CINXE.COM

Search results for: molecular

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: molecular</title> <meta name="description" content="Search results for: molecular"> <meta name="keywords" content="molecular"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="molecular" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="molecular"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2124</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: molecular</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2124</span> Thick Disc Molecular Gas Fraction in NGC 6946</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Nath%20Patra">Narendra Nath Patra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several recent studies reinforce the existence of a thick molecular disc in galaxies along with the dynamically cold thin disc. Assuming a two-component molecular disc, we model the disc of NGC 6946 as a four-component system consists of stars, HI, thin disc molecular gas, and thick disc molecular gas in vertical hydrostatic equilibrium. Following, we set up the joint Poisson-Boltzmann equation of hydrostatic equilibrium and solve it numerically to obtain a three-dimensional density distribution of different baryonic components. Using the density solutions and the observed rotation curve, we further build a three-dimensional dynamical model of the molecular disc and consecutively produce simulated CO spectral cube and spectral width profile. We find that the simulated spectral width profiles distinguishably differs for different assumed thick disc molecular gas fraction. Several CO spectral width profiles are then produced for different assumed thick disc molecular gas fractions and compared with the observed one to obtain the best fit thick disc molecular gas fraction profile. We find that the thick disc molecular gas fraction in NGC 6946 largely remains constant across its molecular disc with a mean value of 0.70 +/- 0.09. We also estimate the amount of extra-planar molecular gas in NGC 6946. We find 60% of the total molecular gas is extra-planar at the central region, whereas this fraction reduces to ~ 35% at the edge of the molecular disc. With our method, for the first time, we estimate the thick disc molecular gas fraction as a function of radius in an external galaxy with sub-kpc resolution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=galaxies%3A%20kinematics%20and%20dynamic" title="galaxies: kinematics and dynamic">galaxies: kinematics and dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=galaxies%3A%20spiral" title=" galaxies: spiral"> galaxies: spiral</a>, <a href="https://publications.waset.org/abstracts/search?q=galaxies%3A%20structure" title=" galaxies: structure "> galaxies: structure </a>, <a href="https://publications.waset.org/abstracts/search?q=ISM%3A%20molecules" title=" ISM: molecules"> ISM: molecules</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20data" title=" molecular data"> molecular data</a> </p> <a href="https://publications.waset.org/abstracts/123278/thick-disc-molecular-gas-fraction-in-ngc-6946" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2123</span> Molecular Clustering and Velocity Increase in Converging-Diverging Nozzle in Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeoungsu%20Na">Jeoungsu Na</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehawn%20Lee"> Jaehawn Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Changil%20Hong"> Changil Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhee%20Kim"> Suhee Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A molecular dynamics simulation in a converging-diverging nozzle was performed to study molecular collisions and their influence to average flow velocity according to a variety of vacuum levels. The static pressures and the dynamic pressure exerted by the molecule collision on the selected walls were compared to figure out the intensity variances of the directional flows. With pressure differences constant between the entrance and the exit of the nozzle, the numerical experiment was performed for molecular velocities and directional flows. The result shows that the velocities increased at the nozzle exit as the vacuum level gets higher in that area because less molecular collisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation" title="cavitation">cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20collision" title=" molecular collision"> molecular collision</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum" title=" vacuum"> vacuum</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20increase" title=" velocity increase"> velocity increase</a> </p> <a href="https://publications.waset.org/abstracts/61069/molecular-clustering-and-velocity-increase-in-converging-diverging-nozzle-in-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2122</span> Molecular Junctions between Graphene Strips: Electronic and Transport Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adel%20Belayadi">Adel Belayadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mougari"> Ahmed Mougari</a>, <a href="https://publications.waset.org/abstracts/search?q=Boualem%20Bourahla"> Boualem Bourahla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular junctions are currently considered a promising style in the miniaturization of electronic devices. In this contribution, we provide a tight-binding model to investigate the quantum transport properties across-molecular junctions sandwiched between 2D-graphene nanoribbons in the zigzag direction. We investigate, in particular, the effect of embedded atoms such as Gold and Silicon across the molecular junction. The results exhibit a resonance behavior in terms of incident Fermi levels, depending on the molecular junction type. Additionally, the transport properties under a perpendicular magnetic field exhibit an oscillation for the transmittance versus the magnetic field strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20junction" title="molecular junction">molecular junction</a>, <a href="https://publications.waset.org/abstracts/search?q=2D-graphene%20nanoribbons" title=" 2D-graphene nanoribbons"> 2D-graphene nanoribbons</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20transport%20properties" title=" quantum transport properties"> quantum transport properties</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/157729/molecular-junctions-between-graphene-strips-electronic-and-transport-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2121</span> Molecular Docking Assessment of Pesticides Binding to Bacterial Chitinases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diana%20Larisa%20Vladoiu">Diana Larisa Vladoiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasile%20Ostafe"> Vasile Ostafe</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Isvoran"> Adriana Isvoran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Molecular docking calculations reveal that pesticides provide favorable interactions with the bacterial chitinases. Pesticides interact with both hydrophilic and aromatic residues involved in the active site of the enzymes, their positions partially overlapping the substrate and the inhibitors locations. Molecular docking outcomes, in correlation with experimental literature data, suggest that the pesticides may be degraded or having an inhibitor effect on the activity of these enzymes, depending of the application dose and rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitinases" title="chitinases">chitinases</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a> </p> <a href="https://publications.waset.org/abstracts/25456/molecular-docking-assessment-of-pesticides-binding-to-bacterial-chitinases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2120</span> Effect of Plasticizer Additives on the Mechanical Properties of Cement Composite: A Molecular Dynamics Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Mohan">R. Mohan</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Jadhav"> V. Jadhav</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ahmed"> A. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Rivas"> J. Rivas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kelkar"> A. Kelkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cementitious materials are an excellent example of a composite material with complex hierarchical features and random features that range from nanometer (nm) to millimeter (mm) scale. Multi-scale modeling of complex material systems requires starting from fundamental building blocks to capture the scale relevant features through associated computational models. In this paper, molecular dynamics (MD) modeling is employed to predict the effect of plasticizer additive on the mechanical properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown molecular configuration of CSH, a representative configuration widely accepted in the field of mineral Jennite is employed. The effectiveness of the Molecular Dynamics modeling to understand the predictive influence of material chemistry changes based on molecular/nanoscale models is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20composite" title="cement composite">cement composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticizer%20additives" title=" plasticizer additives"> plasticizer additives</a> </p> <a href="https://publications.waset.org/abstracts/1528/effect-of-plasticizer-additives-on-the-mechanical-properties-of-cement-composite-a-molecular-dynamics-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2119</span> Application of Molecular Markers for Crop Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monisha%20Isaac">Monisha Isaac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Use of molecular markers for selecting plants with desired traits has been started long back. Due to their heritable characteristics, they are useful for identification and characterization of specific genotypes. The study involves various types of molecular markers used to select multiple desired characters in plants, their properties, and advantages to improve crop productivity in adverse climatological conditions for the purpose of providing food security to fast-growing global population. The study shows that genetic similarities obtained from molecular markers provide more accurate information and the genetic diversity can be better estimated from the genetic relationship obtained from the dendrogram. The information obtained from markers assisted characterization is more suitable for the crops of economic importance like sugarcane. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular%20markers" title="molecular markers">molecular markers</a>, <a href="https://publications.waset.org/abstracts/search?q=crop%20productivity" title=" crop productivity"> crop productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20diversity" title=" genetic diversity"> genetic diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=genotype" title=" genotype"> genotype</a> </p> <a href="https://publications.waset.org/abstracts/69621/application-of-molecular-markers-for-crop-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2118</span> Topological Analysis of Hydrogen Bonds in Pyruvic Acid-Water Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferid%20Hammami">Ferid Hammami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The molecular geometries of the possible conformations of pyruvic acid-water complexes (PA-(H₂O)ₙ = 1- 4) have been fully optimized at DFT/B3LYP/6-311G ++ (d, p) levels of calculation. Among several optimized molecular clusters, the most stable molecular arrangements obtained when one, two, three, and four water molecules are hydrogen-bonded to a central pyruvic acid molecule are presented in this paper. Apposite topological and geometrical parameters are considered as primary indicators of H-bond strength. Atoms in molecules (AIM) analysis shows that pyruvic acid can form a ring structure with water, and the molecular structures are stabilized by both strong O-H...O and C-H...O hydrogen bonds. In large clusters, classical O-H...O hydrogen bonds still exist between water molecules, and a cage-like structure is built around some parts of the central molecule of pyruvic acid. The electrostatic potential energy map (MEP) and the HOMO-LUMO molecular orbital (highest occupied molecular orbital-lowest unoccupied molecular orbital) analysis has been performed for all considered complexes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyruvic%20acid" title="pyruvic acid">pyruvic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=PA-water%20complex" title=" PA-water complex"> PA-water complex</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bonding" title=" hydrogen bonding"> hydrogen bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=AIM" title=" AIM"> AIM</a>, <a href="https://publications.waset.org/abstracts/search?q=MEP" title=" MEP"> MEP</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a> </p> <a href="https://publications.waset.org/abstracts/139309/topological-analysis-of-hydrogen-bonds-in-pyruvic-acid-water-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2117</span> Characterization on Molecular Weight of Polyamic Acids Using GPC Coupled with Multiple Detectors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei%20Hong">Mei Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Liu"> Wei Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuemin%20Dai"> Xuemin Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yanxiong%20Pan"> Yanxiong Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangling%20Ji">Xiangling Ji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polyamic acid (PAA) is the precursor of polyimide (PI) prepared by a two-step method, its molecular weight and molecular weight distribution not only play an important role during the preparation and processing, but also influence the final performance of PI. However, precise characterization on molecular weight of PAA is still a challenge because of the existence of very complicated interactions in the solution system, including the electrostatic interaction, hydrogen bond interaction, dipole-dipole interaction, etc. Thus, it is necessary to establisha suitable strategy which can completely suppress these complex effects and get reasonable data on molecular weight. Herein, the gel permeation chromatography (GPC) coupled with differential refractive index (RI) and multi-angle laser light scattering (MALLS) detectors were applied to measure the molecular weight of (6FDA-DMB) PAA using different mobile phases, LiBr/DMF, LiBr/H3PO4/THF/DMF, LiBr/HAc/THF/DMF, and LiBr/HAc/DMF, respectively. It was found that combination of LiBr with HAc can shield the above-mentioned complex interactions and is more conducive to the separation of PAA than only addition of LiBr in DMF. LiBr/HAc/DMF was employed for the first time as a mild mobile phase to effectively separate PAA and determine its molecular weight. After a series of conditional experiments, 0.02M LiBr/0.2M