fluorescens enable to metabolize chitin more than with neutral pH and the overexpression of chitinase was also increased. P-dimethylaminobenzaldehyde (DMAB) assay for NAG production will be monitored and a combination of sodium dodecyl polyacrylamide gels will be used to monitor the proteomic and metabolomic changes as a result of the abiotic stress. The bioreactor of chitinase will also be utilized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20fluorescens" title="Pseudomonas fluorescens">Pseudomonas fluorescens</a>, <a href="https://publications.waset.org/abstracts/search?q=chitin" title=" chitin"> chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=DMAB" title=" DMAB"> DMAB</a>, <a href="https://publications.waset.org/abstracts/search?q=chitinase" title=" chitinase"> chitinase</a> </p> <a href="https://publications.waset.org/abstracts/6211/chitin-degradation-in-pseudomonas-fluorescens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Purification and Characterization of a Novel Extracellular Chitinase from Bacillus licheniformis LHH100</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laribi-Habchi%20Hasiba">Laribi-Habchi Hasiba</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouanane-Darenfed%20Amel"> Bouanane-Darenfed Amel</a>, <a href="https://publications.waset.org/abstracts/search?q=Drouiche%20Nadjib"> Drouiche Nadjib</a>, <a href="https://publications.waset.org/abstracts/search?q=Pausse%20Andr%C3%A9"> Pausse André</a>, <a href="https://publications.waset.org/abstracts/search?q=Mameri%20Nabil"> Mameri Nabil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitin, a linear 1, 4-linked N-acetyl-d-glucosamine (GlcNAc) polysaccharide is the major structural component of fungal cell walls, insect exoskeletons and shells of crustaceans. It is one of the most abundant naturally occurring polysaccharides and has attracted tremendous attention in the fields of agriculture, pharmacology and biotechnology. Each year, a vast amount of chitin waste is released from the aquatic food industry, where crustaceans (prawn, crab, Shrimp and lobster) constitute one of the main agricultural products. This creates a serious environmental problem. This linear polymer can be hydrolyzed by bases, acids or enzymes such as chitinase. In this context an extracellular chitinase (ChiA-65) was produced and purified from a newly isolated LHH100. Pure protein was obtained after heat treatment and ammonium sulphate precipitation followed by Sephacryl S-200 chromatography. Based on matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 65,195.13 Da. The sequence of the 27 N-terminal residues of the mature ChiA-65 showed high homology with family-18 chitinases. Optimal activity was achieved at pH 4 and 75◦C. Among the inhibitors and metals tested p-chloromercuribenzoic acid, N-ethylmaleimide, Hg2+ and Hg + completelyinhibited enzyme activity. Chitinase activity was high on colloidal chitin, glycol chitin, glycol chitosane, chitotriose and chitooligosaccharide. Chitinase activity towards synthetic substrates in the order of p-NP-(GlcNAc) n (n = 2–4) was p-NP-(GlcNAc)2> p-NP-(GlcNAc)4> p-NP-(GlcNAc)3. Our results suggest that ChiA-65 preferentially hydrolyzed the second glycosidic link from the non-reducing end of (GlcNAc) n. ChiA-65 obeyed Michaelis Menten kinetics the Km and kcat values being 0.385 mg, colloidal chitin/ml and5000 s−1, respectively. ChiA-65 exhibited remarkable biochemical properties suggesting that this enzyme is suitable for bioconversion of chitin waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20licheniformis%20LHH100" title="Bacillus licheniformis LHH100">Bacillus licheniformis LHH100</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20chitinase" title=" extracellular chitinase"> extracellular chitinase</a>, <a href="https://publications.waset.org/abstracts/search?q=purification" title=" purification "> purification </a> </p> <a href="https://publications.waset.org/abstracts/27008/purification-and-characterization-of-a-novel-extracellular-chitinase-from-bacillus-licheniformis-lhh100" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Partial Purification and Characterization of a Low Molecular Weight and Industrially Important Chitinase and a Chitin Deacetylase Enzyme from Streptomyces Chilikensis RC1830, a Novel Strain Isolated from Chilika Lake, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lopamudra%20Ray">Lopamudra Ray</a>, <a href="https://publications.waset.org/abstracts/search?q=Malla%20Padma"> Malla Padma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dibya%20Bhol"> Dibya Bhol</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Ranjan%20Mishra"> Samir Ranjan Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Panda"> A. N. Panda</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurdeep%20Rastogi"> Gurdeep Rastogi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Adhya"> T. K. Adhya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20Kumar%20Pattnaik"> Ajit Kumar Pattnaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mrutyunjay%20Suar"> Mrutyunjay Suar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishakha%20Raina"> Vishakha Raina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chilika Lake is the largest coastal estuarine brackish water lagoon in Asia situated on the east coast of India and is a designated Ramsar site. In the current study, several chitinolytic microorganisms were isolated and screened by appearance of clearance zone on 0.5% colloidal chitin agar plate. A strain designated as RC 1830 displayed maximum colloidal chitin degradation by release of 112 μmol/ml/min of N-acetyl D-glucosamine (GlcNAc) in 48h. The strain was taxonomically identified by polyphasic approach based on a range of phenotypic and genotypic properties and was found to be a novel species named Streptomyces chilikensis RC1830. The organism was halophilic (12% NaCl w/v), alkalophilic (pH10) and was capable of hydrolyzing chitin, starch, cellulose, gelatin, casein, tributyrin and tween 80. The partial purification of chitinase enzymes from RC1830 was performed by DEAE Sephacel anion exchange chromatography which revealed the presence of a very low molecular weight chitinase(10.5kD) which may be a probable chitobiosidase enzyme. The study reports the presence of a low MW chitinase (10.5kD) and a chitin decaetylase from a novel Streptomyces strain RC1830 isolated from Chilika Lake. Previously chitinases less than 20.5kD have not been reported from any other Streptomyces species. The enzymes was characterized with respect to optimum pH, temperature, and substrate specificity and temperature stability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitinases" title="chitinases">chitinases</a>, <a href="https://publications.waset.org/abstracts/search?q=chitobiosidase" title=" chitobiosidase"> chitobiosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=Chilika%20Lake" title=" Chilika Lake"> Chilika