CINXE.COM
Search results for: Anopheles fluviatilis
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Anopheles fluviatilis</title> <meta name="description" content="Search results for: Anopheles fluviatilis"> <meta name="keywords" content="Anopheles fluviatilis"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Anopheles fluviatilis" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Anopheles fluviatilis"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 28</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Anopheles fluviatilis</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Bacterial Flora of the Anopheles Fluviatilis S. L. in an Endemic Malaria Area in Southeastern Iran for Candidate Paraterasgenesis Strains</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hassan%20Moosa-kazemi">Seyed Hassan Moosa-kazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Mohammadi%20Soleimani"> Jalal Mohammadi Soleimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Vatandoost"> Hassan Vatandoost</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hassan%20Shirazi"> Mohammad Hassan Shirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Hajikhani"> Sara Hajikhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Roonak%20Bakhtiari"> Roonak Bakhtiari</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Akbari"> Morteza Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Siamak%20Hydarzadeh"> Siamak Hydarzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is an infectious disease and considered most important health problems in the southeast of Iran. Iran is elimination malaria phase and new tool need to vector control. Paraterasgenesis is a new way to cut of life cycle of the malaria parasite. In this study, the microflora of the surface and gut of various stages of Anopheles fluviatilis James as one of the important malaria vector was studied using biochemical and molecular techniques during 2013-2014. Twelve bacteria species were found including; Providencia rettgeri, Morganella morganii, Enterobacter aerogenes, Pseudomonas oryzihabitans, Citrobacter braakii، Citrobacter freundii، Aeromonas hydrophila، Klebsiella oxytoca, Citrobacter koseri, Serratia fonticola، Enterobacter sakazakii and Yersinia pseudotuberculosis. The species of Alcaligenes faecalis, Providencia vermicola and Enterobacter hormaechei were identified in various stages of the vector and confirmed by biochemical and molecular techniques. We found Providencia rettgeri proper candidate for paratransgenesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20fluviatilis" title="Anopheles fluviatilis">Anopheles fluviatilis</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Paraterasgenesis" title=" Paraterasgenesis"> Paraterasgenesis</a>, <a href="https://publications.waset.org/abstracts/search?q=Southern%20Iran" title=" Southern Iran"> Southern Iran</a> </p> <a href="https://publications.waset.org/abstracts/38738/bacterial-flora-of-the-anopheles-fluviatilis-s-l-in-an-endemic-malaria-area-in-southeastern-iran-for-candidate-paraterasgenesis-strains" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Distribution and Densities of Anopheles Mosquito in El Obied Town, Sudan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20Musa%20Adam%20Eissa">Adam Musa Adam Eissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Environmental and weather changes especially rainfall affects the distribution and densities of mosquitoes. This work was carried out to study the distribution and densities of mosquitoes adults and larvae in a total of five selected stations in El Obied Town. A cross-sectional survey of Anopheline mosquito larval habitats was conducted. The survey was conducted during the dry season (January 2013). Larvae were collected by using the standard dipping technique, while adult stages were collected by rearing larvae in cage, because the density of adults Anopheles mosquito per room was zero by using spray sheet method by using Permethrin pesticide 25%E.C, during the study period. The results revealed that (2347) Anopheline mosquito larvae were found and collected from only one station. All of which (2347) larvae (100%) were classified as probably Anopheles Squamosus. The study also showed that, a number of 81 adults (100%) Anopheline mosquito were classified as probably Anopheles Squamosus. Anopheles Squamosus were found only in the shallow pond water habitat in Alrahma west area of El Obied, the mean Anopheline density in the study area for larvae was 0.313 per dip while the mean density of adult was 0 per room. The high mosquito larval density in Alrahma west area indicated that, this part of El Obied Town is at risk of mosquito-borne diseases including malaria. This study recommended to apply the control program against mosquito at this part of the Town. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anopheles" title="anopheles">anopheles</a>, <a href="https://publications.waset.org/abstracts/search?q=squamosus" title=" squamosus"> squamosus</a>, <a href="https://publications.waset.org/abstracts/search?q=Alrahma" title=" Alrahma"> Alrahma</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a> </p> <a href="https://publications.waset.org/abstracts/76461/distribution-and-densities-of-anopheles-mosquito-in-el-obied-town-sudan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Comparative Analysis of Petroleum Ether and Aqueous Extraction Solvents on Different Stages of Anopheles Gambiae Using Neem Leaf and Neem Stem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tochukwu%20Ezechi%20Ebe">Tochukwu Ezechi Ebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Fechi%20Njoku-Tony"> Fechi Njoku-Tony</a>, <a href="https://publications.waset.org/abstracts/search?q=Ifeyinwa%20Mgbenena"> Ifeyinwa Mgbenena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Comparative analysis of petroleum ether and aqueous extraction solvents on different stages of Anopheles gambiae was carried out using neem leaf and neem stem. Soxhlet apparatus was used to extract each pulverized plant part. Each plant part extract from both solvents were separately used to test their effects on the developmental stages of Anopheles gambiae. The result showed that the mean mortality of extracts from petroleum ether extraction solvent was higher than that of aqueous extract. It was also observed that mean mortality decreases with increase in developmental stage. Furthermore, extracts from neem leaf was found to be more susceptible than extracts from neem stem using same extraction solvent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20ether" title="petroleum ether">petroleum ether</a>, <a href="https://publications.waset.org/abstracts/search?q=aqueous" title=" aqueous"> aqueous</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental" title=" developmental"> developmental</a>, <a href="https://publications.waset.org/abstracts/search?q=stages" title=" stages"> stages</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20gambiae" title=" Anopheles gambiae"> Anopheles gambiae</a> </p> <a href="https://publications.waset.org/abstracts/16040/comparative-analysis-of-petroleum-ether-and-aqueous-extraction-solvents-on-different-stages-of-anopheles-gambiae-using-neem-leaf-and-neem-stem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Distribution of Malaria-Infected Anopheles Mosquitoes in Kudat, Ranau and Tenom of Sabah, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Fakhriy%20Hassan">Ahmad Fakhriy Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohani%20Ahmad"> Rohani Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zurainee%20Mohamed%20Nor"> Zurainee Mohamed Nor</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Najdah%20Wan%20Mohamad%20Ali"> Wan Najdah Wan Mohamad Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Malaysia, it was realized that while the incidence of human malaria is decreasing, the incidence of Plasmodium knowlesi malaria appears to be on the rise, especially in rural areas of Sabah, East Malaysia. The primary vector for P. knowlesi malaria in Sabah is An. balabacensis a species found abundant in rural areas, shown to rest and feed outdoor throughout the night, which makes its control very challenging. This study aims to examine the distribution of malaria-infected Anopheles mosquitoes in three areas in Sabah, namely Kudat, Ranau, and Tenom, known as areas in Sabah that presented high number of malaria cases. Briefly, mosquitoes were caught every 6 weeks for the period of 18 months using Human Landing Catching (HLC) technique from May 2016 to November 2017. Identification of species was done using microscopy and molecular methods. Molecular method is also used to detect malaria parasite in all mosquito collected. An. balabacensis was present in all the study areas. In Kudat, six other Anopheles species were also detected, namely, An. barumbrosus, An. latens, An. letifer, An. maculatus, An. sundaicus and An. tesselatus. In Ranau five other Anopheles species were detected, namely, An. barumbrosus, An. donaldi., An. hodgkini, An. maculatus, and An. tesselatus while in Tenom seven more species An. donaldi, An. umbrosus, An. barumbrosus, An.latens, An. hodgkini, An. maculatus, and An. tesselatus were detected. This study showed 24% out of 259, 39% out of 127, and 26% out of 265 Anopheles mosquito collected in Kudat, Ranau, and Tenom were detected positive for malaria parasite respectively. In Kudat An. balabacensis, An. barumbrosus, An. latens, An. maculatus, An. sundaicus and An. tesselatus were the six out of eight Anopheles species that were found infected with malaria parasite. All Anopheles species collected in Ranau were positive for malaria while In Tenom, only five out of eight species; An. balabacensus, An. donaldi, An. hodgkini, An. maculatus, and An. latens were detected positive for malaria parasite. Interestingly, for all study areas An. balabacensis was shown to be the only species infected with four malaria species; P. falciparum, P. knowlesi, P. vivax, and Plasmodium sp. This finding clearly indicates that An. balabacensis is the dominant malaria vector in Kudat, Ranau, and Tenom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20balabacensis" title="Anopheles balabacensis">Anopheles balabacensis</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20landing%20catching%20technique" title=" human landing catching technique"> human landing catching technique</a>, <a href="https://publications.waset.org/abstracts/search?q=nested%20PCR" title=" nested PCR"> nested PCR</a>, <a href="https://publications.waset.org/abstracts/search?q=Plasmodium%20knowlesi" title=" Plasmodium knowlesi"> Plasmodium knowlesi</a>, <a href="https://publications.waset.org/abstracts/search?q=Simian%20malaria" title=" Simian malaria"> Simian malaria</a> </p> <a href="https://publications.waset.org/abstracts/113441/distribution-of-malaria-infected-anopheles-mosquitoes-in-kudat-ranau-and-tenom-of-sabah-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Vectorial Capacity and Age Determination of Anopheles Maculipinnis S. L. (Diptera: Culicidae), in Esfahan and Chahar Mahal and Bakhtiari Provinces, Central Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Sepahvand">Fariba Sepahvand</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hassan%20Moosa-kazemi"> Seyed Hassan Moosa-kazemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective was to determine the population dynamics of Anopheles maculipinnis s.l. in relation to probable malaria transmission. The study was carried out in three villages in Isfahan and charmahal bakhteari provinces of Iran, from April to March 2014. Mosquitoes were collected by Total catch, Human and Animal bait collection. An. maculipinnis play as a dominant vector with exophagic and endophilic behavior. Ovary dissection revealed four dilatations indicate at least 9% of the population can reach to the dangerous age to potentially malaria transmission. Two peaks of blood feeding were observed, 9.00-10.00 P.M, and the 12.00-00.01 A.M. The gonotrophic cycle, survival rate, life expectancy of the species was 4, 0.82 and five days, respectively. Vectorial capacity was measured as 0.028. In conclusion, moderate climatic conditions support the persistence, density and longevity of An maculipinnis s.l. could result in more significant malaria transmission. