CINXE.COM
Search results for: parallel perfusion
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: parallel perfusion</title> <meta name="description" content="Search results for: parallel perfusion"> <meta name="keywords" content="parallel perfusion"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="parallel perfusion" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="parallel perfusion"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1279</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: parallel perfusion</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1279</span> Clinical Case Successful Surgical Treatment of Postinfarction Ventricular Septum Defect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melikulov%20A.%20A.">Melikulov A. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Toshpulotov%20Sh.%20G."> Toshpulotov Sh. G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhmedova%20M.%20F."> Akhmedova M. F.</a>, <a href="https://publications.waset.org/abstracts/search?q=Beshimov%20A.%20S."> Beshimov A. S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakhimov%20M.%20K.%20Zokirov%20N.%20K."> Rakhimov M. K. Zokirov N. K.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postinfarction ventricular septal defect (PVSD) is a rare but life-threatening complication of acute myocardial infarction. Currently, an alternative direction of minimally invasive treatment of postinfarction ventricular septal defect (PVSD) is being developed - transcatheter closure of the defect using an occluder, but surgical closure of the defect remains the <> correction of post-infarction VSD. Our article presents a case of successful surgical treatment of a patient with a large post-infarction rupture of the interventricular septum (IVS) and post-infarction LV aneurysm under cardiopulmonary bypass and parallel perfusion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=echocardiography" title="echocardiography">echocardiography</a>, <a href="https://publications.waset.org/abstracts/search?q=myocardial%20infarction" title=" myocardial infarction"> myocardial infarction</a>, <a href="https://publications.waset.org/abstracts/search?q=ventricular%20septal%20defect" title=" ventricular septal defect"> ventricular septal defect</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion" title=" parallel perfusion"> parallel perfusion</a> </p> <a href="https://publications.waset.org/abstracts/166006/clinical-case-successful-surgical-treatment-of-postinfarction-ventricular-septum-defect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1278</span> Intraoperative ICG-NIR Fluorescence Angiography Visualization of Intestinal Perfusion in Primary Pull-Through for Hirschsprung Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Emran">Mohammad Emran</a>, <a href="https://publications.waset.org/abstracts/search?q=Colton%20Wayne"> Colton Wayne</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%20M%20Koehler"> Shannon M Koehler</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Stephen%20Almond"> P. Stephen Almond</a>, <a href="https://publications.waset.org/abstracts/search?q=Haroon%20Patel"> Haroon Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Assessment of anastomotic perfusion in Hirschsprung disease using Indocyanine Green (ICG)-near-infrared (NIR) fluorescence angiography. Introduction: Anastomotic stricture and leak are well-known complications of Hirschsprung pull-through procedures. Complications are due to tension, infection, and/or poor perfusion. While a surgeon can visually determine and control the amount of tension and contamination, assessment of perfusion is subject to surgeon determination. Intraoperative use of ICG-NIR enhances this decision-making process by illustrating perfusion intensity and adequacy in the pulled-through bowel segment. This technique, proven to reduce anastomotic stricture and leak in adults, has not been studied in children to our knowledge. ICG, an FDA approved, nontoxic, non-immunogenic, intravascular (IV) dye, has been used in adults and children for over 60 years, with few side effects. ICG-NIR was used in this report to demonstrate the adequacy of perfusion during transanal pullthrough for Hirschsprung’s disease. Method: 8 patients with Hirschsprung disease were evaluated with ICG-NIR technology. Levels of affected area ranged from sigmoid to total colonic Hirschsprung disease. After leveling, but prior to anastomosis, ICG was administered at 1.25 mg (< 2 mg/kg) and perfusion visualized using an NIR camera, before and during anastomosis. Video and photo imaging was performed and perfusion of the bowel was compared to surrounding tissues. This showed the degree of perfusion and demarcation of perfused and non-perfused bowel. The anastomosis was completed uneventfully and the patients all did well. Results: There were no complications of stricture or leak. 5 of 8 patients (62.5%) had modification of the plan based on ICG-NIR imaging. Conclusion: Technologies that enhance surgeons’ ability to visualize bowel perfusion prior to anastomosis in Hirschsprung’s patients may help reduce post-operative complications. Further studies are needed to assess the potential benefits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colonic%20anastomosis" title="colonic anastomosis">colonic anastomosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20angiography" title=" fluorescence angiography"> fluorescence angiography</a>, <a href="https://publications.waset.org/abstracts/search?q=Hirschsprung%20disease" title=" Hirschsprung disease"> Hirschsprung disease</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatric%20surgery" title=" pediatric surgery"> pediatric surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=SPY" title=" SPY"> SPY</a> </p> <a href="https://publications.waset.org/abstracts/119109/intraoperative-icg-nir-fluorescence-angiography-visualization-of-intestinal-perfusion-in-primary-pull-through-for-hirschsprung-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1277</span> Balanced Ischemia Misleading to a False Negative Myocardial Perfusion Imaging (Stress) Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Devam%20Sheth">Devam Sheth </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nuclear imaging with stress myocardial perfusion (stress test) is the preferred first line investigation for noninvasive evaluation of ischaemic heart condition. The sensitivity of this test is close to 90 % making it a very reliable test. However, rarely it gives a false negative result which can be explained by the phenomenon termed as “balanced ischaemia”. We present the case of a 78 year Caucasian female without any significant past cardiac history, who presents with chest pain and shortness of breath since one day. The initial ECG and cardiac enzymes were non-impressive. Few hours later, she had some substernal chest pain along with some ST segment depression in the lateral leads. Stress test comes back negative for any significant perfusion defects. However, given her typical symptoms, she underwent a cardiac catheterization which revealed significant triple vessel disease mandating her to get a bypass surgery. This unusual phenomenon of false nuclear stress test in the setting of positive ECG changes can be explained only by balanced ischemia wherein due to global myocardial ischemia, the stress test fails to reveal relative perfusion defects in the affected segments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balanced" title="balanced">balanced</a>, <a href="https://publications.waset.org/abstracts/search?q=false%20positive" title=" false positive"> false positive</a>, <a href="https://publications.waset.org/abstracts/search?q=ischemia" title=" ischemia"> ischemia</a>, <a href="https://publications.waset.org/abstracts/search?q=myocardial%20perfusion%20imaging" title=" myocardial perfusion imaging"> myocardial perfusion imaging</a> </p> <a href="https://publications.waset.org/abstracts/49756/balanced-ischemia-misleading-to-a-false-negative-myocardial-perfusion-imaging-stress-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1276</span> Computed Tomography Myocardial Perfusion on a Patient with Hypertrophic Cardiomyopathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Pratap">Jitendra Pratap</a>, <a href="https://publications.waset.org/abstracts/search?q=Daphne%20Prybyszcuk"> Daphne Prybyszcuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Luke%20Elliott"> Luke Elliott</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnold%20Ng"> Arnold Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Coronary CT angiography is a non-invasive imaging technique for the assessment of coronary artery disease and has high sensitivity and negative predictive value. However, the correlation between the degree of CT coronary stenosis and the significance of hemodynamic obstruction is poor. The assessment of myocardial perfusion has mostly been undertaken by Nuclear Medicine (SPECT), but it is now possible to perform stress myocardial CT perfusion (CTP) scans quickly and effectively using CT scanners with high temporal resolution. Myocardial CTP is in many ways similar to neuro perfusion imaging technique, where radiopaque iodinated contrast is injected intravenously, transits the pulmonary and cardiac structures, and then perfuses through the coronary arteries into the myocardium. On the Siemens Force CT scanner, a myocardial perfusion scan is performed using a dynamic axial acquisition, where the scanner shuffles in and out every 1-3 seconds (heart rate dependent) to be able to cover the heart in the z plane. This is usually performed over 38 seconds. Report: A CT myocardial perfusion scan can be utilised to complement the findings of a CT Coronary Angiogram. Implementing a CT Myocardial Perfusion study as part of a routine CT Coronary Angiogram procedure provides a ‘One Stop Shop’ for diagnosis of coronary artery disease. This case study demonstrates that although the CT Coronary Angiogram was within normal limits, the perfusion scan provided additional, clinically significant information in regards to the haemodynamics within the myocardium of a patient with Hypertrophic Obstructive Cardio Myopathy (HOCM). This negated the need for further diagnostics studies such as cardiac ECHO or Nuclear Medicine Stress tests. Conclusion: CT coronary angiography with adenosine stress myocardial CTP was utilised in this case to specifically exclude coronary artery disease in conjunction with accessing perfusion within the hypertrophic myocardium. Adenosine stress myocardial CTP demonstrated the reduced myocardial blood flow within the hypertrophic myocardium, but the coronary arteries did not show any obstructive disease. A CT coronary angiogram scan protocol that incorporates myocardial perfusion can provide diagnostic information on the haemodynamic significance of any coronary artery stenosis and has the potential to be a “One Stop Shop” for cardiac imaging. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CT" title="CT">CT</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiac" title=" cardiac"> cardiac</a>, <a href="https://publications.waset.org/abstracts/search?q=myocardium" title=" myocardium"> myocardium</a>, <a href="https://publications.waset.org/abstracts/search?q=perfusion" title=" perfusion"> perfusion</a> </p> <a href="https://publications.waset.org/abstracts/152373/computed-tomography-myocardial-perfusion-on-a-patient-with-hypertrophic-cardiomyopathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1275</span> Optimizing the Morphology and Flow Patterns of Scaffold Perfusion Systems for Effective Cell Deposition Using Computational Fluid Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vineeth%20Siripuram">Vineeth Siripuram</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhineet%20Nigam"> Abhineet Nigam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A bioreactor is an engineered system that supports a biologically active environment. Along the years, the advancements in bioreactors have been widely accepted all over the world for varied applications ranging from sewage treatment to tissue cloning. Driven by tissue and organ shortage, tissue engineering has emerged as an alternative to transplantation for the reconstruction of lost or damaged organs. In this study, Computational fluid dynamics (CFD) has been used to model porous medium flow in scaffolds (taken from the literature) with different flow patterns. A detailed analysis of different scaffold geometries and their influence on cell deposition in the perfusion system is been carried out using Computational fluid dynamics (CFD). Considering the fact that, the scaffold should mimic the organs or tissues structures in a three-dimensional manner, certain assumptions were made accordingly. The research on scaffolds has been extensively carried out in different bioreactors. However, there has been less focus on the morphology of the scaffolds and the flow patterns in which the perfusion system is laid upon. The objective of this paper is to employ a computational approach using CFD simulation to determine the optimal morphology and the anisotropic measurements of the various samples of scaffolds. Using predictive computational modelling approach, variables which exert dominant effects on the cell deposition within the scaffold were prioritised and corresponding changes in morphology of scaffold and flow patterns in the perfusion systems are made. A Eulerian approach was carried on in multiple CFD simulations, and it is observed that the morphological and topological changes in the scaffold perfusion system are of great importance in the commercial applications of scaffolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20seeding" title="cell seeding">cell seeding</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20patterns" title=" flow patterns"> flow patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=perfusion%20systems" title=" perfusion systems"> perfusion systems</a>, <a href="https://publications.waset.org/abstracts/search?q=scaffold" title=" scaffold"> scaffold</a> </p> <a href="https://publications.waset.org/abstracts/90785/optimizing-the-morphology-and-flow-patterns-of-scaffold-perfusion-systems-for-effective-cell-deposition-using-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1274</span> Damage Strain Analysis of Parallel Fiber Eutectic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Zheng">Jian Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhua%20Ni"> Xinhua Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiequan%20Liu"> Xiequan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to isotropy of parallel fiber eutectic, the no- damage strain field in parallel fiber eutectic is obtained from the flexibility tensor of parallel fiber eutectic. Considering the damage behavior of parallel fiber eutectic, damage variables are introduced to determine the strain field of parallel fiber eutectic. The damage strains in the matrix, interphase, and fiber of parallel fiber eutectic are quantitatively analyzed. Results show that damage strains are not only associated with the fiber volume fraction of parallel fiber eutectic, but also with the damage degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage%20strain" title="damage strain">damage strain</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20strain" title=" initial strain"> initial strain</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20volume%20fraction" title=" fiber volume fraction"> fiber volume fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20fiber%20eutectic" title=" parallel fiber eutectic"> parallel fiber eutectic</a> </p> <a href="https://publications.waset.org/abstracts/60032/damage-strain-analysis-of-parallel-fiber-eutectic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">577</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1273</span> Parallel PRBS Generation and Parallel BER Tester for 8-Gbps On-chip Interconnection Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Bin">Zhao Bin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Dan%20Lei"> Yan Dan Lei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a multi-pattern parallel PRBS generator and a dedicated parallel BER tester is proposed for the 8-Gbps On-chip interconnection testing. A unique full-parallel PRBS checker is also proposed. The proposed design, together with the custom-designed