CINXE.COM

Search results for: Chandrakant R. Kini

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Chandrakant R. Kini</title> <meta name="description" content="Search results for: Chandrakant R. Kini"> <meta name="keywords" content="Chandrakant R. Kini"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Chandrakant R. Kini" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Chandrakant R. Kini"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 18</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Chandrakant R. Kini</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Heat Transfer Analysis of Helical Grooved Passages near the Leading Edge Region in Gas Turbine Blade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harishkumar%20Kamath">Harishkumar Kamath</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrakant%20R.%20Kini"> Chandrakant R. Kini</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Yagnesh%20Sharma"> N. Yagnesh Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas turbines are highly effective engineered prime movers for converting energy from thermal form (combustion stage) to mechanical form – are widely used for propulsion and power generation systems. One method of increasing both the power output and thermal efficiency is to increase the temperature of the gas entering the turbine. In the advanced gas turbines of today, the turbine inlet temperature can be as high as 1500°C; however, this temperature exceeds the melting temperature of the metal blade. With modern gas turbines operating at extremely high temperatures, it is necessary to implement various cooling methods, so the turbine blades and vanes endure in the path of the hot gases. Merely passing coolant air through the blade does not provide adequate cooling; therefore, it is necessary to implement techniques that will further enhance the heat transfer from the blade walls. It is seen that by incorporating helical grooved passages into the leading edge built on turbulence and higher flow rates through the passages, the blade can be cooled effectively. It seen from the analysis helical grooved passages with diameter 5 mm, helical pitch of 50 mm and 8 starts results in better cooling of turbine blade and gives the best thermal performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade%20cooling" title="blade cooling">blade cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=helical%20grooves" title=" helical grooves"> helical grooves</a>, <a href="https://publications.waset.org/abstracts/search?q=leading%20edge" title=" leading edge"> leading edge</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/60786/heat-transfer-analysis-of-helical-grooved-passages-near-the-leading-edge-region-in-gas-turbine-blade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Password Cracking on Graphics Processing Unit Based Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Gopalakrishna%20Kini">N. Gopalakrishna Kini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjana%20Paleppady"> Ranjana Paleppady</a>, <a href="https://publications.waset.org/abstracts/search?q=Akshata%20K.%20Naik"> Akshata K. Naik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Password authentication is one of the widely used methods to achieve authentication for legal users of computers and defense against attackers. There are many different ways to authenticate users of a system and there are many password cracking methods also developed. This paper is mainly to propose how best password cracking can be performed on a CPU-GPGPU based system. The main objective of this work is to project how quickly a password can be cracked with some knowledge about the computer security and password cracking if sufficient security is not incorporated to the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GPGPU" title="GPGPU">GPGPU</a>, <a href="https://publications.waset.org/abstracts/search?q=password%20cracking" title=" password cracking"> password cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=secret%20key" title=" secret key"> secret key</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20authentication" title=" user authentication"> user authentication</a> </p> <a href="https://publications.waset.org/abstracts/40190/password-cracking-on-graphics-processing-unit-based-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Effect of High Volume processed Fly Ash on Engineering Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhara%20Shah">Dhara Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrakant%20Shah"> Chandrakant Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As everyone knows, fly ash is a residual material we get upon energy production using coal. It has found numerous advantages for use in the concrete industry like improved workability, increased ultimate strength, reduced bleeding, reduced permeability, better finish and reduced heat of hydration. Types of fly ash depend on the type of coal and the coal combustion process. It is a pozzolanic material and has mainly two classes, F and C, based on the chemical composition. The fly ash used for this experimental work contains significant amount of lime and would be categorized as type F fly ash. Generally all types of fly ash have particle size less than 0.075mm. The fineness and lime content of fly ash are very important as they will affect the air content and water demand of the concrete, thereby affecting the durability and strength of the concrete. The present work has been done to optimize the use of fly ash to produce concrete with improved results and added benefits. A series of tests are carried out, analyzed and compared with concrete manufactured using only Portland cement as a binder. The present study is carried out for concrete mix with replacement of cement with different proportions of fly ash. Two concrete mixes M25 and M30 were studied with six replacements of cement with fly ash i.e. 40%, 45%, 50%, 55%, 60% and 65% for 7-day, 14-day, 28-day, 56-day and 90-day. Study focused on