Lake</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/17497/partial-purification-and-characterization-of-a-low-molecular-weight-and-industrially-important-chitinase-and-a-chitin-deacetylase-enzyme-from-streptomyces-chilikensis-rc1830-a-novel-strain-isolated-from-chilika-lake-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Post-Harvest Biopreservation of Fruit and Vegetables with Application of Lactobacillus Strains </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Judit%20Perjessy">Judit Perjessy</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Zalan"> Zsolt Zalan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferenc%20Hegyi"> Ferenc Hegyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eniko%20Horvath-Szanics"> Eniko Horvath-Szanics</a>, <a href="https://publications.waset.org/abstracts/search?q=Krisztina%20Takacs"> Krisztina Takacs</a>, <a href="https://publications.waset.org/abstracts/search?q=Andras%20Nagy"> Andras Nagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20Klupacs"> Adel Klupacs</a>, <a href="https://publications.waset.org/abstracts/search?q=Erika%20Koppany-Szabo"> Erika Koppany-Szabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhirong%20Wang"> Zhirong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaituo%20Wang"> Kaituo Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Muying%20Du"> Muying Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianquan%20Kan"> Jianquan Kan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The post-harvest diseases cause great economic losses in the fruit and vegetables; the prevention of these deterioration has great importance. Against the fungi, which cause most of the diseases, are extensively used the fungicides. However, there are increasing consumer concerns over the presence of pesticide residues in food. An alternative and in recent years, increasingly studied method for the prevention of the diseases is biocontrol, where antagonistic microorganisms are used for the control of fungi. The genera of Lactobacillus is well known and extensively studied, but its applicability as biocontrol agents in post-harvest preservation of fruit and vegetables is poorly investigated. However these bacteria can be found on the surface of the plants and have great antimicrobial activity. In our study we have investigated the chitinase activity, the antifungal effect and the applicability of several Lactobacillus strains to select potential biocontrol agents. We investigated the determination of the environmental parameters of a gene (encoding chitinase) expression and we also investigated the relationship between actual antifungal activity and potential chitinase activity. Mixed cultures were also developed to enhance the antifungal activity and determined the optimal mold spore and bacteria concentration ratio for the appropriate efficacy. Five Lactobacillus strains (L. acidophilus N2, L. delbrueckii subsp. bulgaricus B397, L. sp. 2231, L. sake subsp. sake 2471, L. buchneri 1145) possess chitinase-coding gene from the 43 investigated Lactobacillus strains. Proteins with similar molecular weight and separation properties like bacterial chitinases were detected from these strains, which also possess chitin-binding property. Nevertheless, they were inactive, lacks the chitinolytic activity. In point of the cumulative activity of inhibition, our results showed that certain strains were statistically significant in a positive direction compared to other strains, e.g., L. rhamnosus VT1 and L. Casey 154 have shown great general antifungal effect against 11 molds from the genera Penicillium and Botrytis and isolated from spoiled fruit and vegetables. Also, some mixed cultures (L. rhamnosus VT1 - L. Plantarum 299v) showed significant antifungal effects against the indigenous molds on the surface of apple fruit during the industrial storage experiment. Thus, they could be promising for post-harvest biopreservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title="biocontrol">biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=chitinase" title=" chitinase"> chitinase</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactobacillus" title=" Lactobacillus"> Lactobacillus</a>, <a href="https://publications.waset.org/abstracts/search?q=post-harvest" title=" post-harvest"> post-harvest</a> </p> <a href="https://publications.waset.org/abstracts/121225/post-harvest-biopreservation-of-fruit-and-vegetables-with-application-of-lactobacillus-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> The Effect of Metabolites of Fusarium solani on the Activity of the PR-Proteins (Chitinase, β-1,3-Glucanase and Peroxidases) of Potato Tubers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Tursunova">A. K. Tursunova</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20V.%20Chebonenko"> O. V. Chebonenko</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zh.%20Amirkulova"> A. Zh. Amirkulova</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Abaildayev"> A. O. Abaildayev</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Sapko"> O. A. Sapko</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Dyo"> Y. M. Dyo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Sh.%20Utarbaeva"> A. Sh. Utarbaeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fusarium solani and its variants cause root and stem rot of plants. Dry rot is the most common disease of potato tubers during storage. The causative agents of fusariosis in contact with plants behave as antagonists, growth stimulants or parasites. The diversity of host-parasite relationships is explained by the parasite’s ability to produce a wide spectrum of biologically active compounds including toxins, enzymes, oligosaccharides, antibiotic substances, enniatins and gibberellins. Many of these metabolites contribute to the creation of compatible relations; others behave as elicitors, inducing various protective responses in plants. An important part of the strategy for developing plant resistance against pathogens is the activation of protein synthesis to produce protective ‘pathogenesis-related’ proteins. The family of PR-proteins known to confer the most protective response is chitinases (EC 3.2.1.14, Cht) and β-1,3-glucanases (EC 3.2.1.39, Glu). PR-proteins also include a large multigene family of peroxidases (EC 1.11.1.7, Pod), and increased activity of Pod and expression of the Pod genes leads to the development of resistance to a broad class of pathogens. Despite intensive research on the role of PR-proteins, the question of their participation in the mechanisms of formation of the F.solani–S.tuberosum pathosуstem is not sufficiently studied. Our aim was to investigate the effect of different classes of F. solani metabolites on the activity of chitinase, β-1,3-glucanases and peroxidases in tubers of Solanum tuberosum. Metabolite culture filtrate (CF) and cytoplasmic components were fractionated by extraction of the mycelium with organic solvents, salting out