CINXE.COM
Search results for: meteorological parameters
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: meteorological parameters</title> <meta name="description" content="Search results for: meteorological parameters"> <meta name="keywords" content="meteorological parameters"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="meteorological parameters" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="meteorological parameters"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 9004</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: meteorological parameters</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9004</span> Forecasting of Scaffolding Work Comfort Parameters Based on Data from Meteorological Stations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Szer">I. Szer</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Szer"> J. Szer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pie%C5%84ko"> M. Pieńko</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Robak"> A. Robak</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Jami%C5%84ska-Gadomska"> P. Jamińska-Gadomska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Work at height, such as construction works on scaffoldings, is associated with a considerable risk. Scaffolding workers are usually exposed to changing weather conditions what can additionally increase the risk of dangerous situations. Therefore, it is very important to foresee the risk of adverse conditions to which the worker may be exposed. The data from meteorological stations may be used to asses this risk. However, the dependency between weather conditions on a scaffolding and in the vicinity of meteorological station, should be determined. The paper presents an analysis of two selected environmental parameters which have influence on the behavior of workers – air temperature and wind speed. Measurements of these parameters were made between April and November of 2016 on ten scaffoldings located in different parts of Poland. They were compared with the results taken from the meteorological stations located closest to the studied scaffolding. The results gathered from the construction sites and meteorological stations were not the same, but statistical analyses have shown that they were correlated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scaffolding" title="scaffolding">scaffolding</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20and%20safety%20at%20work" title=" health and safety at work"> health and safety at work</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20velocity" title=" wind velocity"> wind velocity</a> </p> <a href="https://publications.waset.org/abstracts/73582/forecasting-of-scaffolding-work-comfort-parameters-based-on-data-from-meteorological-stations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9003</span> Determination of Measurement Uncertainty of the Diagnostic Meteorological Model CALMET</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nina%20Miklav%C4%8Di%C4%8D">Nina Miklavčič</a>, <a href="https://publications.waset.org/abstracts/search?q=Ur%C5%A1ka%20Kugovnik"> Urška Kugovnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Galkina"> Natalia Galkina</a>, <a href="https://publications.waset.org/abstracts/search?q=Primo%C5%BE%20Ribari%C4%8D"> Primož Ribarič</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudi%20Von%C4%8Dina"> Rudi Vončina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the need for weather predictions is deeply rooted in the everyday life of people as well as it is in industry. The forecasts influence final decision-making processes in multiple areas, from agriculture and prevention of natural disasters to air traffic regulations and solutions on a national level for health, security, and economic problems. Namely, in Slovenia, alongside other existing forms of application, weather forecasts are adopted for the prognosis of electrical current transmission through powerlines. Meteorological parameters are one of the key factors which need to be considered in estimations of the reliable supply of electrical energy to consumers. And like for any other measured value, the knowledge about measurement uncertainty is also critical for the secure and reliable supply of energy. The estimation of measurement uncertainty grants us a more accurate interpretation of data, a better quality of the end results, and even a possibility of improvement of weather forecast models. In the article, we focused on the estimation of measurement uncertainty of the diagnostic microscale meteorological model CALMET. For the purposes of our research, we used a network of meteorological stations spread in the area of our interest, which enables a side-by-side comparison of measured meteorological values with the values calculated with the help of CALMET and the measurement uncertainty estimation as a final result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uncertancy" title="uncertancy">uncertancy</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20model" title=" meteorological model"> meteorological model</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20measurment" title=" meteorological measurment"> meteorological measurment</a>, <a href="https://publications.waset.org/abstracts/search?q=CALMET" title=" CALMET"> CALMET</a> </p> <a href="https://publications.waset.org/abstracts/171084/determination-of-measurement-uncertainty-of-the-diagnostic-meteorological-model-calmet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9002</span> Impact of Meteorological Factors on Influenza Activity in Pakistan; A Tale of Two Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Nisar">Nadia Nisar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In the temperate regions Influenza activities occur sporadically all year round with peaks coinciding during cold months. Meteorological and environmental conditions play significant role in the transmission of influenza globally. In this study, we assessed the relationship between meteorological parameters and influenza activity in two geographical areas of Pakistan. Methods: Influenza data were collected from Islamabad (north) and Multan (south) regions of national influenza surveillance system during 2010-2015. Meteorological database was obtained from National Climatic Data Center (Pakistan). Logistic regression model with a stepwise approach was used to explore the relationship between meteorological parameters with influenza peaks. In statistical model, we used the weekly proportion of laboratory-confirmed influenza positive samples to represent Influenza activity with metrological parameters as the covariates (temperature, humidity and precipitation). We also evaluate the link between environmental conditions associated with seasonal influenza epidemics: 'cold-dry' and 'humid-rainy'. Results: We found that temperature and humidity was positively associated with influenza in north and south both locations (OR = 0.927 (0.88-0.97)) & (OR = 0.1.078 (1.027-1.132)) and (OR = 1.023 (1.008-1.037)) & (OR = 0.978 (0.964-0.992)) respectively, whilst precipitation was negatively associated with influenza (OR = 1.054 (1.039-1.070)) & (OR = 0.949 (0.935-0.963)). In both regions, temperature and humidity had the highest contribution to the model as compared to the precipitation. We revealed that the p-value for all of climate parameters is <0.05 by Independent-sample t-test. These results demonstrate that there were significant relationships between climate factors and influenza infection with correlation coefficients: 0.52-0.90. The total contribution of these three climatic variables accounted for 89.04%. The reported number of influenza cases increased sharply during the cold-dry season (i.e., winter) when humidity and temperature are at minimal levels. Conclusion: Our findings showed that measures of temperature, humidity and cold-dry season (winter) can be used as indicators to forecast influenza infections. Therefore integrating meteorological parameters for influenza forecasting in the surveillance system may benefit the public health efforts in reducing the burden of seasonal influenza. More studies are necessary to understand the role of these parameters in the viral transmission and host susceptibility process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=influenza" title="influenza">influenza</a>, <a href="https://publications.waset.org/abstracts/search?q=climate" title=" climate"> climate</a>, <a href="https://publications.waset.org/abstracts/search?q=metrological" title=" metrological"> metrological</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a> </p> <a href="https://publications.waset.org/abstracts/57604/impact-of-meteorological-factors-on-influenza-activity-in-pakistan-a-tale-of-two-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9001</span> Multiannual Trends of Toxic and Potentially Toxic Microalgae (Ostreopsis cf. ovata, Prorocentrum lima, and Coolia monotis) in Sfax Coasts (North of Gabes Gulf, Tunisia)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moncer%20Malika">Moncer Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Ben%20Brahim%20Mounir"> Ben Brahim Mounir</a>, <a href="https://publications.waset.org/abstracts/search?q=Bel%20Hassen%20Malika"> Bel Hassen Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Asma"> Hamza