compressive strength, split tensile strength, modulus of elasticity and modulus of rupture of concrete. Study clearly revealed that cement replacement by any proportion of fly ash failed to achieve early strength. Replacement of 40% and 45% succeeded in achieving required flexural strength for M25 and M30 grade of concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=processed%20fly%20ash" title="processed fly ash">processed fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20properties%20of%20concrete" title=" engineering properties of concrete"> engineering properties of concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic" title=" pozzolanic"> pozzolanic</a>, <a href="https://publications.waset.org/abstracts/search?q=lime%20content" title=" lime content"> lime content</a> </p> <a href="https://publications.waset.org/abstracts/10413/effect-of-high-volume-processed-fly-ash-on-engineering-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ved%20Kulkarni">Ved Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthik%20Kini"> Karthik Kini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20processing" title=" language processing"> language processing</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=sentiment%20analysis" title=" sentiment analysis"> sentiment analysis</a> </p> <a href="https://publications.waset.org/abstracts/192108/expanding-trading-strategies-by-studying-sentiment-correlation-with-data-mining-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">17</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Efficient Schemes of Classifiers for Remote Sensing Satellite Imageries of Land Use Pattern Classifications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Patil">S. S. Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachidanand%20Kini"> Sachidanand Kini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Classification of land use patterns is compelling in complexity and variability of remote sensing imageries data. An imperative research in remote sensing application exploited to mine some of the significant spatially variable factors as land cover and land use from satellite images for remote arid areas in Karnataka State, India. The diverse classification techniques, unsupervised and supervised consisting of maximum likelihood, Mahalanobis distance, and minimum distance are applied in Bellary District in Karnataka State, India for the classification of the raw satellite images. The accuracy evaluations of results are compared visually with the standard maps with ground-truths. We initiated with the maximum likelihood technique that gave the finest results and both minimum distance and Mahalanobis distance methods over valued agriculture land areas. In meanness of mislaid few irrelevant features due to the low resolution of the satellite images, high-quality accord between parameters extracted automatically from the developed maps and field observations was found. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahalanobis%20distance" title="Mahalanobis distance">Mahalanobis distance</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20distance" title=" minimum distance"> minimum distance</a>, <a href="https://publications.waset.org/abstracts/search?q=supervised" title=" supervised"> supervised</a>, <a href="https://publications.waset.org/abstracts/search?q=unsupervised" title=" unsupervised"> unsupervised</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20classification%20accuracy" title=" user classification accuracy"> user classification accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=producer%27s%20classification%20accuracy" title=" producer&#039;s classification accuracy"> producer&#039;s classification accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood" title=" maximum likelihood"> maximum likelihood</a>, <a href="https://publications.waset.org/abstracts/search?q=kappa%20coefficient" title=" kappa coefficient"> kappa coefficient</a> </p> <a href="https://publications.waset.org/abstracts/103621/efficient-schemes-of-classifiers-for-remote-sensing-satellite-imageries-of-land-use-pattern-classifications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103621.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Characterization Study of Aluminium 6061 Hybrid Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Achutha%20Kini">U. Achutha Kini</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sharma"> S. S. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jagannath"> K. Jagannath</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Prabhu"> P. R. Prabhu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Gowri%20Shankar"> M. C. Gowri Shankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium matrix composites with alumina reinforcements give superior mechanical & physical properties. Their applications in several fields like automobile, aerospace, defense, sports, electronics, bio-medical and other industrial purposes are becoming essential for the last several decades. In the present work, fabrication of hybrid composite was done by Stir casting technique using Al 6061 as a matrix with alumina and silicon carbide (SiC) as reinforcement materials. The weight percentage of alumina is varied from 2 to 4% and the silicon carbide weight percentage is maintained constant at 2%. Hardness and wear tests are performed in the as cast and heat treated conditions. Age hardening treatment was performed on the specimen with solutionizing at 550°C, aging at two temperatures (150 and 200°C) for different time durations. Hardness distribution curves are drawn and peak hardness values are recorded. Hardness increase was very sensitive with respect to the decrease in aging temperature. There was an improvement in wear resistance of the peak aged material when aged at lower temperature. Also increase in weight percent of alumina, increases wear resistance at lower temperature but opposite behavior was seen when aged at higher temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composite" title="hybrid composite">hybrid composite</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20test" title=" hardness test"> hardness test</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20test" title=" wear test"> wear test</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=pin%20on%20disc%20wear%20testing%20machine" title=" pin on disc wear testing machine"> pin on disc wear testing machine</a> </p> <a href="https://publications.waset.org/abstracts/26287/characterization-study-of-aluminium-6061-hybrid-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Investigation of Bubble Growth During Nucleate Boiling Using CFD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Jagannath">K. Jagannath</a>, <a href="https://publications.waset.org/abstracts/search?q=Akhilesh%20Kotian"> Akhilesh Kotian</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sharma"> S. S. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Achutha%20Kini%20U."> Achutha Kini U.</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Prabhu"> P. R. Prabhu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained is compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bubble%20growth" title="bubble growth">bubble growth</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=detachment%20diameter" title=" detachment diameter"> detachment diameter</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20velocity" title=" terminal velocity"> terminal velocity</a> </p> <a href="https://publications.waset.org/abstracts/26289/investigation-of-bubble-growth-during-nucleate-boiling-using-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Cardio Autonomic Response during Mental Stress in the Wards of Normal and Hypertensive Parents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheila%20R.%20Pai">Sheila R. Pai</a>, <a href="https://publications.waset.org/abstracts/search?q=Rekha%20D.%20Kini"> Rekha D. Kini</a>, <a href="https://publications.waset.org/abstracts/search?q=Amrutha%20Mary"> Amrutha Mary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To assess and compare the cardiac autonomic activity after mental stress among the wards of normal and hypertensive parents. Methods: The study included 67 subjects, 30 of them had a parental history of hypertension and rest 37 had normotensive parents. Subjects were divided into control group (wards of normotensive parents) and Study group (wards of hypertensive parents). The height, weight were noted, and Body Mass Index (BMI) was also calculated. The mental stress test was carried out. Blood pressure (BP) and electro cardiogram (ECG) was recorded during normal breathing and after mental stress test. Heart rate variability (HRV) analysis was done by time domain method HRV was recorded and analyzed by the time-domain method. Analysis of HRV in the time-domain was done using the software version 1.1 AIIMS, New Delhi. The data obtained was analyzed using student’s t-test followed by Mann-Whitney U-test and P < 0.05 was considered significant. Results: There was no significant difference in systolic blood pressure and diastolic blood pressure (DBP) between study group and control group following mental stress. In the time domain analysis, the mean value of pNN50 and RMSSD of the study group was not significantly different from the control group after the mental stress test. Conclusion: The study thus concluded that there was no significant difference in HRV between study group and control group following mental stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heart%20rate%20variability" title="heart rate variability">heart rate variability</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20domain%20analysis" title=" time domain analysis"> time domain analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20stress" title=" mental stress"> mental stress</a>, <a href="https://publications.waset.org/abstracts/search?q=hypertensive" title=" hypertensive"> hypertensive</a> </p> <a href="https://publications.waset.org/abstracts/63695/cardio-autonomic-response-during-mental-stress-in-the-wards-of-normal-and-hypertensive-parents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63695.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Evaluate Effects of Different Curing Methods on Compressive Strength, Modulus of Elasticity and Durability of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dhara%20Shah">Dhara Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrakant%20Shah"> Chandrakant Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction industry utilizes plenty of water in the name of curing. Looking at the present scenario, the days are not so far when all construction industries will have to switch over to an alternative-self curing system, not only to save water for sustainable development of the environment but also to promote indoor and outdoor construction activities even in water scarce areas. At the same time, curing is essential for the development of proper strength and durability. IS 456-2000 recommends a curing period of 7 days for ordinary Portland cement concrete, and 10 to 14 days for concrete prepared using mineral admixtures or blended cements. But, being the last act in the concreting operations, it is often neglected or not fully done. Consequently, the quality of hardened concrete suffers, more so, if the freshly laid concrete gets exposed to the environmental conditions of low humidity, high wind velocity and high ambient temperature. To avoid the adverse effects of neglected or insufficient curing, which is considered a universal phenomenon, concrete technologist and research scientists have come up with curing compounds. Concrete is said to be self-cured, if it is able to retain its water content to perform chemical reaction for the development of its strength. Curing compounds are liquids which are either incorporated in concrete or sprayed directly onto concrete surfaces and which then dry to form a relatively impermeable membrane that retards the loss of moisture