techniques, dialysis, column chromatography and ultrafiltration. Protein, lipid, carbohydrate and polyphenolic fractions of fungal metabolites were derived. Using enzymatic hydrolysis we obtained oligo glycans from fungal cell walls with different molecular weights. The activity of the metabolites was tested using potato tuber discs (d = 16mm, h = 5mm). The activity of PR-proteins of tubers was analyzed in a time course of 2–24 hours. The involvement of the analysed metabolites in the modulation of both early non-specific and late related to pathogenesis reactions was demonstrated. The most effective inducer was isolated from the CF (fraction of total phenolic compounds including naphtazarins). Induction of PR-activity by this fraction was: chitinase - 340-360%, glucanase - 435-450%, soluble forms of peroxidase - 400-560%, related forms of peroxidase - 215-237%. High-inducing activity was observed by the chloroform and acetonitrile extracts of the mycelium (induction of chitinase and glucanase activity was 176-240%, of soluble and bound forms of peroxidase - 190-400%). The fraction of oligo glycans mycelium cell walls of 1.2 kDa induced chitinase and β-1,3-glucanase to 239-320%; soluble forms and related peroxidase to 198-426%. Oligo glycans cell walls of 5-10 kDa had a weak suppressor effect - chitinase (21-25%) and glucanase (25-28%) activity; had no effect on soluble forms of peroxidase, but induced to 250-270% activity related forms. The CF polysaccharides of 8.5 kDa and 3.1 kDa inhibited synchronously the glucanase and chitinase specific response in step (after 24 hours at 42-50%) and the step response induced nonspecific peroxidase activity: soluble forms 4.8 -5.2 times, associated forms 1.4-1.6 times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fusarium%20solani" title="fusarium solani">fusarium solani</a>, <a href="https://publications.waset.org/abstracts/search?q=PR-proteins" title=" PR-proteins"> PR-proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxidase" title=" peroxidase"> peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=solanum%20tuberosum" title=" solanum tuberosum"> solanum tuberosum</a> </p> <a href="https://publications.waset.org/abstracts/56890/the-effect-of-metabolites-of-fusarium-solani-on-the-activity-of-the-pr-proteins-chitinase-v-13-glucanase-and-peroxidases-of-potato-tubers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Impact of Elevated Temperature on Spot Blotch Development in Wheat and Induction of Resistance by Plant Growth Promoting Rhizobacteria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayanwita%20Sarkar">Jayanwita Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Usha%20Chakraborty"> Usha Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Bishwanath%20Chakraborty"> Bishwanath Chakraborty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants are constantly interacting with various abiotic and biotic stresses. In changing climate scenario plants are continuously modifying physiological processes to adapt to changing environmental conditions which profoundly affect plant-pathogen interactions. Spot blotch in wheat is a fast-rising disease in the warmer plains of South Asia where the rise in minimum average temperature over most of the year already affecting wheat production. Hence, the study was undertaken to explore the role of elevated temperature in spot blotch disease development and modulation of antioxidative responses by plant growth promoting rhizobacteria (PGPR) for biocontrol of spot blotch at high temperature. Elevated temperature significantly increases the susceptibility of wheat plants to spot blotch causing pathogen Bipolaris sorokiniana. Two PGPR Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) isolated from wheat (Triticum aestivum L.) and blady grass (Imperata cylindrical L.) rhizophere respectively, showing in vitro antagonistic activity against Bipolaris sorokiniana were tested for growth promotion and induction of resistance against spot blotch in wheat. GC-MS analysis showed that Bacillus safensis (W10) and Ochrobactrum pseudogrignonense (IP8) produced antifungal and antimicrobial compounds in culture. Seed priming with these two bacteria significantly increase growth, modulate antioxidative signaling and induce resistance and eventually reduce disease incidence in wheat plants at optimum as well as elevated temperature which was further confirmed by indirect immunofluorescence assay using polyclonal antibody raised against Bipolaris sorokiniana. Application of the PGPR led to enhancement in activities of plant defense enzymes- phenylalanine ammonia lyase, peroxidase, chitinase and β-1,3 glucanase in infected leaves. Immunolocalization of chitinase and β-1,3 glucanase in PGPR primed and pathogen inoculated leaf tissue was further confirmed by transmission electron microscopy using PAb of chitinase, β-1,3 glucanase and gold labelled conjugates. Activity of ascorbate-glutathione redox cycle related enzymes such as ascorbate peroxidase, superoxide dismutase and glutathione reductase along with antioxidants such as carotenoids, glutathione and ascorbate and osmolytes like proline and glycine betain accumulation were also increased during disease development in PGPR primed plant in comparison to unprimed plants at high temperature. Real-time PCR analysis revealed enhanced expression of defense genes- chalcone synthase and phenyl alanineammonia lyase. Over expression of heat shock proteins like HSP 70, small HSP 26.3 and heat shock factor HsfA3 in PGPR primed plants effectively protect plants against spot blotch infection at elevated temperature as compared with control plants. Our results revealed dynamic biochemical cross talk between elevated temperature and spot blotch disease development and furthermore highlight PGPR mediated array of antioxidative and molecular alterations responsible for induction of resistance against spot blotch disease at elevated temperature which seems to be associated with up-regulation of defense genes, heat shock proteins and heat shock factors, less ROS production, membrane damage, increased expression of redox enzymes and accumulation of osmolytes and antioxidants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidative%20enzymes" title="antioxidative enzymes">antioxidative enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=defense%20enzymes" title=" defense enzymes"> defense enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=elevated%20temperature" title=" elevated temperature"> elevated temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20shock%20proteins" title=" heat shock proteins"> heat shock proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=PGPR" title=" PGPR"> PGPR</a>, <a href="https://publications.waset.org/abstracts/search?q=Real-Time%20PCR" title=" Real-Time PCR"> Real-Time PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=spot%20blotch" title=" spot blotch"> spot