high-speed parallel-to-serial and the serial-to-parallel circuit, will be used to test different on-chip interconnection transceivers. The design is implemented in TSMC 28nm CMOS technology with working voltage at 1.0 V. The serial to parallel ratio is 8:1 so the parallel PRBS generation and BER Tester can be run at lower speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PRBS" title="PRBS">PRBS</a>, <a href="https://publications.waset.org/abstracts/search?q=BER" title=" BER"> BER</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed" title=" high speed"> high speed</a>, <a href="https://publications.waset.org/abstracts/search?q=generator" title=" generator"> generator</a> </p> <a href="https://publications.waset.org/abstracts/35064/parallel-prbs-generation-and-parallel-ber-tester-for-8-gbps-on-chip-interconnection-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">760</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1272</span> A Parallel Implementation of k-Means in MATLAB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitris%20Varsamis">Dimitris Varsamis</a>, <a href="https://publications.waset.org/abstracts/search?q=Christos%20Talagkozis"> Christos Talagkozis</a>, <a href="https://publications.waset.org/abstracts/search?q=Alkiviadis%20Tsimpiris"> Alkiviadis Tsimpiris</a>, <a href="https://publications.waset.org/abstracts/search?q=Paris%20Mastorocostas"> Paris Mastorocostas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is the parallel implementation of k-means in MATLAB, in order to reduce the execution time. Specifically, a new function in MATLAB for serial k-means algorithm is developed, which meets all the requirements for the conversion to a function in MATLAB with parallel computations. Additionally, two different variants for the definition of initial values are presented. In the sequel, the parallel approach is presented. Finally, the performance tests for the computation times respect to the numbers of features and classes are illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=K-means%20algorithm" title="K-means algorithm">K-means algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computations" title=" parallel computations"> parallel computations</a>, <a href="https://publications.waset.org/abstracts/search?q=Matlab" title=" Matlab"> Matlab</a> </p> <a href="https://publications.waset.org/abstracts/80503/a-parallel-implementation-of-k-means-in-matlab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1271</span> A Survey on Constraint Solving Approaches Using Parallel Architectures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nebras%20Gharbi">Nebras Gharbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Itebeddine%20Ghorbel"> Itebeddine Ghorbel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the latest years and with the advancements of the multicore computing world, the constraint programming community tried to benefit from the capacity of new machines and make the best use of them through several parallel schemes for constraint solving. In this paper, we propose a survey of the different proposed approaches to solve Constraint Satisfaction Problems using parallel architectures. These approaches use in a different way a parallel architecture: the problem itself could be solved differently by several solvers or could be split over solvers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constraint%20programming" title="constraint programming">constraint programming</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20programming" title=" parallel programming"> parallel programming</a>, <a href="https://publications.waset.org/abstracts/search?q=constraint%20satisfaction%20problem" title=" constraint satisfaction problem"> constraint satisfaction problem</a>, <a href="https://publications.waset.org/abstracts/search?q=speed-up" title=" speed-up"> speed-up</a> </p> <a href="https://publications.waset.org/abstracts/50394/a-survey-on-constraint-solving-approaches-using-parallel-architectures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1270</span> Diagnostic Properties of Exercise or Pharmacological Stress Myocardial Perfusion Scintigraphy in Per-Vessel Basis: A Clinical Validation Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadreza%20Bagheri">Ahmadreza Bagheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20S.%20Eftekhari"> Seyyed S. Eftekhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shervin%20Rashidinia"> Shervin Rashidinia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Various stress tests have been proposed yet to assess patients with suspected coronary artery disease. However, their diagnostic properties in terms of sensitivity, specificity, and accuracy are variable and their applicability remained somewhat vague. The aim of this study is to validate per-vessel diagnostic properties of 3 types of stress myocardial perfusion scintigraphy in gated SPECT (Single-Photon Emission Computed Tomography) using either exercise or pharmacological stress testing with dipyridamole or dobutamine. Materials and Methods: Hospital records of 314 patients who referred to Imam Khomeini hospital of Tehran between September 2015 and January 2017 were completely reviewed in this study. All patients underwent coronary angiography within 3 months after stress myocardial perfusion scan. Eventually, the results were analyzed in per-vessel basis to find the proper modality for each involved vessel or scanned site. Results: The mean age of patients was 62.15 ± 4.94 years (30-85) and 35.03% were women. The overall sensitivity, specificity, and accuracy were calculated as 56.59%, 54.24%, and 55.09%, respectively. These values were 56.43% and 53.25%, 54.46% and 47.36%, 56.75% and 54.83% for dipyridamole and exercise, respectively. Ischemia of the anterior wall through exercise stress testing has the highest diagnostic accuracy in detecting LAD (Left Anterior Descending artery) involvement. Inferior wall hypokinesia and anterolateral wall ischemia during exercise stress testing have the highest diagnostic accuracy in detecting RCA (Right Coronary Artery) and LCX artery (Left Circumflex Artery) stenosis, respectively. Conclusion: Stress myocardial perfusion scan should be carried out on the basis of the findings of the preliminary investigations on suspicion of a specific coronary artery or involved myocardial wall. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dipyridamole" title="dipyridamole">dipyridamole</a>, <a href="https://publications.waset.org/abstracts/search?q=dobutamine" title=" dobutamine"> dobutamine</a>, <a href="https://publications.waset.org/abstracts/search?q=single-photon%20emission%20computed%20tomography" title=" single-photon emission computed tomography"> single-photon emission computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20myocardial%20perfusion%20scintigraphy" title=" stress myocardial perfusion scintigraphy"> stress myocardial perfusion scintigraphy</a> </p> <a href="https://publications.waset.org/abstracts/96958/diagnostic-properties-of-exercise-or-pharmacological-stress-myocardial-perfusion-scintigraphy-in-per-vessel-basis-a-clinical-validation-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96958.