CINXE.COM
Search results for: advanced manufacturing technology
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: advanced manufacturing technology</title> <meta name="description" content="Search results for: advanced manufacturing technology"> <meta name="keywords" content="advanced manufacturing technology"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="advanced manufacturing technology" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="advanced manufacturing technology"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10988</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: advanced manufacturing technology</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10988</span> Investigating the Use of Advanced Manufacturing Technologies in the Assembly Type Manufacturing Companies in Trinidad and Tobago</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Sangster">Nadine Sangster</a>, <a href="https://publications.waset.org/abstracts/search?q=Akil%20James"> Akil James</a>, <a href="https://publications.waset.org/abstracts/search?q=Rondell%20Duke"> Rondell Duke</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Ameerali"> Aaron Ameerali</a>, <a href="https://publications.waset.org/abstracts/search?q=Terrence%20Lalla"> Terrence Lalla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The market place of the 21st century is evolving into one of merging national markets, fragmented consumer markets, and rapidly changing product technologies. The use of new technologies has become vital to the manufacturing industry for their survival and sustainability. This work focused on the assembly type industry in a small developing country and aimed at identifying the use of advanced manufacturing technologies and their impact on this sector of the manufacturing industry. It was found that some technologies were being used and that they had improved the effectiveness of those companies but there was still quite a bit of room for improvements. Some of the recommendations included benchmarking against international standards, the adoption of a “made in TT” campaign and the effective utilisation of the technologies to improve manufacturing effectiveness and thus improve competitive advantages and strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology" title="advanced manufacturing technology">advanced manufacturing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=Trinidad%20and%20Tobago" title=" Trinidad and Tobago"> Trinidad and Tobago</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20engineering" title=" industrial engineering"> industrial engineering</a> </p> <a href="https://publications.waset.org/abstracts/6597/investigating-the-use-of-advanced-manufacturing-technologies-in-the-assembly-type-manufacturing-companies-in-trinidad-and-tobago" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10987</span> Advanced Manufacturing Technology Adoption and Organizational Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Nyori%20Makari">George Nyori Makari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data on 92 industrial organizations point to the existence of relationships between advanced manufacturing technology (AMT) adoption and some aspects of organizational structure, including the number of specialized sub-units, the number of levels of authority, span of control, degree of role programming specification, degree of communication programming specification and the degree of output programming. Primary finding is that as the investments and integration of AMTs increases, the more likely the foregoing aspects of structure increase. The findings hold with size and a number of other organizational variables controlled. The results indicate that a company’s capacity to assimilate technology depends on its organizational capabilities. The study encapsulates the need for companies to increase their organizational capabilities during investment and integration of AMTs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology" title="advanced manufacturing technology">advanced manufacturing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=adoption" title=" adoption"> adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20structure" title=" organizational structure"> organizational structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenya" title=" Kenya"> Kenya</a> </p> <a href="https://publications.waset.org/abstracts/52446/advanced-manufacturing-technology-adoption-and-organizational-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10986</span> On Mathematical Modelling and Optimization of Emerging Trends Processes in Advanced Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agarana%20Michael%20C.">Agarana Michael C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinlabi%20Esther%20T."> Akinlabi Esther T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pule%20Kholopane"> Pule Kholopane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Innovation in manufacturing process technologies and associated product design affects the prospects for manufacturing today and in near future. In this study some theoretical methods, useful as tools in advanced manufacturing, are considered. In particular, some basic Mathematical, Operational Research, Heuristic, and Statistical techniques are discussed. These techniques/methods are very handy in many areas of advanced manufacturing processes, including process planning optimization, modelling and analysis. Generally the production rate requires the application of Mathematical methods. The Emerging Trends Processes in Advanced Manufacturing can be enhanced by using Mathematical Modelling and Optimization techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modelling" title="mathematical modelling">mathematical modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=emerging%20trends" title=" emerging trends"> emerging trends</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing" title=" advanced manufacturing"> advanced manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/158822/on-mathematical-modelling-and-optimization-of-emerging-trends-processes-in-advanced-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10985</span> Advanced Manufacturing Technology Adoption in Manufacturing Comapnies in Kenya</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20Nyori%20Makari">George Nyori Makari</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Ogola"> J. M. Ogola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past few decades, manufacturing has evolved from a more labor-intensive set of mechanical processes to a sophisticated set of information based technology processes. With the existence of various advanced manufacturing technologies (AMTs), more and more functions or jobs are performed by these machines instead of human labour. This study was undertaken in order to research the extent of AMTs adoption in manufacturing companies in Kenya. In order to investigate a survey was conducted via questionnaires that were sent to 183 selected AMT manufacturing companies in Kenya. 