from the concrete. They are an efficient and cost-effective means of curing concrete and may be applied to freshly placed concrete or that which has been partially cured by some other means. However, they may affect the bond between concrete and subsequent surface treatments. Special care in the choice of a suitable compound needs to be exercised in such circumstances. Curing compounds are generally formulated from wax emulsions, chlorinated rubbers, synthetic and natural resins, and from PVA emulsions. Their effectiveness varies quite widely, depending on the material and strength of the emulsion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing%20methods" title="curing methods">curing methods</a>, <a href="https://publications.waset.org/abstracts/search?q=self-curing%20compound" title=" self-curing compound"> self-curing compound</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=modulus%20of%20elasticity" title=" modulus of elasticity"> modulus of elasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=durability" title=" durability"> durability</a> </p> <a href="https://publications.waset.org/abstracts/10176/evaluate-effects-of-different-curing-methods-on-compressive-strength-modulus-of-elasticity-and-durability-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Variability in Saturation Flow and Traffic Performance at Urban Signalized Intersection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Salini">P. N. Salini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Anish%20Kini"> B. Anish Kini</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ashalatha"> R. Ashalatha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At signalized intersections with heterogeneous traffic, the percentage share of different vehicle categories have a bearing on the inter-vehicle space utilization, which eventually impacts the saturation flow. This paper analyzed the impact of the percentage share of various vehicle categories in the traffic stream on the saturation flow at signalized intersections by video graphing major intersections with varying geometry in Kerala, India. It was found that as the percentage share of two-wheelers increases, the saturation flow at signalized intersections increases and vice-versa for the percentage share of cars. The effect of bus blockage and parking maneuvers on the saturation flow were also studied. As the distance of bus blockage increases from the stop line, the effect on the saturation flow decreases, while with more buses stopping at the same bus stop, the saturation flow reduces further. The study revealed that with higher kerbside parking maneuvers on the upstream, the saturation flow reduces, and with an increase in the distance of the parking maneuver from the stop line, the effect on the saturation flow decreases. The adjustment factors for bus blockage due to bus stops within 75m downstream and parking maneuvers within 75m upstream of the intersection have been established for mixed traffic conditions. These adjustment factors could empower the urban planners, enforcement personnel and decision-makers to estimate the reduction in the capacity of signalized intersections for suggesting improvements in the form of parking restrictions/ bus stop relocation for existing intersections or make design changes for planned intersections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=signalized%20intersection" title="signalized intersection">signalized intersection</a>, <a href="https://publications.waset.org/abstracts/search?q=saturation%20flow" title=" saturation flow"> saturation flow</a>, <a href="https://publications.waset.org/abstracts/search?q=adjustment%20factors" title=" adjustment factors"> adjustment factors</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a> </p> <a href="https://publications.waset.org/abstracts/131466/variability-in-saturation-flow-and-traffic-performance-at-urban-signalized-intersection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> An Analytical Study on the Effect of Chronic Liver Disease Severity and Etiology on Lipid Profiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thinakar%20Mani%20Balusamy">Thinakar Mani Balusamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkateswaran%20A.%20R."> Venkateswaran A. R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Narasimhan"> Bharat Narasimhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratnakar%20Kini%20S."> Ratnakar Kini S.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kani%20Sheikh%20M."> Kani Sheikh M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Prem%20Kumar%20K."> Prem Kumar K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Pugazhendi%20Thangavelu"> Pugazhendi Thangavelu</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Murugan"> Arun Murugan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sibi%20Thooran%20Karmegam"> Sibi Thooran Karmegam</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhakrishnan%20N."> Radhakrishnan N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Noufal"> Mohammed Noufal</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Soni"> Amit Soni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aims: The liver is integral to lipid metabolism, and a compromise in its function leads to perturbations in these pathways. In this study, we hope to determine the correlation between CLD severity and its effect on lipid parameters. We also look at the etiology-specific effects on lipid levels. Materials and Methods: This is a retrospective cross-sectional analysis of 250 patients with cirrhosis compared to 250 healthy age and sex-matched controls. Severity assessment of CLD using MELD and Child-Pugh scores was performed and etiological details collected. A questionnaire was used to obtain patient demographic details and lastly, a fasting lipid profile (Total, LDL, HDL cholesterol, Triglycerides and VLDL) was obtained. Results: All components of the lipid profile declined linearly with increasing severity of CLD as determined by MELD and