Asma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decades, microalgae communities have presented significant changes in their structure and taxa composition along the Mediterranean littoral shallow waters. The main purpose of this work was to evaluate possible changes, over a 17-year scale (1997–2013), in the diversity and abundance of three toxic and potentially toxic microalgae related to changes in environmental parameters on Sfax coasts, a pole of shellfish production in Tunisia. In this 17-year span, a chronological series of data showed that a clear disparity from one year to another was observed in the abundance of studied species. The distribution of these species has been subjected to a seasonal cycle. The studied microalgae, especially Prorocentrum lima, seem to have significant relationships with many physicochemicaland meteorological parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=long-term%20monitoring%20HABs" title="long-term monitoring HABs">long-term monitoring HABs</a>, <a href="https://publications.waset.org/abstracts/search?q=physico-chemical%20parameters" title=" physico-chemical parameters"> physico-chemical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters" title=" meteorological parameters"> meteorological parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=Prorocentrum%20lima" title=" Prorocentrum lima"> Prorocentrum lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Ostreopsis%20cf.%20ovata" title=" Ostreopsis cf. ovata"> Ostreopsis cf. ovata</a>, <a href="https://publications.waset.org/abstracts/search?q=Coolia%20monotis" title=" Coolia monotis"> Coolia monotis</a> </p> <a href="https://publications.waset.org/abstracts/163619/multiannual-trends-of-toxic-and-potentially-toxic-microalgae-ostreopsis-cf-ovata-prorocentrum-lima-and-coolia-monotis-in-sfax-coasts-north-of-gabes-gulf-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9000</span> The Culex Pipiens Niche: Assessment with Climatic and Physiographic Variables via a Geographic Information System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20C.%20Proen%C3%A7a">Maria C. Proença</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20T.%20Rebelo"> Maria T. Rebelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADlia%20Antunes"> Marília Antunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20J.%20Alves"> Maria J. Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Os%C3%B3rio"> Hugo Osório</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Cunha"> Sofia Cunha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Casaca"> João Casaca </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a geographic information system (GIS), the relations between a georeferenced data set of Culex pipiens sl. mosquitoes collected in Portugal mainland during seven years (2006-2012) and meteorological and physiographic parameters such as: air relative humidity, air temperature (minima, maxima and mean daily temperatures), daily total rainfall, altitude, land use/land cover and proximity to water bodies are evaluated. Focus is on the mosquito females; the characterization of its habitat is the key for the planning of chirurgical non-aggressive prophylactic countermeasures to avoid ambient degradation. The GIS allow for the spatial determination of the zones were the mosquito mean captures has been above average; using the meteorological values at these coordinates, the limits of each parameter are identified/computed. The meteorological parameters measured at the net of weather stations all over the country are averaged by month and interpolated to produce raster maps that can be segmented according to the thresholds obtained for each parameter. The intersection of the maps obtained for each month show the evolution of the area favorable to the species through the mosquito season, which is from May to October at these latitudes. In parallel, mean and above average captures were related to the physiographic parameters. Three levels of risk could be identified for each parameter, using above average captures as an index. The results were applied to the suitability meteorological maps of each month. The Culex pipiens critical niche is delimited, reflecting the critical areas and the level of risk for transmission of the pathogens to which they are competent vectors (West Nile virus, iridoviruses, rheoviruses and parvoviruses). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Culex%20pipiens" title="Culex pipiens">Culex pipiens</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20niche" title=" ecological niche"> ecological niche</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20management" title=" risk management"> risk management</a> </p> <a href="https://publications.waset.org/abstracts/16376/the-culex-pipiens-niche-assessment-with-climatic-and-physiographic-variables-via-a-geographic-information-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8999</span> Optimal Evaluation of Weather Risk Insurance for Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Slim%20Amami">Slim Amami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A model is developed to prevent the risks related to climate conditions in the agricultural sector. It will determine the yearly optimum premium to be paid by a farmer in order to reach his required turnover. The model is mainly based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, main ones of which are daily average sunlight, rainfall and temperature. By a simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is deduced from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. Optimal premium is then deduced, and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect their harvest. The application to wheat production in the French Oise department illustrates the reliability of the present model with as low as 6% difference between predicted and real data. The model can be adapted to almost every agricultural field by changing state parameters and calibrating their associated coefficients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20factors" title=" meteorological factors"> meteorological factors</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20model" title=" production model"> production model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20price" title=" optimal price "> optimal price </a> </p> <a href="https://publications.waset.org/abstracts/10722/optimal-evaluation-of-weather-risk-insurance-for-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8998</span> Meteorological Effect on Exergetic and Exergoeconomics Parameters of a Wind Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Abid">Muhammad Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we performed the comparative exergetic and exergoeconomic analyses of a wind turbine over a period of twelve months from 1st January to 30th December 2011. The turbine is part of a wind-PV hybrid system with hydrogen storage, located on the roof of Mechanical Engineering Department, King Saud University, Riyadh, Saudi Arabia. The rated power output from this turbine is 1.7 W with a rated wind speed of 12 m/s and cut-in/cut-out wind speeds of 3/14 m/s. We utilize a wide range of experimental data in the analysis and assessment. We determine exergy efficiencies and their relation with meteorological variables, such as temperature and density. We also calculate exergoeconomic parameter R ̇_ex and its dependence on the temperature, using the average values for twelve months of the year considered for comparison purposes. The exergy efficiency changes from 0.12 to 0.31 while the density varies between 1.31 and 1.2 kg/m3 for different temperature values. The R ̇_ex has minimum and maximum values of 0.02 and 0.81, respectively, while the temperature is in the range of 8-24°C for various wind velocity values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exergy" title="exergy">exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20energy" title=" wind energy"> wind energy</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20variables" title=" meteorological variables"> meteorological variables</a> </p> <a href="https://publications.waset.org/abstracts/7233/meteorological-effect-on-exergetic-and-exergoeconomics-parameters-of-a-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8997</span> Development of Typical Meteorological Year for Passive Cooling Applications Using World Weather Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nasser%20A.