92 companies responded positively. All the surveyed companies were found to have a measure of investment in at least two of the 14 types of AMTs investigated. In general the company surveyed showed that the level of AMT adoption in Kenya is very low with investments levels at a mean of 2.057 and integration levels at a mean of 1.639 in a scale of 1-5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMT%20adoption" title="AMT adoption">AMT adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=AMT%20investments" title=" AMT investments"> AMT investments</a>, <a href="https://publications.waset.org/abstracts/search?q=AMT%20integration" title=" AMT integration"> AMT integration</a>, <a href="https://publications.waset.org/abstracts/search?q=companies%20in%20Kenya" title=" companies in Kenya"> companies in Kenya</a> </p> <a href="https://publications.waset.org/abstracts/37149/advanced-manufacturing-technology-adoption-in-manufacturing-comapnies-in-kenya" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">600</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10984</span> Supply Chain Optimization Based on Advanced Planning and Scheduling Technology in Manufacturing Industry: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenqian%20Shi">Wenqian Shi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xie%20He"> Xie He</a>, <a href="https://publications.waset.org/abstracts/search?q=Ziyin%20Huang"> Ziyin Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zi%20Yu"> Zi Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dramatic changes in the global economic situation have produced dramatic changes to companies’ supply chain systems. A variety of opportunities and challenges make the traditional manufacturing industry feel pressured, and the manufacturing industry must seek a new way out as soon as possible. This paper presents a case study of the advanced planning and scheduling technology problem encountered by an electrical and electronics manufacturer. The objective is to seek the minimum cost of production planning and order management. Digitalization is applied to the problem, and the results demonstrate that significant production performances can be achieved in the face of the existing production of each link and order management systems to analyze and optimize. This paper can also provide some practical implications in various manufacturing industries. Finally, future research directions are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20planning%20and%20scheduling" title="advanced planning and scheduling">advanced planning and scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20planning" title=" production planning"> production planning</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20optimization" title=" supply chain optimization"> supply chain optimization</a> </p> <a href="https://publications.waset.org/abstracts/162207/supply-chain-optimization-based-on-advanced-planning-and-scheduling-technology-in-manufacturing-industry-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10983</span> Biomimetic Adhesive Pads for Precision Manufacturing Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Yi">Hoon Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Sung"> Minho Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangil%20Ko"> Hangil Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Kyu%20Kwak"> Moon Kyu Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Eui%20Jeong"> Hoon Eui Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the remarkable adhesion properties of gecko lizards, bio-inspired dry adhesives with smart adhesion properties have been developed in the last decade. Compared to earlier dry adhesives, the recently developed ones exhibit excellent adhesion strength, smart directional adhesion, and structural robustness. With these unique adhesion properties, bio-inspired dry adhesive pads have strong potential for use in precision industries such as semiconductor or display manufacturing. In this communication, we present a new manufacturing technology based on advanced dry adhesive systems that enable precise manipulation of large-area substrates over repeating cycles without any requirement for external force application. This new manufacturing technique is also highly accurate and environment-friendly, and thus has strong potential as a next-generation clean manufacturing technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gecko" title="gecko">gecko</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20robot" title=" manufacturing robot"> manufacturing robot</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20manufacturing" title=" precision manufacturing"> precision manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/38058/biomimetic-adhesive-pads-for-precision-manufacturing-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10982</span> On the Development of Medical Additive Manufacturing in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Abdelghany">Khalid Abdelghany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive Manufacturing (AM) is the manufacturing technology that is used to fabricate fast products direct from CAD models in very short time and with minimum operation steps. Jointly with the advancement in medical computer modeling, AM proved to be a very efficient tool to help physicians, orthopedic surgeons and dentists design and fabricate patient-tailored surgical guides, templates and customized implants from the patient’s CT / MRI images. AM jointly with computer-assisted designing/computer-assisted manufacturing (CAD/CAM) technology have enabled medical practitioners to tailor physical models in a patient-and purpose-specific fashion and helped to design and manufacture of templates, appliances and devices with a high range of accuracy using biocompatible materials. In developing countries, there are some technical and financial limitations of implementing such advanced tools as an essential portion of medical applications. CMRDI institute in Egypt has been working in the field of Medical Additive Manufacturing since 2003 and has assisted in the recovery of hundreds of poor patients using these advanced tools. This paper focuses on the surgical and dental use of 3D printing technology in Egypt as a developing country. The presented case studies have been designed and processed using the software tools and additive manufacturing machines in CMRDI through cooperative engineering and medical works. Results showed that the implementation of the additive manufacturing tools in developed countries is successful and could be economical comparing to long treatment plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20and%20orthopeadic%20stents" title=" dental and orthopeadic stents"> dental and orthopeadic stents</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20specific%20surgical%20tools" title=" patient specific surgical tools"> patient specific surgical tools</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20implants" title=" titanium implants"> titanium implants</a> </p> <a href="https://publications.waset.org/abstracts/53503/on-the-development-of-medical-additive-manufacturing-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10981</span> Advanced Digital Manufacturing: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Abdelazim">Abdelrahman Abdelazim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most industries are looking for technologies that are easy to use, efficient and fast to accomplish. To implement these, factories tend to use advanced systems that could alter complicity to simplicity and rudimentary to advancement. Cloud Manufacturing is a new movement that aims to mirror and integrate cloud computing into manufacturing. Amongst cloud manufacturing various advantages are decreasing the human involvements and increasing the dependency on automated machines, which in turns decreases human errors and increases efficiency. A reliable and extraordinary performance processes with minimum errors are highly desired factors of today’s manufacturers. At the glance it seems to be the best alternative, however, the implementation of a cloud system can be very challenging. This work investigates cloud manufacturing in details, it outlines its advantages and disadvantages by converting a local factory in Kuwait to a cloud-ready system. Initially the flow of the factory’s manufacturing process has been analyzed identifying the bottlenecks and illustrating how cloud manufacturing can eliminate them. Following this an automation process has been analyzed and