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1269</span> Effect of Colloid Versus Crystalloid Administration in Cardiopulmonary Bypass Prime Solution on Tissue and Organ Perfusionm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Java%20Esmaeily">Mohammad Java Esmaeily</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: We evaluate the effects of tissue and organ perfusion during and after coronary artery bypass graft surgery with either colloid (Voluven) or crystalloid (Lactated ringers) as a prime solution. Materials and Methods: In this prospective randomized-controlled trial study, 70 patients undergoing on-pump coronary artery bypass graft surgery were randomly assigned to receive either colloid (Voluven) or crystalloid (Lactated ringer's) as a prime solution for initiation of cardiopulmonary bypass machine procedure. Tissue and organ perfusion markers, including lactate, troponin I, liver and renal function tests and electrolytes, were measured sequentially before induction (T1) to the second days after surgery (T5). Results: With the exception of chloride and potassium levels, no significant differences were detected in other measurements, and laboratory results were identical entirely in the two groups. Conclusion: Voluven® (hydroxyethyl starch, HES 130/0.4) has a not significant difference in comparison with crystalloid (Lactated ringer's) as priming solution on the basis of organ and tissue perfusion tests assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prime" title="prime">prime</a>, <a href="https://publications.waset.org/abstracts/search?q=colloid" title=" colloid"> colloid</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalloid" title=" crystalloid"> crystalloid</a>, <a href="https://publications.waset.org/abstracts/search?q=lactate" title=" lactate"> lactate</a>, <a href="https://publications.waset.org/abstracts/search?q=troponin" title=" troponin"> troponin</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyethyl%20starch" title=" hydroxyethyl starch"> hydroxyethyl starch</a> </p> <a href="https://publications.waset.org/abstracts/162886/effect-of-colloid-versus-crystalloid-administration-in-cardiopulmonary-bypass-prime-solution-on-tissue-and-organ-perfusionm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1268</span> Assessing the Blood-Brain Barrier (BBB) Permeability in PEA-15 Mutant Cat Brain using Magnetization Transfer (MT) Effect at 7T</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Z.%20Mahmud">Sultan Z. Mahmud</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20C.%20Graff"> Emily C. Graff</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Bashir"> Adil Bashir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) is a multifunctional adapter protein which is associated with the regulation of apoptotic cell death. Recently it has been discovered that PEA-15 is crucial in normal neurodevelopment of domestic cats, a gyrencephalic animal model, although the exact function of PEA-15 in neurodevelopment is unknown. This study investigates how PEA-15 affects the blood-brain barrier (BBB) permeability in cat brain, which can cause abnormalities in tissue metabolite and energy supplies. Severe polymicrogyria and microcephaly have been observed in cats with a loss of function PEA-15 mutation, affecting the normal neurodevelopment of the cat. This suggests that the vital role of PEA-15 in neurodevelopment is associated with gyrification. Neurodevelopment is a highly energy demanding process. The mammalian brain depends on glucose as its main energy source. PEA-15 plays a very important role in glucose uptake and utilization by interacting with phospholipase D1 (PLD1). Mitochondria also plays a critical role in bioenergetics and essential to supply adequate energy needed for neurodevelopment. Cerebral blood flow regulates adequate metabolite supply and recent findings also showed that blood plasma contains mitochondria as well. So the BBB can play a very important role in regulating metabolite and energy supply in the brain. In this study the blood-brain permeability in cat brain was measured using MRI magnetization transfer (MT) effect on the perfusion signal. Perfusion is the tissue mass normalized supply of blood to the capillary bed. Perfusion also accommodates the supply of oxygen and other metabolites to the tissue. A fraction of the arterial blood can diffuse to the tissue, which depends on the BBB permeability. This fraction is known as water extraction fraction (EF). MT is a process of saturating the macromolecules, which has an effect on the blood that has been diffused into the tissue while having minimal effect on intravascular blood water that has not been exchanged with the tissue. Measurement of perfusion signal with and without MT enables to estimate the microvascular blood flow, EF and permeability surface area product (PS) in the brain. All the experiments were performed with Siemens 7T Magnetom with 32 channel head coil. Three control cats and three PEA-15 mutant cats were used for the study. Average EF in white and gray matter was 0.9±0.1 and 0.86±0.15 respectively, perfusion in white and gray matter was 85±15 mL/100g/min and 97±20 mL/100g/min respectively, PS in white and gray matter was 201±25 mL/100g/min and 225±35 mL/100g/min respectively for control cats. For PEA-15 mutant cats, average EF in white and gray matter was 0.81±0.15 and 0.77±0.2 respectively, perfusion in white and gray matter was 140±25 mL/100g/min and 165±18 mL/100g/min respectively, PS in white and gray matter was 240±30 mL/100g/min and 259±21 mL/100g/min respectively. This results show that BBB is compromised in PEA-15 mutant cat brain, where EF is decreased and perfusion as well as PS are increased in the mutant cats compared to the control cats. This findings might further explain the function of PEA-15 in neurodevelopment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BBB" title="BBB">BBB</a>, <a href="https://publications.waset.org/abstracts/search?q=cat%20brain" title=" cat brain"> cat brain</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization%20transfer" title=" magnetization transfer"> magnetization transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=PEA-15" title=" PEA-15"> PEA-15</a> </p> <a href="https://publications.waset.org/abstracts/128208/assessing-the-blood-brain-barrier-bbb-permeability-in-pea-15-mutant-cat-brain-using-magnetization-transfer-mt-effect-at-7t" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1267</span> The Vision Baed Parallel Robot Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sun%20Lim">Sun Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyun%20Jung"> Kyun Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we describe the control strategy of high speed parallel robot system with EtherCAT network. This work deals the parallel robot system with centralized control on the real-time operating system such as window TwinCAT3. Most control scheme and algorithm is implemented master platform on the PC, the input and output interface is ported on the slave side. The data is transferred by maximum 20usecond with 1000byte. EtherCAT is very high speed and stable industrial network. The control strategy with EtherCAT is very useful and robust on Ethernet network environment. The developed parallel robot is controlled pre-design nonlinear controller for 6G/0.43 cycle time of pick and place motion tracking. The experiment shows the good design and validation of the controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%20robot%20control" title="parallel robot control">parallel robot control</a>, <a href="https://publications.waset.org/abstracts/search?q=etherCAT" title=" etherCAT"> etherCAT</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20control" title=" nonlinear control"> nonlinear control</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20robot%20inverse%20kinematic" title=" parallel robot inverse kinematic"> parallel robot inverse kinematic</a> </p> <a href="https://publications.waset.org/abstracts/27428/the-vision-baed-parallel-robot-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1266</span> Flowing Online Vehicle GPS Data Clustering Using a New Parallel K-Means Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orhun%20Vural">Orhun Vural</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguz%20%20Bayat"> Oguz Bayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Rustu%20Akay"> Rustu Akay</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20N.