%20Al-Azri">Nasser A. Al-Azri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effectiveness of passive cooling techniques is assessed based on bioclimatic charts that require the typical meteorological year (TMY) for a specified location for their development. However, TMYs are not always available; mainly due to the scarcity of records of solar radiation which is an essential component used in developing common TMYs intended for general uses. Since solar radiation is not required in the development of the bioclimatic chart, this work suggests developing TMYs based solely on the relevant parameters. This approach improves the accuracy of the developed TMY since only the relevant parameters are considered and it also makes the development of the TMY more accessible since solar radiation data are not used. The presented paper will also discuss the development of the TMY from the raw data available at the NOAA-NCDC archive of world weather data and the construction of the bioclimatic charts for some randomly selected locations around the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioclimatic%20charts" title="bioclimatic charts">bioclimatic charts</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20cooling" title=" passive cooling"> passive cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=TMY" title=" TMY"> TMY</a>, <a href="https://publications.waset.org/abstracts/search?q=weather%20data" title=" weather data"> weather data</a> </p> <a href="https://publications.waset.org/abstracts/47614/development-of-typical-meteorological-year-for-passive-cooling-applications-using-world-weather-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8996</span> Geographic Information Systems and Remotely Sensed Data for the Hydrological Modelling of Mazowe Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Nhedzi%20Gozo">Ellen Nhedzi Gozo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unavailability of adequate hydro-meteorological data has always limited the analysis and understanding of hydrological behaviour of several dam catchments including Mazowe Dam in Zimbabwe. The problem of insufficient data for Mazowe Dam catchment analysis was solved by extracting catchment characteristics and aerial hydro-meteorological data from ASTER, LANDSAT, Shuttle Radar Topographic Mission SRTM remote sensing (RS) images using ILWIS, ArcGIS and ERDAS Imagine geographic information systems (GIS) software. Available observed hydrological as well as meteorological data complemented the use of the remotely sensed information. Ground truth land cover was mapped using a Garmin Etrex global positioning system (GPS) system. This information was then used to validate land cover classification detail that was obtained from remote sensing images. A bathymetry survey was conducted using a SONAR system connected to GPS. Hydrological modelling using the HBV model was then performed to simulate the hydrological process of the catchment in an effort to verify the reliability of the derived parameters. The model output shows a high Nash-Sutcliffe Coefficient that is close to 1 indicating that the parameters derived from remote sensing and GIS can be applied with confidence in the analysis of Mazowe Dam catchment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20systems" title="geographic information systems">geographic information systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modelling" title=" hydrological modelling"> hydrological modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title=" water resources management"> water resources management</a> </p> <a href="https://publications.waset.org/abstracts/46387/geographic-information-systems-and-remotely-sensed-data-for-the-hydrological-modelling-of-mazowe-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8995</span> Transport Related Air Pollution Modeling Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20D.%20Sharma">K. D. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Parida"> M. Parida</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Jain"> S. S. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Anju%20Saini"> Anju Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20K.%20Katiyar"> V. K. Katiyar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20quality%20management" title="air quality management">air quality management</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20variables" title=" meteorological variables"> meteorological variables</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20modeling" title=" statistical modeling"> statistical modeling</a> </p> <a href="https://publications.waset.org/abstracts/6439/transport-related-air-pollution-modeling-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8994</span> Comparative Analysis of Different Land Use Land Cover (LULC) Maps in WRF Modelling Over Indian Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sen%20Tanmoy">Sen Tanmoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Jain%20Sarika"> Jain Sarika</a>, <a href="https://publications.waset.org/abstracts/search?q=Panda%20Jagabandhu"> Panda Jagabandhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The studies regarding the impact of urbanization using the WRF-ARW model rely heavily on the static geographical information selected, including domain configuration and land use land cover (LULC) data. Accurate representation of LULC data provides essential information for understanding urban growth and simulating meteorological parameters such as temperature, precipitation etc. Researchers are using different LULC data as per availability and their requirements. As far as India is concerned, we have very limited resources and data availability. So, it is important to understand how we can optimize our results using limited LULC data. In this review article, we explored how a LULC map is generated from different sources in the Indian context and what its significance is in WRF-ARW modeling to study urbanization/Climate change or any other meteorological parameters. Bibliometric analyses were also performed in this review article based on countries of study and indexed keywords. Finally, some key points are marked out for selecting the most suitable LULC map for any urbanization-related study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LULC" title="LULC">LULC</a>, <a href="https://publications.waset.org/abstracts/search?q=LULC%20mapping" title=" LULC mapping"> LULC mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=LANDSAT" title=" LANDSAT"> LANDSAT</a>, <a href="https://publications.waset.org/abstracts/search?q=WRF-ARW" title=" WRF-ARW"> WRF-ARW</a>, <a href="https://publications.waset.org/abstracts/search?q=ISRO" title=" ISRO"> ISRO</a>, <a href="https://publications.waset.org/abstracts/search?q=bibliometric%20Analysis." title=" bibliometric Analysis."> bibliometric Analysis.</a> </p> <a href="https://publications.waset.org/abstracts/188209/comparative-analysis-of-different-land-use-land-cover-lulc-maps-in-wrf-modelling-over-indian-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">27</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8993</span> Ecological Implication of Air Pollution From Quarrying and Stone Cutting Industries on Agriculture and Plant Biodiversity Around Quarry Sites in Mpape, Bwari Area Council, FCT, Abuja</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Rabiu">Muhammed Rabiu</a>, <a href="https://publications.waset.org/abstracts/search?q=Moses%20S.%20Oluyomi"> Moses S. Oluyomi</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Olorundare"> Joshua Olorundare</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quarry activities are important to modern day life and the socio-economic development of local communities. Unfortunately, this industry is usually associated with air pollution. To assess the impact of quarry dust on plant biodiversity and agriculture, PM2.5, PM10 and some meteorological parameters were measured using Gas analyzer, handheld thermometer and Multifunction Anemometer (PCE-EM 888) as well as taking a social survey. High amount of particulate matters that exceeded the international standard were recorded at the study locations which include the Julius Berger Quarry and 1km away from the quarry site which serve as the base for the farmlands. The correlation coefficient between the particulate matters with the meteorological parameters of the locations all show a strong relationship with temperature recording a stronger value of 0.952 and 0.931 for PM2.5 and PM10 respectively. Similarly, the coefficient of determination 0.906 and 0.866 shows that temperature has the highest meteorological percentage variation on PM2.5 and PM10. Furthermore, a notable negative impact of quarrying on plant biodiversity and local farm crops are also revealed based on respondents’ results where wide range of local plants were affected with Maize and Azadiracta indica (Neem) been the most with respondent of 31.5% and 27.5%. According to the obtained results, it is highly recommended to develop green belt surrounding the quarrying using pollutant-tolerant trees (usually with broad leaves) in order to restrict spreading of quarrying dust via intercepting, filtering and absorbing pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title=" air pollution"> air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=quarry" title=" quarry"> quarry</a> </p> <a href="https://publications.waset.org/abstracts/162505/ecological-implication-of-air-pollution-from-quarrying-and-stone-cutting-industries-on-agriculture-and-plant-biodiversity-around-quarry-sites-in-mpape-bwari-area-council-fct-abuja" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8992</span> Generalized Extreme Value Regression with Binary Dependent Variable: An Application for Predicting Meteorological Drought Probabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Retius%20Chifurira">Retius Chifurira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Logistic regression model is the most used regression model to predict meteorological drought probabilities. When the dependent variable is extreme, the logistic model fails to adequately capture drought probabilities. In order to adequately predict drought probabilities, we use the generalized linear model (GLM) with the quantile function of the generalized extreme value distribution (GEVD) as the link function. The method maximum likelihood estimation is used to estimate the parameters of the generalized extreme value (GEV) regression model. We compare the performance of the logistic and the GEV regression models in predicting drought probabilities for Zimbabwe. The performance of the regression models are assessed using the goodness-of-fit tests, namely; relative root mean square error (RRMSE) and relative mean absolute error (RMAE). Results show that the GEV regression model performs better than the logistic model, thereby providing a good alternative candidate for predicting drought probabilities. This paper provides the first application of GLM derived from extreme value theory to predict drought probabilities for a drought-prone country such as Zimbabwe. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20extreme%20value%20distribution" title="generalized extreme value distribution">generalized extreme value distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=general%20linear%20model" title=" general linear model"> general linear model</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20annual%20rainfall" title=" mean annual rainfall"> mean annual rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20drought%20probabilities" title=" meteorological drought probabilities"> meteorological drought probabilities</a> </p> <a href="https://publications.waset.org/abstracts/99321/generalized-extreme-value-regression-with-binary-dependent-variable-an-application-for-predicting-meteorological-drought-probabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8991</span> Characterization of Urban Ozone Pollution in Summer and Analysis of Influencing Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gao%20Fangting">Gao Fangting</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ozone acts as an atmospheric shield, protecting organisms from ultraviolet radiation by absorbing it. Currently, a large amount of international environmental epidemiology has confirmed that short- and long-term exposure to ozone has significant effects on population health. Near-surface ozone, as a secondary pollutant in the atmosphere, not only negatively affects the production activities of living organisms but also damages ecosystems and affects climate change to some extent. In this paper, using the hour-by-hour ozone observations given by ground meteorological stations in four cities, namely Beijing, Kunming, Xining, and Guangzhou, from 2015 to 2017, the number of days of exceedance and the long-term change characteristics of ozone are analyzed by using the time series analysis method. On this basis, the effects of changes in meteorological conditions on ozone concentration were discussed in conjunction with the same period of meteorological data, and the similarities and differences of near-surface ozone in different cities were comparatively analyzed to establish a relevant quantitative model of near-surface ozone. This study found that ozone concentrations were highest during the summer months of the year, that ozone concentrations were strongly correlated with meteorological conditions, and that none of the four cities had ozone concentrations that reached the threshold for causing disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ozone" title="ozone">ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20conditions" title=" meteorological conditions"> meteorological conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a> </p> <a href="https://publications.waset.org/abstracts/188385/characterization-of-urban-ozone-pollution-in-summer-and-analysis-of-influencing-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">30</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8990</span> Evaluation of Weather Risk Insurance for Agricultural Products Using a 3-Factor Pricing Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Benabdeljelil">O. Benabdeljelil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Karioun"> A. Karioun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Amami"> S. Amami</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Rouger"> R. Rouger</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hamidine"> M. Hamidine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A model for preventing the risks related to climate conditions in the agricultural sector is presented. It will determine the yearly optimum premium to be paid by a producer in order to reach his required turnover. The model is based on both climatic stability and 'soft' responses of usually grown species to average climate variations at the same place and inside a safety ball which can be determined from past meteorological data. This allows the use of linear regression expression for dependence of production result in terms of driving meteorological parameters, the main ones of which are daily average sunlight, rainfall and temperature. By simple best parameter fit from the expert table drawn with professionals, optimal representation of yearly production is determined from records of previous years, and yearly payback is evaluated from minimum yearly produced turnover. The model also requires accurate pricing of commodity at N+1. Therefore, a pricing model is developed using 3 state variables, namely the spot price, the difference between the mean-term and the long-term forward price, and the long-term structure of the model. The use of historical data enables to calibrate the parameters of state variables, and allows the pricing of commodity. Application to beet sugar underlines pricer precision. Indeed, the percentage of accuracy between computed result and real world is 99,5%. Optimal premium is then deduced and gives the producer a useful bound for negotiating an offer by insurance companies to effectively protect its harvest. The application to beet production in French Oise department illustrates the reliability of present model with as low as 6% difference between predicted and real data. The model can be adapted to almost any agricultural field by changing state parameters and calibrating their associated coefficients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agriculture" title="agriculture">agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20model" title=" production model"> production model</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20price" title=" optimal price"> optimal price</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20factors" title=" meteorological factors"> meteorological factors</a>, <a href="https://publications.waset.org/abstracts/search?q=3-factor%20model" title=" 3-factor model"> 3-factor model</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20calibration" title=" parameter calibration"> parameter calibration</a>, <a href="https://publications.waset.org/abstracts/search?q=forward%20price" title=" forward price"> forward price</a> </p> <a href="https://publications.waset.org/abstracts/8105/evaluation-of-weather-risk-insurance-for-agricultural-products-using-a-3-factor-pricing-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8989</span> Methods of Interpolating Temperature and Rainfall Distribution in Northern Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanh%20Van%20Hoang">Thanh Van Hoang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tien%20Yin%20Chou"> Tien Yin Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yao%20Min%20Fang"> Yao Min Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Min%20Huang"> Yi Min Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xuan%20Linh%20Nguyen"> Xuan Linh Nguyen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reliable information on the spatial distribution of annual rainfall and temperature is essential in research projects relating to urban and regional planning. This research presents results of a classification of temperature and rainfall in the Red River Delta of northern Vietnam based on measurements from seven meteorological stations (Ha Nam, Hung Yen, Lang, Nam Dinh, Ninh Binh, Phu Lien, Thai Binh) in the river basin over a thirty-years period from 1982-2011. The average accumulated rainfall trends in the delta are analysed and form the basis of research essential to weather and climate forecasting. This study employs interpolation based on the Kriging Method for daily rainfall (min and max) and daily temperature (min and max) in order to improve the understanding of sources of variation and uncertainly in these important meteorological parameters. To the Kriging method, the results will show the different models and the different parameters based on the various precipitation series. The results provide a useful reference to assist decision makers in developing smart agriculture strategies for the Red River Delta in Vietnam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20interpolation%20method" title="spatial interpolation method">spatial interpolation method</a>, <a href="https://publications.waset.org/abstracts/search?q=ArcGIS" title=" ArcGIS"> ArcGIS</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20variability" title=" temperature variability"> temperature