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age%20determination" title="age determination">age determination</a>, <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20maculipinnis" title=" Anopheles maculipinnis"> Anopheles maculipinnis</a>, <a href="https://publications.waset.org/abstracts/search?q=center%20of%20Iran" title=" center of Iran"> center of Iran</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaria" title=" Malaria "> Malaria </a> </p> <a href="https://publications.waset.org/abstracts/38710/vectorial-capacity-and-age-determination-of-anopheles-maculipinnis-s-l-diptera-culicidae-in-esfahan-and-chahar-mahal-and-bakhtiari-provinces-central-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Species Composition and Plasmodium Infection Rates of Anopheles Mosquitoes in Kilosa, Tanzania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amina%20R.%20Issae">Amina R. Issae</a>, <a href="https://publications.waset.org/abstracts/search?q=Godfrey%20C.%20Katusi"> Godfrey C. Katusi</a>, <a href="https://publications.waset.org/abstracts/search?q=Beda%20J.%20Mwang%E2%80%99Onde"> Beda J. Mwang’Onde</a>, <a href="https://publications.waset.org/abstracts/search?q=Ladslaus%20L.%20Mnyone"> Ladslaus L. Mnyone</a>, <a href="https://publications.waset.org/abstracts/search?q=Allen%20L.%20Malisa"> Allen L. Malisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The fluctuating composition of mosquito species over time, driven by ecological changes in specific regions, plays a pivotal role in the transmission of malaria. Grasping these dynamics is fundamental for establishing a baseline understanding and is crucial for identifying transmission patterns. This knowledge is essential in devising effective strategies for managing and controlling vector populations. Our study focused on examining the species composition and Plasmodium infection rates of malaria vectors, aiming to enhance the health and well-being of communities affected by malaria. Methods: Species composition was determined through a cross-sectional collection of mosquitoes, conducted once in the village, in four selected villages of Kilosa district, Tanzania. Mosquitoes were collected indoors and outdoors using CDC light traps. A sub-sample of all collected mosquitoes was subjected to PCR identification and assayed for Plasmodium porozoites. Results: A total of 6493 female Anophelines mosquitoes were collected, of which eight species were identified as Anopheles gambiaes.l., An. funestus group, An. coustani, An. pharoensis, An. squamosus, and An. rufipes. The abundance of the Anopheles gambiaes.s.and An. funestuss.s. varied with location and village. A total of 5 sporozoite-positive mosquitoes were found, of which 4 were An. funestuss.s. and 1 was An. gambiaes.s. Conclusions: Anopheles gambiaes.s.and An. funestuss.s. were identified as the most abundant malaria vectors, respectively. Sporozoite analysis indicated this for An. funestuss.s. contribute to most of the malaria transmission in the area. Further studies are required to assess the role of seasonal shifts in vector abundance, insecticide resistance and malaria transmission of the vectors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mosquito" title="mosquito">mosquito</a>, <a href="https://publications.waset.org/abstracts/search?q=composition" title=" composition"> composition</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=sporozoites" title=" sporozoites"> sporozoites</a> </p> <a href="https://publications.waset.org/abstracts/186682/species-composition-and-plasmodium-infection-rates-of-anopheles-mosquitoes-in-kilosa-tanzania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Malaria Vector Situation in Tanjung Subdistrict, West Lombok Regency, West Nusa Tenggara Province, Indonesia </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subagyo%20Yotopranoto">Subagyo Yotopranoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Sri%20Wijayanti%20Sulistyawati"> Sri Wijayanti Sulistyawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Sukmawati%20Basuki"> Sukmawati Basuki</a>, <a href="https://publications.waset.org/abstracts/search?q=Budi%20Armika"> Budi Armika</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoes%20Prijatna%20Dachlan"> Yoes Prijatna Dachlan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is a parasitic infectious disease that still remains a health problem in the world, including Indonesia. There is an outbreak happen at West Nusa Tenggara in 2007. A tourist spot in West Nusa Tenggara called West Lombok is mesoendemic area for malaria. Tanjung is the highest malaria morbidity subdistrict in West Lombok. Thus, the research conducted for the presence of a new species of malaria vectors, that are suspected of one factors which caused high morbidity of malaria in this region. The study was conducted in coastal and highland areas. We collected and identified Anopheles larvae from their breeding places. We also collected and identified Anopheles adult mosquitoes with outdoor cow net, indoor and outdoor human bait. In coastal area (Tembobor village), we found Anopheles vagus larvae from rivers as its breeding places. In highland area (Dasan Tengah village), we found An. subpictus from pool, lagoon, and river as its breeding places. In coastal area, with outdoor human bait, we collected An. vagus and An. subpictus adult mosquitoes. With indoor human bait, we collected An. subpictus adult mosquitoes. Whereas with outdoor cow net, we collected An. subpictus and An. maculatus, the first was more dominant. Furthermore, An subpictus strong suspected as malaria vector in coastal area. Anopheles subpictus was an anthropozoophylic mosquitoes, because it was found at indoor and outdoor places. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria" title="malaria">malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=vector" title=" vector"> vector</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanjung" title=" Tanjung"> Tanjung</a>, <a href="https://publications.waset.org/abstracts/search?q=West%20Nusa%20Tenggara" title=" West Nusa Tenggara"> West Nusa Tenggara</a> </p> <a href="https://publications.waset.org/abstracts/17270/malaria-vector-situation-in-tanjung-subdistrict-west-lombok-regency-west-nusa-tenggara-province-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17270.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Entomological Survey of Mosquitoes Responsible for the Transmission of Lymphatic Filariasis in Biase Cross River State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maurice%20Mbah">Maurice Mbah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Entomological survey of mosquitoes responsible for the transmission of lymphatic filariasis in Biase Local Government area of Cross River State, Nigeria within March and June 2017. Lymphatic filariasis is a mosquito-borne parasitic disease that is caused by three species of tissue dwelling filaroids (Wuchereria bancrofti; Brugia malayi; Brugia timori): Wuchereria bancrofti is responsible for 90% of cases and is found throughout the tropics and in some sub-tropical areas worldwide. The mosquitoes were caught using human landing catches, and pyrethrum spray catches method. The entomological analysis of mosquitoes which include speciating into genus and dissecting them to unveil any microfilaria in the thoracic region, abdomen, and mouth parts of the mosquitoes. Entomological analysis shows that, from the 1296 mosquitoes caught 795 (61.3%) were Culex species, 342 (26.4%) Anopheles species, 102 (7.9%) Aedes species, and 57 (4.4%) of other Genera. There was a statistically significant difference in the number of mosquitoes caught in the dry and rainy season (X²=0.62, P < 0.05). Out of 1213 mosquitoes dissected, 24(0.02%) contained developed stages (L₁ – L₃) of W. bancrofti larvae. 