%20Ucan"> Osman N. Ucan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents a new parallel approach clustering of GPS data. Evaluation has been made by comparing execution time of various clustering algorithms on GPS data. This paper aims to propose a parallel based on neighborhood K-means algorithm to make it faster. The proposed parallelization approach assumes that each GPS data represents a vehicle and to communicate between vehicles close to each other after vehicles are clustered. This parallelization approach has been examined on different sized continuously changing GPS data and compared with serial K-means algorithm and other serial clustering algorithms. The results demonstrated that proposed parallel K-means algorithm has been shown to work much faster than other clustering algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%20k-means%20algorithm" title="parallel k-means algorithm">parallel k-means algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20clustering" title=" parallel clustering"> parallel clustering</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering%20algorithms" title=" clustering algorithms"> clustering algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering%20on%20flowing%20data" title=" clustering on flowing data"> clustering on flowing data</a> </p> <a href="https://publications.waset.org/abstracts/86622/flowing-online-vehicle-gps-data-clustering-using-a-new-parallel-k-means-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1265</span> Development of an Automatic Control System for ex vivo Heart Perfusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pengzhou%20Lu">Pengzhou Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Liming%20Xin"> Liming Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=Payam%20Tavakoli"> Payam Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhonghua%20Lin"> Zhonghua Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20V.%20P.%20Ribeiro"> Roberto V. P. Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitesh%20V.%20Badiwala"> Mitesh V. Badiwala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ex vivo Heart Perfusion (EVHP) has been developed as an alternative strategy to expand cardiac donation by enabling resuscitation and functional assessment of hearts donated from marginal donors, which were previously not accepted. EVHP parameters, such as perfusion flow (PF) and perfusion pressure (PP) are crucial for optimal organ preservation. However, with the heart’s constant physiological changes during EVHP, such as coronary vascular resistance, manual control of these parameters is rendered imprecise and cumbersome for the operator. Additionally, low control precision and the long adjusting time may lead to irreversible damage to the myocardial tissue. To solve this problem, an automatic heart perfusion system was developed by applying a Human-Machine Interface (HMI) and a Programmable-Logic-Controller (PLC)-based circuit to control PF and PP. The PLC-based control system collects the data of PF and PP through flow probes and pressure transducers. It has two control modes: the RPM-flow mode and the pressure mode. The RPM-flow control mode is an open-loop system. It influences PF through providing and maintaining the desired speed inputted through the HMI to the centrifugal pump with a maximum error of 20 rpm. The pressure control mode is a closed-loop system where the operator selects a target Mean Arterial Pressure (MAP) to control PP. The inputs of the pressure control mode are the target MAP, received through the HMI, and the real MAP, received from the pressure transducer. A PID algorithm is applied to maintain the real MAP at the target value with a maximum error of 1mmHg. The precision and control speed of the RPM-flow control mode were examined by comparing the PLC-based system to an experienced operator (EO) across seven RPM adjustment ranges (500, 1000, 2000 and random RPM changes; 8 trials per range) tested in a random order. System’s PID algorithm performance in pressure control was assessed during 10 EVHP experiments using porcine hearts. Precision was examined through monitoring the steady-state pressure error throughout perfusion period, and stabilizing speed was tested by performing two MAP adjustment changes (4 trials per change) of 15 and 20mmHg. A total of 56 trials were performed to validate the RPM-flow control mode. Overall, the PLC-based system demonstrated the significantly faster speed than the EO in all trials (PLC 1.21±0.03, EO 3.69±0.23 seconds; p < 0.001) and greater precision to reach the desired RPM (PLC 10±0.7, EO 33±2.7 mean RPM error; p < 0.001). Regarding pressure control, the PLC-based system has the median precision of ±1mmHg error and the median stabilizing times in changing 15 and 20mmHg of MAP are 15 and 19.5 seconds respectively. The novel PLC-based control system was 3 times faster with 60% less error than the EO for RPM-flow control. In pressure control mode, it demonstrates a high precision and fast stabilizing speed. In summary, this novel system successfully controlled perfusion flow and pressure with high precision, stability and a fast response time through a user-friendly interface. This design may provide a viable technique for future development of novel heart preservation and assessment strategies during EVHP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20control%20system" title="automatic control system">automatic control system</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20engineering" title=" biomedical engineering"> biomedical engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=ex-vivo%20heart%20perfusion" title=" ex-vivo heart perfusion"> ex-vivo heart perfusion</a>, <a href="https://publications.waset.org/abstracts/search?q=human-machine%20interface" title=" human-machine interface"> human-machine interface</a>, <a href="https://publications.waset.org/abstracts/search?q=programmable%20logic%20controller" title=" programmable logic controller"> programmable logic controller</a> </p> <a href="https://publications.waset.org/abstracts/86767/development-of-an-automatic-control-system-for-ex-vivo-heart-perfusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1264</span> Parallel 2-Opt Local Search on GPU</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wen-Bao%20Qiao">Wen-Bao Qiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Charles%20Cr%C3%A9put"> Jean-Charles Créput</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To accelerate the solution for large scale traveling salesman problems (TSP), a parallel 2-opt local search algorithm with simple implementation based on Graphics Processing Unit (GPU) is presented and tested in this paper. The parallel scheme is based on technique of data decomposition by dynamically assigning multiple K processors on the integral tour to treat K edges’ 2-opt local optimization simultaneously on independent sub-tours, where K can be user-defined or have a function relationship with input size N. We implement this algorithm with doubly linked list on GPU. The implementation only requires O(N) memory. We compare this parallel 2-opt local optimization against sequential exhaustive 2-opt search along integral tour on TSP instances from TSPLIB with more than 10000 cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parallel%202-opt" title="parallel 2-opt">parallel 2-opt</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20links" title=" double links"> double links</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20TSP" title=" large scale TSP"> large scale TSP</a>, <a href="https://publications.waset.org/abstracts/search?q=GPU" title=" GPU"> GPU</a> </p> <a href="https://publications.waset.org/abstracts/58582/parallel-2-opt-local-search-on-gpu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">625</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1263</span> Parallelization by Domain Decomposition for 1-D Sugarcane Equation with Message Passing Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ewedafe%20Simon%20Uzezi">Ewedafe Simon Uzezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we presented a method based on Domain Decomposition (DD) for parallelization of 1-D Sugarcane Equation on parallel platform with parallel paradigms on Master-Slave platform using Message Passing Interface (MPI). The 1-D Sugarcane Equation was discretized using explicit method of discretization requiring evaluation nof temporal and spatial distribution of temperature. This platform gives better predictions of the effects of temperature distribution of the sugarcane problem. This work presented parallel overheads with overlapping communication and communication across parallel computers with numerical results across different block sizes with scalability. However, performance improvement strategies from the DD on various mesh sizes were compared experimentally and parallel results show speedup and efficiency for the parallel algorithms