blotch</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/85977/impact-of-elevated-temperature-on-spot-blotch-development-in-wheat-and-induction-of-resistance-by-plant-growth-promoting-rhizobacteria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Isolation and Identification of Low-Temperature Tolerant-Yeast Strains from Apple with Biocontrol Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lachin%20Mikjtarnejad">Lachin Mikjtarnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Farzaneh"> Mohsen Farzaneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various microbes, such as fungi and bacteria species, are naturally found in the fruit microbiota, and some of them act as a pathogen and result in fruit rot. Among non-pathogenic microbes, yeasts (single-celled microorganisms belonging to the fungi kingdom) can colonize fruit tissues and interact with them without causing any damage to them. Although yeasts are part of the plant microbiota, there is little information about their interactions with plants in comparison with bacteria and filamentous fungi. According to several existing studies, some yeasts can colonize different plant species and have the biological control ability to suppress some of the plant pathogens. It means those specific yeast-colonized plants are more resistant to some plant pathogens. The major objective of the present investigation is to isolate yeast strains from apple fruit and screen their ability to control Penicillium expansum, the causal agent of blue mold of fruits. In the present study, psychrotrophic and epiphytic yeasts were isolated from apple fruits that were stored at low temperatures (0–1°C). Totally, 42 yeast isolates were obtained and identified by molecular analysis based on genomic sequences of the D1/D2 and ITS1/ITS4 regions of their rDNA. All isolated yeasts were primarily screened by' in vitro dual culture assay against P. expansum by measuring the fungus' relative growth inhibition after 10 days of incubation. The results showed that the mycelial growth of P. expansum was reduced between 41–53% when challenged by promising yeast strains. The isolates with the strongest antagonistic activity belonged to Metschnikowia pulcherrima A13, Rhodotorula mucilaginosa A41, Leucosporidium Scottii A26, Aureobasidium pullulans A19, Pichia guilliermondii A32, Cryptococcus flavescents A25, and Pichia kluyveri A40. The results of seven superior isolates to inhibit blue mold decay on fruit showed that isolates A. pullulans A19, L. scottii A26, and Pi. guilliermondii A32 could significantly reduce the fruit rot and decay with 26 mm, 22 mm and 20 mm zone diameter, respectively, compared to the control sample with 43 mm. Our results show Pi. guilliermondii strain A13 was the most effective yeast isolates in inhibiting P. expansum on apple fruits. In addition, various biological control mechanisms of promising biological isolates against blue mold have been evaluated to date, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores and production of extracellular lytic enzymes such as chitinase and β-1,3-glucanase. However, the competition for nutrients and the ability to inhibit P. expansum spore growth have been introduced as the prevailing mechanisms among them. Accordingly, in our study, isolates A13, A41, A40, A25, A32, A19 and A26 inhibited the germination of P. expansum, whereas isolates A13 and A19 were the strongest inhibitors of P. expansum mycelia growth, causing 89.13% and 81.75 % reduction in the mycelial surface, respectively. All the promising isolates produced chitinase and β-1,3-glucanase after 3, 5 and 7 days of cultivation. Finally, based on our findings, we are proposing that, Pi. guilliermondiias as an effective biocontrol agent and alternative to chemical fungicides to control the blue mold of apple fruit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yeast" title="yeast">yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast%20enzymes" title=" yeast enzymes"> yeast enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title=" biocontrol"> biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20harvest%20diseases" title=" post harvest diseases"> post harvest diseases</a> </p> <a href="https://publications.waset.org/abstracts/165731/isolation-and-identification-of-low-temperature-tolerant-yeast-strains-from-apple-with-biocontrol-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Biocontrol Potential of Trichoderma sp. against Macrophomina phaseolina</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayarama%20Reddy">Jayarama Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anand%20S."> Anand S.</a>, <a href="https://publications.waset.org/abstracts/search?q=H."> H.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sundaram"> Sundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeldi%20Hemachandran"> Jeldi Hemachandran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Forty two strains of Trichoderma sp. were isolated from cultivated lands around Bangalore and analyzed for their antagonistic potential against Macrophomina phaseolina. The potential of biocontrol agents ultimately lies in their capacity to control pathogens in vivo. Bioefficacy studies were hence conducted using chickpea (Cicer arientum c.v. Annigeri) as an experimental plant by the roll paper towel method. Overall the isolates T6, T35, T30, and T25 showed better antagonistic potential in addition to enhancing plant growth. The production of chitinases to break down the mycelial cell walls of fungal plant pathogens has been implicated as a major cause of biocontrol activity. In order to study the mechanism of biocontrol against Macrophomina phaseolina, ten better performing strains were plated on media, amended with colloidal chitin and Sclerotium rolfsii cell wall extract. All the isolates showed chitinolytic activity on day three as well as day five. Production of endochitinase and exochitinase were assayed in liquid media using colloidal chitin amended broth. Strains T35 and T6 displayed maximum endochitinase and exochitinase activity. Although all strains exhibited cellulase activity, the quantum of enzyme produced was higher in T35 and T6. The results also indicate a positive correlation between enzyme production and bioefficacy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocontrol" title="biocontrol">biocontrol</a>, <a href="https://publications.waset.org/abstracts/search?q=bioefficacy" title=" bioefficacy"> bioefficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulase" title=" cellulase"> cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=chitinase" title=" chitinase"> chitinase</a> </p> <a href="https://publications.waset.org/abstracts/8859/biocontrol-potential-of-trichoderma-sp-against-macrophomina-phaseolina" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8859.