Child-Pugh scores. Lipid levels were clearly lower in CLD patients as compared to healthy controls. Interestingly, preliminary analysis indicated that CLD of different etiologies had differential effects on Lipid profiles. This aspect is under further analysis. Conclusion: All components of the lipid profile were definitely lower in CLD patients as compared to controls and demonstrated an inverse correlation with increasing severity. The utilization of this parameter as a prognosticating aid requires further study. Additionally, preliminary analysis indicates that various CLD etiologies appear to have specific effects on the lipid profile – a finding under further analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CLD" title="CLD">CLD</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=HDL" title=" HDL"> HDL</a>, <a href="https://publications.waset.org/abstracts/search?q=LDL" title=" LDL"> LDL</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20profile" title=" lipid profile"> lipid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=triglycerides" title=" triglycerides"> triglycerides</a>, <a href="https://publications.waset.org/abstracts/search?q=VLDL" title=" VLDL"> VLDL</a> </p> <a href="https://publications.waset.org/abstracts/81615/an-analytical-study-on-the-effect-of-chronic-liver-disease-severity-and-etiology-on-lipid-profiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Comparative Morphometric Analysis of Yelganga-Shivbhadra and Kohilla River Sub-Basins in Aurangabad District Maharashtra India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandrakant%20Gurav">Chandrakant Gurav</a>, <a href="https://publications.waset.org/abstracts/search?q=Md%20Babar"> Md Babar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajaykumar%20Asode"> Ajaykumar Asode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Morphometric analysis is the first stage of any basin analysis. By using these morphometric parameters we give indirect information about the nature and relations of stream with other streams, Geology of the area, groundwater condition and tectonic history of the basin. In the present study, Yelganga, Shivbhadra and Kohilla rivers, tributaries of the Godavari River in Aurangabad district, Maharashtra, India are considered to compare and study their morphometric characters. The linear, areal and relief morphometric aspects of the sub-basins have been assessed and evaluated in GIS environment. For this study, ArcGIS 10.1 software has been used for delineating, digitizing and generating different thematic maps. The Survey of India (SOI) toposheets maps and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) on resolution 30 m downloaded from United States Geological Survey (USGS) have been used for preparation of map and data generation. Geologically, the study area is covered by Central Deccan Volcanic Province (CDVP). It mainly consists of ‘aa’ type of basaltic lava flows of Late (upper) Cretaceous to Early (lower) Eocene age. The total geographical area of Yelganga, Shivbhadra and Kohilla river sub-basins are 185.5 sq. km., 142.6 sq. km and 122.3 sq. km. respectively The stream ordering method as suggested by the Strahler has been employed for present study and found that all the sub-basins are of 5th order streams. The average bifurcation ratio value of the sub-basins is below 5, indicates that there appears to be no strong structural control on drainage development, homogeneous nature of lithology and drainage network is in well-developed stage of erosion. The drainage density of Yelganga, Shivbhadra and Kohilla Sub-basins is 1.79 km/km2, 1.48 km/km2 and 1.89 km/km2 respectively and stream frequency is 1.94 streams/km2, 1.19 streams/km2 and 1.68 streams/km2 respectively, indicating semi-permeable sub-surface. Based on textural ratio values it indicates that the sub-basins have coarse texture. Shape parameters such as form factor ratio, circularity ratio and elongation ratio values shows that all three sub- basins are elongated in shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=Kohilla" title=" Kohilla"> Kohilla</a>, <a href="https://publications.waset.org/abstracts/search?q=morphometry" title=" morphometry"> morphometry</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivbhadra" title=" Shivbhadra"> Shivbhadra</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelganga" title=" Yelganga"> Yelganga</a> </p> <a href="https://publications.waset.org/abstracts/82456/comparative-morphometric-analysis-of-yelganga-shivbhadra-and-kohilla-river-sub-basins-in-aurangabad-district-maharashtra-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Prabhu">P. R. Prabhu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Kulkarni"> S. M. Kulkarni</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sharma"> S. S. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jagannath"> K. Jagannath</a>, <a href="https://publications.waset.org/abstracts/search?q=Achutha%20Kini%20U."> Achutha Kini U. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardness" title="hardness">hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20surface%20methodology" title=" response surface methodology"> response surface methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20composite%20design" title=" central composite design"> central composite design</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20cold%20rolling" title=" deep cold rolling"> deep cold rolling</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a> </p> <a href="https://publications.waset.org/abstracts/26087/analysis-of-surface-hardness-surface-roughness-and-near-surface-microstructure-of-aisi-4140-steel-worked-with-turn-assisted-deep-cold-rolling-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Role of Endotherapy vs Surgery in the Management of Traumatic Pancreatic Injury: A Tertiary Center Experience</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thinakar%20Mani%20Balusamy">Thinakar Mani Balusamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratnakar%20S.