design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugarcane" title="sugarcane">sugarcane</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelization" title=" parallelization"> parallelization</a>, <a href="https://publications.waset.org/abstracts/search?q=explicit%20method" title=" explicit method"> explicit method</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20decomposition" title=" domain decomposition"> domain decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=MPI" title=" MPI"> MPI</a> </p> <a href="https://publications.waset.org/abstracts/192206/parallelization-by-domain-decomposition-for-1-d-sugarcane-equation-with-message-passing-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1262</span> Dynamic Analysis of Offshore 2-HUS/U Parallel Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xie%20Kefeng">Xie Kefeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20He"> Zhang He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2-HUS%2FU%20platform" title="2-HUS/U platform">2-HUS/U platform</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamics" title=" dynamics"> dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrange" title=" Lagrange"> Lagrange</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20platform" title=" parallel platform"> parallel platform</a> </p> <a href="https://publications.waset.org/abstracts/54812/dynamic-analysis-of-offshore-2-husu-parallel-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1261</span> Designing a Robust Controller for a 6 Linkage Robot </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Khamooshian">G. Khamooshian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3-RRS" title="3-RRS">3-RRS</a>, <a href="https://publications.waset.org/abstracts/search?q=6%20linkage" title=" 6 linkage"> 6 linkage</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20robot" title=" parallel robot"> parallel robot</a>, <a href="https://publications.waset.org/abstracts/search?q=control" title=" control"> control</a> </p> <a href="https://publications.waset.org/abstracts/100326/designing-a-robust-controller-for-a-6-linkage-robot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1260</span> Parallel Querying of Distributed Ontologies with Shared Vocabulary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharjeel%20Aslam">Sharjeel Aslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Vassil%20Vassilev"> Vassil Vassilev</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Ouazzane"> Karim Ouazzane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ontologies and various semantic repositories became a convenient approach for implementing model-driven architectures of distributed systems on the Web. SPARQL is the standard query language for querying such. However, although SPARQL is well-established standard for querying semantic repositories in RDF and OWL format and there are commonly used APIs which supports it, like Jena for Java, its parallel option is not incorporated in them. This article presents a complete framework consisting of an object algebra for parallel RDF and an index-based implementation of the parallel query engine capable of dealing with the distributed RDF ontologies which share common vocabulary. It has been implemented in Java, and for validation of the algorithms has been applied to the problem of organizing virtual exhibitions on the Web. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20ontologies" title="distributed ontologies">distributed ontologies</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20querying" title=" parallel querying"> parallel querying</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20indexing" title=" semantic indexing"> semantic indexing</a>, <a href="https://publications.waset.org/abstracts/search?q=shared%20vocabulary" title=" shared vocabulary"> shared vocabulary</a>, <a href="https://publications.waset.org/abstracts/search?q=SPARQL" title=" SPARQL"> SPARQL</a> </p> <a href="https://publications.waset.org/abstracts/105046/parallel-querying-of-distributed-ontologies-with-shared-vocabulary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1259</span> Parallel Coordinates on a Spiral Surface for Visualizing High-Dimensional Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chris%20Suma">Chris Suma</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingcai%20Xiao"> Yingcai Xiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents Parallel Coordinates on a Spiral Surface (PCoSS), a parallel coordinate based interactive visualization method for high-dimensional data, and a test implementation of the method. Plots generated by the test system are compared with those generated by XDAT, a software implementing traditional parallel coordinates. Traditional parallel coordinate plots can be cluttered when the number of data points is large or when the dimensionality of the data is high. PCoSS plots display multivariate data on a 3D spiral surface and allow users to see the whole picture of high-dimensional data with less cluttering. Taking advantage of the 3D display environment in PCoSS, users can further reduce cluttering by zooming into an axis of interest for a closer view or by moving vantage points and by reorienting the viewing angle to obtain a desired view of the plots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20computer%20interaction" title="human computer interaction">human computer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20coordinates" title=" parallel coordinates"> parallel coordinates</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral%20surface" title=" spiral surface"> spiral surface</a>, <a href="https://publications.waset.org/abstracts/search?q=visualization" title=" visualization"> visualization</a> </p> <a href="https://publications.waset.org/abstracts/193466/parallel-coordinates-on-a-spiral-surface-for-visualizing-high-dimensional-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">11</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1258</span> Consumption and Diffusion Based Model of Tissue Organoid Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Petersen">Elena Petersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Inna%20Kornienko"> Inna Kornienko</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Guryeva"> Svetlana Guryeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergey%20Simakov"> Sergey Simakov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In vitro organoid cultivation requires the simultaneous provision of necessary vascularization and nutrients perfusion of cells during organoid development. However, many aspects of this problem are still unsolved. The functionality of vascular network intergrowth is limited during early stages of organoid development since a function of the vascular network initiated on final stages of in vitro organoid cultivation. Therefore, a microchannel network should be created in early stages of organoid cultivation in hydrogel matrix aimed to conduct and maintain minimally required the level of nutrients perfusion for all cells in the expanding organoid. The network configuration should be designed properly in order to exclude hypoxic and necrotic zones in expanding organoid at all stages of its cultivation. In vitro vascularization is currently the main issue within the field of tissue engineering. As perfusion and oxygen transport have direct effects on cell viability and differentiation, researchers are currently limited only to tissues of few millimeters in thickness. These limitations are imposed by mass transfer and are defined by the balance between the metabolic demand of the cellular components in the system and the size of the scaffold. Current approaches include growth factor delivery, channeled scaffolds, perfusion bioreactors, microfluidics, cell co-cultures, cell functionalization, modular assembly, and in vivo systems. These approaches may improve cell viability or generate capillary-like structures within a tissue construct. Thus, there is a fundamental disconnect between defining the metabolic needs of tissue through quantitative measurements of oxygen and nutrient diffusion and the potential ease of integration into host vasculature for future in