variability</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20variability" title=" rainfall variability"> rainfall variability</a>, <a href="https://publications.waset.org/abstracts/search?q=Red%20River%20Delta" title=" Red River Delta"> Red River Delta</a>, <a href="https://publications.waset.org/abstracts/search?q=Vietnam" title=" Vietnam"> Vietnam</a> </p> <a href="https://publications.waset.org/abstracts/69071/methods-of-interpolating-temperature-and-rainfall-distribution-in-northern-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8988</span> Impact of Meteorological Events and Sand Excavation on Turbidity and Total Suspended Solids Levels of Imo River</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ihejirika%20Chinedu%20Emeka">Ihejirika Chinedu Emeka</a>, <a href="https://publications.waset.org/abstracts/search?q=Njoku%20John%20Didacus"> Njoku John Didacus</a>, <a href="https://publications.waset.org/abstracts/search?q=Obenade%20Moses"> Obenade Moses</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed at determining the impact of meteorological events (seasonal variations) and sand excavation activities on turbidity and Total Suspended Solids (TSS) of Imo River, Southeastern Nigeria. In-situ measurements of the parameters were carried out at the peaks of two consecutive seasons–dry and rainy season at seven major points of sand excavation along the river, under standard analytical methods. There were significant variations in seasons (P<0.05) for turbidity and TSS at all locations. The average turbidity concentration of locations were 36.71 NTU, during the rainy season, and 17 NTU in a dry season, while the average TSS concentration were 27.14 mg/L, during the rainy season, and 8.86mg/L in a dry season. Turbidity correlated positively (strongly) with TSS (r=0.956) at R–Square=0.91. Turbidity and TSS values were higher during the rainy season than the dry season. Turbidity increased when Total Suspended Solids increased. Sand excavation increased turbidity and TSS values of Imo River. The river had moderate water quality during the rainy season and unimpaired water quality during a dry season. The river was not very clear in both seasons, but clearer in a dry season than in rainy season. The increase in turbidity and TSS can lead to the destruction of aquatic biodiversity and stagnation of ecosystem processes. Exposure of aquatic animals to the recorded turbidity level in a rainy season can lead to stress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity%20destruction" title="biodiversity destruction">biodiversity destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20events" title=" meteorological events"> meteorological events</a>, <a href="https://publications.waset.org/abstracts/search?q=pollution" title=" pollution"> pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20excavation" title=" sand excavation"> sand excavation</a> </p> <a href="https://publications.waset.org/abstracts/25919/impact-of-meteorological-events-and-sand-excavation-on-turbidity-and-total-suspended-solids-levels-of-imo-river" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">494</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8987</span> Evaluation of Turbulence Prediction over Washington, D.C.: Comparison of DCNet Observations and North American Mesoscale Model Outputs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nebila%20Lichiheb">Nebila Lichiheb</a>, <a href="https://publications.waset.org/abstracts/search?q=LaToya%20Myles"> LaToya Myles</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Pendergrass"> William Pendergrass</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruce%20Hicks"> Bruce Hicks</a>, <a href="https://publications.waset.org/abstracts/search?q=Dawson%20Cagle"> Dawson Cagle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Atmospheric transport of hazardous materials in urban areas is increasingly under investigation due to the potential impact on human health and the environment. In response to health and safety concerns, several dispersion models have been developed to analyze and predict the dispersion of hazardous contaminants. The models of interest usually rely on meteorological information obtained from the meteorological models of NOAA’s National Weather Service (NWS). However, due to the complexity of the urban environment, NWS forecasts provide an inadequate basis for dispersion computation in urban areas. A dense meteorological network in Washington, DC, called DCNet, has been operated by NOAA since 2003 to support the development of urban monitoring methodologies and provide the driving meteorological observations for atmospheric transport and dispersion models. This study focuses on the comparison of wind observations from the DCNet station on the U.S. Department of Commerce Herbert C. Hoover Building against the North American Mesoscale (NAM) model outputs for the period 2017-2019. The goal is to develop a simple methodology for modifying NAM outputs so that the dispersion requirements of the city and its urban area can be satisfied. This methodology will allow us to quantify the prediction errors of the NAM model and propose adjustments of key variables controlling dispersion model calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meteorological%20data" title="meteorological data">meteorological data</a>, <a href="https://publications.waset.org/abstracts/search?q=Washington%20D.C." title=" Washington D.C."> Washington D.C.</a>, <a href="https://publications.waset.org/abstracts/search?q=DCNet%20data" title=" DCNet data"> DCNet data</a>, <a href="https://publications.waset.org/abstracts/search?q=NAM%20model" title=" NAM model"> NAM model</a> </p> <a href="https://publications.waset.org/abstracts/140950/evaluation-of-turbulence-prediction-over-washington-dc-comparison-of-dcnet-observations-and-north-american-mesoscale-model-outputs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8986</span> Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Hussaina">M. Hussaina</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Mahboobb"> K. Mahboobb</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Z.%20Ilyasa"> S. Z. Ilyasa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Shaheena"> S. Shaheena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=decision%20making%20process" title="decision making process">decision making process</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20doses" title=" radiation doses"> radiation doses</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20emergency" title=" nuclear emergency"> nuclear emergency</a>, <a href="https://publications.waset.org/abstracts/search?q=meteorological%20implications" title=" meteorological implications"> meteorological implications</a> </p> <a href="https://publications.waset.org/abstracts/138237/implications-of-meteorological-parameters-in-decision-making-for-public-protective-actions-during-a-nuclear-emergency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8985</span> Modeling of Global Solar Radiation on a Horizontal Surface Using Artificial Neural Network: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laidi%20Maamar">Laidi Maamar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanini%20Salah"> Hanini Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work investigates the potential of artificial neural network (ANN) model to predict the horizontal global solar radiation (HGSR). The ANN is developed and optimized using three years meteorological database from 2011 to 2013 available at the meteorological station of Blida (Blida 1 university, Algeria, Latitude 36.5°, Longitude 2.81° and 163 m above mean sea level). Optimal configuration of the ANN model has been determined by minimizing the Root Means Square Error (RMSE) and maximizing the correlation coefficient (R2) between observed and predicted data with the ANN model. To select the best ANN architecture, we have conducted several tests by using different combinations of parameters. A two-layer ANN model with six hidden neurons has been found as an optimal topology with (RMSE=4.036 W/m²) and (R²=0.999). A graphical user interface (GUI), was designed based on the best network structure and training algorithm, to enhance the users’ friendliness application of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20solar%20radiation" title=" global solar radiation"> global solar radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title=" solar energy"> solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=Algeria" title=" Algeria"> Algeria</a> </p> <a href="https://publications.waset.org/abstracts/34947/modeling-of-global-solar-radiation-on-a-horizontal-surface-using-artificial-neural-network-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8984</span> An Improved Model of Estimation Global Solar Irradiation from in situ Data: Case of Oran Algeria Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Houcine%20Naim">Houcine Naim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelatif%20Hassini"> Abdelatif Hassini</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Benabadji"> Noureddine Benabadji</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Van%20Den%20Bossche"> Alex Van Den Bossche </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, two models to estimate the overall monthly