implemented. A comparison between the process before and after the adaptation has been carried out showing the effects on the cost, the output and the efficiency of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20manufacturing" title="cloud manufacturing">cloud manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait%20industrial%20sector" title=" Kuwait industrial sector"> Kuwait industrial sector</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20digital%20manufacturing" title=" advanced digital manufacturing"> advanced digital manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/16143/advanced-digital-manufacturing-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">771</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10980</span> Approach for an Integrative Technology Assessment Method Combining Product Design and Manufacturing Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Schuh">G. Schuh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Woelk"> S. Woelk</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Schraknepper"> D. Schraknepper</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Such"> A. Such</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The systematic evaluation of manufacturing technologies with regard to the potential for product designing constitutes a major challenge. Until now, conventional evaluation methods primarily consider the costs of manufacturing technologies. Thus, the potential of manufacturing technologies for achieving additional product design features is not completely captured. To compensate this deficit, final evaluations of new technologies are mainly intuitive in practice. Therefore, an additional evaluation dimension is needed which takes the potential of manufacturing technologies for specific realizable product designs into account. In this paper, we present the approach of an evaluation method for selecting manufacturing technologies with regard to their potential for product designing. This research is done within the Fraunhofer innovation cluster »AdaM« (Adaptive Manufacturing) which targets the development of resource efficient and adaptive manufacturing technology processes for complex turbo machinery components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title="manufacturing">manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20design" title=" product design"> product design</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20assessment" title=" technology assessment"> technology assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20management" title=" technology management"> technology management</a> </p> <a href="https://publications.waset.org/abstracts/16517/approach-for-an-integrative-technology-assessment-method-combining-product-design-and-manufacturing-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10979</span> Industrial Applications of Additive Manufacturing and 3D Printing Technology: A Review from South Africa Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micheal%20O.%20Alabi">Micheal O. Alabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) is the official industry standard term (ASTM F2792) for all applications of the technology which is also known as 3D printing technology. It is defined as the process of joining materials to make objects from 3D model data, and it is usually layer upon layer, as opposed to subtractive manufacturing methodologies. This technology has gained significant interest within the academic, research institute and industry because of its ability to create complex geometries with customizable material properties. Despite the late adoption of the technology, additive manufacturing has been active in South Africa for past 21 years and it is predicted that additive manufacturing technology will play a significant and game-changing role in the fourth industrial revolution and in particular it promises to play an ever-growing role in efforts to re-industrialize the economy of South Africa. At the end of 2006, there are approximately ninety 3D printers in South Africa and in 2015 it was estimated that there are 3500 additive manufacturing systems and 3D printers in circulation in South Africa. A reasonable number of these additive manufacturing machines are in the high end of the market, in science councils and higher education institutions and this shows that the future of additive manufacturing in South Africa is very brighter compared to other African countries. This paper reviews the past and current industrial applications of additive manufacturing in South Africa from the academic research and industry perspective and what are the benefits of this technology to manufacturing companies and industrial sectors in the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20technology" title=" 3D printing technology"> 3D printing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20applications" title=" industrial applications"> industrial applications</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/62748/industrial-applications-of-additive-manufacturing-and-3d-printing-technology-a-review-from-south-africa-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10978</span> A Risk Management Approach for Nigeria Manufacturing Industries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olaniyi%20O.%20Omoyajowo">Olaniyi O. Omoyajowo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To be successful in today’s competitive global environment, manufacturing industry must be able to respond quickly to changes in technology. These changes in technology introduce new risks and hazards. The management of risk/hazard in a manufacturing process recommends method through which the success rate of an organization can be increased. Thus, there is a continual need for manufacturing industries to invest significant amount of resources in risk management, which in turn optimizes the production output and profitability of any manufacturing industry (if implemented properly). To help improve the existing risk prevention and mitigation practices in Small and Medium Enterprise (SME) in Nigeria Manufacturing Industries (NMI), the researcher embarks on this research to develop a systematic Risk Management process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20management" title="manufacturing management">manufacturing management</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a>, <a href="https://publications.waset.org/abstracts/search?q=SMEs" title=" SMEs"> SMEs</a> </p> <a href="https://publications.waset.org/abstracts/49491/a-risk-management-approach-for-nigeria-manufacturing-industries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10977</span> An Advanced Method of Minimizing Unforeseen Disruptions within a Manufacturing System: A Case Study of Amico, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Max%20Moleke">Max Moleke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing industries are faced with different types of problems. One of the most important role of controlling and monitoring a production process is to actually determine how to deal with unforeseen disruption when they arise. A majority of manufacturing tern to spend huge amount of money in order to meet up with their customers requirements and demand but due to instabilities within the manufacturing process, this objectives and goals are difficult to be achieved. In this research, we have developed a feedback control system that can minimize instability within the manufacturing system in order to boost the system output and productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disruption" title="disruption">disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a> </p> <a href="https://publications.waset.org/abstracts/51225/an-advanced-method-of-minimizing-unforeseen-disruptions-within-a-manufacturing-system-a-case-study-of-amico-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10976</span> Performance