HAc/DMF was fixed as an optimized mobile phase to measure the relative and absolute molecular weights of (6FDA-DMB) PAA prepared, and the obtained Mw from GPC-MALLS and GPC-RI were 35,300 g/mol and 125,000 g/mol, respectively. Particularly, such a mobile phase is also applicable to other PAA samples with different structures, and the final results on molecular weight are also reproducible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Polyamic%20acids" title="Polyamic acids">Polyamic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyelectrolyte%20effects" title=" Polyelectrolyte effects"> Polyelectrolyte effects</a>, <a href="https://publications.waset.org/abstracts/search?q=Gel%20permeation%20chromatography" title=" Gel permeation chromatography"> Gel permeation chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=Mobile%20phase" title=" Mobile phase"> Mobile phase</a>, <a href="https://publications.waset.org/abstracts/search?q=Molecular%20weight" title=" Molecular weight"> Molecular weight</a> </p> <a href="https://publications.waset.org/abstracts/173439/characterization-on-molecular-weight-of-polyamic-acids-using-gpc-coupled-with-multiple-detectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2116</span> Molecular Modeling of 17-Picolyl and 17-Picolinylidene Androstane Derivatives with Anticancer Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Podunavac-Kuzmanovi%C4%87">Sanja Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Kova%C4%8Devi%C4%87"> Strahinja Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20Jevri%C4%87"> Lidija Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Evgenija%20Djurendi%C4%87"> Evgenija Djurendić</a>, <a href="https://publications.waset.org/abstracts/search?q=Jovana%20Ajdukovi%C4%87"> Jovana Ajduković</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the molecular modeling of a series of 24 17-picolyl and 17-picolinylidene androstane derivatives whit significant anticancer activity was carried out. Modelling of studied compounds was performed by CS ChemBioDraw Ultra v12.0 program for drawing 2D molecular structures and CS ChemBio3D Ultra v12.0 for 3D molecular modelling. The obtained 3D structures were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. Full geometry optimization was done by the Austin Model 1 (AM1) until the root mean square (RMS) gradient reached a value smaller than 0.0001 kcal/Åmol using Molecular Orbital Package (MOPAC) program. The obtained physicochemical, lipophilicity and topological descriptors were used for analysis of molecular similarities and dissimilarities applying suitable chemometric methods (principal component analysis and cluster analysis). These results are the part of the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina and CMST COST Action CM1306. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=androstane%20derivatives" title="androstane derivatives">androstane derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=anticancer%20activity" title=" anticancer activity"> anticancer activity</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title=" chemometrics"> chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a> </p> <a href="https://publications.waset.org/abstracts/38072/molecular-modeling-of-17-picolyl-and-17-picolinylidene-androstane-derivatives-with-anticancer-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2115</span> An Insight into the Conformational Dynamics of Glycan through Molecular Dynamics Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Veluraja">K. Veluraja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycan of glycolipids and glycoproteins is playing a significant role in living systems particularly in molecular recognition processes. Molecular recognition processes are attributed to their occurrence on the surface of the cell, sequential arrangement and type of sugar molecules present in the oligosaccharide structure and glyosidic linkage diversity (glycoinformatics) and conformational diversity (glycoconformatics). Molecular Dynamics Simulation study is a theoretical-cum-computational tool successfully utilized to establish glycoconformatics of glycan. The study on various oligosaccharides of glycan clearly indicates that oligosaccharides do exist in multiple conformational states and these conformational states arise due to the flexibility associated with a glycosidic torsional angle (φ,ψ) . As an example: a single disaccharide structure NeuNacα(2-3) Gal exists in three different conformational states due to the differences in the preferential value of glycosidic torsional angles (φ,ψ). Hence establishing three dimensional structural and conformational models for glycan (cartesian coordinates of every individual atoms of an oligosaccharide structure in a preferred conformation) is quite crucial to understand various molecular recognition processes such as glycan-toxin interaction and glycan-virus interaction. The gycoconformatics models obtained for various glycan through Molecular Dynamics Simulation stored in our 3DSDSCAR (3DSDSCAR.ORG) a public domain database and its utility value in understanding the molecular recognition processes and in drug design venture will be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glycan" title="glycan">glycan</a>, <a href="https://publications.waset.org/abstracts/search?q=glycoconformatics" title=" glycoconformatics"> glycoconformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulation" title=" molecular dynamics simulation"> molecular dynamics simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=oligosaccharide" title=" oligosaccharide"> oligosaccharide</a> </p> <a href="https://publications.waset.org/abstracts/96790/an-insight-into-the-conformational-dynamics-of-glycan-through-molecular-dynamics-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2114</span> Computing Some Topological Descriptors of Single-Walled Carbon Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Bahrami">Amir Bahrami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index or a descriptor index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure. In this paper some descriptor index (descriptor index) of single-walled carbon nanotubes, is determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20graph%20theory" title="chemical graph theory">chemical graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20topology" title=" molecular topology"> molecular topology</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptor" title=" molecular descriptor"> molecular descriptor</a>, <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotubes" title=" single-walled carbon nanotubes"> single-walled carbon nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/39279/computing-some-topological-descriptors-of-single-walled-carbon-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2113</span> Rheological and Self-Healing Properties of Poly (Vinyl Butyral)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunatda%20Arayachukiat">Sunatda Arayachukiat</a>, <a href="https://publications.waset.org/abstracts/search?q=Shogo%20Nobukawa"> Shogo Nobukawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Masayuki%20Yamaguchi"> Masayuki Yamaguchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new self-healing material was developed utilizing molecular entanglements for poly(vinyl butyral) (PVB) containing plasticizers. It was found that PVB shows autonomic self-healing behavior even below the glass transition temperature Tg because of marked molecular motion at