average daily radiation on a horizontal surface were applied to the site of Oran (35.38 ° N, 0.37 °W). We present a comparison between the first one is a regression equation of the Angstrom type and the second model is developed by the present authors some modifications were suggested using as input parameters: the astronomical parameters as (latitude, longitude, and altitude) and meteorological parameters as (relative humidity). The comparisons are made using the mean bias error (MBE), root mean square error (RMSE), mean percentage error (MPE), and mean absolute bias error (MABE). This comparison shows that the second model is closer to the experimental values that the model of Angstrom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meteorology" title="meteorology">meteorology</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20radiation" title=" global radiation"> global radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Angstrom%20model" title=" Angstrom model"> Angstrom model</a>, <a href="https://publications.waset.org/abstracts/search?q=Oran" title=" Oran"> Oran</a> </p> <a href="https://publications.waset.org/abstracts/39754/an-improved-model-of-estimation-global-solar-irradiation-from-in-situ-data-case-of-oran-algeria-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8983</span> Index of Suitability for Culex pipiens sl. Mosquitoes in Portugal Mainland </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20C.%20Proen%C3%A7a">Maria C. Proença</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20T.%20Rebelo"> Maria T. Rebelo</a>, <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADlia%20Antunes"> Marília Antunes</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20J.%20Alves"> Maria J. Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Os%C3%B3rio"> Hugo Osório</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Cunha"> Sofia Cunha</a>, <a href="https://publications.waset.org/abstracts/search?q=REVIVE%20team">REVIVE team</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The environment of the mosquitoes complex Culex pipiens sl. in Portugal mainland is evaluated based in its abundance, using a data set georeferenced, collected during seven years (2006-2012) from May to October. The suitability of the different regions can be delineated using the relative abundance areas; the suitablility index is directly proportional to disease transmission risk and allows focusing mitigation measures in order to avoid outbreaks of vector-borne diseases. The interest in the Culex pipiens complex is justified by its medical importance: the females bite all warm-blooded vertebrates and are involved in the circulation of several arbovirus of concern to human health, like West Nile virus, iridoviruses, rheoviruses and parvoviruses. The abundance of Culex pipiens mosquitoes were documented systematically all over the territory by the local health services, in a long duration program running since 2006. The environmental factors used to characterize the vector habitat are land use/land cover, distance to cartographed water bodies, altitude and latitude. Focus will be on the mosquito females, which gonotrophic cycle mate-bloodmeal-oviposition is responsible for the virus transmission; its abundance is the key for the planning of non-aggressive prophylactic countermeasures that may eradicate the transmission risk and simultaneously avoid chemical ambient degradation. Meteorological parameters such as: air relative humidity, air temperature (minima, maxima and mean daily temperatures) and daily total rainfall were gathered from the weather stations network for the same dates and crossed with the standardized females’ abundance in a geographic information system (GIS). Mean capture and percentage of above average captures related to each variable are used as criteria to compute a threshold for each meteorological parameter; the difference of the mean capture above/below the threshold was statistically assessed. The meteorological parameters measured at the net of weather stations all over the country are averaged by month and interpolated to produce raster maps that can be segmented according to the meaningful thresholds for each parameter. The intersection of the maps of all the parameters obtained for each month show the evolution of the suitable meteorological conditions through the mosquito season, considered as May to October, although the first and last month are less relevant. In parallel, mean and above average captures were related to the physiographic parameters – the land use/land cover classes most relevant in each month, the altitudes preferred and the most frequent distance to water bodies, a factor closely related with the mosquito biology. The maps produced with these results were crossed with the meteorological maps previously segmented, in order to get an index of suitability for the complex Culex pipiens evaluated all over the country, and its evolution from the beginning to the end of the mosquitoes season. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=suitability%20index" title="suitability index">suitability index</a>, <a href="https://publications.waset.org/abstracts/search?q=Culex%20pipiens" title=" Culex pipiens"> Culex pipiens</a>, <a href="https://publications.waset.org/abstracts/search?q=habitat%20evolution" title=" habitat evolution"> habitat evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20model" title=" GIS model"> GIS model</a> </p> <a href="https://publications.waset.org/abstracts/20554/index-of-suitability-for-culex-pipiens-sl-mosquitoes-in-portugal-mainland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">576</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8982</span> Investigating the Urban Heat Island Phenomenon in A Desert City Aiming at Sustainable Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afifa%20Mohammed">Afifa Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Pignatta"> Gloria Pignatta</a>, <a href="https://publications.waset.org/abstracts/search?q=Mattheos%20Santamouris"> Mattheos Santamouris</a>, <a href="https://publications.waset.org/abstracts/search?q=Evangelia%20Topriska"> Evangelia Topriska </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Climate change is one of the global challenges that is exacerbated by the rapid growth of urbanizations. Urban Heat Island (UHI) phenomenon can be considered as an effect of the urbanization and it is responsible together with the Climate change of the overheating of urban cities and downtowns. The purpose of this paper is to quantify and perform analysis of UHI Intensity in Dubai, United Arab Emirates (UAE), through checking the relationship between the UHI and different meteorological parameters (e.g., temperature, winds speed, winds direction). Climate data were collected from three meteorological stations in Dubai (e.g., Dubai Airport - Station 1, Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3) for a period of five years (e.g., 2014 – 2018) based upon hourly rates, and following clustering technique as one of the methodology tools of measurements. The collected data of each station were divided into six clusters upon the winds directions, either from the seaside or from the desert side, or from the coastal side which is in between both aforementioned winds sources, to investigate the relationship between temperature degrees and winds speed values through UHI measurements for Dubai Airport - Station 1 compared with the same of Al-Maktoum Airport - Station 2. In this case, the UHI value is determined by the temperature difference of both stations, where Station 1 is considered as located in an urban area and Station 2 is considered as located in a suburban area. The same UHI calculations has been applied for Al-Maktoum Airport - Station 2 and Saih Salem - Station 3 where Station 2 is considered as located in an urban area and Station 3 is considered as located in a suburban area. The performed analysis aims to investigate the relation between the two environmental parameters (e.g., Temperature and Winds Speed) and the Urban Heat Island (UHI) intensity when the wind comes from the seaside, from the desert, and the remaining directions. The analysis shows that the correlation between the temperatures with both UHI intensity (e.g., temperature difference between Dubai Airport - Station 1 and Saih Al-Salem - Station 3 and between Al-Maktoum Airport - Station 2 and Saih Al-Salem - Station 3 (through station 1 & 2) is strong and has a negative relationship when the wind is coming from the seaside comparing between the two stations 1 and 2, while the relationship is almost zero (no relation) when the wind is coming from the desert side. The relation is independent between the two parameters, e.g., temperature and UHI, on Station 2, during the same procedures, the correlation between the urban heat island UHI phenomenon and wind speed is weak for both stations when wind direction is coming from the seaside comparing the station 1 and 2, while it was found that there’s no relationship between urban heat island phenomenon and wind speed when wind direction is coming from desert side. The conclusion could be summarized saying that the wind coming from the seaside or from the desert side have a different effect on UHI, which is strongly affected by meteorological parameters. The