%20Kini"> Ratnakar S. Kini</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Narasimhan"> Bharat Narasimhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Venkateswaran%20A.%20R"> Venkateswaran A. R</a>, <a href="https://publications.waset.org/abstracts/search?q=Pugazhendi%20Thangavelu"> Pugazhendi Thangavelu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali"> Mohammed Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Prem%20Kumar%20%20K."> Prem Kumar K.</a>, <a href="https://publications.waset.org/abstracts/search?q=Kani%20Sheikh%20M."> Kani Sheikh M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Sibi%20Thooran%20Karmegam"> Sibi Thooran Karmegam</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhakrishnan%20N."> Radhakrishnan N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Noufal"> Mohammed Noufal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Pancreatic injury remains a complicated condition requiring an individualized case by case approach to management. In this study, we aim to analyze the varied presentations and treatment outcomes of traumatic pancreatic injury in a tertiary care center. Methods: All consecutive patients hospitalized at our center with traumatic pancreatic injury between 2013 and 2017 were included. The American Association for Surgery of Trauma (AAST) classification was used to stratify patients into five grades of severity. Outcome parameters were then analyzed based on the treatment modality employed. Results: Of the 35 patients analyzed, 26 had an underlying blunt trauma with the remaining nine presenting due to penetrating injury. Overall in-hospital mortality was 28%. 19 of these patients underwent exploratory laparotomy with the remaining 16 managed nonoperatively. Nine patients had a severe injury ( > grade 3) – of which four underwent endotherapy, three had stents placed and one underwent an endoscopic pseudocyst drainage. Among those managed nonoperatively, three underwent a radiological drainage procedure. Conclusion: Mortality rates were clearly higher in patients managed operatively. This is likely a result of significantly higher degrees of major associated non-pancreatic injuries and not just a reflection of surgical morbidity. Despite this, surgical management remains the mainstay of therapy, especially in higher grades of pancreatic injury. However we would like to emphasize that endoscopic intervention definitely remains the preferred treatment modality when the clinical setting permits. This is especially applicable in cases of main pancreatic duct injury with ascites as well as pseudocysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=endotherapy" title="endotherapy">endotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=non-operative%20management" title=" non-operative management"> non-operative management</a>, <a href="https://publications.waset.org/abstracts/search?q=surgery" title=" surgery"> surgery</a>, <a href="https://publications.waset.org/abstracts/search?q=traumatic%20pancreatic%20injury" title=" traumatic pancreatic injury"> traumatic pancreatic injury</a> </p> <a href="https://publications.waset.org/abstracts/81489/role-of-endotherapy-vs-surgery-in-the-management-of-traumatic-pancreatic-injury-a-tertiary-center-experience" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81489.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Comparative Morphometric Analysis of Ambardi and Mangari Watersheds of Kadvi and Kasari River Sub-Basins in Kolhapur District, Maharashtra, India: Using Geographical Information System (GIS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandrakant%20Gurav">Chandrakant Gurav</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Babar"> Md. Babar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, an attempt is made to delineate the comparative morphometric analysis of Ambardi and Mangari watersheds of Kadvi and Kasari rivers sub-basins, Kolhapur District, Maharashtra India, using Geographical Information System (GIS) techniques. GIS is a computer assisted information method to store, analyze and display spatial data. Both the watersheds originate from Masai plateau of Jotiba- Panhala Hill range in Panhala Taluka of Kolhapur district. Ambardi watersheds cover 42.31 Sq. km. area and occur in northern hill slope, whereas Mangari watershed covers 54.63 Sq. km. area and occur on southern hill slope. Geologically, the entire study area is covered by Deccan Basaltic Province (DBP) of late Cretaceous to early Eocene age. Laterites belonging to late Pleistocene age also occur in the top of the hills. The objective of the present study is to carry out the morphometric parameters of watersheds, which occurs in differing slopes of the hill. Morphometric analysis of Ambardi watershed indicates it is of 4th order stream and Mangari watershed is of 5th order stream. Average bifurcation ratio of both watersheds is 5.4 and 4.0 showing that in both the watersheds streams flow from homogeneous nature of lithology and there is no structural controlled in development of the watersheds. Drainage density of Ambardi and Mangari watersheds is 3.45 km/km2 and 3.81 km/km2 respectively, and Stream Frequency is 4.51 streams/ km2 and 5.97 streams/ km2, it indicates that high drainage density and high stream frequency is governed by steep slope and low infiltration rate of the area for groundwater recharge. Textural ratio of both the watersheds is 6.6 km-1 and 9.6 km-1, which indicates that the drainage texture is fine to very fine. Form factor, circularity ratio and elongation ratios of the Ambardi and Mangari watersheds shows that both the watersheds are elongated in shape. The basin relief of Ambardi watershed is 447 m, while Mangari is 456 m. Relief ratio of Ambardi is 0.0428 and Mangari is 0.040. The ruggedness number of Ambardi is 1.542 and Mangari watershed is 1.737. The ruggedness number of both the watersheds is high which indicates the relief and drainage density is high. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ambardi" title="Ambardi">Ambardi</a>, <a href="https://publications.waset.org/abstracts/search?q=Deccan%20basalt" title=" Deccan basalt"> Deccan basalt</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=morphometry" title=" morphometry"> morphometry</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangari" title=" Mangari"> Mangari</a>, <a href="https://publications.waset.org/abstracts/search?q=watershed" title=" watershed"> watershed</a> </p> <a href="https://publications.waset.org/abstracts/62234/comparative-morphometric-analysis-of-ambardi-and-mangari-watersheds-of-kadvi-and-kasari-river-sub-basins-in-kolhapur-district-maharashtra-india-using-geographical-information-system-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> In silico Designing of Imidazo [4,5-b] Pyridine as a Probable Lead for Potent Decaprenyl Phosphoryl-β-D-Ribose 2′-Epimerase (DprE1) Inhibitors as Antitubercular Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jineetkumar%20Gawad">Jineetkumar Gawad</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrakant%20Bonde"> Chandrakant Bonde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tuberculosis (TB) is a major worldwide concern whose control has been exacerbated by HIV, the rise of multidrug-resistance (MDR-TB) and extensively drug resistance (XDR-TB) strains of Mycobacterium tuberculosis. The interest for newer and faster acting antitubercular drugs are more remarkable than any time. To search potent compounds is need and challenge for researchers. Here, we tried to design lead for inhibition of Decaprenyl phosphoryl-β-D-ribose 2′-epimerase (DprE1) enzyme. Arabinose is an essential constituent of mycobacterial cell wall. DprE1 is a flavoenzyme that converts decaprenylphosphoryl-D-ribose into decaprenylphosphoryl-2-keto-ribose, which is intermediate in biosynthetic pathway of arabinose. Latter, DprE2 converts keto-ribose into decaprenylphosphoryl-D-arabinose. We had a selection of 23 compounds from azaindole series for computational study, and they were drawn using marvisketch. Ligands were prepared using Maestro molecular modeling interface, Schrodinger, v10.5. Common pharmacophore hypotheses were developed by applying dataset thresholds to yield active and inactive set of compounds. There were 326 hypotheses were developed. On the basis of survival score, ADRRR (Survival Score: 5.453) was selected. Selected pharmacophore hypotheses were subjected to virtual screening results into 1000 hits. Hits were prepared and docked with protein 4KW5 (oxydoreductase inhibitor) was downloaded in .pdb format from RCSB Protein Data Bank. Protein was prepared using protein preparation wizard. Protein was preprocessed, the workspace was analyzed using force field OPLS 2005. Glide grid was generated by picking single atom in molecule. Prepared ligands were docked with prepared protein 4KW5 using Glide docking. After docking, on the basis of glide score top-five compounds were selected, (5223, 5812, 0661, 0662, and 2945) and the glide docking score (-8.928, -8.534, -8.412, -8.411, -8.351) respectively. There were interactions of ligand and protein, specifically HIS 132, LYS 418, TRY 230, ASN 385. Pi-pi stacking was observed in few compounds with basic Imidazo [4,5-b] pyridine ring. We had basic azaindole ring in parent compounds, but after glide docking, we received compounds with Imidazo [4,5-b] pyridine as a basic ring. That might be the new lead in the process of drug discovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DprE1%20inhibitors" title="DprE1 inhibitors">DprE1 inhibitors</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico%20drug%20designing" title=" in silico drug designing"> in silico drug designing</a>, <a href="https://publications.waset.org/abstracts/search?q=imidazo%20%5B4" title=" imidazo [4"> imidazo [4</a>, <a href="https://publications.waset.org/abstracts/search?q=5-b%5D%20pyridine" title="5-b] pyridine">5-b] pyridine</a>, <a href="https://publications.waset.org/abstracts/search?q=lead" title=" lead"> lead</a>, <a href="https://publications.waset.org/abstracts/search?q=tuberculosis" title=" tuberculosis"> tuberculosis</a> </p> <a href="https://publications.waset.org/abstracts/90883/in-silico-designing-of-imidazo-45-b-pyridine-as-a-probable-lead-for-potent-decaprenyl-phosphoryl-v-d-ribose-2-epimerase-dpre1-inhibitors-as-antitubercular-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Enhancement of Hardness Related Properties of Grey Cast Iron Powder Reinforced AA7075 Metal Matrix Composites Through T6 and T8 Heat Treatments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Sharma">S. S. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20R.%20Prabhu"> P. R. Prabhu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jagannath"> K. Jagannath</a>, <a href="https://publications.waset.org/abstracts/search?q=Achutha%20Kini%20U."> Achutha Kini U.</a>, <a href="https://publications.waset.org/abstracts/search?q=Gowri%20Shankar%20M.%20C."> Gowri Shankar M. C. </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In present global scenario, aluminum alloys are coining the attention of many innovators as competing structural materials for automotive and space applications. Comparing to other challenging alloys, especially, 7xxx series aluminum alloys have been studied seriously because of their benefits such as moderate strength; better deforming characteristics, excellent chemical decay resistance, and affordable cost. 7075 Al-alloys have been used in the transportation industry for the fabrication of several types of automobile parts, such as wheel covers, panels and structures. It is expected that substitution of such aluminum alloys for steels will result in great improvements in energy economy, durability and recyclability. However, it is necessary to improve the strength and the formability levels at low temperatures in aluminium alloys for still better applications. Aluminum–Zinc–Magnesium with or without other wetting agent denoted as 7XXX series alloys are medium strength heat