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Bioremediation of Sea Food Waste in Solid State Fermentation along with Production of Bioactive Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Warmoota">Rahul Warmoota</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Bhardwaj"> Aditya Bhardwaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Steffy%20Angural"> Steffy Angural</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Rana"> Monika Rana</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunena%20Jassal"> Sunena Jassal</a>, <a href="https://publications.waset.org/abstracts/search?q=Neena%20Puri"> Neena Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveen%20Gupta"> Naveen Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seafood processing generates large volumes of waste products such as skin, heads, tails, shells, scales, backbones, etc. Pollution due to conventional methods of seafood waste disposal causes negative implications on the environment, aquatic life, and human health. Moreover, these waste products can be used for the production of high-value products which are still untapped due to inappropriate management. Paenibacillus sp. AD is known to act on chitinolytic and proteinaceous waste and was explored for its potential to degrade various types of seafood waste in solid-state fermentation. Effective degradation of seafood waste generated from a variety of sources such as fish scales, crab shells, prawn shells, and a mixture of such wastes was observed. 30 to 40 percent degradation in terms of decrease in the mass was achieved. Along with the degradation, chitinolytic and proteolytic enzymes were produced, which can have various biotechnological applications. Apart from this, value-added products such as chitin oligosaccharides and peptides of various degrees of polymerization were also produced, which can be used for various therapeutic purposes. Results indicated that Paenibacillus sp. AD can be used for the development of a process for the infield degradation of seafood waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitin" title="chitin">chitin</a>, <a href="https://publications.waset.org/abstracts/search?q=chitin-oligosaccharides" title=" chitin-oligosaccharides"> chitin-oligosaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=chitinase" title=" chitinase"> chitinase</a>, <a href="https://publications.waset.org/abstracts/search?q=protease" title=" protease"> protease</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=crab%20shells" title=" crab shells"> crab shells</a>, <a href="https://publications.waset.org/abstracts/search?q=prawn%20shells" title=" prawn shells"> prawn shells</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20scales" title=" fish scales"> fish scales</a> </p> <a href="https://publications.waset.org/abstracts/161494/bioremediation-of-sea-food-waste-in-solid-state-fermentation-along-with-production-of-bioactive-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Detection of Viral-Plant Interaction Using Some Pathogenesis Related Protein Genes to Identify Resistant Genes against Potato LeafRoll Virus and Potato Virus Y in Egyptian Isolates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia.%20G.%20Aseel">Dalia. G. Aseel</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20E.%20Hafez"> E. E. Hafez</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Hammad"> S. M. Hammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Viral RNAs of both potato leaf roll virus (PLRV) and potato virus Y (PVY) were extracted from infected potato leaves collected from different Egyptian regions. Differential Display Polymerase Chain Reaction (DD-PCR) using (Endogluconase, β-1,3-glucanases, Chitinase, Peroxidase and Polyphenol oxidase) primers (forward strand) for was performed. The obtained data revealed different banding patterns depending on the viral type and the region of infection. Regarding PLRV, a 58 up regulated and 19 down regulated genes were detected, while, 31 up regulated and 14 down regulated genes were observed in case of PVY. Based on the nucleotide sequencing, variable phylogenetic relationships were reported for the three sequenced genes coding for: Induced stolen tip protein, Disease resistance RPP-like protein and non-specific lipid-transfer protein. In a complementary approach, using the quantitative Real-time PCR, the expressions of PRs genes understudy were estimated in the infected leaves by PLRV and PVY of three potato cultivars (Spunta, Diamont and Cara). The infection with both viruses inhibited the expressions of the five PRs genes. On the contrary, infected leaves by PLRV or PVY elevated the expression of some defense genes. This interaction also may be enhanced and/or inhibited the expression of some genes responsible for the plant defense mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PLRV" title="PLRV">PLRV</a>, <a href="https://publications.waset.org/abstracts/search?q=PVY" title=" PVY"> PVY</a>, <a href="https://publications.waset.org/abstracts/search?q=PR%20genes" title=" PR genes"> PR genes</a>, <a href="https://publications.waset.org/abstracts/search?q=DD-PCR" title=" DD-PCR"> DD-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=qRT-PCR" title=" qRT-PCR"> qRT-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing"> sequencing</a> </p> <a href="https://publications.waset.org/abstracts/69117/detection-of-viral-plant-interaction-using-some-pathogenesis-related-protein-genes-to-identify-resistant-genes-against-potato-leafroll-virus-and-potato-virus-y-in-egyptian-isolates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Rejuvenation of Peanut Seedling from Collar Rot Disease by Azotobacter sp. RA2</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20R.%20Patel">Ravi R. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasudev%20R.%20Thakkar"> Vasudev R. Thakkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of plant growth-promoting rhizobacteria (PGPR) to increase the production and decrees disease occurrence is a recent method in agriculture. An RA2 rhizospheric culture was isolated from peanut rhizosphere from Junagadh region of Gujarat, India and showed different direct and indirect plant growth promoting activity like indole acetic acid, gibberellic acid, siderophore, hydrogen cyanide, Ammonia and (1-Aminocyclopropane-1-Carboxylate) deaminase production, N2 fixation, phosphate and potassium solubilization in vitro. RA2 was able to protect peanut germinating seedling from A. niger infection and reduce collar rot disease incidence 60-35% to 72-41% and increase germination percentage from 70-82% to 75-97% in two varieties GG20 and GG2 of peanut. RA2 was found to induce resistance in A. hypogaea L. seedlings via induction of different defense-related enzymes like phenylalanine ammonia lyase, peroxidase, polyphenol oxidase, lipoxygenase and pathogenesis related protein like chitinase, ß – 1,3- glucanase. Jasmonic acid one of the major signaling molecules of inducing systemic resistance was also found to induced due to RA2 treatments. RA2 bacterium was also promoting peanut growth and reduce A. niger infection in pot studies. 