CINXE.COM

Search results for: phase transformation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: phase transformation</title> <meta name="description" content="Search results for: phase transformation"> <meta name="keywords" content="phase transformation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="phase transformation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="phase transformation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5951</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: phase transformation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5951</span> Pre-Transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manendra%20Singh%20Parihar">Manendra Singh Parihar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Ghosh%20Chowdhury"> Sandip Ghosh Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its microstructure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variant%20selection" title="variant selection">variant selection</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=EBSD" title=" EBSD"> EBSD</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title=" austenitic stainless steel"> austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20transformation" title=" martensitic transformation"> martensitic transformation</a> </p> <a href="https://publications.waset.org/abstracts/28354/pre-transformation-phase-reconstruction-for-deformation-induced-transformation-in-aisi-304-austenitic-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5950</span> Variant Selection and Pre-transformation Phase Reconstruction for Deformation-Induced Transformation in AISI 304 Austenitic Stainless Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manendra%20Singh%20Parihar">Manendra Singh Parihar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandip%20Ghosh%20Chowdhury"> Sandip Ghosh Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Austenitic stainless steels are widely used and give a good combination of properties. When this steel is plastically deformed, a phase transformation of the metastable Face Centred Cubic Austenite to the stable Body Centred Cubic (α’) or to the Hexagonal close packed (ԑ) martensite may occur, leading to the enhancement in the mechanical properties like strength. The work was based on variant selection and corresponding texture analysis for the strain induced martensitic transformation during deformation of the parent austenite FCC phase to form the product HCP and the BCC martensite phases separately, obeying their respective orientation relationships. The automated method for reconstruction of the parent phase orientation using the EBSD data of the product phase orientation is done using the MATLAB and TSL-OIM software. The method of triplets was used which involves the formation of a triplet of neighboring product grains having a common variant and linking them using a misorientation-based criterion. This led to the proper reconstruction of the pre-transformation phase orientation data and thus to its micro structure and texture. The computational speed of current method is better compared to the previously used methods of reconstruction. The reconstruction of austenite from ԑ and α’ martensite was carried out for multiple samples and their IPF images, pole figures, inverse pole figures and ODFs were compared. Similar type of results was observed for all samples. The comparison gives the idea for estimating the correct sequence of the transformation i.e. γ → ε → α’ or γ → α’, during deformation of AISI 304 austenitic stainless steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variant%20selection" title="variant selection">variant selection</a>, <a href="https://publications.waset.org/abstracts/search?q=reconstruction" title=" reconstruction"> reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=EBSD" title=" EBSD"> EBSD</a>, <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title=" austenitic stainless steel"> austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20transformation" title=" martensitic transformation"> martensitic transformation</a> </p> <a href="https://publications.waset.org/abstracts/24633/variant-selection-and-pre-transformation-phase-reconstruction-for-deformation-induced-transformation-in-aisi-304-austenitic-stainless-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24633.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5949</span> Austenite Transformation in Duplex Stainless Steels under Fast Cooling Rates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20O.%20Luengas">L. O. Luengas</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20V.%20Morales"> E. V. Morales</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20F.%20G.%20De%20Souza"> L. F. G. De Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20S.%20Bott"> I. S. Bott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Duplex Stainless Steels are well known for its good mechanical properties, and corrosion resistance. However, when submitted to heating, these features can be lost since the good properties are strongly dependent on the austenite-ferrite phase ratio which has to be approximately 1:1 to keep the phase balance. In a welded joint, the transformation kinetics at the heat affected zone (HAZ) is a function of the cooling rates applied which in turn are dependent on the heat input. The HAZ is usually ferritized at these temperatures, and it has been argued that small variations of the chemical composition can play a role in the solid state transformation sequence of ferrite to austenite during cooling. The δ → γ transformation has been reported to be massive and diffusionless due to the fast cooling rate, but it is also considered a diffusion controlled transformation. The aim of this work is to evaluate the effect of different heat inputs on the HAZ of two duplex stainless steels UNS S32304 and S32750, obtained by physical simulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=duplex%20stainless%20steels" title="duplex stainless steels">duplex stainless steels</a>, <a href="https://publications.waset.org/abstracts/search?q=HAZ" title=" HAZ"> HAZ</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructural%20characterization" title=" microstructural characterization"> microstructural characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20simulation" title=" physical simulation"> physical simulation</a> </p> <a href="https://publications.waset.org/abstracts/87241/austenite-transformation-in-duplex-stainless-steels-under-fast-cooling-rates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">277</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5948</span> Effects of Mechanical Test and Shape of Grain Boundary on Martensitic Transformation in Fe-Ni-C Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Gaci">Mounir Gaci</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20Meziani"> Salim Meziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Atmane%20Fouathia"> Atmane Fouathia </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present paper is to model the behavior of metal alloy, type TRIP steel (Transformation Induced Plasticity), during solid/solid phase transition. A two-dimensional micromechanical model is implemented in finite element software (ZEBULON) to simulate the martensitic transformation in Fe-Ni-C steel grain under mechanical tensile stress of 250 MPa. The effects of non-uniform grain boundary and the criterion of mechanical shear load on the transformation and on the TRIP value during martensitic transformation are studied. The suggested mechanical criterion is favourable to the influence of the shear phenomenon on the progression of the martensitic transformation (Magee’s mechanism). The obtained results are in satisfactory agreement with experimental ones and show the influence of the grain boundary shape and the chosen mechanical criterion (SMF) on the transformation parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=martensitic%20transformation" title="martensitic transformation">martensitic transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20Grain%20Boundary" title=" non-uniform Grain Boundary"> non-uniform Grain Boundary</a>, <a