surface. Moreover, the plasticizer addition enhances the chain mobility, leading to good healing behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Poly%28vinyl%20butyral%29%20%28PVB%29" title="Poly(vinyl butyral) (PVB)">Poly(vinyl butyral) (PVB)</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=self-healing%20behaviour" title=" self-healing behaviour"> self-healing behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20diffusion" title=" molecular diffusion"> molecular diffusion</a> </p> <a href="https://publications.waset.org/abstracts/16016/rheological-and-self-healing-properties-of-poly-vinyl-butyral" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2112</span> Study of Demographic, Hematological Profile and Risk Stratification in Chronic Myeloid Leukemia Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajandeep%20Kaur">Rajandeep Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajeev%20Gupta"> Rajeev Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Chronic myeloid leukemia (CML) is the most common leukaemia in India. The annual incidence of chronic myeloid leukemia in India was originally reported to be 0.8 to 2.2 per 1,00,000 population. CML is a clonal disorder that is usually easily diagnosed because the leukemic cells of more than 95% of patients have a distinctive cytogenetic abnormality, the Philadelphia chromosome (Ph1). The approval of tyrosine kinase inhibitors (TKIs), which target BCR-ABL1 kinase activity, has significantly reduced the mortality rate associated with chronic myeloid leukemia (CML) and revolutionized treatment. Material and Methods: 80 diagnosed cases of CML were taken. Investigations were done. Bone marrow and molecular studies were also done and with EUTOS, patients were stratified into low and high-risk groups and then treatment with Imatinib was given to all patients and the molecular response was evaluated at 6 months and 12 months follow up with BCR-ABL by RT-PCR quantitative assay. Results: In the study population, out of 80 patients in the study population, 40 were females and 40 were males, with M: F is 1:1. Out of total 80 patients’ maximum patients (54) were in 31-60 years age group. Our study showed a most common symptom of presentation is abdominal discomfort followed by fever. Out of the total 80 patients, 25 (31.3%) patients had high EUTOS scores and 55 (68.8%) patients had low EUTOS scores. On 6 months follow up 36.3% of patients had Complete Molecular Response, 16.3% of patients had Major Molecular Response and 47.5% of patients had No Molecular Response but on 12 months follow up 71.3% of patients had Complete Molecular Response, 16.25% of patients had Major Molecular Response and 12.5% patients had No Molecular Response. Conclusion: In this study, we found a significant correlation between EUTOS score and Molecular response at 6 months and 12 months follow up after Imatinib therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20myeloid%20leukemia" title="chronic myeloid leukemia">chronic myeloid leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=European%20treatment%20and%20outcome%20study%20score" title=" European treatment and outcome study score"> European treatment and outcome study score</a>, <a href="https://publications.waset.org/abstracts/search?q=hematological%20response" title=" hematological response"> hematological response</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20response" title=" molecular response"> molecular response</a>, <a href="https://publications.waset.org/abstracts/search?q=tyrosine%20kinase%20inhibitor" title=" tyrosine kinase inhibitor"> tyrosine kinase inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/147756/study-of-demographic-hematological-profile-and-risk-stratification-in-chronic-myeloid-leukemia-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2111</span> Utilizing Quantum Chemistry for Nanotechnology: Electron and Spin Movement in Molecular Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Fathollahzadeh">Mahsa Fathollahzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quick advancement of nanotechnology necessitates the creation of innovative theoretical approaches to elucidate complex experimental findings and forecast novel capabilities of nanodevices. Therefore, over the past ten years, a difficult task in quantum chemistry has been comprehending electron and spin transport in molecular devices. This thorough evaluation presents a comprehensive overview of current research and its status in the field of molecular electronics, emphasizing the theoretical applications to various device types and including a brief introduction to theoretical methods and their practical implementation plan. The subject matter includes a variety of molecular mechanisms like molecular cables, diodes, transistors, electrical and visual switches, nano detectors, magnetic valve gadgets, inverse electrical resistance gadgets, and electron tunneling exploration. The text discusses both the constraints of the method presented and the potential strategies to address them, with a total of 183 references. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemistry" title="chemistry">chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum" title=" quantum"> quantum</a>, <a href="https://publications.waset.org/abstracts/search?q=molecule" title=" molecule"> molecule</a>, <a href="https://publications.waset.org/abstracts/search?q=spin" title=" spin"> spin</a> </p> <a href="https://publications.waset.org/abstracts/185832/utilizing-quantum-chemistry-for-nanotechnology-electron-and-spin-movement-in-molecular-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2110</span> Quantitative Structure-Property Relationship Study of Base Dissociation Constants of Some Benzimidazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac-Kuzmanovi%C4%87">Sanja O. Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87"> Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benzimidazoles are a group of compounds with significant antibacterial, antifungal and anticancer activity. The studied compounds consist of the main benzimidazole structure with different combinations of substituens. This study is based on the two-dimensional and three-dimensional molecular modeling and calculation of molecular descriptors (physicochemical and lipophilicity descriptors) of structurally diverse benzimidazoles. Molecular modeling was carried out by using ChemBio3D Ultra version 14.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The obtained set of molecular descriptors was used in principal component analysis (PCA) of possible similarities and dissimilarities among the studied derivatives. After the molecular modeling, the quantitative structure-property relationship (QSPR) analysis was applied in order to get the mathematical models which can be used in prediction of pKb values of structurally similar benzimidazoles. The obtained models are based on statistically valid multiple linear regression (MLR) equations. The calculated cross-validation parameters indicate the high prediction ability of the established QSPR models. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzimidazoles" title="benzimidazoles">benzimidazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title=" chemometrics"> chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=QSPR" title=" QSPR"> QSPR</a> </p> <a href="https://publications.waset.org/abstracts/45055/quantitative-structure-property-relationship-study-of-base-dissociation-constants-of-some-benzimidazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2109</span> Accelerated Molecular Simulation: A Convolution Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jannes%20Quer">Jannes Quer</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Niknejad"> Amir Niknejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcus%20Weber"> Marcus Weber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational Drug Design is often based on Molecular Dynamics simulations of molecular systems. Molecular Dynamics can be used to simulate, e.g., the binding and unbinding event of a small drug-like molecule with regard to the active site of an enzyme or a receptor. However, the time-scale of the overall binding event is many orders of magnitude longer than the time-scale of simulation. Thus, there is a need to speed-up molecular simulations. In order to speed up simulations, the molecular dynamics trajectories have to be &rdquo;steared&rdquo; out of local minimizers of the potential energy surface &ndash; the so-called metastabilities &ndash; of the molecular system. Increasing the kinetic energy (temperature) is one possibility to accelerate simulated processes. However, with temperature the entropy of the molecular system increases, too. But this kind &rdquo;stearing&rdquo; is not directed enough to stear the molecule out of the minimum toward the saddle point. In this article, we give a new mathematical idea, how a potential energy surface can be changed in such a way, that entropy is kept under control while the trajectories are still steared out of the metastabilities. In order to compute the unsteared transition behaviour based on a steared simulation, we propose to use extrapolation methods. In the end we mathematically show, that our method accelerates the simulations along the direction, in which the curvature of the potential energy surface changes the most, i.e., from local minimizers towards saddle points. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extrapolation" title="extrapolation">extrapolation</a>, <a href="https://publications.waset.org/abstracts/search?q=Eyring-Kramers" title=" Eyring-Kramers"> Eyring-Kramers</a>, <a href="https://publications.waset.org/abstracts/search?q=metastability" title=" metastability"> metastability</a>, <a href="https://publications.waset.org/abstracts/search?q=multilevel%20sampling" title=" multilevel sampling"> multilevel sampling</a> </p> <a href="https://publications.waset.org/abstracts/67617/accelerated-molecular-simulation-a-convolution-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2108</span> Molecular Communication Noise Effect Analysis of Diffusion-Based Channel for Considering Minimum-Shift Keying and Molecular Shift Keying Modulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Azari">A. Azari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20K.%20Seyyedi"> S. S. K. Seyyedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the unaddressed and open challenges in the nano-networking is the characteristics of noise. The previous analysis, however, has concentrated on end-to-end communication model with no separate modelings for propagation channel and noise. By considering a separate signal propagation and noise model, the design and implementation of an optimum receiver will be much easier. In this paper, we justify consideration of a separate additive Gaussian noise model of a nano-communication system based on the molecular communication channel for which are applicable for MSK and MOSK modulation schemes. The presented noise analysis is based on the Brownian motion process, and advection molecular statistics, where the received random signal has a probability density function whose mean is equal to the mean number of the received molecules. Finally, the justification of received signal magnitude being uncorrelated with additive non-stationary white noise is provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular" title="molecular">molecular</a>, <a href="https://publications.waset.org/abstracts/search?q=noise" title=" noise"> noise</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion" title=" diffusion"> diffusion</a>, <a href="https://publications.waset.org/abstracts/search?q=channel" title=" channel"> channel</a> </p> <a href="https://publications.waset.org/abstracts/74407/molecular-communication-noise-effect-analysis-of-diffusion-based-channel-for-considering-minimum-shift-keying-and-molecular-shift-keying-modulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2107</span> Biological Evaluation and Molecular Modeling Study of Thiosemicarbazide Derivatives as Bacterial Type IIA Topoisomerases Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawe%C5%82%20St%C4%85czek">Paweł Stączek</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomasz%20Plech"> Tomasz Plech</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Strzelczyk"> Aleksandra Strzelczyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Dzitko"> Katarzyna Dzitko</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Wujec"> Monika Wujec</a>, <a href="https://publications.waset.org/abstracts/search?q=Edyta%20Ku%C5%9Bmierz"> Edyta Kuśmierz</a>, <a href="https://publications.waset.org/abstracts/search?q=Piotr%20Paneth"> Piotr Paneth</a>, <a href="https://publications.waset.org/abstracts/search?q=Agata%20Paneth"> Agata Paneth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this contribution, we will describe the inhibitory potency of nine thiosemicarbazide derivatives against bacterial type IIA topoisomerases, their antibacterial profile, and molecular modeling evaluation. We have found that one of the tested compounds, 4-benzoyl-1-(2-methyl-furan-3-ylcarbonyl) thiosemicarbazide, remarkably inhibits the activity of S. aureus DNA gyrase with the IC50 below 5 μM. Besides, this compound displays antibacterial activity on Staphylococcus spp. and E. faecalis at non-cytotoxic concentrations in mammalian cells, with minimal inhibitory concentrations (MICs) values at 25 μg/mL. Based on the enzymatic and molecular modeling studies we propose two factors, i.e. geometry of molecule and hydrophobic/hydrophilic balance as important molecular properties for developing thiosemicarbazide derivatives as potent Staphylococcus aureus DNA gyrase inhibitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title="bioactivity">bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20design" title=" drug design"> drug design</a>, <a href="https://publications.waset.org/abstracts/search?q=topoisomerase" title=" topoisomerase"> topoisomerase</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a> </p> <a href="https://publications.waset.org/abstracts/20179/biological-evaluation-and-molecular-modeling-study-of-thiosemicarbazide-derivatives-as-bacterial-type-iia-topoisomerases-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">569</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2106</span> Coarse-Grained Molecular Simulations to Estimate Thermophysical Properties of Phase Equilibria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hai%20Hoang">Hai Hoang</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanh%20Xuan%20Nguyen%20Thi"> Thanh Xuan Nguyen Thi</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Galliero"> Guillaume Galliero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coarse-Grained (CG) molecular simulations have shown to be an efficient way to estimate thermophysical (static and dynamic) properties of fluids. Several strategies have been developed and reported in the literature for defining CG molecular