Optimization on Waiting Time Using Queuing Theory in an Advanced Manufacturing Environment: Robotics to Enhance Productivity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganiyat%20Soliu">Ganiyat Soliu</a>, <a href="https://publications.waset.org/abstracts/search?q=Glen%20Bright"> Glen Bright</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiemela%20Onunka"> Chiemela Onunka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance optimization plays a key role in controlling the waiting time during manufacturing in an advanced manufacturing environment to improve productivity. Queuing mathematical modeling theory was used to examine the performance of the multi-stage production line. Robotics as a disruptive technology was implemented into a virtual manufacturing scenario during the packaging process to study the effect of waiting time on productivity. The queuing mathematical model was used to determine the optimum service rate required by robots during the packaging stage of manufacturing to yield an optimum production cost. Different rates of production were assumed in a virtual manufacturing environment, cost of packaging was estimated with optimum production cost. An equation was generated using queuing mathematical modeling theory and the theorem adopted for analysis of the scenario is the Newton Raphson theorem. Queuing theory presented here provides an adequate analysis of the number of robots required to regulate waiting time in order to increase the number of output. Arrival rate of the product was fast which shows that queuing mathematical model was effective in minimizing service cost and the waiting time during manufacturing. At a reduced waiting time, there was an improvement in the number of products obtained per hour. The overall productivity was improved based on the assumptions used in the queuing modeling theory implemented in the virtual manufacturing scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20optimization" title="performance optimization">performance optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=queuing%20theory" title=" queuing theory"> queuing theory</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a> </p> <a href="https://publications.waset.org/abstracts/102213/performance-optimization-on-waiting-time-using-queuing-theory-in-an-advanced-manufacturing-environment-robotics-to-enhance-productivity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10975</span> A Review of the Run to Run (R to R) Control in the Manufacturing Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Aghapouramin">Khalil Aghapouramin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Ranjbar"> Mostafa Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Run- to- Run (R2 R) control was developed in order to monitor and control different semiconductor manufacturing processes based upon the fundamental engineering frameworks. This technology allows rectification in the optimum direction. This control always had a significant potency in which was appeared in a variety of processes. The term run to run refers to the case where the act of control would take with the aim of getting batches of silicon wafers which produced in a manufacturing process. In the present work, a brief review about run-to-run control investigated which mainly is effective in the manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Run-to-Run%20%28R2R%29%20control" title="Run-to-Run (R2R) control">Run-to-Run (R2R) control</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20in%20engineering" title=" process in engineering"> process in engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20controls" title=" manufacturing controls"> manufacturing controls</a> </p> <a href="https://publications.waset.org/abstracts/48352/a-review-of-the-run-to-run-r-to-r-control-in-the-manufacturing-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10974</span> Synergy and Complementarity in Technology-Intensive Manufacturing Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daidai%20Shen">Daidai Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean%20Claude%20Thill"> Jean Claude Thill</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenjia%20Zhang"> Wenjia Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the dynamics of synergy and complementarity within city networks, specifically focusing on the headquarters-subsidiary relations of firms. We begin by defining these two types of networks and establishing their pivotal roles in shaping city network structures. Utilizing the mesoscale analytic approach of weighted stochastic block modeling, we discern relational patterns between city pairs and determine connection strengths through statistical inference. Furthermore, we introduce a community detection approach to uncover the underlying structure of these networks using advanced statistical methods. Our analysis, based on comprehensive network data up to 2017, reveals the coexistence of both complementarity and synergy networks within China’s technology-intensive manufacturing cities. Notably, firms in technology hardware and office & computing machinery predominantly contribute to the complementarity city networks. In contrast, a distinct synergy city network, underpinned by the cities of Suzhou and Dongguan, emerges amidst the expansive complementarity structures in technology hardware and equipment. These findings provide new insights into the relational dynamics and structural configurations of city networks in the context of technology-intensive manufacturing, highlighting the nuanced interplay between synergy and complementarity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=city%20system" title="city system">city system</a>, <a href="https://publications.waset.org/abstracts/search?q=complementarity" title=" complementarity"> complementarity</a>, <a href="https://publications.waset.org/abstracts/search?q=synergy%20network" title=" synergy network"> synergy network</a>, <a href="https://publications.waset.org/abstracts/search?q=higher-order%20network" title=" higher-order network"> higher-order network</a> </p> <a href="https://publications.waset.org/abstracts/186772/synergy-and-complementarity-in-technology-intensive-manufacturing-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10973</span> Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sirine%20Sayed">Sirine Sayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostapha%20Tarfaoui"> Mostapha Tarfaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Toumi"> Abdelmalek Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Qarssis"> Youssef Qarssis</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Daly"> Mohamed Daly</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Bouraoui"> Chokri Bouraoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20functionalities" title=" advanced functionalities"> advanced functionalities</a> </p> <a href="https://publications.waset.org/abstracts/193071/synergizing-additive-manufacturing-and-artificial-intelligence-analyzing-and-predicting-the-mechanical-behavior-of-3d-printed-cf-petg-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10972</span> An Overview of Nano-Particles Effect on Mechanical Properties of Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganiyu%20I.%20Lawal">Ganiyu I. Lawal</a>, <a href="https://publications.waset.org/abstracts/search?q=Olatunde%20I.%20Sekunowo"> Olatunde I. Sekunowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephen%20I.