href="https://publications.waset.org/abstracts/search?q=TRIP" title=" TRIP"> TRIP</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20Mechanical%20force%20%28SMF%29" title=" shear Mechanical force (SMF)"> shear Mechanical force (SMF)</a> </p> <a href="https://publications.waset.org/abstracts/42236/effects-of-mechanical-test-and-shape-of-grain-boundary-on-martensitic-transformation-in-fe-ni-c-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5947</span> Nanoindentation Behaviour and Microstructural Evolution of Annealed Single-Crystal Silicon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Woei-Shyan%20Lee">Woei-Shyan Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuo-Ling%20Chang"> Shuo-Ling Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nanoindentation behaviour and phase transformation of annealed single-crystal silicon wafers are examined. The silicon specimens are annealed at temperatures of 250, 350 and 450ºC, respectively, for 15 minutes and are then indented to maximum loads of 30, 50 and 70 mN. The phase changes induced in the indented specimens are observed using transmission electron microscopy (TEM) and micro-Raman scattering spectroscopy (RSS). For all annealing temperatures, an elbow feature is observed in the unloading curve following indentation to a maximum load of 30 mN. Under higher loads of 50 mN and 70 mN, respectively, the elbow feature is replaced by a pop-out event. The elbow feature reveals a complete amorphous phase transformation within the indented zone, whereas the pop-out event indicates the formation of Si XII and Si III phases. The experimental results show that the formation of these crystalline silicon phases increases with an increasing annealing temperature and indentation load. The hardness and Young’s modulus both decrease as the annealing temperature and indentation load are increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title="nanoindentation">nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon" title=" silicon"> silicon</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformation" title=" phase transformation"> phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=amorphous" title=" amorphous"> amorphous</a>, <a href="https://publications.waset.org/abstracts/search?q=annealing" title=" annealing"> annealing</a> </p> <a href="https://publications.waset.org/abstracts/23123/nanoindentation-behaviour-and-microstructural-evolution-of-annealed-single-crystal-silicon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5946</span> Effects of Copper Oxide Doping on Hydrothermal Ageing in Alumina Toughened Zirconia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abbas">Mohamed Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Singh"> Ramesh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the hydrothermal aging behavior of undoped and copper oxide-doped alumina-toughened zirconia (ATZ). The ATZ ceramic composites underwent conventional sintering at temperatures ranging from 1250 to 1500°C with a holding time of 12 minutes. XRD analysis revealed a stable 100% tetragonal phase for conventionally sintered ATZ samples up to 1450°C, even after 100 hours of exposure. At 1500℃, XRD patterns of both undoped and doped ATZ samples showed no phase transformation after up to 3 hours of exposure to superheated steam. Extended exposure, however, resulted in phase transformation beyond 10 hours. CuO-doped ATZ samples initially exhibited lower monoclinic content, gradually increasing with aging. Undoped ATZ demonstrated better-aging resistance, maintaining ~40% monoclinic content after 100 hours. FESEM images post-aging revealed surface roughness changes due to the tetragonal-to-monoclinic phase transformation, with limited nucleation in the largest tetragonal grains. Fracture analysis exhibited macrocracks and microcracks on the transformed surface layer after aging. This study found that 0.2wt% CuO doping did not prevent the low-temperature degradation (LTD) phenomenon at elevated temperatures. Transformation zone depth (TZD) calculations supported the trend observed in the transformed monoclinic phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20toughened%20zirconia" title="alumina toughened zirconia">alumina toughened zirconia</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20sintering" title=" conventional sintering"> conventional sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20ageing" title=" hydrothermal ageing"> hydrothermal ageing</a> </p> <a href="https://publications.waset.org/abstracts/176383/effects-of-copper-oxide-doping-on-hydrothermal-ageing-in-alumina-toughened-zirconia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5945</span> Phase Transitions of Cerium and Neodymium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khundadze">M. Khundadze</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Varazashvili"> V. Varazashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Lejava"> N. Lejava</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jorbenadze"> R. Jorbenadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phase transitions of cerium and neodymium are investigated by using high-temperature scanning calorimeter (HT-1500 Seteram). For cerium two types of transformation are detected: at 350-372 K - hexagonal close packing (hcp) - face-centered cubic lattice (fcc) transition, and at 880-960K the face-centered cubic lattice (fcc) transformation into body-centered cubic lattice (bcc). For neodymium changing of hexagonal close packing (hcp) into the body-centered cubic lattice (bcc) is detected at 1093-1113K. The thermal characteristics of transitions – enthalpy, entropy, temperature domains – are reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerium" title="cerium">cerium</a>, <a href="https://publications.waset.org/abstracts/search?q=calorimetry" title=" calorimetry"> calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20of%20phase%20transitions" title=" enthalpy of phase transitions"> enthalpy of phase transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=neodymium" title=" neodymium "> neodymium </a> </p> <a href="https://publications.waset.org/abstracts/28941/phase-transitions-of-cerium-and-neodymium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5944</span> Characterization of a LiFeOP₄ Battery Cell with Mechanical Responses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki-Yong%20Oh">Ki-Yong Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunji%20Kwak"> Eunji Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Due%20Su%20Son"> Due Su Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Siheon%20Jung"> Siheon Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A pouch type of 10 Ah LiFePO₄ battery cell is characterized with two mechanical responses: swelling and bulk force. Both responses vary upon the state of charge significantly, whereas voltage shows flat responses, suggesting that mechanical responses can become a sensitive gauge to characterize microstructure transformation of a battery cell. The derivative of swelling s with respect to capacity Q, (ds/dQ) and the derivative of force F with respect to capacity Q, (dF/dQ) more clearly identify phase transitions of cathode and anode electrodes in the overall charge process than the derivative of voltage V with respect to capacity Q, (dV/dQ). Especially, the force versus swelling curves over the state of charge clearly elucidates three different stiffness over the state of charge oriented from phase transitions: the α-phase, the β-phase, and the metastable solid-solution phase. The observation from mechanical responses suggests that macro-scale mechanical responses of a battery cell are directly correlated to microscopic transformation of a battery cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=force%20response" title="force response">force response</a>, <a href="https://publications.waset.org/abstracts/search?q=LiFePO%E2%82%84%20battery" title=" LiFePO₄ battery"> LiFePO₄ battery</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20response" title=" strain response"> strain response</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20response" title=" stress response"> stress response</a>, <a href="https://publications.waset.org/abstracts/search?q=swelling%20response" title=" swelling