output of this study will enable more determination of UHI phenomenon under desert climate, which will help to inform about the UHI phenomenon and intensity and extract recommendations in two main categories such as planning of new cities and designing of buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=meteorological%20data" title="meteorological data">meteorological data</a>, <a href="https://publications.waset.org/abstracts/search?q=subtropical%20desert%20climate" title=" subtropical desert climate"> subtropical desert climate</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20climate" title=" urban climate"> urban climate</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20heat%20island%20%28UHI%29" title=" urban heat island (UHI)"> urban heat island (UHI)</a> </p> <a href="https://publications.waset.org/abstracts/119871/investigating-the-urban-heat-island-phenomenon-in-a-desert-city-aiming-at-sustainable-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8981</span> Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charline%20David">Charline David</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Blondin%20Mass%C3%A9"> Alexandre Blondin Massé</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnaud%20Zinflou"> Arnaud Zinflou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2016, Clements, Hurn, and Li proposed a multiple equation time series approach for the short-term load forecasting, reporting an average mean absolute percentage error (MAPE) of 1.36% on an 11-years dataset for the Queensland region in Australia. We present an adaptation of their model to the electrical power load consumption for the whole Quebec province in Canada. More precisely, we take into account two additional meteorological variables — cloudiness and wind speed — on top of temperature, as well as the use of multiple meteorological measurements taken at different locations on the territory. We also consider other minor improvements. Our final model shows an average MAPE score of 1:79% over an 8-years dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=short-term%20load%20forecasting" title="short-term load forecasting">short-term load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20days" title=" special days"> special days</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20equations" title=" multiple equations"> multiple equations</a>, <a href="https://publications.waset.org/abstracts/search?q=parallelization" title=" parallelization"> parallelization</a>, <a href="https://publications.waset.org/abstracts/search?q=clustering" title=" clustering"> clustering</a> </p> <a href="https://publications.waset.org/abstracts/153451/fast-short-term-electrical-load-forecasting-under-high-meteorological-variability-with-a-multiple-equation-time-series-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8980</span> A Constrained Model Predictive Control Scheme for Simultaneous Control of Temperature and Hygrometry in Greenhouses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayoub%20Moufid">Ayoub Moufid</a>, <a href="https://publications.waset.org/abstracts/search?q=Najib%20Bennis"> Najib Bennis</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumia%20El%20Hani"> Soumia El Hani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of greenhouse climate control is to improve the culture development and to minimize the production costs. A greenhouse is an open system to external environment and the challenge is to regulate the internal climate despite the strong meteorological disturbances. The internal state of greenhouse considered in this work is defined by too relevant and coupled variables, namely inside temperature and hygrometry. These two variables are chosen to describe the internal state of greenhouses due to their importance in the development of plants and their sensitivity to external climatic conditions, sources of weather disturbances. A multivariable model is proposed and validated by considering a greenhouse as black-box system and the least square method is applied to parameters identification basing on collected experimental measures. To regulate the internal climate, we propose a Model Predictive Control (MPC) scheme. This one considers the measured meteorological disturbances and the physical and operational constraints on the control and state variables. A successful feasibility study of the proposed controller is presented, and simulation results show good performances despite the high interaction between internal and external variables and the strong external meteorological disturbances. The inside temperature and hygrometry are tracking nearly the desired trajectories. A comparison study with an On/Off control applied to the same greenhouse confirms the efficiency of the MPC approach to inside climate control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20control" title="climate control">climate control</a>, <a href="https://publications.waset.org/abstracts/search?q=constraints" title=" constraints"> constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title=" greenhouse"> greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20predictive%20control" title=" model predictive control"> model predictive control</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/91637/a-constrained-model-predictive-control-scheme-for-simultaneous-control-of-temperature-and-hygrometry-in-greenhouses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8979</span> Application and Aspects of Biometeorology in Inland Open Water Fisheries Management in the Context of Changing Climate: Status and Research Needs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.K.%20Sarkar">U.K. Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Karnatak"> G. Karnatak</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Mishal"> P. Mishal</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianthuamluaia"> Lianthuamluaia</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumari"> S. Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.K.%20Das"> S.K. Das</a>, <a href="https://publications.waset.org/abstracts/search?q=B.K.%20Das"> B.K. Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inland open water fisheries provide food, income, livelihood and nutritional security to millions of fishers across the globe. However, the open water ecosystem and fisheries are threatened due to climate change and anthropogenic pressures, which are more visible in the recent six decades, making the resources vulnerable. Understanding the interaction between meteorological parameters and inland fisheries is imperative to develop mitigation and adaptation strategies. As per IPCC 5th assessment report, the earth is warming at a faster rate in recent decades. Global mean surface temperature (GMST) for the decade 2006–2015 (0.87°C) was 6 times higher than the average over the 1850–1900 period. The direct and indirect impacts of climatic parameters on the ecology of fisheries ecosystem have a great bearing on fisheries due to alterations in fish physiology. The impact of meteorological factors on ecosystem health and fish food organisms brings about changes in fish diversity, assemblage, reproduction and natural recruitment. India’s average temperature has risen by around 0.7°C during 1901–2018. The studies show that the mean air temperature in the Ganga basin has increased in the range of 0.20 - 0.47 °C and annual rainfall decreased in the range of 257-580 mm during the last three decades. The studies clearly indicate visible impacts of climatic and environmental factors on inland open water fisheries. Besides, a significant reduction in-depth and area (37.20–57.68% reduction), diversity of natural indigenous fish fauna (ranging from 22.85 to 54%) in wetlands and progression of trophic state from mesotrophic to eutrophic were recorded. In this communication, different applications of biometeorology in inland fisheries management with special reference to the assessment of ecosystem and species vulnerability to climatic variability and change have been discussed. Further, the paper discusses the impact of climate anomaly and extreme climatic events on inland fisheries and emphasizes novel modeling approaches for understanding the impact of climatic and environmental factors on reproductive phenology for identification of climate-sensitive/resilient fish species for the adoption of climate-smart fisheries in the future. Adaptation and mitigation strategies to enhance fish production and the role of culture-based fisheries and enclosure culture in converting sequestered carbon into blue carbon have also been discussed. In general, the type and direction of influence of meteorological parameters on fish biology in open water fisheries ecosystems are not adequately understood. The optimum range of meteorological parameters for sustaining inland open water fisheries is yet to be established. Therefore, the application of biometeorology in inland fisheries offers ample scope for understanding the dynamics in changing climate, which would help to develop a database on such least, addressed research frontier area. This would further help to project fisheries scenarios in changing climate regimes and develop adaptation and mitigation strategies to cope up with adverse meteorological factors to sustain fisheries and to conserve aquatic ecosystem and biodiversity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometeorology" title="biometeorology">biometeorology</a>, <a href="https://publications.waset.org/abstracts/search?q=inland%20fisheries" title=" inland fisheries"> inland fisheries</a>, <a href="https://publications.waset.org/abstracts/search?q=aquatic%20ecosystem" title=" aquatic ecosystem"> aquatic ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/140100/application-and-aspects-of-biometeorology-in-inland-open-water-fisheries-management-in-the-context-of-changing-climate-status-and-research-needs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140100.