models. Among them, those based on a top-down strategy (i.e. CG molecular models related to macroscopic observables), despite being heuristic, have increasingly gained attention. This is probably due to its simplicity in implementation and its ability to provide reasonable results for not only simple but also complex systems. Regarding simple Force-Fields associated with these CG molecular models, it has been found that the four parameters Mie chain model is one of the best compromises to describe thermophysical static properties (e.g. phase diagram, saturation pressure). However, parameterization procedures of these Mie-chain GC molecular models given in literature are generally insufficient to simultaneously provide static and dynamic (e.g. viscosity) properties. To deal with such situations, we have extended the corresponding states by using a quantity associated with the liquid viscosity. Results obtained from molecular simulations have shown that our approach is able to yield good estimates for both static and dynamic thermophysical properties for various real non-associating fluids. In addition, we will show that on simple (e.g. phase diagram, saturation pressure) and complex (e.g. thermodynamic response functions, thermodynamic energy potentials) static properties, results of our scheme generally provides improved results compared to existing approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarse-grained%20model" title="coarse-grained model">coarse-grained model</a>, <a href="https://publications.waset.org/abstracts/search?q=mie%20potential" title=" mie potential"> mie potential</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20simulations" title=" molecular simulations"> molecular simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=thermophysical%20properties" title=" thermophysical properties"> thermophysical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20equilibria" title=" phase equilibria"> phase equilibria</a> </p> <a href="https://publications.waset.org/abstracts/58392/coarse-grained-molecular-simulations-to-estimate-thermophysical-properties-of-phase-equilibria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2105</span> Molecular Electrostatic Potential in Z-3N(2-Ethoxyphenyl), 2-N&#039;(2-Ethoxyphenyl) Imino Thiazolidin-4-one Molecule by Ab Initio and DFT Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manel%20Boulakoud">Manel Boulakoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Chouaih"> Abdelkader Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=Fodil%20Hamzaoui"> Fodil Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work we are interested in the determination of the Molecular electrostatic potential (MEP) in Z-3N(2-Ethoxyphenyl), 2-N’(2-Ethoxyphenyl) imino thiazolidin-4-one molecule by ab initio and Density Functional Theory (DFT) in the ground state. The MEP is related to the electronic density and is a very useful descriptor in understanding sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions. First, geometry optimization was carried out using Hartree–Fock (HF) and DFT methods with 6-311G(d,p) basis set. In order to get more information on the molecule, its stability has been analyzed by natural bond orbital (NBO) analysis. Mulliken population analyses have been calculated. Finally, the molecular electrostatic potential (MEP) and HOMO-LUMO energy levels have been performed. The calculated HOMO and LUMO energies show also the charge transfer within the molecule. The energy gap obtained is about 4 eV which explain the stability of the studied compound. The obtained molecular electrostatic potential from the two methods confirms the nature of the electron charge transfer at the molecular shell and locate the electropositive part and the electronegative part in molecular scale of the title compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ab%20initio" title=" ab initio"> ab initio</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20compounds" title=" organic compounds"> organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/43840/molecular-electrostatic-potential-in-z-3n2-ethoxyphenyl-2-n2-ethoxyphenyl-imino-thiazolidin-4-one-molecule-by-ab-initio-and-dft-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2104</span> Identifying Network Subgraph-Associated Essential Genes in Molecular Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efendi%20Zaenudin">Efendi Zaenudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hung%20Huang"> Chien-Hung Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ka-Lok%20Ng"> Ka-Lok Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network&rsquo;s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biological%20molecular%20networks" title="biological molecular networks">biological molecular networks</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20genes" title=" essential genes"> essential genes</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20theory" title=" graph theory"> graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20subgraphs" title=" network subgraphs"> network subgraphs</a> </p> <a href="https://publications.waset.org/abstracts/128285/identifying-network-subgraph-associated-essential-genes-in-molecular-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2103</span> The Effect of Sorafenibe on Soat1 Protein by Using Molecular Docking Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdiyeh%20Gholaminezhad">Mahdiyeh Gholaminezhad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: The study focuses on the potential impact of Sorafenib on SOAT1 protein in liver cancer treatment, addressing the need for more effective therapeutic options. Research aim: To explore the effects of Sorafenib on the activity of SOAT1 protein in liver cancer cells. Methodology: Molecular docking was employed to analyze the interaction between Sorafenib and SOAT1 protein. Findings: The study revealed a significant effect of Sorafenib on the stability and activity of SOAT1 protein, suggesting its potential as a treatment for liver cancer. Theoretical importance: This research highlights the molecular mechanism underlying Sorafenib's anti-cancer properties, contributing to the understanding of its therapeutic effects. Data collection: Data on the molecular structure of Sorafenib and SOAT1 protein were obtained from computational simulations and databases. Analysis procedures: Molecular docking simulations were performed to predict the binding interactions between Sorafenib and SOAT1 protein. Question addressed: How does Sorafenib influence the activity of SOAT1 protein and what are the implications for liver cancer treatment? Conclusion: The study demonstrates the potential of Sorafenib as a targeted therapy for liver cancer by affecting the activity of SOAT1 protein. Reviewers' Comments: The study provides valuable insights into the molecular basis of Sorafenib's action on SOAT1 protein, suggesting its therapeutic potential. To enhance the methodology, the authors could consider validating the docking results with experimental data for further validation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liver%20cancer" title="liver cancer">liver cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=sorafenib" title=" sorafenib"> sorafenib</a>, <a href="https://publications.waset.org/abstracts/search?q=SOAT1" title=" SOAT1"> SOAT1</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a> </p> <a href="https://publications.waset.org/abstracts/189263/the-effect-of-sorafenibe-on-soat1-protein-by-using-molecular-docking-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">26</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2102</span> X-Ray and DFT Electrostatics Parameters Determination of a Coumarin Derivative Compound C17H13NO3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Megrous">Y. Megrous</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chouaih"> A. Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzaoui"> F. Hamzaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crystal structure of 4-Methyl-7-(salicylideneamino)coumarin C17H13NO3has been determined using X-ray diffraction to establish the configuration and stereochemistry of the molecule. This crystal is characterized by its nolinear activity. The molecular electron charge density distribution of the title compound is described accurately using the multipolar model of Hansen and Coppens. The net atomic charge and the molecular dipole moment in-crystal have been determined in order to understand the nature of inter-and intramolecular charge transfer. The study present the thermal motion and the structural analysis obtained from the least-square refinement on F2,this study has also allowed us to determine the electrostatic potential and therefore locate the electropositive part and the electronegative part in molecular scale of the title compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20charge%20density" title="electron charge density">electron charge density</a>, <a href="https://publications.waset.org/abstracts/search?q=net%20atomic%20charge" title=" net atomic charge"> net atomic charge</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dipole%20moment" title=" molecular dipole moment"> molecular dipole moment</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a> </p> <a href="https://publications.waset.org/abstracts/24669/x-ray-and-dft-electrostatics-parameters-determination-of-a-coumarin-derivative-compound-c17h13no3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24669.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2101</span> Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Ting%20Chen">Po-Ting Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhanamoorthi%20Nachimuthu"> Santhanamoorthi Nachimuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Chiang%20Jiang"> Jyh-Chiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20batteries" title="lithium-ion batteries">lithium-ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyte%20simulation" title=" electrolyte simulation"> electrolyte simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/192137/accelerating-molecular-dynamics-simulations-of-electrolytes-with-neural-network-bridging-the-gap-between-ab-initio-molecular-dynamics-and-classical-molecular-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192137.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2100</span> The Study on Mechanical Properties of Graphene Using Molecular Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I-Ling%20Chang">I-Ling Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jer-An%20Chen"> Jer-An Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20minimization" title="energy minimization">energy minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20mechanics" title=" molecular mechanics"> molecular mechanics</a> </p> <a href="https://publications.waset.org/abstracts/25956/the-study-on-mechanical-properties-of-graphene-using-molecular-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2099</span> The Extension of Monomeric Computational Results to Polymeric Measurable Properties: An Introductory Computational Chemistry Experiment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zhao">Jing Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongqing%20Bai"> Yongqing Bai</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiaofang%20Shi"> Qiaofang Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaihao%20Zhang"> Huaihao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in software technology enable computational chemistry to be commonly applied in various research fields, especially in pedagogy. Thus, in order to expand and improve experimental instructions of computational chemistry for undergraduates, we designed an introductory experiment—research on acrylamide molecular structure and physicochemical properties. Initially, students construct molecular models of acrylamide and polyacrylamide in Gaussian and Materials Studio software respectively. Then, the infrared spectral data, atomic charge and molecular orbitals of acrylamide as well as solvation effect of polyacrylamide are calculated to predict their physicochemical performance. At last, rheological experiments are used to validate these predictions. Through the combination of molecular simulation (performed on Gaussian, Materials Studio) with experimental verification (rheology experiment), learners have deeply comprehended the chemical nature of acrylamide and polyacrylamide, achieving good learning outcomes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=upper-division%20undergraduate" title="upper-division undergraduate">upper-division undergraduate</a>, <a href="https://publications.waset.org/abstracts/search?q=computer-based%20learning" title=" computer-based learning"> computer-based learning</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20instruction" title=" laboratory instruction"> laboratory instruction</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a> </p> <a href="https://publications.waset.org/abstracts/144030/the-extension-of-monomeric-computational-results-to-polymeric-measurable-properties-an-introductory-computational-chemistry-experiment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2098</span> Molecular Interactions Driving RNA Binding to hnRNPA1 Implicated in Neurodegeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakina%20Fatima">Sakina Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph-Patrick%20W.%20E.%20Clarke"> Joseph-Patrick W. E. Clarke</a>, <a href="https://publications.waset.org/abstracts/search?q=Patricia%20A.%20Thibault"> Patricia A. Thibault</a>, <a href="https://publications.waset.org/abstracts/search?q=Subha%20Kalyaanamoorthy"> Subha Kalyaanamoorthy</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Levin"> Michael Levin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aravindhan%20Ganesan"> Aravindhan Ganesan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heteronuclear ribonucleoprotein (hnRNPA1 or A1) is associated with the pathology of different diseases, including neurological disorders and cancers. In particular, the aggregation and dysfunction of A1 have been identified as a critical driver for neurodegeneration (NDG) in Multiple Sclerosis (MS). Structurally, A1 includes a low-complexity domain (LCD) and two RNA-recognition motifs (RRMs), and their interdomain coordination may play a crucial role in A1 aggregation. Previous studies propose that RNA-inhibitors or nucleoside analogs that bind to RRMs can potentially prevent A1 self-association. Therefore, molecular-level understanding of the structures, dynamics, and nucleotide interactions with A1 RRMs can be useful for developing therapeutics for NDG in MS. In this work, a combination of computational modelling and biochemical experiments were employed to analyze a set of RNA-A1 RRM complexes. Initially, the atomistic models of RNA-RRM complexes were constructed by modifying known crystal structures (e.g., PDBs: 4YOE and 5MPG), and through molecular docking calculations. The complexes were