response"> swelling response</a> </p> <a href="https://publications.waset.org/abstracts/97098/characterization-of-a-lifeop4-battery-cell-with-mechanical-responses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5943</span> Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pouyan%20Motamedi">Pouyan Motamedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Bosnick"> Ken Bosnick</a>, <a href="https://publications.waset.org/abstracts/search?q=Ken%20Cadien"> Ken Cadien</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Hogan"> James Hogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atomic%20layer%20deposition" title="atomic layer deposition">atomic layer deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=metastable" title=" metastable"> metastable</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformation" title=" phase transformation"> phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/81113/structural-analysis-of-phase-transformation-and-particle-formation-in-metastable-metallic-thin-films-grown-by-plasma-enhanced-atomic-layer-deposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5942</span> Thermal Effects of Phase Transitions of Cerium and Neodymium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khundadze">M. Khundadze</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Varazashvili"> V. Varazashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Lejava"> N. Lejava</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jorbenadze"> R. Jorbenadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phase transitions of cerium and neodymium are investigated by using high temperature scanning calorimeter (HT-1500 Seteram). For cerium two types of transformation are detected: at 350-372 K - hexagonal close packing (hcp) - face-centered cubic lattice (fcc) transition, and in 880-960K the face-centered cubic lattice (fcc) transformation into body-centered cubic lattice (bcc). For neodymium changing of hexagonal close packing (hcp) into body-centered cubic lattice (bcc) is detected at 1093-1113K. The thermal characteristics of transitions – enthalpy, entropy, temperature domains – are reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerium" title="cerium">cerium</a>, <a href="https://publications.waset.org/abstracts/search?q=calorimetry" title=" calorimetry"> calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=neodymium" title=" neodymium"> neodymium</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20of%20phase%20transitions" title=" enthalpy of phase transitions"> enthalpy of phase transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=neodymium" title=" neodymium "> neodymium </a> </p> <a href="https://publications.waset.org/abstracts/27896/thermal-effects-of-phase-transitions-of-cerium-and-neodymium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5941</span> Investigation of Martensitic Transformation Zone at the Crack Tip of NiTi under Mode-I Loading Using Microscopic Image Correlation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nima%20Shafaghi">Nima Shafaghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunay%20Anla%C5%9F"> Gunay Anlaş</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Can%20Aydiner"> C. Can Aydiner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A realistic understanding of martensitic phase transition under complex stress states is key for accurately describing the mechanical behavior of shape memory alloys (SMAs). Particularly regarding the sharply changing stress fields at the tip of a crack, the size, nature and shape of transformed zones are of great interest. There is significant variation among various analytical models in their predictions of the size and shape of the transformation zone. As the fully transformed region remains inside a very small boundary at the tip of the crack, experimental validation requires microscopic resolution. Here, the crack tip vicinity of NiTi compact tension specimen has been monitored in situ with microscopic image correlation with 20x magnification. With nominal 15 micrometer grains and 0.2 micrometer per pixel optical resolution, the strains at the crack tip are mapped with intra-grain detail. The transformation regions are then deduced using an equivalent strain formulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title="digital image correlation">digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20phase%20transition" title=" martensitic phase transition"> martensitic phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20I" title=" mode I"> mode I</a>, <a href="https://publications.waset.org/abstracts/search?q=NiTi" title=" NiTi"> NiTi</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation%20zone" title=" transformation zone"> transformation zone</a> </p> <a href="https://publications.waset.org/abstracts/70661/investigation-of-martensitic-transformation-zone-at-the-crack-tip-of-niti-under-mode-i-loading-using-microscopic-image-correlation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">353</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5940</span> Effect of Heating Rate on Microstructural Developments in Cold Heading Quality Steel Used for Automotive Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahid%20Hussain%20Abro">Shahid Hussain Abro</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Mufadi"> F. Mufadi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Boodi"> A. Boodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural study and phase transformation in steels is a basic and important step during the design of structural steel. There are huge efforts and study has been done so far on phase transformations, due to so many steel grades available commercially the phase development in steel has different consequences. In the present work an effort has been made to study the effect of heating rate on microstructural features of cold heading quality steel. The SEM, optical microscopy, and heat treatment techniques have been applied to observe the microstructural features in the experimental steel. It was observed that heating rate has the strong influence on phase transformation of CHQ steel under investigation. Heating rate increases the austenite formation kinetics with respect to holding time, and this austenite has been transformed to martensite upon cooling. Heating rate also plays a vital role on nucleation sites of austenite formation in the experimental steel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CHQ%20steel" title="CHQ steel">CHQ steel</a>, <a href="https://publications.waset.org/abstracts/search?q=austenite%20formation" title=" austenite formation"> austenite formation</a>, <a href="https://publications.waset.org/abstracts/search?q=heating%20rate" title=" heating rate"> heating rate</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleation" title=" nucleation"> nucleation</a> </p> <a href="https://publications.waset.org/abstracts/66565/effect-of-heating-rate-on-microstructural-developments-in-cold-heading-quality-steel-used-for-automotive-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5939</span> The Influence of C Element on the Phase Transformation in Weldment of Complex Stainless Steels 2507/316/316L</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lin%20Dong-Yih">Lin Dong-Yih</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20S.%20M."> Yang S. M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang%20B.%20W."> Huang B. W.</a>, <a href="https://publications.waset.org/abstracts/search?q=Lian%20J.%20A."> Lian J. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Super duplex stainless steel has excellent mechanical properties and corrosion resistance. It becomes important structural material as its application has been extended to the fields such as renewable energy and the chemical industry because of its excellent properties. As examples are offshore wind power, solar cell machinery, and pipes in the chemical industry. The mechanical properties and corrosion resistance of super duplex stainless steel can be eliminated by welding due to the precipitation of the hard and brittle σ phase, which is rich of chromium, and molybdenum elements. This paper studies the influence of carbon element on the phase transformation of -ferrite and σ phase in 2507 super duplex stainless steel. The 2507 will be under argon gas protection welded with 316 and 316L extra low carbon stainless steel separately. The microstructural phases of stainless steels before and after welding, in fusion, heat affected zones, and base material will be studied via X-ray, OM, SEM, EPMA i.e. their quantity, size, distribution, and morphology. The influences of diffusion by carbon element will be compared according to the microstructures, hardness, and corrosion tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20stainless%20steel" title="complex stainless steel">complex stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=welding" title=" welding"> welding</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20formation" title=" phase formation"> phase formation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20element" title=" carbon element"> carbon element</a>, <a href="https://publications.waset.org/abstracts/search?q=sigma%20phase" title=" sigma phase"> sigma phase</a>, <a href="https://publications.waset.org/abstracts/search?q=delta%20ferrite" title=" delta ferrite"> delta ferrite</a> </p> <a href="https://publications.waset.org/abstracts/154162/the-influence-of-c-element-on-the-phase-transformation-in-weldment-of-complex-stainless-steels-2507316316l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5938</span> Study of Li-Rich Layered Cathode Materials for High-Energy Li-ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Li">Liu Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim%20Seng%20Lee"> Kim Seng Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lu"> Li Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-energy-density Li-rich layered materials are promising cathode materials for the next-generation high-performance lithium-ion batteries. They have attracted a lot of attentions due mainly to their high reversible capacity of more than 250 mAh•g-1 at low charge-discharge current. However several drawbacks still hinder their applications, such as voltage decay caused by an undesired phase transformation during cycling and poor rate capability. To conquer these issues, the authors applied F modification methods on the pristine Li1.2Mn0.54Ni0.13Co0.13O2 to enhance its electrochemical performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-ion%20battery" title="Li-ion battery">Li-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-rich%20layered%20cathode%20material" title=" Li-rich layered cathode material"> Li-rich layered cathode material</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformation" title=" phase transformation"> phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=cycling%20stability" title=" cycling stability"> cycling stability</a>, <a href="https://publications.waset.org/abstracts/search?q=rate%20capability" title=" rate capability"> rate capability</a> </p> <a href="https://publications.waset.org/abstracts/18628/study-of-li-rich-layered-cathode-materials-for-high-energy-li-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18628.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5937</span> Alpha-To-Omega Phase Transition in Bulk Nanostructured Ti and (α+β) Ti Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Askar%20Kilmametov">Askar Kilmametov</a>, <a href="https://publications.waset.org/abstracts/search?q=Julia%20Ivanisenko"> Julia Ivanisenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Boris%20Straumal"> Boris Straumal</a>, <a href="https://publications.waset.org/abstracts/search?q=Horst%20Hahn"> Horst Hahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high-pressure α- to ω-phase transition was discovered in elemental Ti and Zr fifty years ago using static high pressure and then observed to appear between 2 and 12 GPa at room temperature, depending on the experimental technique, the pressure environment, and the sample purity. The fact that ω-phase is retained in a metastable state in ambient condition after the removal of the pressure has been used to check the changes in magnetic and superconductive behavior, electron band structure and mechanical properties. However, the fundamental knowledge on a combination of both mechanical treatment and high applied pressure treatments for ω-phase formation in Ti alloys is currently lacking and has to be studied in relation to improved mechanical properties of bulk nanostructured states. In the present study, nanostructured (α+β) Ti alloys containing β-stabilizing elements such as Co, Fe, Cr, Nb were performed by severe plastic deformation, namely high pressure torsion (HPT) technique. HPT-induced α- to ω-phase transformation was revealed in dependence on applied pressure and shear strains by means of X-ray diffraction, transmission electron microscopy, and differential scanning calorimetry. The transformation kinetics was compared with the kinetics of pressure-induced transition. Orientation relationship between α-, β- and ω-phases was taken into consideration and analyzed according to theoretical calculation proposed earlier. The influence of initial state before HPT appeared to be considerable for subsequent α- to ω-phase transition. Thermal stability of the HPT-induced ω-phase was discussed as well in the frame of mechanical behavior of Ti and Ti-based alloys produced by shear deformation under high applied pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bulk%20nanostructured%20materials" title="bulk nanostructured materials">bulk nanostructured materials</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure%20phase%20transitions" title=" high pressure phase transitions"> high pressure phase transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a> </p> <a href="https://publications.waset.org/abstracts/55970/alpha-to-omega-phase-transition-in-bulk-nanostructured-ti-and-av-ti-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5936</span> Modelling of Phase Transformation Kinetics in Post Heat-Treated Resistance Spot Weld of AISI 1010 Mild Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Feujofack%20Kemda">B. V. Feujofack Kemda</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Barka"> N. Barka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jahazi"> M. Jahazi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Osmani"> D. Osmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automobile manufacturers are constantly seeking means to reduce the weight of car bodies. The usage of several steel grades in auto body assembling has been found to be a good technique to enlighten vehicles weight. This few years, the usage of dual phase (DP) steels, transformation induced plasticity (TRIP) steels and boron steels in some parts of the auto body have become a necessity because of their lightweight. However, these steels are martensitic, when they undergo a fast heat treatment, the resultant microstructure is essential, made of martensite. Resistance spot welding (RSW), one of the most used techniques in assembling auto bodies, becomes problematic in the case of these steels. RSW being indeed a process were steel is heated and cooled in a very short period of time, the resulting weld nugget is mostly fully martensitic, especially in the case of DP, TRIP and boron steels but that also holds for plain carbon steels as AISI 1010 grade which is extensively used in auto body inner parts. Martensite in its turn must be avoided as most as possible when welding steel because it is the principal source of brittleness and it weakens weld nugget. Thus, this work aims to find a mean to reduce martensite fraction in weld nugget when using RSW for assembling. The prediction of phase transformation kinetics during RSW has been done. That phase transformation kinetics prediction has been made possible through the modelling of the whole welding process, and a technique called post weld heat treatment (PWHT) have been applied in order to reduce martensite fraction in the weld nugget. Simulation has been performed for AISI 1010 grade, and results show that the application of PWHT leads to the formation of not only martensite but also ferrite, bainite and pearlite during the cooling of weld nugget. Welding experiments have been done in parallel and micrographic analyses show the presence of several phases in the weld nugget. Experimental weld geometry and phase proportions are in good agreement with simulation results, showing here the validity of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resistance%20spot%20welding" title="resistance spot welding">resistance spot welding</a>, <a href="https://publications.waset.org/abstracts/search?q=AISI%201010" title=" AISI 1010"> AISI 1010</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=post%20weld%20heat%20treatment" title=" post weld heat treatment"> post weld heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformation" title=" phase transformation"> phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/109530/modelling-of-phase-transformation-kinetics-in-post-heat-treated-resistance-spot-weld-of-aisi-1010-mild-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5935</span> Effect of Nano/Micro Alumina Matrix on Alumina-Cubic Boron Nitride Composites Consolidated by Spark Plasma Sintering </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Hakeem">A. S. Hakeem</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ahmed"> B. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ehsan"> M. Ehsan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ibrahim"> A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Irshad"> H. M. Irshad</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Laoui"> T. Laoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alumina (Al2O3) - cubic boron nitride (cBN) ceramic composites were sintered by spark plasma sintering (SPS) using α-Al2O3 particle sizes; 150 µm, 150 nm and cBN particle size of 42 µm. Alumina-cBN composites containing 10, 20 and 30wt% cBN with and without Ni coated were sintering at an elevated temperature of 1400°C at a constant uniaxial pressure of 50 MPa. The effect of matrix particle size, cBN and Ni content on mechanical properties and thermal properties, i.e., thermal conductivity, diffusivity, expansion, densification, phase transformation, microstructure, hardness and toughness of the Al2O3-cBN/(Ni) composites under specific sintering conditions were investigated. The highest relative densification of 150 nm-Al2O3 containing 30wt% cBN (Ni coated) composite was 99% at TSPS = 1400°C. In case of 150 µm- Al2O3 compositions, the phase transformation of cBN to hBN were observed, and the relative densification decreased. Thermal conductivity depicts maximum value in case of 150 nm- Al2O3-30wt% cBN-Ni composition. The Vickers hardness of this composition at TSPS = 1400°C also showed the highest value of 29 GPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20composite" title="alumina composite">alumina composite</a>, <a href="https://publications.waset.org/abstracts/search?q=cubic%20boron%20nitride" title=" cubic boron nitride"> cubic boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transformation" title=" phase transformation"> phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=Spark%20plasma%20sintering" title=" Spark plasma sintering "> Spark plasma sintering </a> </p> <a href="https://publications.waset.org/abstracts/67800/effect-of-nanomicro-alumina-matrix-on-alumina-cubic-boron-nitride-composites-consolidated-by-spark-plasma-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5934</span> Microstructural and Magnetic Properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 Heusler Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mst%20Nazmunnahar">Mst Nazmunnahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20del%20Val"> Juan del Val</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20Vimmrova"> Alena Vimmrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Blanca%20Hernando"> Blanca Hernando</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Gonz%C3%A1lez"> Julian González</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the microstructural and magnetic properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 ribbon Heusler alloys. Experimental results were obtained by differential scanning calorymetry, X-ray diffraction and vibrating sample magnetometry techniques. The Ni-Mn-Sn system undergoes a martensitic structural transformation in a wide temperature range. For example, for Ni50Mn39Sn11 the start and finish temperatures of the martensitic and austenite phase transformation for ribbon alloy were Ms = 336K , Mf = 328K, As = 335K and Af = 343K whereas no structural transformation is observed for Ni50Mn36Sn14 alloys. Magnetic measurements show the typical ferromagnetic behavior with Curie temperature 207K at low applied field of 50 Oe. The complex behavior exhibited by these Heusler alloys should be ascribed to the strong coupling between magnetism and structure, being their magnetic behavior determined by the distance between Mn atoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=as-cast%20ribbon" title="as-cast ribbon">as-cast ribbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Heusler%20alloys" title=" Heusler alloys"> Heusler alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20transformation" title=" structural transformation"> structural transformation</a> </p> <a href="https://publications.waset.org/abstracts/23193/microstructural-and-magnetic-properties-of-ni50mn39sn11-and-ni50mn36sn14-heusler-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5933</span> Developing a Theory for Study of Transformation of Historic Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20Ahrar">Sana Ahrar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cities are undergoing rapid transformation with the change in lifestyle and technological advancements. These transformations may be experienced or physically visible in the built form. This paper focuses on the relationship between the social, physical environment, change in lifestyle and the interrelated factors influencing the transformation of any historic city. Shahjahanabad as a city has undergone transformation under the various political powers as well as the various policy implementations after independence. These visible traces of transformation diffused throughout the city may be due to socio-economic, historic, political factors and due to the globalization process. This study shall enable evolving a theory for the study of transformation of Historic cities such as Shahjahanabad: which has been plundered, rebuilt, and which still thrives as a ‘living heritage city’. The theory developed will be the process of studying the transformation and can be used by planners, policy makers and researchers in different urban contexts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heritage" title="heritage">heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=historic%20cities" title=" historic cities"> historic cities</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahjahanabad" title=" Shahjahanabad"> Shahjahanabad</a>, <a href="https://publications.waset.org/abstracts/search?q=transformation" title=" transformation"> transformation</a> </p> <a href="https://publications.waset.org/abstracts/87941/developing-a-theory-for-study-of-transformation-of-historic-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5932</span> Effect of Co-doping on Polycrystalline Ni-Mn-Ga</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahsa%20Namvari">Mahsa Namvari</a>, <a href="https://publications.waset.org/abstracts/search?q=Kari%20Ullakko"> Kari Ullakko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well-known that the Co-doping of ferromagnetic shape memory alloys (FSMAs) is a crucial tool to control their multifunctional properties. The present work investigates the use of small quantities of Co to fine-tune the transformation, structure, microstructure, mechanical and magnetic properties of the polycrystalline Ni₄₉.₈Mn₂₈.₅Ga₂₁.₇ (at.%) alloy, At Co concentrations of 1-1.5 at.