16S rDNA sequence of RA2 showed 99 % homology to Azotobacter species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20promoting%20rhizobacteria" title="plant growth promoting rhizobacteria">plant growth promoting rhizobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=peanut" title=" peanut"> peanut</a>, <a href="https://publications.waset.org/abstracts/search?q=aspergillus%20niger" title=" aspergillus niger"> aspergillus niger</a>, <a href="https://publications.waset.org/abstracts/search?q=induce%20systemic%20resistance" title=" induce systemic resistance"> induce systemic resistance</a> </p> <a href="https://publications.waset.org/abstracts/59871/rejuvenation-of-peanut-seedling-from-collar-rot-disease-by-azotobacter-sp-ra2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> The Investigation of Enzymatic Activity in the Soils Under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20H.%20Derdzyan">T. H. Derdzyan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Ghazaryan"> K. A. Ghazaryan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Gevorgyan"> G. A. Gevorgyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoestearse and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armenia" title="Armenia">Armenia</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20industrial%20activity" title=" metallurgical industrial activity"> metallurgical industrial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20pollutionl" title=" heavy metal pollutionl"> heavy metal pollutionl</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20enzyme%20activity" title=" soil enzyme activity"> soil enzyme activity</a> </p> <a href="https://publications.waset.org/abstracts/25371/the-investigation-of-enzymatic-activity-in-the-soils-under-the-impact-of-metallurgical-industrial-activity-in-lori-marz-armenia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Induced Systemic Resistance in Tomato Plants against Fusarium Wilt Disease Using Biotic Inducers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20A.%20Amer">Mostafa A. Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20El-Samra"> I. A. El-Samra</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20I.%20Abou-ElSeoud"> I. I. Abou-ElSeoud</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20El-Abd"> S. M. El-Abd</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K.%20Shawertamimi"> N. K. Shawertamimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tomato Fusarium wilt disease caused by Fusarium oxysporum f. sp. Lycopercisi (FOL) is considered one of the most destructive diseases in Egypt. Effect of some biotic inducers such as Bacillus megaterium var. phosphaticum, Glomus intraradices and Glomus macrocarpum at seven different mixed treatments, was tested for their ability to induce resistance in tomato plants against the disease. According to pathogenicity tests, all the tested isolates of FOL showed wilt symptoms on both of the tested cultivars; however, they considerably varied in percentages of disease incidence (DI) and disease severity (DS). Castle Rock was more susceptible than Peto 86, which was relatively resistant. Pretreatment of both cultivars, under greenhouse conditions, with the tested biotic inducers alone or in combination with each other's, significantly increased the induction of chitinase, β-1,3-glucanase, peroxidase, and polyphenoloxidase and reduced disease incidence and severity, compared with untreated noninoculated (C1) and untreated inoculated (C2) controls. Application of a combination of BMP, with GI and GM was the most effective in increasing the induction rated of the tested enzymes, compared with the other treatments. Induction of enzymes in most of the tested bioinducers treatments gradually increased, attaining maximum values after 48 or/and 72 hrs after challenging with FOL, then gradually declined. GI was the least effective bioinducer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20oxysporum%20f.%20sp.%20lycopersici" title="F. oxysporum f. sp. lycopersici">F. oxysporum f. sp. lycopersici</a>, <a href="https://publications.waset.org/abstracts/search?q=defense%20enzymes" title=" defense enzymes"> defense enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=induced%20systemic%20resistance" title=" induced systemic resistance"> induced systemic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=ISR" title=" ISR"> ISR</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20megaterium%20var.%20phosphaticum" title=" B. megaterium var. phosphaticum"> B. megaterium var. phosphaticum</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20macrocarpum" title=" G. macrocarpum"> G. macrocarpum</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20intraradices" title=" G. intraradices"> G. intraradices</a> </p> <a href="https://publications.waset.org/abstracts/28854/induced-systemic-resistance-in-tomato-plants-against-fusarium-wilt-disease-using-biotic-inducers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Effects of Ascophyllum nodosum in Tomato in the Tropical Caribbean Climate: Effects and Molecular Insights into Mechanisms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Ali">Omar Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Adesh%20Ramsubhag"> Adesh Ramsubhag</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayaraj%20Jayaraman"> Jayaraj Jayaraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seaweed extracts have been reported as plant biostimulants which could be a safer, organic alternative to harsh pesticides. The incentive to use seaweed-based biostimulants is becoming paramount in sustainable agriculture. The current study, therefore, screened a commercial extract of A. nodosum in tomatoes, cultivated in Trinidad to showcase the multiple beneficial effects. Foliar treatment with an A. nodosum commercial extract led to significant increases in fruit yield and a significant reduction of incidence of bacterial spots and early blight diseases under both greenhouse and field conditions. Investigations were carried out to reveal the possible mechanisms of action of this biostimulant through defense enzyme assays and transcriptome profiling via RNA sequencing of tomato. Studies into disease control mechanisms by A. nodosum showed that the extract stimulated the activity of enzymes such as peroxidase, phenylalanine ammonia-lyase, chitinase, polyphenol oxidase, and β-1,3-glucanase. Additionally, the transcriptome survey revealed the upregulation and enrichment of genes responsible for the biosynthesis of growth hormones, defense enzymes, PR proteins and defense-related secondary metabolites, as well as genes involved in the nutrient mobilization, photosynthesis and primary and secondary metabolic pathways. The results of the transcriptome study also demonstrated the cross-talks between growth and defense responses, confirming the bioelicitor and biostimulant value of seaweed extracts in plants. These effects could potentially