13 (0.01%) of the infected mosquitoes were of Culex species, and Anopheles species accounted for the other 11 (0.009%). There was a statistically significant difference in the infection rate between the two seasons (X²=0.87, P < 0.05). The correlation analysis showed a positive correlation between the infection rate among mosquitoes in the dry and rainy season (r=0.85, P < 0.05). The entomological studies showed that Anopheles species and the Culex species are the vectors of lymphatic filariasis in the study area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entomological%20survey" title="entomological survey">entomological survey</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquitoes" title=" mosquitoes"> mosquitoes</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphatic%20filariasis" title=" lymphatic filariasis"> lymphatic filariasis</a>, <a href="https://publications.waset.org/abstracts/search?q=biase" title=" biase"> biase</a> </p> <a href="https://publications.waset.org/abstracts/74664/entomological-survey-of-mosquitoes-responsible-for-the-transmission-of-lymphatic-filariasis-in-biase-cross-river-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Functional Mortality of Anopheles stephensi, the Urban Malaria Vector as Induced by the Sublethal Exposure to Deltamethrin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Aarumugam">P. Aarumugam</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Krishnamoorthy"> N. Krishnamoorthy</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gunasekaran"> K. Gunasekaran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mosquitoes with loss of minimum three legs especially the hind legs have the negative impact on the survival hood of mosquitoes. Three days old unfed adult female laboratory strain was selected in each generation against sublethal dosages (0.004%, 0.005%, 0.007% and 0.01%) of deltamethrin upto 40 generations. Impregnated papers with acetone were used for control. Every fourth generation, survived mosquitoes were observed for functional mortality. Hind legs lost were significantly (P< 0.05) higher in treated than the controls up to generation 24, thereafter no significant lost. In contrary, no significant forelegs lost among exposed mosquitoes. Middle legs lost were also not significant in the exposed mosquitoes except first generation (F1). The field strain (Chennai) did not show any significant loss of legs (fore or mid or hind) compared to the control. The selection pressure on mosquito population influences strong natural selection to develop various adaptive mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20stephensi" title="Anopheles stephensi">Anopheles stephensi</a>, <a href="https://publications.waset.org/abstracts/search?q=deltamethrin" title=" deltamethrin"> deltamethrin</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20mortality" title=" functional mortality"> functional mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20pyrethroids" title=" synthetic pyrethroids"> synthetic pyrethroids</a> </p> <a href="https://publications.waset.org/abstracts/11652/functional-mortality-of-anopheles-stephensi-the-urban-malaria-vector-as-induced-by-the-sublethal-exposure-to-deltamethrin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Effect of Environmental Factors on Mosquito Larval Abundance in Some Selected Larval Sites in the Kintampo Area of Ghana</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yussif%20Tawfiq">Yussif Tawfiq</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Omari"> Stephen Omari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwaku%20Poku%20Asante"> Kwaku Poku Asante</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The abundance of malaria vectors is influenced by micro-ecology, rainfall, and temperature patterns. The main objective of the study was to identify mosquito larval sites for future larval surveys and possible intervention programs. The study was conducted in Kintampo in central Ghana. Twenty larval sites were surveyed. Larval density was determined per cm² of water from each of the various sites. The dipper was used to fetch larvae from the larval sites, and a global positioning system (GPS) was used to identify larvae locations. There was a negative linear relationship between humidity, temperature, pH, and mosquito larval density. GPS of larval sites was taken for easy larval identification. There was the presence of Anopheles mosquito larvae in all polluted waters with Culex larval presence. This shows that Anopheles mosquito larvae are beginning to adapt to survival in polluted waters. The identified breeding sites are going to be useful for future larval surveys and will also help in intervention programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=larvae" title="larvae">larvae</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a>, <a href="https://publications.waset.org/abstracts/search?q=dipper" title=" dipper"> dipper</a>, <a href="https://publications.waset.org/abstracts/search?q=larval%20density" title=" larval density"> larval density</a> </p> <a href="https://publications.waset.org/abstracts/160195/effect-of-environmental-factors-on-mosquito-larval-abundance-in-some-selected-larval-sites-in-the-kintampo-area-of-ghana" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Genetic Diversity of Exon-20 of the IIS6 of the Voltage Gated Sodium Channel Gene from Pyrethroid Resistant Anopheles Mosquitoes in Sudan Savannah Region of Jigawa State</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%27u%20Mahe">Asma'u Mahe</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullahi%20A.%20Imam"> Abdullahi A. Imam</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamu%20J.%20Alhassan"> Adamu J. Alhassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasiru%20Abdullahi"> Nasiru Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiya%20A.%20Bichi"> Sadiya A. Bichi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nura%20Lawal"> Nura Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamaluddeen%20Babagana"> Kamaluddeen Babagana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is a disease with global health significance. It is caused by parasites and transmitted by Anopheles mosquitoes. Increase in insecticide resistance threatens the disease vector control. The strength of selection pressure acting on a mosquito population in relation to insecticide resistance can be assess by determining the genetic diversity of a fragment spanning exon- 20 of IIS6 of the voltage gated sodium channel (VGSC). Larval samples reared to adulthood were identified and kdr (knock down resistance) profile was determined. The DNA sequences were used to assess the patterns of genetic differentiation by determining the levels of genetic variability between the Anopheles mosquitoes. Genetic differentiation of the Anopheles mosquitoes based on a portion of the voltage gated sodium channel gene was obtained. Polymorphisms were detected; sequence variation and analysis were presented as a phylogenetic tree. Phylogenetic tree of VGSC haplotypes was constructed for samples of the Anopheles mosquitoes using the maximum likelihood method in MEGA 6.0 software. DNA sequences were edited using BioEdit sequence editor. The edited sequences were aligned with reference sequence (Kisumu strain). Analyses were performed as contained in dnaSP 5.10. Results of genetic parameters of polymorphism and haplotype reconstruction were presented in count. Twenty sequences were used for the analysis. Regions selected were 1- 576, invariable (monomorphic) sites were 460 while variable (polymorphic) sites were 5 giving the number of total mutations observed in this study. Mutations obtained from the study were at codon 105: TTC- Phenylalanine replaces TCC- Serine, codon 513: TAG- Termination replaces TTG- Leucine, codon 153, 300 and 553 mutations were non-synonymous. From the constructed phylogenetic tree, some groups were shown to be closer with Exon20Gambiae Kisumu (Reference strain) having some genetic distance, while 5-Exon20Gambiae-F I13.ab1, 18-Exon20Gambiae-F C17.ab1, and 2-Exon20Gambiae-F C13.ab1 clustered together genetically differentiated away from others. Mutations observed in this study can be attributed to the high insecticide resistance profile recorded in the study areas. Haplotype networks of pattern of genetic variability and polymorphism for the fragment of the VGSC sequences of sampled Anopheles mosquitoes revealed low haplotypes for the present study. Haplotypes are set of closely linked DNA variation on X-chromosome. Haplotypes were scaled accordingly to reflect their respective frequencies. Low haplotype number, four VGSC-1014F haplotypes were observed in this study. A positive association was previously established between low haplotype number of VGSC diversity and pyrethroid resistance through kdr mechanism. Significant values at (P < 0.05) of Tajima D and Fu and Li D’ were observed for some of the results indicating possible signature of positive selection on the fragment of VGSC in the study. This is the first report of VGSC-1014F in the study site. Based on the results, the mutation was present in low frequencies. However, the roles played by the observed mutations need further investigation. Mutations, environmental factors among others can affect genetic diversity. The study area has recorded increase in insecticide resistance that can affect vector control in the area. This finding might affect the efforts made against malaria. Sequences were deposited in GenBank for Accession Number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anopheles%20mosquitoes" title="anopheles mosquitoes">anopheles mosquitoes</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide%20resistance" title=" insecticide resistance"> insecticide resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=kdr" title=" kdr"> kdr</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20gated%20sodium%20channel" title=" voltage gated sodium channel"> voltage gated sodium channel</a> </p> <a href="https://publications.waset.org/abstracts/183431/genetic-diversity-of-exon-20-of-the-iis6-of-the-voltage-gated-sodium-channel-gene-from-pyrethroid-resistant-anopheles-mosquitoes-in-sudan-savannah-region-of-jigawa-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Oviposition Responses of the Malaria Mosquito Anopheles gambiae sensu stricto to Hay Infusion Volatiles in Laboratory Bioassays and Investigation of Volatile Detection Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lynda%20K.%20Eneh">Lynda K. Eneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Okal%20N.%20Mike"> Okal N. Mike</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna-Karin%20Borg-Karlson"> Anna-Karin Borg-Karlson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulrike%20Fillinger"> Ulrike Fillinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Jenny%20M.