%20Durowaye"> Stephen I. Durowaye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composites depending on the nature of their constituents and mode of production are regarded as one of the advanced materials that drive today’s technology. This paper attempts a short review of the subject matter with a general aim of pushing to the next level the frontier of knowledge as it impacts the technology of nano-particles manufacturing. The objectives entail an effort to; aggregate recent research efforts in this field, analyse research findings and observations, streamline research efforts and support industry in taking decision on areas of fund deployment. It is envisaged that this work will serve as a quick hand-on compendium material for researchers in this field and a guide to relevant government departments wishing to fund a research whose outcomes have the potential of improving the nation’s GDP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20materials" title="advanced materials">advanced materials</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-particles" title=" nano-particles"> nano-particles</a> </p> <a href="https://publications.waset.org/abstracts/28012/an-overview-of-nano-particles-effect-on-mechanical-properties-of-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10971</span> Augmented Reality as Enhancer of the Lean Philosophy: An Exploratory Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Gil">P. Gil</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Charrua-Santos"> F. Charrua-Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Baptista"> A. A. Baptista</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Azevedo"> S. Azevedo</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Espirito-Santo"> A. Espirito-Santo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P%C3%A1scoa"> J. Páscoa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lean manufacturing is a philosophy of industrial management that aims to identify and eliminate any waste that exists in the companies. The augmented reality is a new technology that stills being developed in terms of software and hardware. This technology consists of an image capture device, a device for data processing and an image visualization equipment to visualize collected and processed images. It is characterized by being a technology that merges the reality with the virtual environment, so there is an instantaneous interaction between the two environments. The present work intends to demonstrate that the use of the augmented reality will contribute to improve some tools and methods used in Lean manufacturing philosophy. Through several examples of application in industry it will be demonstrated that the technological impact of the augmented reality on the Lean Manufacturing philosophy contribute to added value improvements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20studies" title=" case studies"> case studies</a>, <a href="https://publications.waset.org/abstracts/search?q=value" title=" value "> value </a> </p> <a href="https://publications.waset.org/abstracts/29014/augmented-reality-as-enhancer-of-the-lean-philosophy-an-exploratory-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">624</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10970</span> Implementing 3D Printed Structures as the Newest Textile Form</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Banu%20Hatice%20G%C3%BCrc%C3%BCm">Banu Hatice Gürcüm</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C4%B1nar%20Arslan"> Pınar Arslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmut%20Yal%C3%A7%C4%B1n"> Mahmut Yalçın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> From the oldest production methods with yarns used to weave, knit, braid and knot to the newest production methods with fibres used to stitch, bond or structures of innovative technologies, laminates, nanoparticles, composites or 3D printing systems, textile industry advanced through materials, processes and context mostly within the last five decades. The creative momentum of fabric like 3D printed structures have come to the point of transforming as for the newest form of textile applications. Moreover, pioneering studies on the applications of 3D Printing Technology and Additive Manufacturing have been focusing on fashion and apparel sector from the last two decades beginning with fashion designers. After the advent of chain-mail like structures and flexible micro or meso structures created by SLS rapid manufacturing a more textile-like behavior is achieved. Thus, the primary aim of this paper is to discuss the most important properties of traditional fabrics that are to be expected of future fabrics. For this reason, this study deals primarily with the physical properties like softness, hand, flexibility, drapability and wearability of 3D Printed structures necessary to identify the possible ways in which it can be used instead of contemporary textile structures, namely knitted and woven fabrics. The aim of this study is to compare the physical properties of 3D printed fabrics regarding different rapid manufacturing methods (FDM and SLS). The implemented method was Material Driven Design (MDD), which comprise the use of innovative materials according to the production techniques such as 3D printing system. As a result, advanced textile processes and materials enable to the creation of new types of fabric structures and rapid solutions in the field of textiles and 3D fabrics on the other hand, are to be used in this regard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20technology" title="3D printing technology">3D printing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=FDM" title=" FDM"> FDM</a>, <a href="https://publications.waset.org/abstracts/search?q=SLS" title=" SLS"> SLS</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20structure" title=" textile structure"> textile structure</a> </p> <a href="https://publications.waset.org/abstracts/48648/implementing-3d-printed-structures-as-the-newest-textile-form" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10969</span> Economic Evaluation of an Advanced Bioethanol Manufacturing Technology Using Maize as a Feedstock in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayanda%20Ndokwana">Ayanda Ndokwana</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanley%20Fore"> Stanley Fore</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial prosperity and rapid expansion of human population in South Africa over the past two decades, have increased the use of conventional fossil fuels such as crude oil, coal and natural gas to meet the country’s energy demands. However, the inevitable depletion of fossil fuel reserves, global volatile oil price and large carbon footprint are some of the crucial reasons the South African Government needs to make a considerable investment in the development of the biofuel industry. In South Africa, this industry is still at the introductory stage with no large scale manufacturing plant that has been commissioned yet. Bioethanol is a potential replacement of gasoline which is a fossil fuel that is used in motor vehicles. Using bioethanol for the transport sector as a source of fuel will help Government to save heavy foreign exchange incurred during importation of oil and create many job opportunities in rural farming. In 2007, the South African Government developed the National Biofuels Industrial Strategy in an effort to make provision for support and attract investment in bioethanol production. However, capital investment in the production of bioethanol on a large scale, depends on the sound economic assessment of the available manufacturing technologies. The aim of this study is to evaluate the profitability of an advanced bioethanol manufacturing technology which uses maize as a feedstock in South Africa. The impact of fiber or bran fractionation in this technology causes it to possess a number of merits such as energy efficiency, low capital expenditure, and profitability compared to a conventional dry-mill bioethanol