vivo implantation. A model is proposed for growth prognosis of the organoid perfusion based on joint simulations of general nutrient diffusion, nutrient diffusion to the hydrogel matrix through the contact surfaces and microchannels walls, nutrient consumption by the cells of expanding organoid, including biomatrix contraction during tissue development, which is associated with changed consumption rate of growing organoid cells. The model allows computing effective microchannel network design giving minimally required the level of nutrients concentration in all parts of growing organoid. It can be used for preliminary planning of microchannel network design and simulations of nutrients supply rate depending on the stage of organoid development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20model" title="3D model">3D model</a>, <a href="https://publications.waset.org/abstracts/search?q=consumption%20model" title=" consumption model"> consumption model</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=spheroid" title=" spheroid"> spheroid</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20organoid" title=" tissue organoid"> tissue organoid</a> </p> <a href="https://publications.waset.org/abstracts/65657/consumption-and-diffusion-based-model-of-tissue-organoid-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1257</span> Parallel Random Number Generation for the Modern Supercomputer Architectures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roman%20Snytsar">Roman Snytsar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudo-random%20numbers" title="pseudo-random numbers">pseudo-random numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20optimization" title=" quantum optimization"> quantum optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=SIMD" title=" SIMD"> SIMD</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20computing" title=" parallel computing"> parallel computing</a> </p> <a href="https://publications.waset.org/abstracts/152951/parallel-random-number-generation-for-the-modern-supercomputer-architectures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1256</span> Classification Rule Discovery by Using Parallel Ant Colony Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Waseem%20Shahzad">Waseem Shahzad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayesha%20Tahir%20Khan"> Ayesha Tahir Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Hussain%20Awan"> Hamid Hussain Awan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ant-Miner algorithm that lies under ACO algorithms is used to extract knowledge from data in the form of rules. A variant of Ant-Miner algorithm named as cAnt-MinerPB is used to generate list of rules using pittsburgh approach in order to maintain the rule interaction among the rules that are generated. In this paper, we propose a parallel Ant MinerPB in which Ant colony optimization algorithm runs parallel. In this technique, a data set is divided vertically (i-e attributes) into different subsets. These subsets are created based on the correlation among attributes using Mutual Information (MI). It generates rules in a parallel manner and then merged to form a final list of rules. The results have shown that the proposed technique achieved higher accuracy when compared with original cAnt-MinerPB and also the execution time has also reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization" title="ant colony optimization">ant colony optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20Ant-MinerPB" title=" parallel Ant-MinerPB"> parallel Ant-MinerPB</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20partitioning" title=" vertical partitioning"> vertical partitioning</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20rule%20discovery" title=" classification rule discovery"> classification rule discovery</a> </p> <a href="https://publications.waset.org/abstracts/43773/classification-rule-discovery-by-using-parallel-ant-colony-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1255</span> Pushing the Boundary of Parallel Tractability for Ontology Materialization via Boolean Circuits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhangquan%20Zhou">Zhangquan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Guilin%20Qi"> Guilin Qi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Materialization is an important reasoning service for applications built on the Web Ontology Language (OWL). To make materialization efficient in practice, current research focuses on deciding tractability of an ontology language and designing parallel reasoning algorithms. However, some well-known large-scale ontologies, such as YAGO, have been shown to have good performance for parallel reasoning, but they are expressed in ontology languages that are not parallelly tractable, i.e., the reasoning is inherently sequential in the worst case. This motivates us to study the problem of parallel tractability of ontology materialization from a theoretical perspective. That is we aim to identify the ontologies for which materialization is parallelly tractable, i.e., in the NC complexity. Since the NC complexity is defined based on Boolean circuit that is widely used to investigate parallel computing problems, we first transform the problem of materialization to evaluation of Boolean circuits, and then study the problem of parallel tractability based on circuits. In this work, we focus on datalog rewritable ontology languages. We use Boolean circuits to identify two classes of datalog rewritable ontologies (called parallelly tractable classes) such that materialization over them is parallelly tractable. We further investigate the parallel tractability of materialization of a datalog rewritable OWL fragment DHL (Description Horn Logic). Based on the above results, we analyze real-world datasets and show that many ontologies expressed in DHL belong to the parallelly tractable classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ontology%20materialization" title="ontology materialization">ontology materialization</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20reasoning" title=" parallel reasoning"> parallel reasoning</a>, <a href="https://publications.waset.org/abstracts/search?q=datalog" title=" datalog"> datalog</a>, <a href="https://publications.waset.org/abstracts/search?q=Boolean%20circuit" title=" Boolean circuit"> Boolean circuit</a> </p> <a href="https://publications.waset.org/abstracts/57402/pushing-the-boundary-of-parallel-tractability-for-ontology-materialization-via-boolean-circuits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1254</span> Comparative Analysis of Classical and Parallel Inpainting Algorithms Based on Affine Combinations of Projections on Convex Sets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20Maria%20Artinescu">Irina Maria Artinescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Costin%20Radu%20Boldea"> Costin Radu Boldea</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduard-Ionut%20Matei"> Eduard-Ionut Matei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper is a comparative study of two classical variants of parallel projection methods for solving the convex feasibility problem with their equivalents that involve variable weights in the construction of the solutions. We used a graphical representation of these methods for inpainting a convex area of an image in order to investigate their effectiveness in image reconstruction applications. We also presented a numerical analysis of the convergence of these four algorithms in terms of the average number of steps and execution time in classical CPU and, alternatively, in parallel GPU implementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convex%20feasibility%20problem" title="convex feasibility problem">convex feasibility problem</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence%20analysis" title=" convergence analysis"> convergence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inpainting" title=" inpainting"> inpainting</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20projection%20methods" title=" parallel projection methods"> parallel projection methods</a> </p> <a