%20Lindh"> Jenny M. Lindh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The responses of individual gravid Anopheles gambiae sensu stricto (s.s.) to hay infusion volatiles were evaluated under laboratory conditions. Such infusions have long been known to be effective baits for monitoring mosquitoes that vector arboviral and filarial diseases but have previously not been tested for malaria vectors. Hay infusions were prepared by adding sun-dried Bermuda grass to lake water and leaving the mixture in a covered bucket for three days. The proportions of eggs laid by gravid An. gambiae s.s. in diluted (10%) and concentrated infusions ( ≥ 25%) was compared to that laid in lake water in two-choice egg-count bioassays. Furthermore, with the aim to develop a method that can be used to collect volatiles that influence the egg-laying behavior of malaria mosquitoes, different volatile trapping methods were investigated. Two different polymer-traps eluted using two different desorption methods and three parameters were investigated. Porapak®-Q traps and solvent desorption was compared to Tenax®-TA traps and thermal desorption. The parameters investigated were: collection time (1h vs. 20h), addition of salt (0.15 g/ml sodium chloride (NaCl) vs. no NaCl), and stirring the infusion (0 vs. 300 rpm). Sample analysis was with gas chromatography-mass spectrometry (GC-MS). An. gambiae s.s was ten times less likely to lay eggs in concentrated hay infusion than in lake water. The volatiles were best characterized by thermally desorbed Tenax traps, collected for 20 hours from infusion aliquots with sodium chloride added. Ten volatiles identified from headspace and previously indicated as putative oviposition semiochemicals for An. gambiae s.s. or confirmed semiochemicals for other mosquito species were tested in egg-count bioassays. Six of these (3-methylbutanol, phenol, 4-methylphenol, nonanal, indole and 3-methylindole), when added to lake water, were avoided for egg-laying when lake water was offered as the alternative in dual-choice egg count bioassays. These compounds likely contribute to the unfavorable oviposition responses towards hay infusions. This difference in oviposition response of different mosquito species should be considered when designing control measures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anopheles%20gambiae" title="Anopheles gambiae">Anopheles gambiae</a>, <a href="https://publications.waset.org/abstracts/search?q=oviposition%20behaviour" title=" oviposition behaviour"> oviposition behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=egg-count%20cage%20bioassays" title=" egg-count cage bioassays"> egg-count cage bioassays</a>, <a href="https://publications.waset.org/abstracts/search?q=hay%20infusions" title=" hay infusions"> hay infusions</a>, <a href="https://publications.waset.org/abstracts/search?q=volatile%20detection" title=" volatile detection"> volatile detection</a>, <a href="https://publications.waset.org/abstracts/search?q=semiochemicals" title=" semiochemicals"> semiochemicals</a> </p> <a href="https://publications.waset.org/abstracts/33550/oviposition-responses-of-the-malaria-mosquito-anopheles-gambiae-sensu-stricto-to-hay-infusion-volatiles-in-laboratory-bioassays-and-investigation-of-volatile-detection-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33550.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Knowledge Based Software Model for the Management and Treatment of Malaria Patients: A Case of Kalisizo General Hospital</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mbonigaba%20Swale">Mbonigaba Swale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is an infection or disease caused by parasites (Plasmodium Falciparum — causes severe Malaria, plasmodium Vivax, Plasmodium Ovale, and Plasmodium Malariae), transmitted by bites of infected anopheles (female) mosquitoes to humans. These vectors comprise of two types in Africa, particularly in Uganda, i.e. anopheles fenestus and Anopheles gambaie (‘example Anopheles arabiensis,,); feeds on man inside the house mainly at dusk, mid-night and dawn and rests indoors and makes them effective transmitters (vectors) of the disease. People in both urban and rural areas have consistently become prone to repetitive attacks of malaria, causing a lot of deaths and significantly increasing the poverty levels of the rural poor. Malaria is a national problem; it causes a lot of maternal pre-natal and antenatal disorders, anemia in pregnant mothers, low birth weights for the newly born, convulsions and epilepsy among the infants. Cumulatively, it kills about one million children every year in sub-Saharan Africa. It has been estimated to account for 25-35% of all outpatient visits, 20-45% of acute hospital admissions and 15-35% of hospital deaths. Uganda is the leading victim country, for which Rakai and Masaka districts are the most affected. So, it is not clear whether these abhorrent situations and episodes of recurrences and failure to cure from the disease are a result of poor diagnosis, prescription and dosing, treatment habits and compliance of the patients to the drugs or the ethical domain of the stake holders in relation to the main stream methodology of malaria management. The research is aimed at offering an alternative approach to manage and deal absolutely with problem by using a knowledge based software model of Artificial Intelligence (Al) that is capable of performing common-sense and cognitive reasoning so as to take decisions like the human brain would do to provide instantaneous expert solutions so as to avoid speculative simulation of the problem during differential diagnosis in the most accurate and literal inferential aspect. This system will assist physicians in many kinds of medical diagnosis, prescribing treatments and doses, and in monitoring patient responses, basing on the body weight and age group of the patient, it will be able to provide instantaneous and timely information options, alternative ways and approaches to influence decision making during case analysis. The computerized system approach, a new model in Uganda termed as “Software Aided Treatment” (SAT) will try to change the moral and ethical approach and influence conduct so as to improve the skills, experience and values (social and ethical) in the administration and management of the disease and drugs (combination therapy and generics) by both the patient and the health worker. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=knowledge%20based%20software" title="knowledge based software">knowledge based software</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a> </p> <a href="https://publications.waset.org/abstracts/176224/knowledge-based-software-model-for-the-management-and-treatment-of-malaria-patients-a-case-of-kalisizo-general-hospital" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Analysis of the Dynamics of Transmission of Microsporidia MB Inside the Population of Anopheles Mosquitoes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charlene%20N.%20T.%20Mfangnia">Charlene N. T. Mfangnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Henri%20Tonnang"> Henri Tonnang</a>, <a href="https://publications.waset.org/abstracts/search?q=Berge%20Tsanou"> Berge Tsanou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20Herren"> Jeremy Herren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Microsporidia MB found in the populations of anopheles is a recently discovered symbiont responsible for the Plasmodium transmission blocking. From early studies, it was established that the symbiont can be transmitted vertically and horizontally. The present study uses compartmental mathematical modelling approach to investigate the dynamics of Microsporidia transmission in the mosquito population with the mindset of establishing a mechanism for use to control malaria. Data and information obtained from laboratory experiments are used to estimate the model parameters with and without temperature dependency of mosquito traits. We carry out the mathematical analysis focusing on the equilibria states and their stability for the autonomous model. Through the modelling experiments, we are able to assess and confirm the contribution of vertical and horizontal transmission in the proliferation of Microsporidia MB in the mosquito population. In addition, the basic and target reproductions are computed, and some long-term behaviours of the model, such as the local (and global) stability of equilibrium points, are rigorously analysed and illustrated numerically. We establish the conditions responsible for the low prevalence of the symbiont-infected mosquitoes observed in nature. Moreover, we identify the male death rate, the mating rate and the attractiveness of MB-positive mosquitoes as mosquito traits that significantly influence the spread of Microsporidia MB. Furthermore, we highlight the influence of temperature in the establishment and persistence of MB-infected mosquitoes in a given area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microsporidia%20MB" title="microsporidia MB">microsporidia MB</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20transmission" title=" vertical transmission"> vertical transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20transmission" title=" horizontal transmission"> horizontal transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=compartmental%20modelling%20approach" title=" compartmental modelling approach"> compartmental modelling approach</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature-dependent%20mosquito%20traits" title=" temperature-dependent mosquito traits"> temperature-dependent mosquito traits</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmodium-transmission%20blocking" title=" plasmodium-transmission blocking"> plasmodium-transmission blocking</a> </p> <a href="https://publications.waset.org/abstracts/161357/analysis-of-the-dynamics-of-transmission-of-microsporidia-mb-inside-the-population-of-anopheles-mosquitoes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> The Correlation of Environmental Risk Factors with Malaria at Tasikmalaya District, 2013</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Destriyanti%20Sugiarti">Destriyanti Sugiarti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ririn%20A%20Wulandari"> Ririn A Wulandari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Malaria disease was widespread in many countries, both tropical and sub-tropical. Tasikmalaya is a region that experienced an increase in malaria cases over the last 5 years and highest in 2013, a total of 168 positive cases of malaria. Tasikmalaya region consists of coastal and mountain areas, it has a potential place for Anopheles mosquito breeding, i.e swamp, lagoon, andrice fields.The purpose of this study was to determine the correlation of environmental risk factors with the incidence of malaria in Tasikmalaya. Methods: The design of the study is case control study with 140 samples in 5 sub-district (Cineam, Cikatomas, Cipatujah, Salopa, and Jatiwaras). This study examines the environmental factors that influence the incidence of malaria in Tasikmalaya District in 2013. The research used 14 variables: individual characteristics (education, knowledge, occupation) and environmental risk factors (mobility to endemic areas, use mosquito nets, use of wire gauze at home, use mosquito repellent, repellent use, the presence of a large animal in a cage, breeding place, the presence of larvae, temperature and humidity chamber). Results: Results demonstrated an association between occupation (0.22; 0.10-0.47), the mobility of the population to the endemic areas (37.4; 14.29-98.18) ,the presence of larvae (5.26; 1.41-19.74), and the room temperature with optimum temperature for mosquito breeding is 25-30oC (3.25; 1.62- 6.50). Conclusion: The dominant factor affecting the spread of malaria in Tasikmalaya is the mobility of the