implicate the benefits of seaweed extract and validate its usage in sustainable crop production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20nodosum" title="A. nodosum">A. nodosum</a>, <a href="https://publications.waset.org/abstracts/search?q=biostimulants" title=" biostimulants"> biostimulants</a>, <a href="https://publications.waset.org/abstracts/search?q=elicitor" title=" elicitor"> elicitor</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymes" title=" enzymes"> enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20responses" title=" growth responses"> growth responses</a>, <a href="https://publications.waset.org/abstracts/search?q=seaweeds" title=" seaweeds"> seaweeds</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato" title=" tomato"> tomato</a>, <a href="https://publications.waset.org/abstracts/search?q=transcriptome%20analysis" title=" transcriptome analysis"> transcriptome analysis</a> </p> <a href="https://publications.waset.org/abstracts/141553/effects-of-ascophyllum-nodosum-in-tomato-in-the-tropical-caribbean-climate-effects-and-molecular-insights-into-mechanisms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Altered Gene Expression: Induction/Suppression of some Pathogenesis Related Protein Genes in an Egyptian Isolate of Potato Leafroll Virus (PLRV)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalia%20G.%20Aseel">Dalia G. Aseel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potato (Solanum tubersum, L.) has become one of the major vegetable crops in Egypt and all over the world. Potato leafroll virus(PLRV) was observed on potato plants collected from different governorates in Egypt. Three cultivars, Spunta, Diamont, and Cara, infected with PLRV were collected; RNA was extracted and subjected to Real-Time PCR using the coat protein gene primers. The results showed that the expression of the coat protein was 39.6-fold, 12.45-fold, and 47.43-fold, respectively, for Spunta, Diamont, and Cara cultivars. Differential Display Polymerase Chain Reaction (DD-PCR) using pathogenesis-related protein 1 (PR-1), β-1,3-glucanases (PR-2), chitinase (PR-3), peroxidase (POD), and polyphenol oxidase (PPO) forward primers for pathogenesis-related proteins (PR). The obtained data revealed different banding patterns depending on the viral type and the region of infection. Regarding PLRV, 58 up-regulated and 19 down-regulated genes were detected. Sequence analysis of the up-and down-regulated genes revealed that infected plants were observed in comparison with the healthy control. Sequence analysis of the up-regulated gene was performed, and the encoding sequence analysis showed that the obtained genes include: induced stolen tip protein. On the other hand, two down-regulated genes were identified: disease resistance RPP-like protein and non-specific lipid-transfer protein. In this study, the expressions of PR-1, PR-2, PR-3, POD, and PPO genes in the infected leaves of three potato cultivars were estimated by quantitative real-time PCR. We can conclude that the PLRV-infection of potato plants inhibited the expression of the five PR genes. On the contrary, infected leaves by PLRV elevated the expression of some defense genes. This interaction may also induce and/or suppress the expression of some genes responsible for the plant's defense mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PLRV" title="PLRV">PLRV</a>, <a href="https://publications.waset.org/abstracts/search?q=pathogenesis-related%20proteins%20%28PRs%29" title=" pathogenesis-related proteins (PRs)"> pathogenesis-related proteins (PRs)</a>, <a href="https://publications.waset.org/abstracts/search?q=DD-PCR" title=" DD-PCR"> DD-PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence" title=" sequence"> sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20PCR" title=" real-time PCR"> real-time PCR</a> </p> <a href="https://publications.waset.org/abstracts/158773/altered-gene-expression-inductionsuppression-of-some-pathogenesis-related-protein-genes-in-an-egyptian-isolate-of-potato-leafroll-virus-plrv" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> An Advanced Approach to Detect and Enumerate Soil-Transmitted Helminth Ova from Wastewater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vivek%20B.%20Ravindran">Vivek B. Ravindran</a>, <a href="https://publications.waset.org/abstracts/search?q=Aravind%20Surapaneni">Aravind Surapaneni</a>, <a href="https://publications.waset.org/abstracts/search?q=Rebecca%20Traub"> Rebecca Traub</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarvesh%20K.%20Soni"> Sarvesh K. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20S.%20Ball"> Andrew S. Ball</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Parasitic diseases have a devastating, long-term impact on human health and welfare. More than two billion people are infected with soil-transmitted helminths (STHs), including the roundworms (Ascaris), hookworms (Necator and Ancylostoma) and whipworm (Trichuris) with majority occurring in the tropical and subtropical regions of the world. Despite its low prevalence in developed countries, the removal of STHs from wastewater remains crucial to allow the safe use of sludge or recycled water in agriculture. Conventional methods such as incubation and optical microscopy are cumbersome; consequently, the results drastically vary from person-to-person observing the ova (eggs) under microscope. Although PCR-based methods are an alternative to conventional techniques, it lacks the ability to distinguish between viable and non-viable helminth ova. As a result, wastewater treatment industries are in major need for radically new and innovative tools to detect and quantify STHs eggs with precision, accuracy and being cost-effective. In our study, we focus on the following novel and innovative techniques: -Recombinase polymerase amplification and Surface enhanced Raman spectroscopy (RPA-SERS) based detection of helminth ova. -Use of metal nanoparticles and their relative nanozyme activity. -Colorimetric detection, differentiation and enumeration of genera of helminth ova using hydrolytic enzymes (chitinase and lipase). -Propidium monoazide (PMA)-qPCR to detect viable helminth ova. -Modified assay to recover and enumerate helminth eggs from fresh raw sewage. -Transcriptome analysis of ascaris ova in fresh raw sewage. The aforementioned techniques have the potential to replace current conventional and molecular methods thereby producing a standard protocol for the determination and enumeration of helminth ova in sewage sludge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorimetry" title="colorimetry">colorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=helminth" title=" helminth"> helminth</a>, <a href="https://publications.waset.org/abstracts/search?q=PMA-QPCR" title=" PMA-QPCR"> PMA-QPCR</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=RPA" title=" RPA"> RPA</a>, <a href="https://publications.waset.org/abstracts/search?q=viable" title=" viable"> viable</a> </p> <a