href="https://publications.waset.org/abstracts/133736/comparative-analysis-of-classical-and-parallel-inpainting-algorithms-based-on-affine-combinations-of-projections-on-convex-sets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1253</span> Achievable Average Secrecy Rates over Bank of Parallel Independent Fading Channels with Friendly Jamming</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Munnujahan%20Ara">Munnujahan Ara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we investigate the effect of friendly jamming power allocation strategies on the achievable average secrecy rate over a bank of parallel fading wiretap channels. We investigate the achievable average secrecy rate in parallel fading wiretap channels subject to Rayleigh and Rician fading. The achievable average secrecy rate, due to the presence of a line-of-sight component in the jammer channel is also evaluated. Moreover, we study the detrimental effect of correlation across the parallel sub-channels, and evaluate the corresponding decrease in the achievable average secrecy rate for the various fading configurations. We also investigate the tradeoff between the transmission power and the jamming power for a fixed total power budget. Our results, which are applicable to current orthogonal frequency division multiplexing (OFDM) communications systems, shed further light on the achievable average secrecy rates over a bank of parallel fading channels in the presence of friendly jammers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fading%20parallel%20channels" title="fading parallel channels">fading parallel channels</a>, <a href="https://publications.waset.org/abstracts/search?q=wire-tap%20channel" title=" wire-tap channel"> wire-tap channel</a>, <a href="https://publications.waset.org/abstracts/search?q=OFDM" title=" OFDM"> OFDM</a>, <a href="https://publications.waset.org/abstracts/search?q=secrecy%20capacity" title=" secrecy capacity"> secrecy capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20allocation" title=" power allocation"> power allocation</a> </p> <a href="https://publications.waset.org/abstracts/25080/achievable-average-secrecy-rates-over-bank-of-parallel-independent-fading-channels-with-friendly-jamming" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1252</span> A Parallel Algorithm for Solving the PFSP on the Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samia%20Kouki">Samia Kouki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solving NP-hard combinatorial optimization problems by exact search methods, such as Branch-and-Bound, may degenerate to complete enumeration. For that reason, exact approaches limit us to solve only small or moderate size problem instances, due to the exponential increase in CPU time when problem size increases. One of the most promising ways to reduce significantly the computational burden of sequential versions of Branch-and-Bound is to design parallel versions of these algorithms which employ several processors. This paper describes a parallel Branch-and-Bound algorithm called GALB for solving the classical permutation flowshop scheduling problem as well as its implementation on a Grid computing infrastructure. The experimental study of our distributed parallel algorithm gives promising results and shows clearly the benefit of the parallel paradigm to solve large-scale instances in moderate CPU time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grid%20computing" title="grid computing">grid computing</a>, <a href="https://publications.waset.org/abstracts/search?q=permutation%20flow%20shop%20problem" title=" permutation flow shop problem"> permutation flow shop problem</a>, <a href="https://publications.waset.org/abstracts/search?q=branch%20and%20bound" title=" branch and bound"> branch and bound</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20balancing" title=" load balancing"> load balancing</a> </p> <a href="https://publications.waset.org/abstracts/47518/a-parallel-algorithm-for-solving-the-pfsp-on-the-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1251</span> The Parallelization of Algorithm Based on Partition Principle for Association Rules Discovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khadidja%20Belbachir">Khadidja Belbachir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafida%20Belbachir"> Hafida Belbachir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> subsequently the expansion of the physical supports storage and the needs ceaseless to accumulate several data, the sequential algorithms of associations’ rules research proved to be ineffective. Thus the introduction of the new parallel versions is imperative. We propose in this paper, a parallel version of a sequential algorithm “Partition”. This last is fundamentally different from the other sequential algorithms, because it scans the data base only twice to generate the significant association rules. By consequence, the parallel approach does not require much communication between the sites. The proposed approach was implemented for an experimental study. The obtained results, shows a great reduction in execution time compared to the sequential version and Count Distributed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association%20rules" title="association rules">association rules</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20data%20mining" title=" distributed data mining"> distributed data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=partition" title=" partition"> partition</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20algorithms" title=" parallel algorithms"> parallel algorithms</a> </p> <a href="https://publications.waset.org/abstracts/34591/the-parallelization-of-algorithm-based-on-partition-principle-for-association-rules-discovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1250</span> Study of Temperature Difference and Current Distribution in Parallel-Connected Cells at Low Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Kamalisiahroudi">Sara Kamalisiahroudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Huang"> Jun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Li"> Zhe Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianbo%20Zhang"> Jianbo Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two types of commercial cylindrical lithium ion batteries (Panasonic 3.4 Ah NCR-18650B and Samsung 2.9 Ah INR-18650), were investigated experimentally. The capacities of these samples were individually measured using constant current-constant voltage (CC-CV) method at different ambient temperatures (-10 ℃, 0 ℃, 25 ℃). Their internal resistance was determined by electrochemical impedance spectroscopy (EIS) and pulse discharge methods. The cells with different configurations of parallel connection NCR-NCR, INR-INR and NCR-INR were charged/discharged at the aforementioned ambient temperatures. The results showed that the difference of internal resistance between cells much more evident at low temperatures. Furthermore, the parallel connection of NCR-NCR exhibits the most uniform temperature distribution in cells at -10 ℃, this feature is quite favorable for the safety of the battery pack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=batteries%20in%20parallel%20connection" title="batteries in parallel connection">batteries in parallel connection</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20resistance" title=" internal resistance"> internal resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature" title=" low temperature"> low temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20difference" title=" temperature difference"> temperature difference</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20distribution" title=" current distribution"> current distribution</a> </p> <a href="https://publications.waset.org/abstracts/14226/study-of-temperature-difference-and-current-distribution-in-parallel-connected-cells-at-low-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14226.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=42">42</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=43">43</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=parallel%20perfusion&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>