population to endemic areas. The results of the study suggest migration survey conducted activity and health promotion for preventive efforts against malaria in malaria-endemic areas, and to encourage people to behave healthy life by freeing environment of mosquito larvae and protect themselves from mosquito bites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Environmental%20risk%20factors" title="Environmental risk factors">Environmental risk factors</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=Anopheles" title=" Anopheles "> Anopheles </a> </p> <a href="https://publications.waset.org/abstracts/19355/the-correlation-of-environmental-risk-factors-with-malaria-at-tasikmalaya-district-2013" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Update Mosquito Species Composition and Distribution in Qatar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Alkhayat">Fatima Alkhayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Abu%20Hassan%20Ahmed"> Abu Hassan Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Qatar as the one of Middle East and Gulf country is growing rapidly due to urbanization. Urbanization, population’s movement and goods transportation in addition to climatic change all together create suitable environments for remerging and/or introduction of new disease vectors species. Unfortunately, knowledge on mosquito species composition and their geographical distribution in Qatar is extremely limited. The objective of present study is to provide update information on species composition and distribution. Mosquito larval survey carried out in six sentinel sites in Qatar. The collection was made on monthly basis in period from October 2013 to May 2015 using dipping techniques and identified to species level using appropriate pictorial keys. In total about 3,085 mosquito larvae were collected and identified to species compromising three mosquito genera, Culex 87.4% (n=2697), Ochlerotatus 9.9% (n= 305) and Anopheles 2.6% (n= 81). Among Culex genera; Culex quinquefasciatus represent 87.8% (n= 2369), Cx. pipiens 8.7% (n=237), and Cx. mattinglyi 3.4% (n=91). Culex quinquefasciatus was the most commonly collected species, representing 93.5% in Alwakra (n= 2216) which was observed in November, December, March, April and May when reached the peak. 6.4% in Nuaija (n= 151) was found in February and March and reached the peak in March. 0.1% in Alkaraana (n=2) only observed in April. Cx. pipiens was observed 50.2% in Rwdat Alfaras (n=120) and 48.9% in Hazm Almurkhiya (n=117). While in Rowdat Alfaras it was observed in Oct-May and in Hazm Almurkhiya from Oct-April. Cx. mattinglyi (n= 91) was only found in Nuaija from October to December. Ochlerotatus genera account 1 species Oc. dorsalis (n=305). The majority of Oc. dorsalis were observed in March and May, 98% in Nuaija (n= 299), followed by 2% in Alkhor (n=6) which was observed in January and February. Anopheles was only represented by An. stephensi which was found 69% in Alwakra (n= 56) in November, December, April and May, while 25.9% in Hazm Almurkhiya (n=21) and found in May and November. 6.2% in Rwadat Alfaras and was observed only in November and 1.2% in Nuaija (n=1) and observed in October. Further investigation is required on the composition and distribution of mosquito for implementing a surveillance program and control of mosquito-borne diseases in Qatar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composition" title="composition">composition</a>, <a href="https://publications.waset.org/abstracts/search?q=distribution" title=" distribution"> distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito" title=" mosquito"> mosquito</a>, <a href="https://publications.waset.org/abstracts/search?q=Qatar" title=" Qatar"> Qatar</a> </p> <a href="https://publications.waset.org/abstracts/62491/update-mosquito-species-composition-and-distribution-in-qatar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Bioefficiency of Cinnamomum verum Loaded Niosomes and Its Microbicidal and Mosquito Larvicidal Activity against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aasaithambi%20Kalaiselvi">Aasaithambi Kalaiselvi</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Gabriel%20Paulraj"> Michael Gabriel Paulraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekambaram%20Nakkeeran"> Ekambaram Nakkeeran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emergences of mosquito vector-borne diseases are considered as a perpetual problem globally in tropical countries. The outbreak of several diseases such as chikungunya, zika virus infection and dengue fever has created a massive threat towards the living population. Frequent usage of synthetic insecticides like Dichloro Diphenyl Trichloroethane (DDT) eventually had its adverse harmful effects on humans as well as the environment. Since there are no perennial vaccines, prevention, treatment or drugs available for these pathogenic vectors, WHO is more concerned in eradicating their breeding sites effectively without any side effects on humans and environment by approaching plant-derived natural eco-friendly bio-insecticides. The aim of this study is to investigate the larvicidal potency of Cinnamomum verum essential oil (CEO) loaded niosomes. Cholesterol and surfactant variants of Span 20, 60 and 80 were used in synthesizing CEO loaded niosomes using Transmembrane pH gradient method. The synthesized CEO loaded niosomes were characterized by Zeta potential, particle size, Fourier Transform Infrared Spectroscopy (FT-IR), GC-MS and SEM analysis to evaluate charge, size, functional properties, the composition of secondary metabolites and morphology. The Z-average size of the formed niosomes was 1870.84 nm and had good stability with zeta potential -85.3 meV. The entrapment efficiency of the CEO loaded niosomes was determined by UV-Visible Spectrophotometry. The bio-potency of CEO loaded niosomes was treated and assessed against gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli) bacteria and fungi (Aspergillus fumigatus and Candida albicans) at various concentrations. The larvicidal activity was evaluated against II to IV instar larvae of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus at various concentrations for 24 h. The mortality rate of LC₅₀ and LC₉₀ values were calculated. The results exhibited that CEO loaded niosomes have greater efficiency against mosquito larvicidal activity. The results suggest that niosomes could be used in various applications of biotechnology and drug delivery systems with greater stability by altering the drug of interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cinnamomum%20verum" title="Cinnamomum verum">Cinnamomum verum</a>, <a href="https://publications.waset.org/abstracts/search?q=niosomes" title=" niosomes"> niosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=entrapment%20efficiency" title=" entrapment efficiency"> entrapment efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=bactericidal%20and%20fungicidal" title=" bactericidal and fungicidal"> bactericidal and fungicidal</a>, <a href="https://publications.waset.org/abstracts/search?q=mosquito%20larvicidal%20activity" title=" mosquito larvicidal activity"> mosquito larvicidal activity</a> </p> <a href="https://publications.waset.org/abstracts/100109/bioefficiency-of-cinnamomum-verum-loaded-niosomes-and-its-microbicidal-and-mosquito-larvicidal-activity-against-aedes-aegypti-anopheles-stephensi-and-culex-quinquefasciatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> The Residual Efficacy of Etofenprox WP on Different Surfaces for Malaria Control in the Brazilian Legal Amazon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Paula%20S.%20A.%20Correa">Ana Paula S. A. Correa</a>, <a href="https://publications.waset.org/abstracts/search?q=Allan%20K.%20R.%20Galardo"> Allan K. R. Galardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Luana%20A.%20Lima"> Luana A. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Talita%20F.%20Sobral"> Talita F. Sobral</a>, <a href="https://publications.waset.org/abstracts/search?q=Josiane%20N.%20Muller"> Josiane N. Muller</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20F.%20S.%20Barroso"> Jessica F. S. Barroso</a>, <a href="https://publications.waset.org/abstracts/search?q=Nercy%20V.%20R.%20Furtado"> Nercy V. R. Furtado</a>, <a href="https://publications.waset.org/abstracts/search?q=Ednaldo%20C.%20R%C3%AAgo."> Ednaldo C. Rêgo.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20B.%20P.%20Lima"> Jose B. P. Lima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is a public health problem in the Brazilian Legal Amazon. Among the integrated approaches for anopheline control, the Indoor Residual Spraying (IRS) remains one of the main tools in the basic strategy applied in the Amazonian States, where the National Malaria Control Program currently uses one of the insecticides from the pyrethroid class, the Etofenprox WP. Understanding the residual efficacy of insecticides on different surfaces is essential to determine the spray cycles, in order to maintain a rational use and to avoid product waste. The aim of this study was to evaluate the residual efficacy of Etofenprox - VECTRON ® 20 WP on surfaces of Unplastered Cement (UC) and Unpainted Wood (UW) on panels, in field, and in semi-field evaluation of Brazil’s Amapa State. The evaluation criteria used was the cone bioassay test, following the World Health Organization (WHO) recommended method, using plastic cones and female mosquitos of Anopheles sp. The tests were carried out in laboratory panels, semi-field evaluation in a “test house” built in the Macapa municipality, and in the field in 20 houses, being ten houses per surface type (UC and UW), in an endemic malaria area in Mazagão’s municipality. The residual efficacy was measured from March to September 2017, starting one day after the spraying, repeated monthly for a period of six months. The UW surface presented higher residual efficacy than the UC. In fact, the UW presented a residual efficacy of the insecticide throughout the period of this study with a mortality rate above 80% in the panels (= 95%), in the "test house" (= 86%) and in field houses ( = 87%). On the UC surface it was observed a mortality decreased in all the tests performed, with a mortality rate of 45, 47 and 29% on panels, semi-field and in field, respectively; however, the residual efficacy ≥ 80% only occurred in the first evaluation after the 24-hour spraying bioassay in the "test house". Thus, only the UW surface meets the specifications of the World Health Organization Pesticide Evaluation Scheme (WHOPES) regarding the duration of effective action (three to six months). To sum up, the insecticide residual efficacy presented variability on the different surfaces where it was sprayed. Although the IRS with Etofenprox WP was efficient on UW surfaces, and it can be used in spraying cycles at 4-month intervals, it is important to consider the diversity of houses in the Brazilian Legal Amazon, in order to implement alternatives for vector control, including the evaluation of new products or different formulations types for insecticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anopheles" title="Anopheles">Anopheles</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20control" title=" vector control"> vector control</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticide" title=" insecticide"> insecticide</a>, <a href="https://publications.waset.org/abstracts/search?q=bioassay" title=" bioassay"> bioassay</a> </p> <a href="https://publications.waset.org/abstracts/98533/the-residual-efficacy-of-etofenprox-wp-on-different-surfaces-for-malaria-control-in-the-brazilian-legal-amazon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98533.