%, a microstructure with an average grain size of about 2.00 mm was formed with a twin structure, enabling the experimental observation of magnetic-field-induced twin variant rearrangement. At higher levels of Co-doping, the grain size was essentially reduced, and the crystal structure of the martensitic phase became 2M martensite. The decreasing grain size and changing crystal structure are attributed to the progress of γ-phase precipitates. Alongside the academic aspect, the results of the present work point to the commercial advantage of fabricating 10M Co-doped Ni-Mn-Ga actuating elements made from large grains of polycrystalline ingots obtained by a standard melting facility instead of grown single crystals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ni-Mn-Ga" title="Ni-Mn-Ga">Ni-Mn-Ga</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic%20shape%20memory" title=" ferromagnetic shape memory"> ferromagnetic shape memory</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20phase%20transformation" title=" martensitic phase transformation"> martensitic phase transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=grain%20growth" title=" grain growth"> grain growth</a> </p> <a href="https://publications.waset.org/abstracts/163892/effect-of-co-doping-on-polycrystalline-ni-mn-ga" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5931</span> Lattice Twinning and Detwinning Processes in Phase Transformation in Shape Memory Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osman%20Adiguzel">Osman Adiguzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory effect is a peculiar property exhibited by certain alloy systems and based on martensitic transformation, and shape memory properties are closely related to the microstructures of the material. Shape memory effect is linked with martensitic transformation, which is a solid state phase transformation and occurs with the cooperative movement of atoms by means of lattice invariant shears on cooling from high-temperature parent phase. Lattice twinning and detwinning can be considered as elementary processes activated during the transformation. Thermally induced martensite occurs as martensite variants, in self-accommodating manner and consists of lattice twins. Also, this martensite is called the twinned martensite or multivariant martensite. Deformation of shape memory alloys in martensitic state proceeds through a martensite variant reorientation. The martensite variants turn into the reoriented single variants with deformation, and the reorientation process has great importance for the shape memory behavior. Copper based alloys exhibit this property in metastable β- phase region, which has DO3 –type ordered lattice in ternary case at high temperature, and these structures martensiticaly turn into the layered complex structures with lattice twinning mechanism, on cooling from high temperature parent phase region. The twinning occurs as martensite variants with lattice invariant shears in two opposite directions, <110 > -type directions on the {110}- type plane of austenite matrix. Lattice invariant shear is not uniform in copper based ternary alloys and gives rise to the formation of unusual layered structures, like 3R, 9R, or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. The unit cell and periodicity are completed through 18 atomic layers in case of 18R-structure. On the other hand, the deformed material recovers the original shape on heating above the austenite finish temperature. Meanwhile, the material returns to the twinned martensite structures (thermally induced martensite structure) in one way (irreversible) shape memory effect on cooling below the martensite finish temperature, whereas the material returns to the detwinned martensite structure (deformed martensite) in two-way (reversible) shape memory effect. Shortly one can say that the microstructural mechanisms, responsible for the shape memory effect are the twinning and detwinning processes as well as martensitic transformation. In the present contribution, x-ray diffraction, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) studies were carried out on two copper-based ternary alloys, CuZnAl, and CuAlMn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20effect" title="shape memory effect">shape memory effect</a>, <a href="https://publications.waset.org/abstracts/search?q=martensitic%20transformation" title=" martensitic transformation"> martensitic transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=twinning%20and%20detwinning" title=" twinning and detwinning"> twinning and detwinning</a>, <a href="https://publications.waset.org/abstracts/search?q=layered%20structures" title=" layered structures"> layered structures</a> </p> <a href="https://publications.waset.org/abstracts/33194/lattice-twinning-and-detwinning-processes-in-phase-transformation-in-shape-memory-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5930</span> Design of Two-Channel Quadrature Mirror Filter Banks Using a Transformation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Hong%20Lee">Ju-Hong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Lin%20Shieh"> Yi-Lin Shieh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two-dimensional (2-D) quadrature mirror filter (QMF) banks have been widely considered for high-quality coding of image and video data at low bit rates. Without implementing subband coding, a 2-D QMF bank is required to have an exactly linear-phase response without magnitude distortion, i.e., the perfect reconstruction (PR) characteristics. The design problem of 2-D QMF banks with the PR characteristics has been considered in the literature for many years. This paper presents a transformation approach for designing 2-D two-channel QMF banks. Under a suitable one-dimensional (1-D) to two-dimensional (2-D) transformation with a specified decimation/interpolation matrix, the analysis and synthesis filters of the QMF bank are composed of 1-D causal and stable digital allpass filters (DAFs) and possess the 2-D doubly complementary half-band (DC-HB) property. This facilitates the design problem of the two-channel QMF banks by finding the real coefficients of the 1-D recursive DAFs. The design problem is formulated based on the minimax phase approximation for the 1-D DAFs. A novel objective function is then derived to obtain an optimization for 1-D minimax phase approximation. As a result, the problem of minimizing the objective function can be simply solved by using the well-known weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The novelty of the proposed design method is that the design procedure is very simple and the designed 2-D QMF bank achieves perfect magnitude response and possesses satisfactory phase response. Simulation results show that the proposed design method provides much better design performance and much less design complexity as compared with the existing techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Quincunx%20QMF%20bank" title="Quincunx QMF bank">Quincunx QMF bank</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20complementary%20filter" title=" doubly complementary filter"> doubly complementary filter</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20allpass%20filter" title=" digital allpass filter"> digital allpass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=WLS%20algorithm" title=" WLS algorithm"> WLS algorithm</a> </p> <a href="https://publications.waset.org/abstracts/76791/design-of-two-channel-quadrature-mirror-filter-banks-using-a-transformation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5929</span> Modelling Phase Transformations in Zircaloy-4 Fuel Cladding under Transient Heating Rates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jefri%20Draup">Jefri Draup</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoine%20Ambard"> Antoine Ambard</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi-Toan%20Nguyen"> Chi-Toan Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zirconium alloys exhibit solid-state phase transformations under thermal loading. These can lead to a significant evolution of the microstructure and associated mechanical properties of materials used in nuclear fuel cladding structures. Therefore, the ability to capture effects of phase transformation on the material constitutive behavior is of interest during conditions of severe transient thermal loading. Whilst typical Avrami, or Johnson-Mehl-Avrami-Kolmogorov (JMAK), type models for phase transformations have been shown to have a good correlation with the behavior of Zircaloy-4 under constant