href="https://publications.waset.org/abstracts/78247/an-advanced-approach-to-detect-and-enumerate-soil-transmitted-helminth-ova-from-wastewater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Characterisation of Chitooligomers Prepared with the Aid of Cellulase, Xylanase and Chitosanase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Zimoch-Korzycka">Anna Zimoch-Korzycka</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominika%20Kulig"> Dominika Kulig</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Jarmoluk"> Andrzej Jarmoluk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to obtain chitooligosaccharides from chitosan with better functional properties using three different enzyme preparations and compare the products of enzymatic hydrolysis. Commercially available cellulase (CL), xylanase (X) and chitosanase (CS) preparations were used to investigate hydrolytic activity on chitosan (CH) with low molecular weight and DD of 75-85%. It has been reported that CL and X have side activities of other enzymes, such as β-glucanase or β-glucosidase. CS enzyme has a foreign activity of chitinase. Each preparation was used in 1000 U of activity and in the same reaction conditions. The degree of deacetylation and molecular weight of chitosan were specified using titration and viscometric methods, respectively. The hydrolytic activity of enzymes preparations on chitosan was monitored by dynamic viscosity measurement. After 4 h reaction with stirring, solutions were filtered and chitosan oligomers were isolated by methanol solution into two fractions: precipitate (A) and supernatant (B). A Fourier-transform infrared spectroscopy was used to characterize the structural changes of chitosan oligomers fractions and initial chitosan. Furthermore, the solubility of lyophilized hydrolytic mixture (C) and two chitooligomers fractions (A, B) of each enzyme hydrolysis was assayed. The antioxidant activity of chitosan oligomers was evaluated as DPPH free radical scavenging activity. The dynamic viscosity measured after addition of enzymes preparation to the chitosan solution decreased dramatically over time in the sample with X in comparison to solution without the enzyme. For mixtures with CL and CS, lower viscosities were also recorded but not as low as the ones with X. A and B fractions were characterized by the most similar viscosity obtained by the xylanase hydrolysis and were 15 mPas and 9 mPas, respectively. Structural changes of chitosan oligomers A, B, C and their differences related with various enzyme preparations used were confirmed. Water solubility of A fractions was not possible to filter and the result was not recorded. Solubility of supernatants was approximately 95% and was higher than hydrolytic mixture. It was observed that the DPPH radical scavenging effect of A, B, C samples is the highest for X products and was approximately 13, 17, 19% respectively. In summary, a mixture of chitooligomers may be useful for the design of edible protective coatings due to the improved biophysical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulase" title="cellulase">cellulase</a>, <a href="https://publications.waset.org/abstracts/search?q=xylanase" title=" xylanase"> xylanase</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosanase" title=" chitosanase"> chitosanase</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=chitooligosaccharides" title=" chitooligosaccharides"> chitooligosaccharides</a> </p> <a href="https://publications.waset.org/abstracts/7592/characterisation-of-chitooligomers-prepared-with-the-aid-of-cellulase-xylanase-and-chitosanase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Biological Control of Karnal Bunt by Pseudomonas fluorescens </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetika%20Vajpayee">Geetika Vajpayee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sugandha%20Asthana"> Sugandha Asthana</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratibha%20Kumari"> Pratibha Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanthy%20Sundaram">Shanthy Sundaram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pseudomonas species possess a variety of promising properties of antifungal and growth promoting activities in the wheat plant. In the present study, Pseudomonas fluorescens MTCC-9768 is tested against plant pathogenic fungus Tilletia indica, causing Karnal bunt, a quarantine disease of wheat (Triticum aestivum) affecting kernels of wheat. It is one of the 1/A1 harmful diseases of wheat worldwide under EU legislation. This disease develops in the growth phase by the spreading of microscopically small spores of the fungus (teliospores) being dispersed by the wind. The present chemical fungicidal treatments were reported to reduce teliospores germination, but its effect is questionable since T. indica can survive up to four years in the soil. The fungal growth inhibition tests were performed using Dual Culture Technique, and the results showed inhibition by 82.5%. The interaction of antagonist bacteria-fungus causes changes in the morphology of hyphae, which was observed using Lactophenol cotton blue staining and Scanning Electron Microscopy (SEM). The rounded and swollen ends, called ‘theca’ were observed in interacted fungus as compared to control fungus (without bacterial interaction). This bacterium was tested for its antagonistic activity like protease, cellulose, HCN production, Chitinase, etc. The growth promoting activities showed increase production of IAA in bacteria. The bacterial secondary metabolites were extracted in different solvents for testing its growth inhibiting properties. The characterization and purification of the antifungal compound were done by Thin Layer Chromatography, and Rf value was calculated (Rf value = 0.54) and compared to the standard antifungal compound, 2, 4 DAPG (Rf value = 0.54). Further, the in vivo experiments showed a significant decrease in the severity of disease in the wheat plant due to direct injection method and seed treatment. Our results indicate that the extracted and purified compound from the antagonist bacteria, P. fluorescens MTCC-9768 may be used as a potential biocontrol agent against T. indica. This also concludes that the PGPR properties of the bacteria may be utilized by incorporating it into bio-fertilizers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antagonism" title="antagonism">antagonism</a>, <a href="https://publications.waset.org/abstracts/search?q=Karnal%20bunt" title=" Karnal bunt"> Karnal bunt</a>, <a href="https://publications.waset.org/abstracts/search?q=PGPR" title=" PGPR"> PGPR</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20fluorescens" title=" Pseudomonas fluorescens"> Pseudomonas fluorescens</a> </p> <a href="https://publications.waset.org/abstracts/67517/biological-control-of-karnal-bunt-by-pseudomonas-fluorescens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>