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Malaria Vulnerability Mapping from the Space: A Case Study of Damaturu Town-Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isa%20Muhammad%20Zumo">Isa Muhammad Zumo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malaria is one of the worst illnesses that may affect humans. It is typically transmitted by the bite of a female Anopheles mosquito and is caused by parasitic protozoans from the Plasmodium parasite. Government and non-governmental organizations made numerous initiatives to combat the threat of malaria in communities. Nevertheless, the necessary attention was not paid to accurate and current information regarding the size and location of these favourable locations for mosquito development. Because mosquitoes can only reproduce in specific habitats with surface water, this study will locate and map those favourable sites that act as mosquito breeding grounds. Spatial and attribute data relating to favourable mosquito breeding places will be collected and analysed using Geographic Information Systems (GIS). The major findings will be in five classes, showing the vulnerable and risky areas for malaria cases. These risk categories are very high, high, moderate, low, and extremely low vulnerable areas. The maps produced by this study will be of great use to the health department in combating the malaria pandemic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malaria" title="Malaria">Malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a>, <a href="https://publications.waset.org/abstracts/search?q=mapping" title=" mapping"> mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=space" title=" space"> space</a>, <a href="https://publications.waset.org/abstracts/search?q=Damaturu" title=" Damaturu"> Damaturu</a> </p> <a href="https://publications.waset.org/abstracts/182231/malaria-vulnerability-mapping-from-the-space-a-case-study-of-damaturu-town-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Non-Native and Invasive Fish Species in Poland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Raczy%C5%84ski">Tomasz Raczyński</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-native and invasive species negatively transform ecosystems. Non-native fish species can displace native fish species through competition, predation, disrupting spawning, transforming ecosystems, or transmitting parasites. This influence is more and more noticeable in Poland and in the world. From December 2014 to October 2020, did catch of fishes by electrofishing method carried on 416 sites in various parts of Poland. Research was conducted in both running and stagnant freshwaters with the predominance of running waters. Only sites where the presence of fish was found were analysed. The research covered a wide spectrum of waters from small mountain streams, through drainage ditches to the largest Polish river - the Vistula. Single sites covered oxbow lakes, small ponds and lakes. Electrofishing was associated with ichthyofauna inventories and was mainly aimed at detecting protected species of fish and lampreys or included in the annexes to the EU Habitats Directive (Council Directive 92/43/EEC on the Conservation of natural habitats and of wild fauna and flora). The results of these catches were analysed for alien and invasive fish species. The analysis of the catch structure shows that in 71 out of 416 research sites was found alien and invasive fish species, belonging to 9 taxa. According to the above, alien species of fish are present in 17% of the study sites. The most frequently observed species was the Prussian carp Carassius gibelio, which was recorded on 43 sites. Stone moroko Pseudorasbora parva was found on 24 sites. Chinese sleeper Perccottus glenii was found on 6 sites, and Bullhead Ameiurus sp. was also found on 6 sites. Western tubenose goby Proterorhinus semilunaris was found at 5 sites and Rainbow trout Oncorhynchus mykiss at 3 sites. Monkey goby Neogobius fluviatilis, Round goby Neogobius melanostomus and Eurasian carp Cyprinus carpio was recorded on 2 sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-native%20species" title="non-native species">non-native species</a>, <a href="https://publications.waset.org/abstracts/search?q=invasive%20species" title=" invasive species"> invasive species</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20species" title=" fish species"> fish species</a>, <a href="https://publications.waset.org/abstracts/search?q=invasive%20fish%20species" title=" invasive fish species"> invasive fish species</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20fish%20species" title=" native fish species"> native fish species</a> </p> <a href="https://publications.waset.org/abstracts/157318/non-native-and-invasive-fish-species-in-poland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> A Review on Biological Control of Mosquito Vectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asim%20Abbasi">Asim Abbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sufyan"> Muhammad Sufyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Iqra"> Iqra</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiza%20Javaria%20Ashraf"> Hafiza Javaria Ashraf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The share of vector-borne diseases (VBDs) in the global burden of infectious diseases is almost 17%. The advent of new drugs and latest research in medical science helped mankind to compete with these lethal diseases but still diseases transmitted by different mosquito species, including filariasis, malaria, viral encephalitis and dengue are serious threats for people living in disease endemic areas. Injudicious and repeated use of pesticides posed selection pressure on mosquitoes leading to development of resistance. Hence biological control agents are under serious consideration of scientific community to be used in vector control programmes. Fish have a history of predating immature stages of different aquatic insects including mosquitoes. The noteworthy examples in Africa and Asia includes, Aphanius discolour and a fish in the Panchax group. Moreover, common mosquito fish, Gambusia affinis predates mostly on temporary water mosquitoes like anopheline as compared to permanent water breeders like culicines. Mosquitoes belonging to genus Toxorhynchites have a worldwide distribution and are mostly associated with the predation of other mosquito larvae habituating with them in natural and artificial water containers. These species are harmless to humans as their adults do not suck human blood but feeds on floral nectar. However, their activity is mostly temperature dependent as Toxorhynchites brevipalpis consume 359 Aedes aegypti larvae at 30-32 ºC in contrast to 154 larvae at 20-26 ºC. Although many bacterial species were isolated from mosquito cadavers but those belonging to genus Bacillus are found highly pathogenic against them. The successful species of this genus include Bacillus thuringiensis and Bacillus sphaericus. The prime targets of B. thuringiensis are mostly the immatures of genus Aedes, Culex, Anopheles and Psorophora while B. sphaericus is specifically toxic against species of Culex, Psorophora and Culiseta. The entomopathogenic nematodes belonging to family, mermithidae are also pathogenic to different mosquito species. Eighty different species of mosquitoes including Anopheles, Aedes and Culex proved to be highly vulnerable to the attack of two mermithid species, Romanomermis culicivorax and R. iyengari. Cytoplasmic polyhedrosis virus was the first described pathogenic virus, isolated from the cadavers of mosquito specie, Culex tarsalis. Other viruses which are pathogenic to culicine includes, iridoviruses, cytopolyhedrosis viruses, entomopoxviruses and parvoviruses. Protozoa species belonging to division microsporidia are the common pathogenic protozoans in mosquito populations which kill their host by the chronic effects of parasitism. Moreover, due to their wide prevalence in anopheline mosquitoes and transversal and horizontal transmission from infected to healthy host, microsporidia of the genera Nosema and Amblyospora have received much attention in various mosquito control programmes. Fungal based mycopesticides are used in biological control of insect pests with 47 species reported virulent against different stages of mosquitoes. These include both aquatic fungi i.e. species of Coelomomyces, Lagenidium giganteum and Culicinomyces clavosporus, and the terrestrial fungi Metarhizium anisopliae and Beauveria bassiana. Hence, it was concluded that the integrated use of all these biological control agents can be a healthy contribution in mosquito control programmes and become a dire need of the time to avoid repeated use of pesticides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=entomopathogenic%20nematodes" title="entomopathogenic nematodes">entomopathogenic nematodes</a>, <a href="https://publications.waset.org/abstracts/search?q=protozoa" title=" protozoa"> protozoa</a>, <a href="https://publications.waset.org/abstracts/search?q=Toxorhynchites" title=" Toxorhynchites"> Toxorhynchites</a>, <a href="https://publications.waset.org/abstracts/search?q=vector-borne" title=" vector-borne"> vector-borne</a> </p> <a href="https://publications.waset.org/abstracts/80088/a-review-on-biological-control-of-mosquito-vectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Analysis of a Differential System to Get Insights on the Potential Establishment of Microsporidia MB in the Mosquito Population for Malaria Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charlene%20N.%20T.%20Mfangnia">Charlene N. T. Mfangnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Henri%20E.%20Z.