technology. Quantitative techniques will be used to collect and analyze numerical data from suitable organisations in South Africa. The dependence of three profitability indicators such as the Discounted Payback Period (DPP), Net Present Value (NPV) and Return On Investment (ROI) on plant capacity will be evaluated. Profitability analysis will be done on the following plant capacities: 100 000 ton/year, 150 000 ton/year and 200 000 ton/year. The plant capacity with the shortest Discounted Payback Period, positive Net Present Value and highest Return On Investment implies that a further consideration in terms of capital investment is warranted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20evaluation" title=" economic evaluation"> economic evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=profitability%20indicators" title=" profitability indicators"> profitability indicators</a> </p> <a href="https://publications.waset.org/abstracts/54688/economic-evaluation-of-an-advanced-bioethanol-manufacturing-technology-using-maize-as-a-feedstock-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10968</span> Welding Technology Developments for Stringer-Skin Joints with Al-Li Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Egoitz%20Aldanondo">Egoitz Aldanondo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaitz%20Arruti"> Ekaitz Arruti</a>, <a href="https://publications.waset.org/abstracts/search?q=Amaia%20Iturrioz"> Amaia Iturrioz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Huarte"> Ivan Huarte</a>, <a href="https://publications.waset.org/abstracts/search?q=Fidel%20Zubiri"> Fidel Zubiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing aeronautic structures joining extruded profiles or stringers to sheets or skins of aluminium is a typical manufacturing procedure in aeronautic structures. Although riveting is the conventional manufacturing technology to produce such joints, the Friction Stir Welding (FSW) and Laser Beam Welding (LBW) technologies have also demonstrated their potential for this kind of applications. Therefore, FSW and LBW technologies have the potential to continue their development as manufacturing processes for aeronautic structures showing benefits such as time-saving, light-weighting and overall cost reduction. In addition to that, new aluminium-lithium based alloy developments represent great opportunities for advanced aeronautic structure manufacturing with potential benefits such as lightweight construction or improved corrosion resistance. This work presents the main approaches by FSW and LBW to develop those technologies to produce stiffened panel structures such as fuselage by stringer-skin joints and using innovative aluminium-lithium alloys. Initial welding tests were performed in AA2198-T3S aluminium alloys for LBW technology and with AA2198-T851 for FSW. Later tests for both FSW and LBW have been carried out using AA2099-T83 alloy extrusions as stringers and AA2060-T8E30 as skin materials. The weld quality and properties have been examined by metallographic analysis and mechanical testing, including shear tensile tests and pull-out tests. The analysis of the results have shown the relationships between processing conditions, micro-macrostructural properties and the mechanical strength of the welded joints. The effects produced in the different alloys investigated have been observed and particular weld formation mechanics have been studied for each material and welding technology. Therefore, relationships between welding conditions and the obtained weld properties for each material combination and welding technology will be discussed in this presentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AA2060-T8E30" title="AA2060-T8E30">AA2060-T8E30</a>, <a href="https://publications.waset.org/abstracts/search?q=AA2099-T83" title=" AA2099-T83"> AA2099-T83</a>, <a href="https://publications.waset.org/abstracts/search?q=AA2198-T3S" title=" AA2198-T3S"> AA2198-T3S</a>, <a href="https://publications.waset.org/abstracts/search?q=AA2198-T851" title=" AA2198-T851"> AA2198-T851</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20beam%20welding" title=" laser beam welding"> laser beam welding</a> </p> <a href="https://publications.waset.org/abstracts/87356/welding-technology-developments-for-stringer-skin-joints-with-al-li-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10967</span> Modeling and Analysis of Laser Sintering Process Scanning Time for Optimal Planning and Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agarana%20Michael%20C.">Agarana Michael C.</a>, <a href="https://publications.waset.org/abstracts/search?q=Akinlabi%20Esther%20T."> Akinlabi Esther T.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pule%20Kholopane"> Pule Kholopane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to sustain the advantages of an advanced manufacturing technique, such as laser sintering, minimization of total processing cost of the parts being produced is very important. An efficient time management would usually very important in optimal cost attainment which would ultimately result in an efficient advanced manufacturing process planning and control. During Laser Scanning Process Scanning (SLS) procedures it is possible to adjust various manufacturing parameters which are used to influence the improvement of various mechanical and other properties of the products. In this study, Modelling and mathematical analysis, including sensitivity analysis, of the laser sintering process time were carried out. The results of the analyses were represented with graphs, from where conclusions were drawn. It was specifically observed that achievement of optimal total scanning time is key for economic efficiency which is required for sustainability of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20analysis" title="modeling and analysis">modeling and analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20planning%20and%20control" title=" optimal planning and control"> optimal planning and control</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20sintering%20process" title=" laser sintering process"> laser sintering process</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20time" title=" scanning time"> scanning time</a> </p> <a href="https://publications.waset.org/abstracts/158820/modeling-and-analysis-of-laser-sintering-process-scanning-time-for-optimal-planning-and-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10966</span> A Prioritisation Guide for More Sustainable Manufacturing Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cansu%20Kandemir">Cansu Kandemir</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Franchino"> Marco Franchino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To attain sustainability goals, the manufacturing industries must assess and improve their processes, adopt the latest technologies, and ensure minimal environmental impact. Ongoing debates claim that the definition of sustainability and its assessment is vague. Companies struggle with understanding which processes they should prioritise and necessitate a methodology to aid decision-making. For that reason, our investigation focused on defining a prioritisation guide to help to manufacture engineers identify areas of a facility to prioritise de-carbonisation efforts based on existing sources of data. The authors at the University of Sheffield Advanced Manufacturing Research Centre (AMRC) worked with a range of major businesses, including Food and Drink (Moy Park), Automotive (Nissan), Aerospace and Defence (BAE, Meggitt, Leonardo, and GKN) and Technology (Accenture and Intellium AI). Collected information has been integrated into a prioritisation guide framework that helps process comparison and decision-making. The framework developed in this study aims to ensure that companies