treatable alloys. Cu, Mn and Si are the other solute elements which contribute for the improvement in mechanical properties achievable by selecting and tailoring the suitable heat treatment process. On subjecting to suitable treatments like age hardening or cold deformation assisted heat treatments, known as low temperature thermomechanical treatments (LTMT) the challenging properties might be incorporated. T6 is the age hardening or precipitation hardening process with artificial aging cycle whereas T8 comprises of LTMT treatment aged artificially with X% cold deformation. When the cold deformation is provided after solution treatment, there is increase in hardness related properties such as wear resistance, yield and ultimate strength, toughness with the expense of ductility. During precipitation hardening both hardness and strength of the samples are increasing. Decreasing peak hardness value with increasing aging temperature is the well-known behavior of age hardenable alloys. The peak hardness value is further increasing when room temperature deformation is positively supported with age hardening known as thermomechanical treatment. Considering these aspects, it is intended to perform heat treatment and evaluate hardness, tensile strength, wear resistance and distribution pattern of reinforcement in the matrix. 2 to 2.5 and 3 to 3.5 times increase in hardness is reported in age hardening and LTMT treatments respectively as compared to as-cast composite. There was better distribution of reinforcements in the matrix, nearly two fold increase in strength levels and upto 5 times increase in wear resistance are also observed in the present study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforcement" title="reinforcement">reinforcement</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical" title=" thermomechanical"> thermomechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=dislocation" title=" dislocation"> dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20hardening" title=" strain hardening"> strain hardening</a> </p> <a href="https://publications.waset.org/abstracts/26290/enhancement-of-hardness-related-properties-of-grey-cast-iron-powder-reinforced-aa7075-metal-matrix-composites-through-t6-and-t8-heat-treatments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Urban Design as a Tool in Disaster Resilience and Urban Hazard Mitigation: Case of Cochin, Kerala, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinu%20Elias%20Jacob">Vinu Elias Jacob</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar%20Kini"> Manoj Kumar Kini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disasters of all types are occurring more frequently and are becoming more costly than ever due to various manmade factors including climate change. A better utilisation of the concept of governance and management within disaster risk reduction is inevitable and of utmost importance. There is a need to explore the role of pre- and post-disaster public policies. The role of urban planning/design in shaping the opportunities of households, individuals and collectively the settlements for achieving recovery has to be explored. Governance strategies that can better support the integration of disaster risk reduction and management has to be examined. The main aim is to thereby build the resilience of individuals and communities and thus, the states too. Resilience is a term that is usually linked to the fields of disaster management and mitigation, but today has become an integral part of planning and design of cities. Disaster resilience broadly describes the ability of an individual or community to 'bounce back' from disaster impacts, through improved mitigation, preparedness, response, and recovery. The growing population of the world has resulted in the inflow and use of resources, creating a pressure on the various natural systems and inequity in the distribution of resources. This makes cities vulnerable to multiple attacks by both natural and man-made disasters. Each urban area needs elaborate studies and study based strategies to proceed in the discussed direction. Cochin in Kerala is the fastest and largest growing city with a population of more than 26 lakhs. The main concern that has been looked into in this paper is making cities resilient by designing a framework of strategies based on urban design principles for an immediate response system especially focussing on the city of Cochin, Kerala, India. The paper discusses, understanding the spatial transformations due to disasters and the role of spatial planning in the context of significant disasters. The paper also aims in developing a model taking into consideration of various factors such as land use, open spaces, transportation networks, physical and social infrastructure, building design, and density and ecology that can be implemented in any city of any context. Guidelines are made for the smooth evacuation of people through hassle-free transport networks, protecting vulnerable areas in the city, providing adequate open spaces for shelters and gatherings, making available basic amenities to affected population within reachable distance, etc. by using the tool of urban design. Strategies at the city level and neighbourhood level have been developed with inferences from vulnerability analysis and case studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disaster%20management" title="disaster management">disaster management</a>, <a href="https://publications.waset.org/abstracts/search?q=resilience" title=" resilience"> resilience</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20planning" title=" spatial planning"> spatial planning</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20transformations" title=" spatial transformations"> spatial transformations</a> </p> <a href="https://publications.waset.org/abstracts/89619/urban-design-as-a-tool-in-disaster-resilience-and-urban-hazard-mitigation-case-of-cochin-kerala-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10