%20Tonnang"> Henri E. Z. Tonnang</a>, <a href="https://publications.waset.org/abstracts/search?q=Berge%20Tsanou"> Berge Tsanou</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20Herren"> Jeremy Herren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microsporidia MB is a recently discovered symbiont capable of blocking the transmission of Plasmodium from mosquitoes to humans. The symbiont can spread both horizontally and vertically among the mosquito population. This dual transmission gives the symbiont the ability to invade the mosquito population. The replacement of the mosquito population by the population of symbiont-infected mosquitoes then appears as a promising strategy for malaria control. In this context, the present study uses differential equations to model the transmission dynamics of Microsporidia MB in the population of female Anopheles mosquitoes. Long-term propagation scenarios of the symbiont, such as extinction, persistence or total infection, are obtained through the determination of the target and basic reproduction numbers, the equilibria, and the study of their stability. The stability is illustrated numerically, and the contribution of vertical and horizontal transmission in the spread of the symbiont is assessed. Data obtained from laboratory experiments are then used to explain the low prevalence observed in nature. The study also shows that the male death rate, the mating rate and the attractiveness of MB-positive mosquitoes are the factors that most influence the transmission of the symbiont. In addition, the introduction of temperature and the study of bifurcations show the significant influence of the environmental condition in the propagation of Microsporidia MB. This finding proves the necessity of taking into account environmental variables for the potential establishment of the symbiont in a new area. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20equations" title="differential equations">differential equations</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=microsporidia%20MB" title=" microsporidia MB"> microsporidia MB</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20transmission" title=" horizontal transmission"> horizontal transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20transmission" title=" vertical transmission"> vertical transmission</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20illustration" title=" numerical illustration"> numerical illustration</a> </p> <a href="https://publications.waset.org/abstracts/161391/analysis-of-a-differential-system-to-get-insights-on-the-potential-establishment-of-microsporidia-mb-in-the-mosquito-population-for-malaria-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zaide%20%20Montes%20Ortiz">Zaide Montes Ortiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Alberto%20Molina"> Jorge Alberto Molina</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20%20Reyes"> Alejandro Reyes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatic%20workflow" title="bioinformatic workflow">bioinformatic workflow</a>, <a href="https://publications.waset.org/abstracts/search?q=insects" title=" insects"> insects</a>, <a href="https://publications.waset.org/abstracts/search?q=olfactory%20receptors" title=" olfactory receptors"> olfactory receptors</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20prediction" title=" protein prediction"> protein prediction</a> </p> <a href="https://publications.waset.org/abstracts/118934/a-computational-approach-for-the-prediction-of-relevant-olfactory-receptors-in-insects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Correlation between the Larvae Density (Diptera: Culicidae) and Physicochemical Characteristics of Habitats in Mazandaran Province, Northern Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Hassan%20Nikookar">Seyed Hassan Nikookar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Fazeli-Dinan"> Mahmoud Fazeli-Dinan</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyyed%20Payman%20Ziapour"> Seyyed Payman Ziapour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad-Ali%20Enayati"> Ahmad-Ali Enayati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Mosquitoes look for all kinds of aquatic habitats for laying eggs. Characteristics of water habitats are important factors in determining whether a mosquito can survive and successfully completed their developmental stages. Physicochemical factors can display an important role in vector control programs. This investigate determined whether physicochemical factors differ between habitats can be effective in the larvae density in Mazandaran province. Methods: Larvae were collected by the standard dipper up to 350 ml for 15-20 minutes from fixed habitats in 16 villages of 30 townships, the specimens identified by morphological key. Water samples were collected during larval collection and were evaluated for temperature (°C), acidity (pH), turbidity (NTU), electrical conductivity (μS/cm), alkalinity (mg/l), total hardness (mg/l), nitrate (mg/l), chloride (mg/l), phosphate (mg/l), sulfate (mg/l) in selected habitats using standard methods. Spearman Correlation coefficient was used for analyze data. Results: Totally 7566 mosquito larvae of three genera and 15 species were collected of fixed habitats. Cx. pipiens was the dominant species except in villages of Tileno, Zavat, Asad Abad, Shah Mansur Mahale which An. maculipennis, Cx. torrentium were as the predominant species. Turbidity in Karat Koti, Chloride in Al Tappeh, nitrate, phosphate and sulfate in Chalmardi, electrical conductivity, alkalinity, total hardness in Komishan villages were significantly higher than other villages (P < 0.05). There were a significant positive correlation between Cx. pipiens and Electrical conductivity, Alkalinity, Total hardness, Chloride, Cx. tritaeniorhynchus and Chloride, whereas a significant negative correlation observed between Sulfate and Cx. perexiguss. Conclusion: The correlations observed between physicochemical factor and larval density, possibly can confirm the effect of these parameters on the breeding activities of mosquitoes, and could probability facilitate larval control programs by the handwork of such factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anopheles" title="anopheles">anopheles</a>, <a href="https://publications.waset.org/abstracts/search?q=culex" title=" culex"> culex</a>, <a href="https://publications.waset.org/abstracts/search?q=culiseta" title=" culiseta"> culiseta</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=habitats" title=" habitats"> habitats</a>, <a href="https://publications.waset.org/abstracts/search?q=larvae%20density" title=" larvae density"> larvae density</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a> </p> <a href="https://publications.waset.org/abstracts/36549/correlation-between-the-larvae-density-diptera-culicidae-and-physicochemical-characteristics-of-habitats-in-mazandaran-province-northern-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Malaria Outbreak Facilitated by Appearance of Vector-Breeding Sites after Heavy Rainfall and Inadequate Preventive Measures: Nwoya District, Uganda, March–May 2018</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Godfrey%20Nsereko">Godfrey Nsereko</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Kadobera"> Daniel Kadobera</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Okethwangu"> Denis Okethwangu</a>, <a href="https://publications.waset.org/abstracts/search?q=Joyce%20Nguna"> Joyce Nguna</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Riolexus%20Ario"> Alex Riolexus Ario</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Malaria is a leading cause of morbidity and mortality in Uganda. In April 2018, malaria cases surged in Nwoya District, northern Uganda, exceeding the action thresholds. We investigated to assess the outbreak’s magnitude, identify transmission risk factors, and recommend evidence-based control measures. Methods: We defined a malaria case as onset of fever in a resident of Nwoya District with a positive Rapid Diagnostic Test or microscopy for malaria P. falciparum from 1 February to 22 May 2018. We reviewed medical records in all health facilities of affected sub-counties to find cases. In a case-control study, we compared exposure risk factors between 107 case-persons and 107 asymptomatic controls matched by age and village. We conducted entomological assessment on vector-density and behavior. Results: We identified 3,879 case-persons (attack rate [AR]=6.5%) and 2 deaths (case-fatality rate=5.2/10,000). Females (AR=8.1%) were more affected than males (AR=4.7%). Of all age groups, the 5-18 year age group (AR=8.4%) was most affected. Heavy rain started on 4 March; a propagated outbreak began during the week of 2 April. In the case-control study, 55% (59/107) of case-patients and 18% (19/107) of controls had stagnant water around households for several days following rainfall (ORM-H=5.6, 95%CI=3.0-11); 25% (27/107) of case-patients and 51% (55/107) of controls wore long-sleeve cloths during evening hours (ORM-H=0.30, 95%CI=0.20-0.60); 29% (31/107) of case-patients and 15% (16/107) of controls did not sleep under a long-lasting insecticide-treated net (LLIN) (ORM-H=2.3, 95%CI=1.1-4.9); 37% (40/107) of case-patients and 52% (56/107) of controls had ≥1 LLIN per 2 household members (ORM-H=0.54, 95%CI=0.30-0.97). Entomological assessment indicated active breeding sites; Anopheles gambiae sensu lato species were the predominant vector. Conclusion: Increased vector breeding sites after heavy rainfall, together with inadequate malaria preventive measures caused this outbreak. We recommended increasing coverage for LLINs and larviciding breeding sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria%20outbreak" title="malaria outbreak">malaria outbreak</a>, <a href="https://publications.waset.org/abstracts/search?q=Plasmodium%20falciparum" title=" Plasmodium falciparum"> Plasmodium falciparum</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20health%20security" title=" global health security"> global health security</a>, <a href="https://publications.waset.org/abstracts/search?q=Uganda" title=" Uganda"> Uganda</a> </p> <a href="https://publications.waset.org/abstracts/103552/malaria-outbreak-facilitated-by-appearance-of-vector-breeding-sites-after-heavy-rainfall-and-inadequate-preventive-measures-nwoya-district-uganda-march-may-2018" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Suspected Odyssean Malaria Outbreak in Gauteng Province, September 2014</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patience%20Manjengwa-Hungwe">Patience Manjengwa-Hungwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20White"> Carmen