have guidance on where to focus their efforts whilst striving to fulfil their environmental and societal obligations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title="decision making">decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/172876/a-prioritisation-guide-for-more-sustainable-manufacturing-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10965</span> An Approach of High Scalable Production Capacity by Adaption of the Concept 'Everything as a Service'</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Johannes%20Atug">Johannes Atug</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Braunreuther"> Stefan Braunreuther</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunther%20Reinhart"> Gunther Reinhart</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Volatile markets, as well as increasing global competition in manufacturing, lead to a high demand of flexible and agile production systems. These advanced production systems in turn conduct to high capital expenditure along with high investment risks. Developments in production regarding digitalization and cyber-physical systems result to a merger of informational- and operational technology. The approach of this paper is to benefit from this merger and present a framework of a production network with scalable production capacity and low capital expenditure by adaptation of the IT concept 'everything as a service' into the production environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20manufacturing%20system" title="digital manufacturing system">digital manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=everything%20as%20a%20service" title=" everything as a service"> everything as a service</a>, <a href="https://publications.waset.org/abstracts/search?q=reconfigurable%20production" title=" reconfigurable production"> reconfigurable production</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20network" title=" value network"> value network</a> </p> <a href="https://publications.waset.org/abstracts/75074/an-approach-of-high-scalable-production-capacity-by-adaption-of-the-concept-everything-as-a-service" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10964</span> Design for Metal Additive Manufacturing: An Investigation of Key Design Application on Electron Beam Melting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wadea%20Ameen">Wadea Ameen</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Al-Ahmari"> Abdulrahman Al-Ahmari</a>, <a href="https://publications.waset.org/abstracts/search?q=Osama%20Abdulhameed"> Osama Abdulhameed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron beam melting (EBM) is one of the modern additive manufacturing (AM) technologies. In EBM, the electron beam melts metal powder into a fully solid part layer by layer. Since EBM is a new technology, most designers are unaware of the capabilities and the limitations of EBM technology. Also, many engineers are facing many challenges to utilize the technology because of a lack of design rules for the technology. The aim of this study is to identify the capabilities and the limitations of EBM technology in fabrication of small features and overhang structures and develop a design rules that need to be considered by designers and engineers. In order to achieve this objective, a series of experiments are conducted. Several features having varying sizes were designed, fabricated, and evaluated to determine their manufacturability limits. In general, the results showed the capabilities and limitations of the EBM technology in fabrication of the small size features and the overhang structures. In the end, the results of these investigation experiments are used to develop design rules. Also, the results showed the importance of developing design rules for AM technologies in increasing the utilization of these technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20for%20additive%20manufacturing" title=" design for additive manufacturing"> design for additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20beam%20melting" title=" electron beam melting"> electron beam melting</a>, <a href="https://publications.waset.org/abstracts/search?q=self-supporting%20overhang" title=" self-supporting overhang"> self-supporting overhang</a> </p> <a href="https://publications.waset.org/abstracts/100638/design-for-metal-additive-manufacturing-an-investigation-of-key-design-application-on-electron-beam-melting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100638.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10963</span> Testing Capabilities and Limitations of EBM Technology to Guide Design with a Test Artifact Design including Unique Features</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Akku%C5%9F">Kadir Akkuş</a>, <a href="https://publications.waset.org/abstracts/search?q=Burcu%20A.%20Hamat"> Burcu A. Hamat</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Ciloglu"> Kaan Ciloglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive Manufacturing (AM) is the respectable improvement of this century in the field of manufacturing and regarded as a breakthrough that represents the third industrial revolution by the leading authorities such as Wohlers Associates Inc., The Economist, and MIT Technology Review. Thanks to the stacking and unifying methodology of AM, design of lighter but stiffer parts with really more complex shapes and geometrical features, which were not possible by traditional subtractive manufacturing methods, became achievable. Through analysis of the AM process must be performed and mechanical properties of manufactured test parts must be studied to provide input for design. Furthermore, process capabilities, constraints, limitations and challenges regarding AM must be examined so that the design must be compatible with the process to be able to take all the advantages of the AM. In this paper, capabilities and limitations of AM will be investigated through a test part including unique features and manufactured from Ti-6Al-4V by employing Electron Beam Melting (EBM) technology by comparing to the test parts introduced in literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=DfAM" title=" DfAM"> DfAM</a>, <a href="https://publications.waset.org/abstracts/search?q=EBM" title=" EBM"> EBM</a>, <a href="https://publications.waset.org/abstracts/search?q=test%20artifact" title=" test artifact"> test artifact</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-4V" title=" Ti-6Al-4V"> Ti-6Al-4V</a> </p> <a href="https://publications.waset.org/abstracts/121315/testing-capabilities-and-limitations-of-ebm-technology-to-guide-design-with-a-test-artifact-design-including-unique-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10962</span> Implementation of a Photo-Curable 3D Additive Manufacturing Technology with Grey Capability by Using Piezo Ink-jets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming-Jong%20Tsai">Ming-Jong Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Cheng"> Y. L. Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Kuo"> Y. L. Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Hsiao"> S. Y. Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Chen"> J. W. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20H.%20Liu"> P. H. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20H.%20Chen"> D. H. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 3D printing is a combination of digital technology, material science, intelligent manufacturing and control of opto-mechatronics systems. It is called the third industrial revolution from the view of the Economist Journal. A color 3D printing machine may provide the necessary support for high value-added industrial and commercial design, architectural design, personal boutique, and 3D artist’s creation. The main goal of this paper is to develop photo-curable color 3D manufacturing technology and system implementation. The key technologies include (1) Photo-curable color 3D additive manufacturing processes development and materials research (2) Piezo type ink-jet head control and Opto-mechatronics integration technique of the photo-curable color 3D laminated manufacturing system. The proposed system is integrated with single Piezo type ink-jet head with two individual channels for two primary UV light curable color resins which can provide for future colorful 3D printing solutions. The main research results are 16 grey levels and grey resolution of 75 dpi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=color" title=" color"> color</a>, <a href="https://publications.waset.org/abstracts/search?q=photo-curable" title=" photo-curable"> photo-curable</a>, <a href="https://publications.waset.org/abstracts/search?q=Piezo%20type%20ink-jet" title=" Piezo type ink-jet"> Piezo type ink-jet</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20Resin" title=" UV Resin "> UV Resin </a> </p> <a href="https://publications.waset.org/abstracts/24597/implementation-of-a-photo-curable-3d-additive-manufacturing-technology-with-grey-capability-by-using-piezo-ink-jets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10961</span> Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20Puica">Elena Puica</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine-learning%20model%20in%20SCM" title="machine-learning model in SCM">machine-learning model in SCM</a>, <a href="https://publications.waset.org/abstracts/search?q=SCM%20processes" title=" SCM processes"> SCM processes</a>, <a href="https://publications.waset.org/abstracts/search?q=SCM%20and%20the%20environmental%20impact" title=" SCM and the environmental impact"> SCM and the environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=technology%20in%20SCM" title=" technology in SCM"> technology in SCM</a> </p> <a href="https://publications.waset.org/abstracts/144697/machine-learning-model-applied-for-scm-processes-to-efficiently-determine-its-impacts-on-the-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144697.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10960</span> A Business-to-Business Collaboration System That Promotes Data Utilization While Encrypting Information on the Blockchain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hiroaki%20Nasu">Hiroaki Nasu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryota%20Miyamoto"> Ryota Miyamoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuta%20Kodera"> Yuta Kodera</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasuyuki%20Nogami"> Yasuyuki Nogami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To promote Industry 4.0 and Society 5.0 and so on, it is important to connect and share data so that every member can trust it. Blockchain (BC) technology is currently attracting attention as the most advanced tool and has been used in the financial field and so on. However, the data collaboration using BC has not progressed sufficiently among companies on the supply chain of manufacturing industry that handle sensitive data such as product quality, manufacturing conditions, etc. There are two main reasons why data utilization is not sufficiently advanced in the industrial supply chain. The first reason is that manufacturing information is top secret and a source for companies to generate profits. It is difficult to disclose data even between companies with transactions in the supply chain. In the blockchain mechanism such as Bitcoin using PKI (Public Key Infrastructure), in order to confirm the identity of the company that has sent the data, the plaintext must be shared between the companies. Another reason is that the merits (scenarios) of collaboration data between companies are not specifically specified in the industrial supply chain. For these problems this paper proposes a Business to Business (B2B) collaboration system using homomorphic encryption and BC technique. Using the proposed system, each company on the supply chain can exchange confidential information on encrypted data and utilize the data for their own business. In addition, this paper considers a scenario focusing on quality data, which was difficult to collaborate because it is a top secret. In this scenario, we show a implementation scheme and a benefit of concrete data collaboration by proposing a comparison protocol that can grasp the change in quality while hiding the numerical value of quality data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=business%20to%20business%20data%20collaboration" title="business to business data collaboration">business to business data collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20supply%20chain" title=" industrial supply chain"> industrial supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=blockchain" title=" blockchain"> blockchain</a>, <a href="https://publications.waset.org/abstracts/search?q=homomorphic%20encryption" title=" homomorphic encryption"> homomorphic encryption</a> </p> <a href="https://publications.waset.org/abstracts/143581/a-business-to-business-collaboration-system-that-promotes-data-utilization-while-encrypting-information-on-the-blockchain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10959</span> Internal Product Management: The Key to Achieving Digital Maturity and Business Agility for Manufacturing IT Organizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frederick%20Johnson">Frederick Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Product management has a long and well-established history within the consumer goods industry, despite being one of the most obscure aspects of brand management. Many global manufacturing organizations are now opting for external cloud-based Manufacturing Execution Systems (MES) to replace costly and outdated monolithic MES solutions. Other global manufacturing leaders are restructuring their organizations to support human-centered values, agile methodologies, and fluid operating principles. Still, industry-leading organizations struggle to apply the appropriate framework for managing evolving external MES solutions as internal "digital products." Product management complements these current trends in technology and philosophical thinking in the market. This paper discusses the central problems associated with adopting product management processes by analyzing its traditional theories and characteristics. Considering these ideas, the article then constructs a translated internal digital product management framework by combining new and existing approaches and principles. The report concludes by demonstrating the framework's capabilities and potential effectiveness in achieving digital maturity and business agility within a manufacturing environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20product%20management" title="internal product management">internal product management</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20transformation" title=" digital transformation"> digital transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20information%20technology" title=" manufacturing information technology"> manufacturing information technology</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20execution%20systems" title=" manufacturing execution systems"> manufacturing execution systems</a> </p> <a href="https://publications.waset.org/abstracts/135214/internal-product-management-the-key-to-achieving-digital-maturity-and-business-agility-for-manufacturing-it-organizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=366">366</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=367">367</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=advanced%20manufacturing%20technology&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>