optimized using molecular dynamics simulations (200-400 ns), and their binding free energies were computed. The binding affinities of the selected complexes were validated using a thermal shift assay. Further, the most important molecular interactions that contributed to the overall stability of the RNA-A1 RRM complexes were deduced. The results highlight that adenine and guanine are the most suitable nucleotides for high-affinity binding with A1. These insights will be useful in the rational design of nucleotide-analogs for targeting A1 RRMs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hnRNPA1" title="hnRNPA1">hnRNPA1</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics" title=" molecular dynamics"> molecular dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=RNA-binding%20proteins" title=" RNA-binding proteins"> RNA-binding proteins</a> </p> <a href="https://publications.waset.org/abstracts/155246/molecular-interactions-driving-rna-binding-to-hnrnpa1-implicated-in-neurodegeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2097</span> Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salem%20El-Tohami%20Ashoor">Salem El-Tohami Ashoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here we show that the reduction of [Cr(ArN(CH2)3NAr)2Cl2] (1) where (Ar = 2,6-Pri2C6H3) and in presence of NaCp (2) (Cp= C5H5 = cyclopentadien), with a center coordination η5 interaction between Cp as co-ligand and chromium metal center, this was optimization by using density functional theory (DFT) and then was comparing with experimental data, also other possibility of Cp interacted with ion metal were tested like η1 ,η2 ,η3 and η4 under optimization system. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP ( Becke)( Lee–Yang–Parr ) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [Cr(ArN(CH2)3NAr)2(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of chromium cyclopentadienyl. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chromium%28III%29%20cyclopentadienyl%20complexes" title="Chromium(III) cyclopentadienyl complexes">Chromium(III) cyclopentadienyl complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MO" title=" MO"> MO</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO" title=" HOMO"> HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LUMO" title=" LUMO"> LUMO</a> </p> <a href="https://publications.waset.org/abstracts/14546/molecular-and-electronic-structure-of-chromium-iii-cyclopentadienyl-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2096</span> Microbiological Activity and Molecular Docking Study of Selected Steroid Derivatives of Biomedical Importance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milica%20Karadzic">Milica Karadzic</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20Jevric"> Lidija Jevric</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Podunavac-Kuzmanovic"> Sanja Podunavac-Kuzmanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Kovacevic"> Strahinja Kovacevic</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinisa%20Markov"> Sinisa Markov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Okljesa"> Aleksandar Okljesa</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Nikolic"> Andrea Nikolic</a>, <a href="https://publications.waset.org/abstracts/search?q=Marija%20Sakac"> Marija Sakac</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarina%20Penov%20Gasi"> Katarina Penov Gasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study considered the microbiological activity determination and molecular docking study for selected steroid derivatives of biomedical importance. Minimal inhibitory concentration (MIC) was determined for steroid derivatives against Staphylococcus aureus using macrodilution method. Some of the investigated steroid derivatives express bacteriostatic effect against Staphylococcus aureus. Molecular docking approaches are the most widely used techniques for predicting the binding mode of a ligand. Molecular docking study was done for steroid derivatives for androgen receptor negative prostate cancer cell line (PC-3) toward Human Cytochrome P450 CYP17A1. The molecules that had the smallest experimental IC50 values confirmed their ability to dock into active place using suitable molecular docking procedure. The binding disposition of those molecules was thoroughly investigated. Microbiological analysis and molecular docking study were conducted with aim to additionally characterize selected steroid derivatives for future investigation regarding their biological activity and to estimate the binding-affinities of investigated derivatives. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation and Science and Technology). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binding%20affinity" title="binding affinity">binding affinity</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20inhibitory%20concentration" title=" minimal inhibitory concentration"> minimal inhibitory concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=pc-3%20cell%20line" title=" pc-3 cell line"> pc-3 cell line</a>, <a href="https://publications.waset.org/abstracts/search?q=staphylococcus%20aureus" title=" staphylococcus aureus"> staphylococcus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=steroids" title=" steroids"> steroids</a> </p> <a href="https://publications.waset.org/abstracts/60204/microbiological-activity-and-molecular-docking-study-of-selected-steroid-derivatives-of-biomedical-importance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2095</span> Structure-Based Virtual Screening to Identify CLDN4 Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jayanthi%20Sivaraman">Jayanthi Sivaraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Claudins are the important components of the tight junctions that play a key role in paracellular permeability. Among various members of Claudin family, Claudin 4 (CLDN4) is found to be overexpressed in ovarian, pancreatic carcinomas and other epithelial malignancies. Therefore, in this study, an attempt has been made to identify potent inhibitors for CLDN4 from the ZINC database using virtual screening, molecular docking and molecular dynamics simulations. A well refined molecular model of CLDN4 was built using Prime of Schrodinger v10.2(Template- PDB ID: 4P79). Approximately, 6 million compounds from ZINC database are subjected to high-throughput virtual screening (HTVS) against the active site of CLDN4. Molecular docking using GLIDE predicted ARG31, ASN142, ASP146 and ARG158 as critically important residues. Furthermore, three compounds from ZINC database (ZINC96331839, ZINC36533519 and ZINC75819394) showed highly promising ADME properties and binding affinity with stable conformation. The therapeutic efficiency of these lead compounds is evaluated and confirmed by in-vitro and in-vivo studies which leads to the development of novel anti-cancer drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADME%20property" title="ADME property">ADME property</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitors" title=" inhibitors"> inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20screening" title=" virtual screening"> virtual screening</a> </p> <a href="https://publications.waset.org/abstracts/56042/structure-based-virtual-screening-to-identify-cldn4-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=70">70</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=71">71</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=molecular&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10