White</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Odyssean malaria refers to malaria acquired by infected mosquito bites from malaria endemic to non-endemic regions by mechanical modes of transport, such as airplanes, water vessels, trains and vehicles. Odyssean Malaria is rare and is characterised by absence of travel history to malaria endemic areas. As not anticipated in non-endemic areas, late diagnosis and treatment lead to a high case fatality rate. On 26 September 2014, the Outbreak Response Unit at the National Institute of Communicable Diseases was notified of a suspected death from Odyssean Malaria in Johannesburg, Gauteng Province, a non-endemic area. The main objective of this investigation was to identify the etiological agent's mode and source of transmission. Methods: Epidemiological surveys were conducted with the deceased’s family and clinical details were obtained from doctors who treated the victim in Southrand, Johannesburg. Blood samples were collected prior to death and sent to the National Health Laboratory Services, Johannesburg laboratory for a full blood count, urea electrolytes, creatinine, and C-reactive protein. Environmental assessments and entomological investigations, including collection of mosquito and larvae, were conducted at the deceased’s home and surrounding areas and sent to the laboratory for analysis. Results: Epidemiological surveys revealed no travel history, no mechanical transmission through blood transfusion and no previous possible exposure of the victim to malaria mosquitoes. Laboratory findings indicated that the platelet count was low. A further smear revealed that the malaria parasite was present and malaria antigen for P. falciparum was positive. Entomological findings revealed that none of the six adult or larval mosquitoes collected on site were malaria vectors. Dumping sites found at the back of the house were identified as possible sites where mosquitoes from endemic places could possibly breed. Conclusion: Given that there was no travel history or the possibility of mechanical transmission (blood transfusion or needle), the research team concluded that it is highly probable that the infection was acquired through an infective Anopheles mosquito inadvertently translocated from a Malaria endemic area by mechanical modes of transport. We recommend that clinicians in non-endemic malaria areas be aware of this type of malaria and test for malaria in patients showing malaria-like symptoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Odyssean%20Malaria" title="Odyssean Malaria">Odyssean Malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=vector%20Bourne" title=" vector Bourne"> vector Bourne</a>, <a href="https://publications.waset.org/abstracts/search?q=malaria" title=" malaria"> malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemiological%20surveys" title=" epidemiological surveys"> epidemiological surveys</a> </p> <a href="https://publications.waset.org/abstracts/19465/suspected-odyssean-malaria-outbreak-in-gauteng-province-september-2014" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Epidemiological, Ecology, and Case Management of Plasmodium Knowlesi Malaria in Phang-Nga Province, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surachart%20Koyadun">Surachart Koyadun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Plasmodium knowlesi (P. knowlesi) malaria is a zoonotic disease that is classified as type 5 of human malaria. Commonly found in macaques (Macaca fascicularis) and (Macaca nemestrina), P. knowlesi is capable of resulting in both uncomplicated and severe malaria in humans. Situation of P. knowlesi malaria in Phang-Nga province for the past 3 years from 2020 – 2022 revealed no case report in 2020, however, a total of 14 cases had been reported in 2021 - 2022. This research aimed to 1) study the epidemiology of P. knowlesi, 2) examine the clinical manifestations of P. knowlesi patients, 3) analyze the ecology and entomology of P. knowlesi, and 4) analyze the diagnosis and treatment of P. knowlesi. Method: This research was a retrospective descriptive study/case report. The study was conducted in 14 patients with P. knowlesi malaria between 2021 and 2022 in 4 districts of Phang-Nga Province, Thailand including Thapput, Kapong, Takuapa and Khuraburi. Results: The study subjects of P. knowlesi malaria were all males. Most of them were working age groups as farmers and worked in forest or plantation areas. All had no history of blood transfusions. Most of the patients did not use mosquito nets and had a history of camping in the forest prior to the onset of fever. An analysis of all 14 sources of infection unveiled the area is home to macaques, and that area has detected Anopheles mosquito, which is the carrier of the disease. Majority of them got sick in the dry season of Thailand (December-April). The main symptoms brought to the hospital were fever, chills, headache, body aches. Laboratory findings on the first day of diagnosis were as follows: The white blood cell count was found within the normal range. In the proportion of white blood cells, eosinophils were found to be slightly higher than normal. Slight anemia was found on early examination. The platelet count was found to be below normal in all cases. Severely low platelet count (2,000 cells/mm3) was found in severe cases with multiple complications. No patient was found dead but 85.7% of complications were found, with acute renal failure being the most common. Patients with delayed diagnosis and treatment of malaria (inaccurate diagnosis or late access to the hospital) had the highest severity and complications than those who had seen the doctor since the first 3-4 days of illness or the screening of symptoms and risk history by the malaria clinic staff at vector-borne disease control unit. Conclusion and Recommendation: P. knowlesi malaria is an emerging infectious disease transmitted from animals to humans. There are challenges in epidemiology, entomology, ecology for effective surveillance, prevention and control. Early diagnosis and treatment would reduce complications and prevent death. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=malaria" title="malaria">malaria</a>, <a href="https://publications.waset.org/abstracts/search?q=plasmodium%20knowlesi" title=" plasmodium knowlesi"> plasmodium knowlesi</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemiology" title=" epidemiology"> epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=ecology" title=" ecology"> ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=entomology" title=" entomology"> entomology</a>, <a href="https://publications.waset.org/abstracts/search?q=diagnosis" title=" diagnosis"> diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/169062/epidemiological-ecology-and-case-management-of-plasmodium-knowlesi-malaria-in-phang-nga-province-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Monitoring of Vector Mosquitors of Diseases in Areas of Energy Employment Influence in the Amazon (Amapa State), Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ribeiro%20Tiago%20Magalh%C3%A3es">Ribeiro Tiago Magalhães</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: The objective of this study was to evaluate the influence of a hydroelectric power plant in the state of Amapá, and to present the results obtained by dimensioning the diversity of the main mosquito vectors involved in the transmission of pathogens that cause diseases such as malaria, dengue and leishmaniasis. Methodology: The present study was conducted on the banks of the Araguari River, in the municipalities of Porto Grande and Ferreira Gomes in the southern region of Amapá State. Nine monitoring campaigns were conducted, the first in April 2014 and the last in March 2016. The selection of the catch sites was done in order to prioritize areas with possible occurrence of the species considered of greater importance for public health and areas of contact between the wild environment and humans. Sampling efforts aimed to identify the local vector fauna and to relate it to the transmission of diseases. In this way, three phases of collection were established, covering the schedules of greater hematophageal activity. Sampling was carried out using Shannon Shack and CDC types of light traps and by means of specimen collection with the hold method. This procedure was carried out during the morning (between 08:00 and 11:00), afternoon-twilight (between 15:30 and 18:30) and night (between 18:30 and 22:00). In the specific methodology of capture with the use of the CDC equipment, the delimited times were from 18:00 until 06:00 the following day. Results: A total of 32 species of mosquitoes was identified, and a total of 2,962 specimens was taxonomically subdivided into three genera (Culicidae, Psychodidae and Simuliidae) Psorophora, Sabethes, Simulium, Uranotaenia and Wyeomyia), besides those represented by the family Psychodidae that due to the morphological complexities, allows the safe identification (without the method of diaphanization and assembly of slides for microscopy), only at the taxonomic level of subfamily (Phlebotominae). Conclusion: The nine monitoring campaigns carried out provided the basis for the design of the possible epidemiological structure in the areas of influence of the Cachoeira Caldeirão HPP, in order to point out among the points established for sampling, which would represent greater possibilities, according to the group of identified mosquitoes, of disease acquisition. However, what should be mainly considered, are the future events arising from reservoir filling. This argument is based on the fact that the reproductive success of Culicidae is intrinsically related to the aquatic environment for the development of its larvae until adulthood. From the moment that the water mirror is expanded in new environments for the formation of the reservoir, a modification in the process of development and hatching of the eggs deposited in the substrate can occur, causing a sudden explosion in the abundance of some genera, in special Anopheles, which holds preferences for denser forest environments, close to the water portions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amazon" title="Amazon">Amazon</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroelectric" title=" hydroelectric"> hydroelectric</a>, <a href="https://publications.waset.org/abstracts/search?q=power" title=" power"> power</a>, <a href="https://publications.waset.org/abstracts/search?q=plants" title=" plants"> plants</a> </p> <a href="https://publications.waset.org/abstracts/83324/monitoring-of-vector-mosquitors-of-diseases-in-areas-of-energy-employment-influence-in-the-amazon-amapa-state-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>