heating rates, the effects of variable and fast heating rates are not fully explored. The present study utilises the results of in-situ high energy synchrotron X-ray diffraction (SXRD) measurements in order to validate the phase transformation models for Zircaloy-4 under fast variable heating rates. These models are used to assess the performance of fuel cladding structures under loss of coolant accident (LOCA) scenarios. The results indicate that simple Avrami type models can provide a reasonable indication of the phase distribution in experimental test specimens under variable fast thermal loading. However, the accuracy of these models deteriorates under the faster heating regimes, i.e., 100Cs⁻¹. The studies highlight areas for improvement of simple Avrami type models, such as the inclusion of temperature rate dependence of the JMAK n-exponent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accident" title="accident">accident</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel" title=" fuel"> fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=zirconium" title=" zirconium"> zirconium</a> </p> <a href="https://publications.waset.org/abstracts/119938/modelling-phase-transformations-in-zircaloy-4-fuel-cladding-under-transient-heating-rates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5928</span> Mastering Digitization: A Quality-Adapted Digital Transformation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Franziska%20Schaefer">Franziska Schaefer</a>, <a href="https://publications.waset.org/abstracts/search?q=Marlene%20Kuhn"> Marlene Kuhn</a>, <a href="https://publications.waset.org/abstracts/search?q=Heiner%20Otten"> Heiner Otten</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the very near future, digitization will be the main challenge a company has to master to survive in a highly competitive market. Developing the right transformation strategy by considering all relevant aspects determines the success or failure of a company. Especially the digital focus on the customer plays a key role in creating sustainable competitive advantages, also leading to new tasks within the quality management. Therefore, quality management needs to be particularly addressed to support the upcoming digital change. In this paper, we present an analysis of existing digital transformation approaches and derive a transformation strategy from a quality management perspective. We identify and classify different transformation dimensions and assess their relevance to quality management tasks, resulting in a quality-adapted digital transformation model. Furthermore, we introduce applicable and customized quality management methods to support the presented digital transformation tasks. With our developed model we provide a digital transformation guideline from a quality perspective to master future disruptive changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20transformation" title="digital transformation">digital transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=digitization" title=" digitization"> digitization</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20management" title=" quality management"> quality management</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a> </p> <a href="https://publications.waset.org/abstracts/78145/mastering-digitization-a-quality-adapted-digital-transformation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5927</span> Chemical and Physical Properties and Biocompatibility of Ti–6Al–4V Produced by Electron Beam Rapid Manufacturing and Selective Laser Melting for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bing%E2%80%93Jing%20Zhao">Bing–Jing Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Kui%20Liu"> Chang-Kui Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Wang"> Hong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Hu"> Min Hu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electron beam rapid manufacturing (EBRM) or Selective laser melting is an additive manufacturing process that uses 3D CAD data as a digital information source and energy in the form of a high-power laser beam or electron beam to create three-dimensional metal parts by fusing fine metallic powders together.Object:The present study was conducted to evaluate the mechanical properties ,the phase transformation,the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM,SLM and forging technique.Method: Ti-6Al-4V alloy standard test pieces were manufactured by EBRM, SLM and forging technique according to AMS4999,GB/T228 and ISO 10993.The mechanical properties were analyzed by universal test machine. The phase transformation was analyzed by X-ray diffraction and scanning electron microscopy. The corrosivity was analyzed by electrochemical method. The biocompatibility was analyzed by co-culturing with mesenchymal stem cell and analyzed by scanning electron microscopy (SEM) and alkaline phosphatase assay (ALP) to evaluate cell adhesion and differentiation, respectively. Results: The mechanical properties, the phase transformation, the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM、SLM were similar to forging and meet the mechanical property requirements of AMS4999 standard. a­phase microstructure for the EBM production contrast to the a’­phase microstructure of the SLM product. Mesenchymal stem cell adhesion and differentiation were well. Conclusion: The property of the Ti-6Al-4V alloy manufactured by EBRM and SLM technique can meet the medical standard from this study. But some further study should be proceeded in order to applying well in clinical practice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=Electron%20Beam%20Rapid%20Manufacturing%20%28EBRM%29" title=" Electron Beam Rapid Manufacturing (EBRM)"> Electron Beam Rapid Manufacturing (EBRM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Selective%20Laser%20Melting%20%28SLM%29" title=" Selective Laser Melting (SLM)"> Selective Laser Melting (SLM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Computer%20Aided%20Design%20%28CAD%29" title=" Computer Aided Design (CAD)"> Computer Aided Design (CAD)</a> </p> <a href="https://publications.waset.org/abstracts/24432/chemical-and-physical-properties-and-biocompatibility-of-ti-6al-4v-produced-by-electron-beam-rapid-manufacturing-and-selective-laser-melting-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5926</span> An Automatic Model Transformation Methodology Based on Semantic and Syntactic Comparisons and the Granularity Issue Involved</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiexin%20Wang">Tiexin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastien%20Truptil"> Sebastien Truptil</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederick%20Benaben"> Frederick Benaben</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Model transformation, as a pivotal aspect of Model-driven engineering, attracts more and more attentions both from researchers and practitioners. Many domains (enterprise engineering, software engineering, knowledge engineering, etc.) use model transformation principles and practices to serve to their domain specific problems; furthermore, model transformation could also be used to fulfill the gap between different domains: by sharing and exchanging knowledge. Since model transformation has been widely used, there comes new requirement on it: effectively and efficiently define the transformation process and reduce manual effort that involved in. This paper presents an automatic model transformation methodology based on semantic and syntactic comparisons, and focuses particularly on granularity issue that existed in transformation process. Comparing to the traditional model transformation methodologies, this methodology serves to a general purpose: cross-domain methodology. Semantic and syntactic checking measurements are combined into a refined transformation process, which solves the granularity issue. Moreover, semantic and syntactic comparisons are supported by software tool; manual effort is replaced in this way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20model%20transformation" title="automatic model transformation">automatic model transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=granularity%20issue" title=" granularity