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8978</span> The Potential Impacts of Climate Change on Air Quality in the Upper Northern Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chakrit%20Chotamonsak">Chakrit Chotamonsak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the Weather Research and Forecasting (WRF) model was used as regional climate model to dynamically downscale the ECHAM5 Global Climate Model projection for the regional climate change impact on air quality–related meteorological conditions in the upper northern Thailand. The analyses were focused on meteorological variables that potentially impact on the regional air quality such as sea level pressure, planetary boundary layer height (PBLH), surface temperature, wind speed and ventilation. Comparisons were made between the present (1990–2009) and future (2045–2064) climate downscaling results during majority air pollution season (dry season, January-April). Analyses showed that the sea level pressure will be stronger in the future, suggesting more stable atmosphere. Increases in temperature were obvious observed throughout the region. Decreases in surface wind and PBLH were predicted during air pollution season, indicating weaker ventilation rate in this region. Consequently, air quality-related meteorological variables were predicted to change in almost part of the upper northern Thailand, yielding a favorable meteorological condition for pollutant accumulation in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20impact" title=" climate impact"> climate impact</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20quality" title=" air quality"> air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20pollution" title=" air pollution"> air pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand"> Thailand</a> </p> <a href="https://publications.waset.org/abstracts/35645/the-potential-impacts-of-climate-change-on-air-quality-in-the-upper-northern-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8977</span> Rainfall Estimation Using Himawari-8 Meteorological Satellite Imagery in Central Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiang%20Wei">Chiang Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui-Chung%20Yeh"> Hui-Chung Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Yen-Chang%20Chen"> Yen-Chang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study is to estimate the rainfall using the new generation Himawari-8 meteorological satellite with multi-band, high-bit format, and high spatiotemporal resolution, ground rainfall data at the Chen-Yu-Lan watershed of Joushuei River Basin (443.6 square kilometers) in Central Taiwan. Accurate and fine-scale rainfall information is essential for rugged terrain with high local variation for early warning of flood, landslide, and debris flow disasters. 10-minute and 2 km pixel-based rainfall of Typhoon Megi of 2016 and meiyu on June 1-4 of 2017 were tested to demonstrate the new generation Himawari-8 meteorological satellite can capture rainfall variation in the rugged mountainous area both at fine-scale and watershed scale. The results provide the valuable rainfall information for early warning of future disasters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=estimation" title="estimation">estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=Himawari-8" title=" Himawari-8"> Himawari-8</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall" title=" rainfall"> rainfall</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20imagery" title=" satellite imagery"> satellite imagery</a> </p> <a href="https://publications.waset.org/abstracts/93847/rainfall-estimation-using-himawari-8-meteorological-satellite-imagery-in-central-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93847.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8976</span> An Artificial Neural Network Model Based Study of Seismic Wave</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Kumar">Hemant Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilendu%20Das"> Nilendu Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A study based on ANN structure gives us the information to predict the size of the future in realizing a past event. ANN, IMD (Indian meteorological department) data and remote sensing were used to enable a number of parameters for calculating the size that may occur in the future. A threshold selected specifically above the high-frequency harvest reached the area during the selected seismic activity. In the field of human and local biodiversity it remains to obtain the right parameter compared to the frequency of impact. But during the study the assumption is that predicting seismic activity is a difficult process, not because of the parameters involved here, which can be analyzed and funded in research activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ANN" title="ANN">ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesion%20class" title=" Bayesion class"> Bayesion class</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=IMD" title=" IMD"> IMD</a> </p> <a href="https://publications.waset.org/abstracts/128014/an-artificial-neural-network-model-based-study-of-seismic-wave" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8975</span> Comparison of Different Reanalysis Products for Predicting Extreme Precipitation in the Southern Coast of the Caspian Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parvin%20Ghafarian">Parvin Ghafarian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Mohammadpur%20Panchah"> Mohammadreza Mohammadpur Panchah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehri%20Fallahi"> Mehri Fallahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synoptic patterns from surface up to tropopause are very important for forecasting the weather and atmospheric conditions. There are many tools to prepare and analyze these maps. Reanalysis data and the outputs of numerical weather prediction models, satellite images, meteorological radar, and weather station data are used in world forecasting centers to predict the weather. The forecasting extreme precipitating on the southern coast of the Caspian Sea (CS) is the main issue due to complex topography. Also, there are different types of climate in these areas. In this research, we used two reanalysis data such as ECMWF Reanalysis 5th Generation Description (ERA5) and National Centers for Environmental Prediction /National Center for Atmospheric Research (NCEP/NCAR) for verification of the numerical model. ERA5 is the latest version of ECMWF. The temporal resolution of ERA5 is hourly, and the NCEP/NCAR is every six hours. Some atmospheric parameters such as mean sea level pressure, geopotential height, relative humidity, wind speed and direction, sea surface temperature, etc. were selected and analyzed. Some different type of precipitation (rain and snow) was selected. The results showed that the NCEP/NCAR has more ability to demonstrate the intensity of the atmospheric system. The ERA5 is suitable for extract the value of parameters for specific point. Also, ERA5 is appropriate to analyze the snowfall events over CS (snow cover and snow depth). Sea surface temperature has the main role to generate instability over CS, especially when the cold air pass from the CS. Sea surface temperature of NCEP/NCAR product has low resolution near coast. However, both data were able to detect meteorological synoptic patterns that led to heavy rainfall over CS. However, due to the time lag, they are not suitable for forecast centers. The application of these two data is for research and verification of meteorological models. Finally, ERA5 has a better resolution, respect to NCEP/NCAR reanalysis data, but NCEP/NCAR data is available from 1948 and appropriate for long term research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=synoptic%20patterns" title="synoptic patterns">synoptic patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20precipitation" title=" heavy precipitation"> heavy precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=reanalysis%20data" title=" reanalysis data"> reanalysis data</a>, <a href="https://publications.waset.org/abstracts/search?q=snow" title=" snow"> snow</a> </p> <a href="https://publications.waset.org/abstracts/112447/comparison-of-different-reanalysis-products-for-predicting-extreme-precipitation-in-the-southern-coast-of-the-caspian-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=300">300</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=301">301</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=meteorological%20parameters&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>