issue"> granularity issue</a>, <a href="https://publications.waset.org/abstracts/search?q=model-driven%20engineering" title=" model-driven engineering"> model-driven engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20and%20syntactic%20comparisons" title=" semantic and syntactic comparisons"> semantic and syntactic comparisons</a> </p> <a href="https://publications.waset.org/abstracts/27878/an-automatic-model-transformation-methodology-based-on-semantic-and-syntactic-comparisons-and-the-granularity-issue-involved" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5925</span> Microstructure Evolution and Pre-transformation Microstructure Reconstruction in Ti-6Al-4V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreyash%20Hadke">Shreyash Hadke</a>, <a href="https://publications.waset.org/abstracts/search?q=Manendra%20Singh%20Parihar"> Manendra Singh Parihar</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Khatirkar"> Rajesh Khatirkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, the variation in the microstructure with the changes in the heat treatment conditions i.e. temperature and time was observed. Ti-6Al-4V alloy was subject to solution annealing treatments in β (1066C) and α+β phase (930C and 850C) followed by quenching, air cooling and furnace cooling to room temperature respectively. The effect of solution annealing and cooling on the microstructure was studied by using optical microscopy (OM), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD) and x-ray diffraction (XRD). The chemical composition of the β phase for different conditions was determined with the help of energy dispersive spectrometer (EDS) attached to SEM. Furnace cooling resulted in the development of coarser structure (α+β), while air cooling resulted in much finer structure with widmanstatten morphology of α at the grain boundaries. Quenching from solution annealing temperature formed α’ martensite, their proportion being dependent on the temperature in β phase field. It is well known that the transformation of β to α follows Burger orientation relationship (OR). In order to reconstruct the microstructure of parent β phase, a MATLAB code was written using neighbor-to-neighbor, triplet method and Tari’s method. The code was tested on the annealed samples (1066C solution annealing temperature followed by furnace cooling to room temperature). The parent phase data thus generated was then plotted using the TSL-OIM software. The reconstruction results of the above methods were compared and analyzed. The Tari’s approach (clustering approach) gave better results compared to neighbor-to-neighbor and triplet method but the time taken by the triplet method was least compared to the other two methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-4V%20alloy" title="Ti-6Al-4V alloy">Ti-6Al-4V alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20backscattered%20diffraction" title=" electron backscattered diffraction"> electron backscattered diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=parent%20phase%20reconstruction" title=" parent phase reconstruction"> parent phase reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/24632/microstructure-evolution-and-pre-transformation-microstructure-reconstruction-in-ti-6al-4v-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5924</span> Generating Innovations in Established Banks through Digital Transformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wisu%20Suntoyo">Wisu Suntoyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Dedy%20Sushandoyo"> Dedy Sushandoyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Innovation and digital transformation are essential for firms’ competitiveness in the digital age. The competition in Indonesia’s banking industry provides an intriguing case study for understanding how digital transformation can generate innovation in established companies. The empirical evidence of this study is mainly based on interviews and annual reports examining four established banks in their various states of digital transformation. The findings of this study reveal that banks’ digital transformations that lead to innovations differ in terms of the activities undertaken and the outcomes achieved depending on the state of advancement in which they are. Digital transformation is a complex and challenging process, and this study finds that with this strategy, established banks have shown capable of generating innovation. Banks can choose types of transformation activities that generate radical, architectural, modular, or even incremental innovations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20transformation" title="digital transformation">digital transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=innovations" title=" innovations"> innovations</a>, <a href="https://publications.waset.org/abstracts/search?q=banking%20industry" title=" banking industry"> banking industry</a>, <a href="https://publications.waset.org/abstracts/search?q=established%20banks" title=" established banks"> established banks</a> </p> <a href="https://publications.waset.org/abstracts/166179/generating-innovations-in-established-banks-through-digital-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5923</span> Health Transformation Program and Effects on Health Expenditures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Karacor">Zeynep Karacor</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahime%20Hulya%20Ozturk"> Rahime Hulya Ozturk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, the rise of population density and the problem of aging population took attention to the health expenditures. In Turkey, some regulations and infrastructure changes in health sector have occurred. These changes are called Health Transformation Program. The productivity of health services, patient satisfaction, quality of services are tried to be improved with this program. Some radical changes are applied in Turkish economy in this context. The aim of this paper is to present the effects of Health Transformation Program on health expenditures. In the first part of the paper, some information’s about health system and applications in Turkey are discussed. In the second part, the aims of Health Transformation Program are explained. And in the third part the effects of Health Transformation Program on health expenditures are examined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health%20transformation%20program" title="health transformation program">health transformation program</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20services" title=" health services"> health services</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20expenditures" title=" health expenditures"> health expenditures</a> </p> <a href="https://publications.waset.org/abstracts/57777/health-transformation-program-and-effects-on-health-expenditures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5922</span> Frequency Transformation with Pascal Matrix Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phuoc%20Si%20Nguyen">Phuoc Si Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal&rsquo;s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20transformation" title="frequency transformation">frequency transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20z-transformation" title=" bilinear z-transformation"> bilinear z-transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-warping%20frequency" title=" pre-warping frequency"> pre-warping frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20filters" title=" digital filters"> digital filters</a>, <a href="https://publications.waset.org/abstracts/search?q=analog%20filters" title=" analog filters"> analog filters</a>, <a href="https://publications.waset.org/abstracts/search?q=pascal%E2%80%99s%20triangle" title=" pascal’s triangle"> pascal’s triangle</a> </p> <a href="https://publications.waset.org/abstracts/34866/frequency-transformation-with-pascal-matrix-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=198">198</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=199">199</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=phase%20transformation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10